
Normalizing Incomplete DatabasesLeonid LibkinAT&T Bell Laboratories600 Mountain Avenue, Murray Hill, NJ 07974 USAE-mail: libkin@research.att.comAbstractDatabases are often incomplete because of the presenceof disjunctive information, due to con
icts, partial knowl-edge and other reasons. Queries against such databasesoften ask questions about various possibilities encoded bythe stored data, rather than the stored data itself. Nor-malization, which is a mechanism for asking such queries,was presented in [LW93a]; however, it had exponentialspace complexity.The main goal of this paper is to develop a generaltheory of answering queries against incomplete databaseswith disjunctive information, and use it to design practi-cal algorithms for query evaluation. We de�ne the seman-tics of such databases and prove normalization theoremsfor set- and bag-based complex objects. These theoremsprovide us with programming primitives that one needsin order to obtain the list of all possibilities encoded by acomplex object with disjunctions.We study two ways of making query evaluation fasterand more space e�cient. Partial normalization allows usto disregard some of the disjunctions if they do not a�ecta given query. We also design a new normalization algo-rithm that produces objects represented by an incompletedatabase one-by-one, rather than all at once. It has linearspace complexity and allows us to speed up many classesof queries.Algorithms presented in this paper have been imple-mented in existing dbpl. We present experimental resultsthat demonstrate substantial improvement over standardalgorithms, both in space and time.1 IntroductionInformation stored in databases is usually incom-plete. One of the typical sources of partiality, along

with null values [AKG91, IL84], is disjunctive infor-mation that occurs primarily in the areas of designand planning, as was noticed in [INV91a, INV91b].It may also arise due to con
icts that occur whendi�erent databases are merged.A number of approaches to querying databaseswith disjunctions are known in the literature. Theidea of using and-or trees to develop a new objectoriented data model with an ad hoc query facilitywas exploited in [INV91a, INV91b]. The query com-plexity in this model was analyzed in [IMV89]. Re-cently, a functional query language for databases withdisjunctions was designed [LW93a] and implemented[GL94]. In these papers two kinds of queries havebeen distinguished: structural queries ask questionsabout the data stored in a database, whereas concep-tual queries ask questions about the data encoded bythe information in a database. To illustrate the di�er-ence between the structural and conceptual queries,consider the following example of an incomplete de-sign borrowed from [GL94], see �gure 1.��� BBB ��� BBB��� BBB ��� BBB ��� BBB ��� BBB ��� BBB���� HHHHA2 B1 B2x y z v w k l mq s tA1.2 A2.1 A2.2 A2.3A1.1 A1 A Bp r u
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Figure 1: Incomplete designIn this �gure vertical and horizontal lines represent219



subparts that must be included in the design, whilethe sloping lines represent possible choices. Forexample, the whole design consists of two parts: Aand B. An A is either an A1 or an A2, and a Bconsists of a B1 and a B2, where a B1 is either aw or a k. Structural queries ask about the structureof a given object. For example, \what is the leastexpensive choice for B2" and \how many subpartsdoes A2 have" are examples of structural queries.Conceptual queries ask questions about possiblecompleted designs. For example, \how many com-pleted designs are there" and \is there a completeddesign that costs under $100 and has reliability atleast 95%" are examples of conceptual queries.To distinguish ordinary sets from collections ofdisjunctive possibilities, we call the latter or-sets, see[INV91a, LW93a, Rou91]. We use hi to denote or-sets. In the example in �gure 1, the whole design canbe represented as a set fA;Bg, while A is an or-sethA1; A2i and B2 is an or-set hw; ki. Note that or-setshave two distinct representations. With respect tostructural queries, or-sets behave like sets, but withrespect to conceptual queries, an or-set denotes oneof its elements. For example, h1; 2i is structurally atwo-element set, but conceptually it is an integer thatequals either 1 or 2.A mechanism for answering conceptual queriesagainst complex objects with or-sets, called normal-ization, was presented in [LW93a]. Roughly speaking,it provides us with a small number of programmingprimitives that, when repeatedly applied to an objecto, create an or-set that lists all possibilities encodedby o (like completed designs). This or-set is calledthe normal form of o. Then conceptual queries aresimply structural queries on normal forms.Normalization, as presented in [LW93a], providesthe solid theoretical foundation for developing lan-guages in which conceptual queries can be formu-lated. It also has led to development of a prototype[GL94]. However, there are several theoretical prob-lems that must be addressed in order to develop prac-tical methods for answering conceptual queries.� Only sets have been considered in [INV91a,INV91b, LW93a, Rou91], but many practicallanguages are based on bags (multisets). In thepast few years several approaches to design of baglanguages have been proposed. Moreover, mostapproaches agree on what constitutes the basic setof bag operations [Alb91, GM93, LW93b, LW94].Thus, we believe the normalization mechanismmust be extended to bags.

� Normalization may cause exponential blowup inthe size of objects. For objects of size n, thesize of their normal forms is bounded (roughly)by n � 1:45n [LW93a]. Therefore, we needbetter normalization tools. One possibility is tonormalize partially. If some of the disjunctionsdo not a�ect the conceptual query that is asked,there is no need to unfold those disjunctions. Theproblem of partial normalization has not beenaddressed in the literature.� Normalization, as presented in [LW93a], requiresthat the whole normal form be created before anyconceptual queries could be asked. Therefore, ithas exponential space complexity. Alternatively,one may want to produce normal form elements(e.g. completed designs) one-by-one, rather thanall at once, thus making the space usage linear.The main goal of the paper is to address theseshortcomings of the normalization process. As theoutcome, we shall have much better tools for queryingdatabases with disjunctive information and muchbetter understanding of their structure. The maincontributions of this paper are listed below.1. We rigorously de�ne normal forms (or conceptualsemantics) of objects with or-sets and provenormalization theorems giving us a small numberof operations that construct normal forms. We dothis for both set and bag semantics.2. We prove a partial normalization result that tellsus when the normalization process need not becompleted in order to answer a conceptual query.We give a restriction on types of objects for whichthis can be done.3. We design a linear space algorithm that producesall elements in the normal form, and suggest a newprogramming primitive based on it. This primi-tive allows us to express a number of importantqueries (including a class of existential conceptualqueries) in a uniform fashion.4. We consider interaction of disjunctive informationwith traditional forms of partial information,represented via orders on objects, and prove bothnormalization and partial normalization theoremsin this setting.5. We implement the new space-e�cient algorithmin the system for querying databases with dis-junctions [GL94]. We compare it with the stan-dard algorithm and demonstrate substantial im-provement. We show how the new programming220



primitive can be used together with some heuris-tics to answer conceptual queries approximately,when normalization process is very expensive.Organization. We de�ne structural semanticsand normal forms in section 2. Normalizationtheorems for sets and bags and partial normalizationtheorem are proved in section 3. The space-e�cient normalization algorithm and a programmingprimitive based on it are presented in section 4.Normalization in the presence of partial informationis studied in section 5. Experimental results arepresented in section 6.Remark. Our approach to disjunctive information asa form of partial information should not be confusedwith the work on disjunctive deductive databases[LMR92]. For di�erences between these approaches,see [INV91a, INV91b].2 Semantics and normal formsAs we mentioned before, objects with or-sets canbe treated at the structural and conceptual levels.Consequently, there are two di�erent semantics foror-objects. One of them treats or-sets as collections,while the other takes into account that an or-setdenotes one of its elements.To state this precisely, we �rst de�ne types ofobjects. There are two type systems of interest: onedealing with sets and the other with multisets (bags):(ST) t := b j t� t j ftg j hti(BT) s := b j s � s j fjsjg j hsiHere b ranges over a collection of base types such asintegers, booleans etc. t � t0 is the product type; itselements are pairs (x; y) where x has type t and y hastype t0. Values of the set type ftg are �nite sets ofelements of type t. Values of fjtjg and hti are �nitebags and or-sets of values of type t respectively. IfPfin(X) stands for the �nite powerset of X and Pb(X)for the family of �nite bags over X, then, assumingthat a domainDb of each base type is given, we de�nethe structural semantics of types as follows:� [[b]]s = Db � [[t� t0]]s = [[t]]s � [[t0]]s� [[ftg]]s = [[hti]]s = Pfin([[t]]s) � [[fjtjg]]s = Pb([[t]]s)An object whose type is in the type system (ST) iscalled a set-based complex object. An object whosetype is in (BT) is called a bag-based complex object.Any object containing or-sets is also called an or-object.We need two translations between (ST) and (BT)

and between set-based and bag-based objects. First,for any type t in (ST), we de�ne tBag in (BT) byreplacing all set brackets by bag brackets. TypesSet is de�ned as s in which all bag bracketsare replaced by set brackets. For any object Xof an (ST) type t, de�ne XBag of type tBag byreplacing each set in X by a bag with the sameelements and all multiplicities equal 1. For example,(f1; 2g; f3; 4g)Bag = (fj1; 2jg; fj3; 4jg). Conversely, forY of a (BT) type s, Y Set of type sSet is de�ned byreplacing each bag in Y with the set containing allelements of that bag (i.e. duplicates are eliminated).For example, fjfj1; 1; 2jg; fj1; 2; 2jgjgSet = ff1; 2gg.It should be noted that (tBag)Set = t for any(ST) type t, and (tSet)Bag = t for any (BT) typet. However, while (XBag)Set = X for any set-based object X, it is not necessarily the case that(Y Set)Bag = Y for a bag-based object Y .Before we de�ne the conceptual semantics, whichwill be called normal form, we need the notion of theskeleton of a type. The skeleton sk (t) of a type t isde�ned to be the type formed by removing all or-setbrackets from t. That is, sk(b) = b, sk(t � t0) =sk (t) � sk (t0), sk (ftg) = fsk(t)g, sk (fjtjg) = fjsk (t)jgand sk (hti) = sk(t).Next, we de�ne a binary relation x l y amongobjects whose meaning intuitively is \x is in theconceptual representation of y". (For example, d lDESIGN i� d is a completed design.)� For any x; x0 of a base type, x0 l x i� x = x0.� (x0; y0) l (x; y) i� x0 l x and y0 l y.� fjx01; : : : ; x0njg l fjx1; : : : ; xnjg i� there exists apermutation � on f1; : : : ; ng such that x0i l x�(i)for all i = 1; : : : ; n.� fx01; : : : ; x0ng l fx1; : : : ; xkg i� there exists apartition X1; : : : ; Xn of fx1; : : : ; xkg such that forany i = 1; : : : ; n and for any x 2 Xi: x0i l x.� x l hx1; : : : ; xki i� x l xi for some xi. (Recallthat an or-set denotes one of its elements.)Note that in the set clause it is not enough to askfor a permutation of elements fx1; : : : ; xng that wouldsatisfy x0i l x�(i) because some of those x0i may thenbe the same and fx01; : : : ; x0ng would not be a set.Hence, we need partitions.De�nition. For any object X, its normal formnf (X) is de�ned as the or-set hx1; : : : ; xni of allobjects xi such that xi l X. Note that the normalform is always �nite.221



Lemma 1 If X is of type t, then any x l X is oftype sk(t). In particular, for any or-object X of typet, its normal form nf (X) is of type hsk (t)i. 2In other words, the normal form of an object listsall possibilities that are encoded by the disjunctionspresent in that object. Each normal form entry is aregular complex object, i.e. does not have any or-sets.3 Normalization theoremsThe general idea of the normalization theorems isto give a list of operations that can be repeatedlyapplied to an object until the normal form isproduced. Such a list was �rst presented in [LW93a];here we go further in several aspects. First, we clearlydistinguish between set and bag semantics. Second,we prove a partial normalization result that can beviewed as normalization at intermediate types. Thatis, while the standard normalization theorems �nd aunique representation of an object of type t at typehsk(t)i, the partial normalization result �nds such arepresentation at type s where s is \between" t andhsk(t)i. To guarantee uniqueness, some restrictionson types must be imposed.We need a language to express the operations usedfor normalizing objects. We adopt the framework of[LW93a] which in turn is based on [BBW92] and �ndsits origins in [AB88, BBN91]. The operators togetherwith their most general types are given in �gure 2.Recall brie
y the semantics of the general and setoperators. f � g is composition of functions; (f; g) ispair formation. �1 and �2 are the �rst and the secondprojections. ! always returns the unique element of aspecial base type unit . eq is equality test; id is theidentity and cond is conditional. For set operations:Kfg is the function that represents the constant fg;� forms singletons: �(x) = fxg; [ takes union oftwo sets; � 
attens sets of sets: �(ff1; 2g; f2;3gg) =f1; 2; 3g; map(f) applies f to all elements of a set;and �2 is pair-with: �2(1; f2; 3g) = f(1; 2); (1; 3)g.Operators on or-sets are exactly the same as oper-ators on sets except that the pre�x or is added. Op-erators on bags are similar to those on sets, but ad-ditive union that adds up multiplicities is used. Also,
attening for bags is additive: b �(fjB1; : : : ; Bnjg) =B1 ] : : :]Bn.Finally, � and b � provide interaction between setsand or-sets and between bags and or-sets. Assumethat X = fX1; : : : ; Xng and Y = fjY1; : : : ; Ynjg whereXi = hxi1; : : : ; xinii and Yi = hyi1; : : : ; yinii. Let F bethe family of \choice" functions from f1; : : : ; ng to N

General operatorsg : u! s f : s ! tf � g : u ! t f : u! s g : u ! t(f; g) : u ! s� t�1 : s� t ! s �2 : s� t! t! : t ! unit eq : t� t ! bool id : t ! tc : bool f : s ! t g : s ! tcond(c; f; g) : s ! tOperators on setsKfg : unit ! ftg �2 : s� ftg ! fs� tg[ : ftg � ftg ! ftg � : t ! ftgf : s ! tmap f : fsg ! ftg � : fftgg ! ftgOperators on bagsKfjjg : unit ! fjtjg b �2 : s� fjtjg ! fjs� tjg] : fjtjg � fjtjg ! fjtjg b � : t! fjtjgf : s ! tb map f : fjsjg ! fjtjg b � : fjfjtjgjg ! fjtjgOperators on or-setsKhi : unit ! hti or �2 : s� hti ! hs� tior [ : hti � hti ! hti or � : t! htif : s ! tor map f : hsi ! hti or � : hhtii ! htiInteraction� : fhtig ! hftgi b � : fjhtijg ! hfjtjgiFigure 2: Operators of or-NRL and b or-NRLsuch that 1 � f(i) � ni for all i. Then�(X ) = hfxif(i) j i = 1; : : : ; ng j f 2 Fib �(Y) = hfjyif(i) j i = 1; : : : ; njg j f 2 FiThe main di�erence between these two de�nitions isthat duplicates are removed from sets but not frombags. For example, �(fh1; 3i; h2; 3ig) evaluates tohf1; 2g; f1; 3g;f2;3g;f3gi, but b �(fjh1; 3i; h2; 3ijg) isequal to hfj1; 2jg; fj1; 3jg; fj2; 3jg; fj3; 3jgi.De�nition (see also [LW93a]). The languageor-NRL over type system (ST) includes all generaloperators, set operators, or-set operators and �. Thelanguage b or-NRL over type system (BT) includesall general operators, bag operators, or-set operatorsand b �.222



3.1 Normalizing typesDe�ne the following rewrite rules on types:s� hti ! hs � ti hsi � t! hs � ti hhtii ! htifhtig ! hftgi fjhsijg ! hfjsjgiDe�ne the rewrite system (STR) on (ST) types asthe three rules in the �rst line and fhtig ! hftgi.The rewrite system (BTR) on (BT) types is de�nedas the top three rules and fjhsijg ! hfjsjgi. We usethe notation s �!�! t if s rewrites to t in zero or moresteps. Recall [DJ90] that a normal form of a rewritesystem is a term that cannot be further rewritten.Proposition 2 (see [LW93a]) Both (STR) and(BTR) are terminating Church-Rosser rewrite sys-tems. Consequently, each type has a unique normalform that can be calculated as hsk (t)i for any type tthat involves or-sets. 23.2 Normalizing complex objectsIt was suggested in [LW93a] to assign functions inthe language to the rewrite rules so that for everyrewriting from s to t there would be an associatedde�nable function of type s ! t. The goal of thisassignment is to obtain a function of type s! hsk (s)ithat produces the normal forms for objects of type s.In subsection 3.3 we explain how to do this forbags. Subsection 3.4 deals with sets. We recallthe result of [LW93a] and explain how normalizationprocess for sets interacts with duplicate elimination.In subsection 3.5 we consider the case when the targettype is not sk (s) but an intermediate type t such thats �!�! t �!�! hsk (t)i. We �nd types t for which anyobject of type s would have a unique representationat type t; the process of �nding such a representationis called partial normalization.3.3 Normalizing bag-based complex objectsWe associate the following functions with the rewriterules: or �2 : s � hti ! hs � tior �1 : hsi � t! hs � tior � : hhtii ! htib � : fjhsijg ! hfjsjgi:Here or �1 = or map((�2; �1))�or �2�(�2; �1) is pair-with over the �rst argument.Now, following [LW93a], we de�ne the functionappb(r) : s ! t where r is a rewrite strategy thatrewrites s to t. First assume that t is a type and p a

position in the derivation tree for t such that applyinga rewrite rule with associated function f to t at pyields type s. We de�ne a function appb(t; p; f) : t!s showing the action of rewrite rules on objects byinduction on the structure of t:� if p is the root of the derivation of t, thenappb(t; p; f) = f ;� if t = t1 � t2 and p is in t1 , then appb(t; p; f) =(appb(t1; p; f) � �1; �2);� if t = t1 � t2 and p is in t2, then appb(t; p; f) =(�1; appb(t2; p; f) � �2);� If p is in t0, then appb(fjt0jg; p; f) =b map(appb(t0; p; f));� If p is in t0, then appb(ht0i; p; f) =or map(appb(t0; p; f)).For a rewrite strategy r := t f1�! t1 f2�! : : : fn�!tn = t0 such that the rewrite rule with associatedfunction fi is applied at position pi, we extendappb to appb(t; t0; r) : t ! t0 by appb(t; t0; r) =appb(tn�1; pn; fn)�: : :�appb(t1; p2; f2)�appb(t; p1; f1).Theorem 3 (Normalization for bags) For anybag-based or-object x of type t and any rewrite strat-egy r : t �!�! hsk (t)i, the following holds:appb(t; hsk(t)i; r)(x) = nf (x)3.4 Normalizing set-based complex objectsThe normalization theorem for set-based objects wasproved in [LW93a], though details were not explainedthere. Here we give its statement that followsimmediately from theorem 3.Let r be a rewriting t1 ! : : : ! tn where all tisare types from (ST). By rBag we mean the rewritingtBag1 ! : : : ! tBagn of (BT) types. Note that ift1 �!�! tn is in (STR), then tBag1 �!�! tBagn is in (BTR).Theorem 4 (Normalization for sets) For anyset-based or-object x and any rewrite strategyr : t �!�! hsk (t)i, the following holds:(appb(tBag; hsk(tBag)i; rBag)(xBag))Set = nf (x)In other words, turn x into a bag-object, and applyrBag by using appb to obtain some object y. Thennf (x) = ySet.223



Note that the statement of theorem 4 is dif-ferent from (and in fact stronger than) the nor-malization theorem in [LW93a], which stated that(appb(tBag; hsk(tBag)i; rBag)(xBag))Set does not de-pend on the choice of r, and de�ned normal formsas the result of application of any such rewriting r.The question arises if it is possible to construct thenormal form without using the bag semantics. Theanswer to this question is negative. To see this, de�neapp(t; t0; r) for set-based objects in the same way wede�ned appb, but using map instead of b map to mapover sets, and using � instead of b �.Proposition 5 There exist set-based objects x oftype t such that for no rewriting r : t �!�! hsk(t)iis app(t; hsk(t)i; r)(x) the normal form of x. 2The main reason that it is impossible to expressnormalization by means of app in or-NRL is that du-plicate elimination does not commute with normal-ization. That is, nf (xSet) is generally di�erent fromnf (x)Set, while nf (yBag)Set = nf (y). We must admithere that proposition 5 contradicts a claim made in[LW93a] that normalization does not add expressive-ness to or-NRL. It does not enhance b or-NRL, butdoes add expressive power to or-NRL.3.5 Partial normalizationSuppose that a conceptual query asks a questionabout possibilities that are encoded only by someof the disjunctions, and that it does not take intoaccount other disjunctions present in a given object.Do we have to complete the normalization process toanswer such a query? If a query q can be answered byhaving an object of type s, and we have an object x oftype t such that t �!�! s, can we �nd a representationof x at type s to answer q?In this section we explain when such a partialnormalization can be performed. First notice thatit is not always possible. Take x = hhh1; 2i; h2; 3iiiof type hhhintiii. Then or �(x) = hh1; 2i; h2; 3ii andor map(or �)(x) = hh1; 2; 3ii { these are two di�erentobjects of the same type hhintii.Theorem 9 below says that essentially we only haveto exclude situations like this. We consider bags here;the result for sets can be readily obtained, just astheorem 4 was obtained from theorem 3.First, we need a criterion that would check if a types can be rewritten to t. (We did not have this problembefore, as it was easy to check if t = hsk (s)i.) Lett � s mean that s is obtained from t by removing

some of the or-set brackets, i.e. s has fewerdisjunctions. Now we de�ne a new relation C ontypes using the rules below.t C t t C t0 s C s0t� t0 C s � s0t C sfjtjg C fjsjg t � t0 t0 C st C hsiProposition 6 The above rules are sound and com-plete for �!�!. That is, s �!�! t i� s C t. 2The last rule for C introduces a new variable t0instead of suggesting a proof search strategy. Onemight think that this leads to (at least) exponentialtime algorithms for verifying s C t. (This somewhatresembles the situation with the cut rule in sequentcalculus. Although it can be eliminated, the costis a hyperexponential blow-up in the proof length,cf. [Gir87].) Fortunately, this phenomenon is notobserved for our rewrite system.Proposition 7 There exists a linear time complexityalgorithm that, given two types s and t, returns trueif s �!�! t and false otherwise. 2Now we say that a type t is a �-type if itdoes not have a subtype of the form hhvii. Wenext de�ne the concept of a �-rewriting between �-types. Intuitively, �-rewritings resolve all ambiguitiesarising from subtypes of form hhvii. Formally, lets and t be two distinct �-types such that s �!�! t.Let r be a rewriting between s and t: s = s0 �!s1 �! : : : �! sn = t. For each i = 0; : : : ; n� 1, lets1i ; : : : ; smii be all the types such that si �! sji (inone step) and sji �!�! t. Let pji be the position in siat which rewrite rule is applied to obtain sji from si,j = 1; : : : ;mi.Then the rewriting r : s �!�! t is a �-rewriting(written as r : s �!�!� t) if either n = 1 (one steprewriting) or n > 1 and it satis�es the following twoproperties for every i = 0; : : : ; n� 2:1. If one of sji s is a �-type, then si+1 is a �-type.2. If all sji have subtypes of form hhvii, then (a)si+1 = sji such that there is no pli closer to theroot than pji , and (b) si+2 is obtained from si+1by applying the rule hhvii �! hvi on the newlycreated subtype hhvii.224



This de�nition resolves ambiguities arising fromsubtypes of form hhvii. The �rst property saysthat they need not be introduced unless absolutelynecessary, and the second property dictates that oncewe cannot avoid introducing a subtype hhvii, it mustbe done as close to the root as possible, and thengotten rid of at the next step of the rewriting. To givean example, hfhtigi�s ! hfhtig�si ! hhftgi�si !hhftg � sii ! hftg � si is a �-rewriting, but the onethat achieves the same result by doing hfhtigi � s!hhftgii � s �rst is not because introduction of thedouble or-set subtype can be avoided.Proposition 8 Let s and t be �-types and s �!�! t.Then there exists a �-rewriting r : s �!�!� t. 2Using this proposition, we can formulate the partialnormalization theorem.Theorem 9 (Partial Normalization) Let s and tbe �-types such that s �!�! t. Then for any two �-rewritings r1; r2 : s �!�!� t and for any object x oftype s, the following holds:appb(s; t; r1)(x) = appb(s; t; r2)(x)This theorem tells us that any object of a �-types has an unambiguous representation of a �-type t ifs C t. This representation is obtained by applyingany �-rewrite strategy that rewrites s to t.One may wonder if restricting rewritings to �-rewritings only is really necessary, and if so, areboth the conditions on �-rewritings necessary. Thefollowing proposition shows that it is.Proposition 10 It is possible to �nd �-types s andt, an object x of type s and two rewritings r1 and r2from s to t which violate either the �rst or the secondproperty of �-rewritings such that appb(s; t; r1)(x) 6=appb(s; t; r2)(x). 24 Normalization algorithms andprimitivesThere is, of course, a trivial normalization algorithmbased on the general normalization theorems. Wepresent it below for bag-based complex objects.� If X is not an or-object, then nf (X) = hXi.� If X is (x; y) of type s � t, then nf (X) =or cartprod(nf (x); nf (y)) if both s and t involveor-sets, nf (X) = or �1(nf (x); y) if only s involvesor-sets and nf (X) = or �2(x; nf (y)) if only tinvolves or-sets.

� If X = fjx1; : : : ; xnjg, then nf (X) =b �(fjnf (x1); : : : ; nf (xn)jg).This algorithm does calculate the normal form, asfollows from theorem 3. It can be readily adapted tothe set-based complex objects.The problem with this algorithm is its exponentialspace complexity, as shown in [LW93a]. It creates thewhole normal form before any conceptual queries canbe asked. We believe it would be more reasonable todesign a new evaluation strategy, that produces theelements in the normal form one-by-one. Then thespace usage would be linear and, in addition, someconceptual queries can be evaluated much faster.For example, for an existential query over a normalform, satis�ability can now be veri�ed for each newlyproduced entry. If the condition is satis�ed, theevaluation stops without producing all elements inthe normal form. That is, if x is of type t andp is of type sk(t) ! bool , and we want to �ndout if there is an element of nf (x) that satis�es p(e.g. is there a cheap reliable design?), then weshould be able to stop when such an element isfound. The query 9p which will be shown later inthis section does precisely that. Note that usingthe straightforward normalization algorithm, evenevaluation of 9(�x:true) requires exponential spaceas the normal form must be produced �rst!The evaluation strategy that we are going topresent is essentially the depth �rst search on theand-or tree underlying a complex object. Thisstrategy will work for both set- and bag- basedcomplex objects, as sets and bags will be translatedinto lists to give an order of evaluation. Using thisevaluation strategy, we shall also suggest new, more
exible, normalization primitives.We create a special data structure, called annotatedcomplex objects, to represent and-or trees. Basically,an annotation gives a choice of an element for each or-set and also contains local conditions telling whetherall possibilities encoded by an object are exhausted.For each object type t, we have a new annotated typeA(t) and the initial translation t! A(t). From eachannotated object, we can get an entry in the normalform. At the heart of the algorithm lies a procedurethat takes an annotated object and produces the\next" one. This enables us to list all normal formentries sequentially.We translate sets and bags into lists, assumingsome ordering. No matter which ordering is chosen,the algorithm will produce all normal form entries.However, the order in which they are produced does225



depend on the translation, and can be used foradditional optimizations.In what follows, we present the algorithm for set-based complex objects. The algorithm for bag-basedcomplex objects can be obtained by repeating itverbatim and replacing \set" by \bag". We denotethe type of lists of type t by [t].De�nition (Annotated complex objects). TypeK (kind) has four possible values: B (base), P(product), S (set), and O (or-set). For each type t,we produce an annotated type A(t) as follows:� A(b) = K � b if b is a base type.� A(s � t) = K � bool � (A(s) � A(t)):� A(ftg) = K � bool � [A(t)]:� A(hti) = K � bool � [(A(t)� bool)]:The boolean value in these translation is set totrue if there are still entries encoded by the objectthat have not been looked at. For or-sets, theboolean component inside lists is used for indicatingthe element that is currently used as the choice givenby that or-set. In all algorithms only one entry insuch a list will have the true boolean component.Now we de�ne three functions: initial : t ! A(t)produces the initial annotation of an object; pick :A(t)! sk(t) produces an element of the normal formgiven by an annotation; end : A(t) ! bool returnstrue i� all possibilities encoded by its argument havebeen exhausted.The de�nitions of initial and pick are given in�gure 3. By void we mean a special object usedto indicate the end of the process of going over thenormal form. P1{P5 give a simpli�ed version of pickin which void is not propagated to the top level. Suchpropagation is done to detect inconsistencies encodedby empty or-sets.The function end always returns true on (B; x).On any other annotated object x = (k; c; v), end x =:c. We also de�ne a function reset : A(t)! A(t) thatdisregards the annotation of an object and restoresthe initial one. The de�nition almost verbatimrepeats initial and is omitted here.A recursive algorithm for next is given in �gure4. We use the [ ] brackets for lists. For any listX = [x1; : : : ; xn], Xoi stands for [x1; : : : ; xi�1] andX1i denotes [xi+1; : : : ; xn] (they may be empty). Weuse the notation :: and @ for consing and appending.That is, a::x puts a as the new head before the listx, and x@y appends y to the end of x.Now we can produce the following algorithm thatlists elements of the normal form of an or-object o.

Calculating norm(cond,init,update,out)(o)acc := init;ao := initial o;last := end ao;while :(cond(pick ao) _ last)do acc := update(pick ao,acc);ao := next ao;last := end aoend;return out((pick ao,last),acc)Figure 5: Algorithm for normao := initial o;repeatprint(pick ao);ao := next aountil end (ao)Theorem 11 For any or-object o, the algorithmabove prints all elements of nf (o) and nothing else.Moreover, it has linear space complexity. 2Although no duplicate elimination is done in thisalgorithm, it does not produce unnecessary copies.Corollary 12 Let o be an or-object such that allor-sets in it are pairwise disjoint. Then the abovealgorithm prints each entry in nf (o) exactly once. 2The correctness result suggests adding new, more
exible normalization primitives to or-NRL. Wepropose the following one called norm.cond : sk(t)! bool update : sk(t) � u! uout : (sk (t) � bool) � u! s init : unorm(cond,init,update,out) : t! sIts \semantics" is given by the algorithm in �gure5. Intuitively, the output value is accumulated inacc, cond is used to break the loop if the conditionis satis�ed, last indicates if all possibilities have beenlooked at, and out forms the output.Now, a number of functions can be de�ned usingnorm . Here we consider just two. In the �rstde�nition, p is of type sk(t)! bool .9p � norm(p; false; �x:�y:false; �1)normalize � norm(�x:false; hi; �x:�y:or �(x)or [y; �2)226



I1 initial x = (B; x) if x is of base type.I2 initial (x; y) = (P; true; (initial x; initial y)).I3 initial fx1; : : : ; xng = (S; true; [initial x1; : : : ; initial xn]).I4 initial hx1; : : : ; xni = (O; true; [(initial x1; true); (initial x2; false); : : : ; (initial xn; false)]).I5 initial hi = (O; false; [ ]).P1 pick (B; x) = x.P2 pick (P; c; (x; y)) = if c then (pick x; pick y) else void .P3 pick (S; c; [x1; : : : ; xn]) = if c then fpick x1; : : : ; pick xng else void .P4 pick (O; c; [x1; : : : ; xn]) = if c then pick �1(xi) else void where �2(xi) = true.P5 pick (O; c; [ ]) = void .Figure 3: De�nitions of initial (I1{I5) and pick (P1{P5)Basenext (B; x) = (B; x)Pair:end (next y)next (P; c; (x; y)) = (P; true; (x; next y)) end (next y) end (next x)next (P; c; (x; y)) = (P; false; (x; y))end (next y) :end (next x)next (P; c; (x; y)) = (P; true; (next x; reset y))Setnext (S; c; [ ]) = (S; false; [ ]) :end (next x1)next (S; c;X) = (S; true; next x1 :: [x2; : : : ; xn])end (next x1) next (S; true; [x2; : : : ; xn]) = (S; c0; X 0)next (S; c;X) = (S; c0; reset x1 :: X 0)Or-setnext (O; c; [ ]) = (O; false; [ ]) �2(xi) X1i = [ ] end (next �1(xi))next (O; c;X) = (O; false; X)�2(xi) X1i 6= [ ] end (next �1(xi))next (O; c;X) = (O; true; X0i @ [(�1(xi); false); (�1(xi+1); true)] @ [xi+2; : : : ; xn])�2(xi) :end (next �1(xi))next (O; c;X) = (O; true; X0i @ [(next �1(xi); true)] @ X1i)Figure 4: Algorithm for next227



Corollary 13 For any or-object o, 1) 9p(o) = (x; c)where x is a normal form entry satisfying p if c =false and there are no normal form entries satisfyingp if c = true, and 2) normalize(o) is its normal form.2Note that 9p is very useful in evaluation of existentialqueries. If an entry that satis�es p is found, 9p stopsand returns that entry without producing all othernormal form entries. In contrast to the standardalgorithm that requires exponential space to evaluatesuch queries even if p is �x:true, 9(�x:true) needslinear time and space to be evaluated.As another application of the new evaluationstrategy, it is possible to run normalization for agiven time, and get the best entry in the normal formobtained in that time. This is often helpful if anapproximate solution is satisfactory.Space-e�cient evaluation of recursivequeries using normalization. Now we show asomewhat surprising application of our normaliza-tion algorithm { it deals with algorithmic expressivepower of query languages. Recall that the Abiteboul-Beeri algebra A&B [AB88] is the nested relational al-gebra (general and set operators in �gure 2) plus thepowerset operator. While the nested relational al-gebra cannot express recursive queries such as tran-sitive closure (tc) [LW94], A&B can express tc by�rst producing all possible relations on a given set ofnodes and then selecting those that contain a givenone and are transitive. Of course this way of com-puting tc uses exponential space. A remarkable re-sult of [SP94] says that no matter how we write anA&B-expression to compute tc, it will use exponentialspace. However, it is based on a contrived restrictionthat a \natural" evaluation strategy is used. If thisrestriction is dropped, then it is possible to devise anevaluation strategy that computes tc in polynomialspace, as shown in [AH95].It was proved in [LW93a] that � has essentially theexpressive power of the powerset operator. Hence,we can view or-NRL as an extension of A&B with or-sets. Now we explain how to use norm to compute tcspace-e�ciently in this language. We use some meta-notation, but everything can be expressed in or-NRL.Let R : fb � bg be a nonempty binary relation.De�ne NR = map(�1) R [ map(�2) R (the set ofnodes of R) and N2R as cartprod(NR;NR). Now letPR = map(�z:or [(or �(fg); or �(� z))) (N2R)That is, for each pair of nodes (x; y), the set PRcontains an element hfg; f(x; y)gi. Let rc : ft �

tg � ft � tg ! ft � tg compute the relationalcomposition (it can be done in any language thatcontains relational algebra as a sublanguage). Lete be of type b� b (i.e. an edge). De�nece = �S:(rc(� S; � S) = � S)&(R � � S)&(e 62 � S)Finally, let tce = norm(ce; (); �x:(); �2 � �1)(PR).Proposition 14 tce evaluates to true if e is in tc(R)and it evaluates to false otherwise. Consequently,tc(R) can be computed in polynomial space usingnorm. 2This proposition can be regarded as a counterpart ofthe result of [AH95] saying that tc can be evaluatedin A&B using polynomial space under a specialevaluation strategy. Here we used our space-e�cientstrategy for normalization to achieve the same result.5 Objects with partial informationand antichain semanticsThe antichain semantics, de�ned in [Lib95, LW93a]and based on the ideas from [BJO91, Lib91], isused for objects with partial information. The keyidea is that the notion of partiality can be conveyedby orderings, with x � y meaning that y is moreinformative than x.This ordering is usually given for base types. Forexample, a null value ni (no information) is lessinformative than any integer or boolean. For pairs,(x; y) � (x0; y0) i� x � x0 and y � y0. It was explainedin [LW93a] that the following two orderings, well-known in semantics of concurrency [Gun92], must beused for sets and or-sets respectively:X v[ Y , 8x 2 X 9y 2 Y : x � yX v] Y , 8y 2 Y 9x 2 X : x � yUsing these orderings suggests a new semantics inwhich an object can denote any other object thatis more informative. This allows elimination ofredundancies given by comparable elements, becauseX v[ Y i� maxX v[ Y and X v] Y i� minX v] Y ,where maxX and minX are sets of maximal andminimal elements of X.In maxX and minX elements are pairwise in-comparable. Such sets are called antichains. UsingA fin(A) for the family of antichains over a poset A,we de�ne the following (structural) antichain-basedsemantics. Here we consider only set-based objects.� [[b]]a = (Db;�b) � [[t� s]]a = [[t]]a � [[s]]a� [[ftg]]a = (A fin([[t]]a);v[) � [[hti]]a = (A fin ([[t]]a);v])228



As follows from the claims above, for each object xof type t there exists a semantically equivalent objectx� in [[t]]a de�ned by the following rules:� x� = x for x of a base type.� (x; y)� = (x�; y�):� fx1; : : : ; xng� = maxfx�1; : : : ; x�ng:� hx1; : : : ; xni� = minhx�1; : : : ; x�ni:Consequently, for each operation f : s ! t inor-NRL, we de�ne a new operation fa that takesx 2 [[s]]a and returns f(x)� 2 [[t]]a. It is known (see[Lib92, LW93a]) that �a is an isomorphism between[[fhtig]]a and [[hftgi]]a. Using these operations fa, it ispossible to de�ne appa(t; t0; r) : t! t0 that applies arewrite strategy r : t �!�! t0, exactly in the same wayas we de�ned app, but using the index a everywhere.The following two results state the normalizationtheorem for the antichain semantics, and the partialnormalization theorem.Theorem 15 Let x 2 [[t]]a be an object of type tsuch that t involves or-sets. Then, for any rewritingr : t �!�! hsk(t)i, the following holds:appa(t; hsk(t)i; r)(x) = nf (x)�Theorem 16 Let s and t be two �-types such thats �!�! t. Then for any two �-rewritings r1; r2 :s�!�!�t and any x 2 [[s]]a,appa(s; t; r1)(x) = appa(s; t; r2)(x)6 Experimental resultsThe basic normalization algorithm and the newspace e�cient normalization algorithm have beenimplemented in the system OR-SML1 [GL94], whichis a database programming language built on top ofStandard ML of New Jersey [HMT90].We ran a number of experments to compare thespeed of the basic algorithm with the new algorithmdescribed in this paper. As our test objects, we choseobjects that are known to cause exponential blow-upin the size of the normal form [LW93a]. In addition,these objects are not well suited for the OR-SMLduplicate elimination algorithm [GL94], so we couldcompare the speed of the standard algorithms for setsand bags.In the table below, the �rst column shows (approx-imately) the number of entires in the normal form.Entries themselves are relatively small. The second1[GL94] describes the version of OR-SML in which theprimitive norm is not available.

column shows running time2 for the standard algo-rithm for sets; that is, at the end duplicates are elimi-nated. The third column is running time for the stan-dard algorithm for bags. The last column is runningtime for the new algorithm. Note that we comparetime rather than space. Despite its space e�ciency,then new algorithm still has to compute exponentiallymany entries. There are several reasons why �guresin the last column are better; among them is winningin time due to not running garbage collections.# entries time (1) time (2) time (3)> 19,000 > 11min 0.9sec 1.8sec> 59,000 > 90min 8.9sec 5.8sec> 175,000 > 16hr 31.1sec 19.1sec> 525,000 > 2 days 1min35sec 59sec> 1:5 � 106 not done out ofmemory 3min9sec> 4:5 � 106 not done same 9min56sec> 14 � 106 not done same 31min51secWe have also considered an application of thenormalization algorithm where one has to select anormal form entry which is best according to somecriterion F . If the normal form is large, it is possibleto run the algorithm for a given time, returningthe best entry that was found so far. In one ofour examples, with almost 3.5 billion entries in thenormal form (going over them takes about 5 days),we obatined the value of F within 7% of the optimalby running the algorithm for only 15 seconds, and thevalue within 4% of the optimal in 30 minutes.7 ConclusionIn this paper we have studied various techniques fornormalizing databases with disjunctive informationrepresented by or-sets. This problem is particularlyimportant in the areas of application such as designand planning, as well as merging databases. Queriesagainst such databases often ask questions aboutpossibilities encoded by the database, rather thanthe information that is stored there. We rigorouslyde�ned the concept of normalization for both setand bag semantics. We explained how normal formsthat list all possibilities encoded by an incompleteobject can be calculated. Only a limited numberof operations are needed for calculation of normalforms, and the sequence in which they are appliedis irrelevant for both set and bag semantics.Since normal forms can be of size exponential in thesize of the objects, we need better tools for answeringconceptual queries. We demonstrated two. Partial2On SGI Challenge XL { 8 R4400 150MHz processors with1 Gigabyte RAM.229
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