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Abstract

Databases are often incomplete because of the presence
of disjunctive information, due to conflicts, partial knowl-
edge and other reasons. Queries against such databases
often ask questions about various possibilities encoded by
the stored data, rather than the stored data itself. Nor-
malization, which is a mechanism for asking such queries,
was presented in [LW93a]; however, it had exponential
space complexity.

The main goal of this paper is to develop a general
theory of answering queries against incomplete databases
with disjunctive information, and use it to design practi-
cal algorithms for query evaluation. We define the seman-
tics of such databases and prove normalization theorems
for set- and bag-based complex objects. These theorems
provide us with programming primitives that one needs
in order to obtain the list of all possibilities encoded by a
complex object with disjunctions.

We study two ways of making query evaluation faster
and more space efficient. Partial normalization allows us
to disregard some of the disjunctions if they do not affect
a given query. We also design a new normalization algo-
rithm that produces objects represented by an incomplete
database one-by-one, rather than all at once. It has linear
space complexity and allows us to speed up many classes
of queries.

Algorithms presented in this paper have been imple-
mented in existing dbpl. We present experimental results
that demonstrate substantial improvement over standard
algorithms, both in space and time.

1 Introduction

Information stored in databases is usually incom-
plete. One of the typical sources of partiality, along
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with null values [AKG91, IL84], is disjunctive infor-
mation that occurs primarily in the areas of design
and planning, as was noticed in [INV9la, INV91b].
It may also arise due to conflicts that occur when
different databases are merged.

A number of approaches to querying databases
with disjunctions are known in the literature. The
idea of using and-or trees to develop a new object
oriented data model with an ad hoc query facility
was exploited in [INV91la, INV91b]. The query com-
plexity in this model was analyzed in [IMV89]. Re-
cently, a functional query language for databases with
disjunctions was designed [LW93a] and implemented
[GL94]. In these papers two kinds of queries have
been distinguished: structural queries ask questions
about the data stored in a database, whereas concep-
tual queries ask questions about the data encoded by
the information in a database. To illustrate the differ-
ence between the structural and conceptual queries,
consider the following example of an incomplete de-
sign borrowed from [GL94], see figure 1.

DESIGN

Figure 1: Incomplete design

In this figure vertical and horizontal lines represent



subparts that must be included in the design, while
the sloping lines represent possible choices. For
example, the whole design consists of two parts: A
and B. An A is either an Al or an A2, and a B
consists of a Bl and a B2, where a Bl is either a
w or a k. Structural queries ask about the structure
of a given object. For example, “what is the least
expensive choice for B2” and “how many subparts
does A2 have” are examples of structural queries.

Conceptual queries ask questions about possible
completed designs. For example, “how many com-
pleted designs are there” and “is there a completed
design that costs under $100 and has reliability at
least 95%” are examples of conceptual queries.

To distinguish ordinary sets from collections of
disjunctive possibilities, we call the latter or-sets, see
[INV9la, LW93a, Rou91]. We use () to denote or-
sets. In the example in figure 1, the whole design can
be represented as a set {A, B}, while A is an or-set
(A1, A2) and B2 is an or-set (w, k). Note that or-sets
have two distinct representations. With respect to
structural queries, or-sets behave like sets, but with
respect to conceptual queries, an or-set denotes one
of its elements. For example, (1,2) is structurally a
two-element set, but conceptually it is an integer that
equals either 1 or 2.

A mechanism for answering conceptual queries
against complex objects with or-sets, called normal-
ization, was presented in [LW93a]. Roughly speaking,
it provides us with a small number of programming
primitives that, when repeatedly applied to an object
o, create an or-set that lists all possibilities encoded
by o (like completed designs). This or-set is called
the normal form of o. Then conceptual queries are
simply structural queries on normal forms.

Normalization, as presented in [LW93al, provides
the solid theoretical foundation for developing lan-
guages in which conceptual queries can be formu-
lated. It also has led to development of a prototype
[GL94]. However, there are several theoretical prob-
lems that must be addressed in order to develop prac-
tical methods for answering conceptual queries.

e Only sets have been considered in [INV9la,
INV91b, LW93a, Rou9l], but many practical
languages are based on bags (multisets). In the
past few years several approaches to design of bag
languages have been proposed. Moreover, most
approaches agree on what constitutes the basic set
of bag operations [Alb91, GM93, LW93b, LW94].
Thus, we believe the normalization mechanism
must be extended to bags.
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e Normalization may cause exponential blowup in
the size of objects. For objects of size n, the
size of their normal forms is bounded (roughly)
by n - 1.45™ [LW93a]. Therefore, we need
better normalization tools. One possibility is to
normalize partiglly. If some of the disjunctions
do not affect the conceptual query that is asked,
there is no need to unfold those disjunctions. The
problem of partial normalization has not been
addressed in the literature.

e Normalization, as presented in [LW93a], requires
that the whole normal form be created before any
conceptual queries could be asked. Therefore, it
has exponential space complexity. Alternatively,
one may want to produce normal form elements
(e.g. completed designs) one-by-one, rather than
all at once, thus making the space usage linear.

The main goal of the paper is to address these
shortcomings of the normalization process. As the
outcome, we shall have much better tools for querying
databases with disjunctive information and much
better understanding of their structure. The main
contributions of this paper are listed below.

1. We rigorously define normal forms (or conceptual
semantics) of objects with or-sets and prove
normalization theorems giving us a small number
of operations that construct normal forms. We do
this for both set and bag semantics.

2. We prove a partial normalization result that tells
us when the normalization process need not be
completed in order to answer a conceptual query.
We give a restriction on types of objects for which
this can be done.

3. We design a linear space algorithm that produces
all elements in the normal form, and suggest a new
programming primitive based on it. This primi-
tive allows us to express a number of important
queries (including a class of existential conceptual
queries) in a uniform fashion.

4. We consider interaction of disjunctive information
with traditional forms of partial information,
represented via orders on objects, and prove both
normalization and partial normalization theorems
in this setting.

5. We implement the new space-efficient algorithm
in the system for querying databases with dis-
junctions [GL94]. We compare it with the stan-
dard algorithm and demonstrate substantial im-
provement. We show how the new programming



primitive can be used together with some heuris-
tics to answer conceptual queries approximately,
when normalization process is very expensive.

Organization. We define structural semantics
and normal forms in section 2. Normalization
theorems for sets and bags and partial normalization
theorem are proved in section 3. The space-
efficient normalization algorithm and a programming
primitive based on it are presented in section 4.
Normalization in the presence of partial information
is studied in section b.

presented in section 6.

Experimental results are

Remark. Our approach to disjunctive information as
a form of partial information should not be confused
with the work on disjunctive deductive databases
[LMR92]. For differences between these approaches,
see [INV9la, INVI1b].

2 Semantics and normal forms

As we mentioned before, objects with or-sets can
be treated at the structural and conceptual levels.
Consequently, there are two different semantics for
or-objects. One of them treats or-sets as collections,
while the other takes into account that an or-set
denotes one of its elements.

To state this precisely, we first define types of
objects. There are two type systems of interest: one
dealing with sets and the other with multisets (bags):

(ST) ti=b | txt | {t} | @
(BT) si=b | sxs | fs} | (s)

Here b ranges over a collection of base types such as
integers, booleans etc. ¢ x ' is the product type; its
elements are pairs (z,y) where z has type t and y has
type t'. Values of the set type {¢} are finite sets of
elements of type t. Values of {|t[} and (¢) are finite
bags and or-sets of values of type ¢ respectively. If
P.(X) stands for the finite powerset of X and Py(X)
for the family of finite bags over X, then, assuming
that a domain Dy of each base type is given, we define
the structural semantics of types as follows:

e [b]s = Ds o [t x t']s = [t]s x [¢']s
o [{t}]s = [()]s = Paa([2]s) o [{20]s = Pa([t]s)

An object whose type is in the type system (ST) is
called a set-based complex object. An object whose
type is in (BT) is called a bag-based complez object.
Any object containing or-sets is also called an or-
object.

We need two translations between (ST) and (BT)

221

and between set-based and bag-based objects. First,
for any type ¢ in (ST), we define t®28 in (BT) by
replacing all set brackets by bag brackets. Type
55t is defined as s in which all bag brackets
are replaced by set brackets. For any object X
of an (ST) type t, define XB28 of type tB2& by
replacing each set in X by a bag with the same
elements and all multiplicities equal 1. For example,
({1,2}, {3,4})B2¢ = ({1, 2[}, {3,4[}). Conversely, for
Y of a (BT) type s, Y5 of type s°* is defined by
replacing each bag in Y with the set containing all
elements of that bag (i.e. duplicates are eliminated).

For example, {{1,1,2[, {1,2,2}}°" = {{1,2}}.

It should be noted that (:B2&)5¢t = ¢ for any
(ST) type t, and (t5¢*)B28 = ¢ for any (BT) type
t. However, while (XB28)S¢t — X for any set-

based object X, it is not necessarily the case that
(Y'5¢*)Bag — ¥ for a bag-based object Y.

Before we define the conceptual semantics, which
will be called normal form, we need the notion of the
skeleton of a type. The skeleton sk(t) of a type ¢ is
defined to be the type formed by removing all or-set
brackets from ¢. That is, sk(b) = b, sk(¢t x t')
sh(t) x sk('), sk({t}) = {sh(&)}, sk({t}) = {sk(t)}
and sk({t)) = sk(t).

Next, we define a binary relation z <« y among
objects whose meaning intuitively is “z is in the
conceptual representation of y”. (For example, d <
DESIGN iff d is a completed design.)

e For any z,z’ of a base type, ' < z iff z = z'.

o (2,y)< (z,y)iff '’ <zandy <y.

o {lz1,...,zl. [} < {z1,...,za[} iff there exists a
permutation o on {1,...,n} such that z} < 2,
foralle=1,...,n.

o {z,...,zl.} < {z1,...,z} iff there exists a
partition Xy,..., X, of {z1,...,zx} such that for
any ¢ = 1,...,n and for any z € X;: 2} < z.

e & < (21,...,zx) iff ¢ < z; for some z;. (Recall

that an or-set denotes one of its elements.)

Note that in the set clause it is not enough to ask
for a permutation of elements {z1, . . ., z, } that would
satisfy z; < 2,(;) because some of those z; may then
be the same and {z!,...,z.,} would not be a set.
Hence, we need partitions.

Definition. For any object X, its normal form
nf(X) is defined as the or-set (z1,...,z,) of all
objects z; such that ©; < X. Note that the normal
form is always finite.



Lemma 1 If X is of type t, then any z < X 1is of
type sk(t). In particular, for any or-object X of type
t, its normal form nf(X) is of type {sk(t)). a

In other words, the normal form of an object lists
all possibilities that are encoded by the disjunctions
present in that object. Each normal form entry is a
regular complex object, i.e. does not have any or-sets.

3 Normalization theorems

The general idea of the normalization theorems is
to give a list of operations that can be repeatedly
applied to an object until the normal form is
produced. Such a list was first presented in [LW93a];
here we go further in several aspects. First, we clearly
distinguish between set and bag semantics. Second,
we prove a partial normalization result that can be
viewed as normalization at intermediate types. That
is, while the standard normalization theorems find a
unique representation of an object of type ¢ at type
(sk(t)), the partial normalization result finds such a
representation at type s where s is “between” ¢ and
(sk(¢)). To guarantee uniqueness, some restrictions
on types must be imposed.

We need a language to express the operations used
for normalizing objects. We adopt the framework of
[LW93a] which in turn is based on [BBW92] and finds
its origins in [AB88, BBN91]. The operators together
with their most general types are given in figure 2.

Recall briefly the semantics of the general and set
operators. f o g is composition of functions; (f, g) is
pair formation. 7 and 3 are the first and the second
projections. ! always returns the unique element of a
special base type unit. eq is equality test; id is the
identity and cond is conditional. For set operations:
K{} is the function that represents the constant {};
n forms singletons: n(z) = {z}; U takes union of
two sets; p flattens sets of sets: p({{1,2},{2,3}}) =
{1,2,3}; map(f) applies f to all elements of a set;
and py is pair-with: pa(1,4{2,3}) = {(1,2), (1, 3)}.

Operators on or-sets are exactly the same as oper-
ators on sets except that the prefix oris added. Op-
erators on bags are similar to those on sets, but ad-
ditive union that adds up multiplicities is used. Also,
flattening for bags is additive: b_u({B1,...,Ba[}) =
BiW...WB,.

Finally, @ and b_a provide interaction between sets
and or-sets and between bags and or-sets. Assume
that X = {X1,...,Xn}and Y ={Y3,...,Y,[} where
X; = <m’1,,m:h> and Y; = <y’i,...,yf”>. Let F be

n} to N

the family of “choice” functions from {1,...,
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General operators

g:u—s f:s—t firu—ss g:ru—t
fog:iu—t (f,9):u—osxt
T :8Xt—>s Ty 8 Xt—>t

Vit > unat eq:t X t— bool id:t—>t

c:bool f:53t g:s—t
cond(c,f,g) :s >t
Operators on sets

K{} : unit - {t} pz s x {t} = {s x t}

U {t} x {t}] = {£}

n:t— {t}
fis—t

map f: {s} — {t} paA{th = {t}

Operators on bags

KA} : unit — {t|} b_p2
W et x {tf — {tl}

bt 0
fis—t

b-map f:{sl} — {t} bp: {{ER} — {¢l

Operators on or-sets

Fsx {8 = Js < &

K{) : unit — (t) or_p, 1 8 X {t) = (s x t)

(t)
{t) or-p i {{t)) = (t)

Interaction

or U : {t) x {t) = orn:t— (t)
fis—t

or_map f :{s) >

a:{(t)} = {t}) bo: ()} > {th)
Figure 2: Operators of or-A'RL and b_or-ARL

such that 1 < f(7) < n; for all %. Then

ba(V)={yu li=1,...,n} | fEF)

The main difference between these two definitions is
that duplicates are removed from sets but not from
bags. For example, a({(1,3),(2,3)}) evaluates to
({1,2},{1,3},{2,3},{3}), but ba({(1,3),(2,3)[}) is
equal to ({|1,2[}, {I1, 3[}, {12, 3[}, {13, 3[})-

Definition (see also [LW93al). The language
or-NRL over type system (ST) includes all general
operators, set operators, or-set operators and . The
language b_or-N'RL over type system (BT) includes
all general operators, bag operators, or-set operators
and b_a.



3.1 Normalizing types

Define the following rewrite rules on types:

sX {ty = (s x t)

1B} = {th

(s)y xt = (s xt) () = (&)

W)l = {sl)

Define the rewrite system (STR) on (ST) types as
the three rules in the first line and {{¢)} — ({t}).
The rewrite system (BTR) on (BT) types is defined
as the top three rules and {(s)[} — ({Is[}). We use
the notation s —» ¢ if s rewrites to ¢ in zero or more
steps. Recall [DJ90] that a normal form of a rewrite
system is a term that cannot be further rewritten.

Proposition 2 (see [LW93a]) Both (STR)
(BTR) are terminating Church-Rosser rewrite sys-
tems. Consequently, each type has a unique normal
form that can be calculated as (sk(t)) for any type ¢
that involves or-sets. ad

and

3.2 Normalizing complex objects

It was suggested in [LW93a] to assign functions in
the language to the rewrite rules so that for every
rewriting from s to ¢ there would be an associated
definable function of type s — t. The goal of this
assignment is to obtain a function of type s — (sk(s)}
that produces the normal forms for objects of type s.

In subsection 3.3 we explain how to do this for
bags. Subsection 3.4 deals with sets. We recall
the result of [LW93a] and explain how normalization
process for sets interacts with duplicate elimination.
In subsection 3.5 we consider the case when the target
type is not sk(s) but an intermediate type ¢ such that
s —» t —» {(sk(¢)). We find types ¢t for which any
object of type s would have a unique representation
at type t; the process of finding such a representation
is called partial normalization.

3.3 Normalizing bag-based complex objects

We associate the following functions with the rewrite
rules:

or_py s X {(ty = (s xt)
orp; : {8y xt—=>{sxt)
or_ () = (&)

: )
ba )
Here or_p; = or_map((ma, 1)

with over the first argument.

Now, following [LW93a], we define the function
appy(r) : s — t where r is a rewrite strategy that
rewrites s to t. First assume that ¢ is a type and p a

= {sh-
)

oor_pyo(ma, m1) is pair-
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position in the derivation tree for ¢ such that applying
a rewrite rule with associated function f to ¢t at p
yields type s. We define a function app,(¢,p, f) : t —
s showing the action of rewrite rules on objects by
induction on the structure of ¢:

e if p is the root of the derivation of ¢, then
appy(t, p, f) = f;

e ift =11 x ty and p is in ¢; , then app,(¢,p, f)
(appy(t1, p, f) 0 m1,m2);

e if t = t1 X t3 and p is in 23, then appy(¢,p, f)
(1, appy(t2, p, f) 0 m2);

e If p is in ¢, then appy({t'}pf) =
b_map(appy(t', p, f));

eIf p is in ¢/, then app,({t'),p,f) =
or_map(app,(t', p, f))-

. o fa fa fn

For a rewrite strategy » :=¢t — £; — ... —

t, = t' such that the rewrite rule with associated

function f; is applied at position p;, we extend
app, to appy(¢,t',r) : t — t' by appy(t, ¢, 7)
appy(tn—1, Pn; fa)o. . .0apPy(t1, P2, f2)0apPy(t, P1, f1)-

Theorem 3 (Normalization for bags) For any
bag-based or-object x of type t and any rewrite strat-
egy v : t —» (sk(t)), the following holds:

app (1, (sk(1)), 7)(2) nf (2)

3.4 Normalizing set-based complex objects

The normalization theorem for set-based objects was
proved in [LW93a], though details were not explained
there. Here we give its statement that follows
immediately from theorem 3.

Let r be a rewriting t; — ... — t, where all ¢;s
are types from (ST). By 7228 we mean the rewriting
t]fag — ... — tB3 of (BT) types. Note that if
t; —» t, isin (STR), then t]fag —>» tB28isin (BTR).

Theorem 4 (Normalization for sets) For any
set-based or-object © and any rewrite strategy
r:t —> (sk(t)), the following holds:

(appy (t°°8, (sk(t2%)), r228) (z26) )5t nf(z)

In other words, turn z into a bag-object, and apply
rB2€ by using app, to obtain some object y. Then

nf(z) = ySet,



Note that the statement of theorem 4 is dif-
ferent from (and in fact stronger than) the nor-
malization theorem in [LW93a], which stated that
(app,(tB28, (sk(tB28)), rB28)(zB28))5et does not de-
pend on the choice of r, and defined normal forms
as the result of application of any such rewriting r.

The question arises if it is possible to construct the
normal form without using the bag semantics. The
answer to this question is negative. To see this, define
app(t,t', r) for set-based objects in the same way we
defined app,, but using map instead of b_map to map
over sets, and using « instead of b_a.

Proposition 5 There ezist set-based objects = of
type t such that for no rewriting r : t —» (sk(t))
is app(t, {sk(t)), r)(z) the normal form of . a

The main reason that it is impossible to express
normalization by means of app in or-A'RL is that du-
plicate elimination does not commute with normal-
ization. That is, nf(25°) is generally different from
nf(z)5¢t, while nf(yB28)%t = nf(y). We must admit
here that proposition 5 contradicts a claim made in
[LW93a] that normalization does not add expressive-
ness to or-AMRL. It does not enhance b_or-ARL, but
does add expressive power to or-A'RL.

3.5 Partial normalization

Suppose that a conceptual query asks a question
about possibilities that are encoded only by some
of the disjunctions, and that it does not take into
account other disjunctions present in a given object.
Do we have to complete the normalization process to
answer such a query? If a query ¢ can be answered by
having an object of type s, and we have an object = of
type t such that £ —» s, can we find a representation
of z at type s to answer ¢7

In this section we explain when such a partial
normalization can be performed. First notice that
it is not always possible. Take z = ({{1,2),(2,3}))
of type ({{int})). Then or_u(z) = ({1,2),(2,3)) and
or_map(or_p)(z) = ({1, 2, 3)) — these are two different
objects of the same type {({int)).

Theorem 9 below says that essentially we only have
to exclude situations like this. We consider bags here;
the result for sets can be readily obtained, just as
theorem 4 was obtained from theorem 3.

First, we need a criterion that would check if a type
s can be rewritten to t. (We did not have this problem
before, as it was easy to check if ¢ = (sk(s)).) Let
t < s mean that s is obtained from ¢ by removing
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some of the or-set brackets, i.e. s has fewer
disjunctions. Now we define a new relation < on

types using the rules below.

!

tat s<s
tat txt gsxs
t<s t <t t<s
{th < {ls} t <1 (s)

Proposition 6 The above rules are sound and com-
plete for —». That is, s —» t iff s < t. a

The last rule for < introduces a new variable #’
instead of suggesting a proof search strategy. One
might think that this leads to (at least) exponential
time algorithms for verifying s <1 ¢. (This somewhat
resembles the situation with the cut rule in sequent
calculus. Although it can be eliminated, the cost
is a hyperexponential blow-up in the proof length,
cf. [Gir87].) Fortunately, this phenomenon is not
observed for our rewrite system.

Proposition 7 There exists a linear time complezity
algorithm that, given two types s and t, returns true
if s —» t and false otherwise. a

Now we say that a type ¢ is a p-type if it
does not have a subtype of the form ({v)}. We
next define the concept of a u-rewriting between p-
types. Intuitively, u-rewritings resolve all ambiguities
arising from subtypes of form ({(v)). Formally, let
s and t be two distinct p-types such that s —» ¢.
Let r be a rewriting between s and ¢: s = sg —
§1 —...— s, =1t. Foreachi=10,...,n—1, let
8t,...,5" be all the types such that s; — s (in
one step) and s{ —» t. Let p{ be the position in s;
at which rewrite rule is applied to obtain s{ from s;,
j = 1, ceey MYy

Then the rewriting r : s —» ¢ 1s a p-rewriting
(written as r : s —», t) if either n = 1 (one step

rewriting) or n > 1 and it satisfies the following two
properties for every 1 = 0,...,n — 2:

1. If one of s{s is a p-type, then s;41 is a u-type.

2. If all s{ have subtypes of form ({v)), then (a)
Sit1 = s{ such that there is no pﬁ closer to the
root than pg, and (b) s;12 is obtained from s;11
by applying the rule {{v)} — (v) on the newly
created subtype {{v}).



This definition resolves ambiguities arising from
subtypes of form {({v)). The first property says
that they need not be introduced unless absolutely
necessary, and the second property dictates that once
we cannot avoid introducing a subtype {{(v}), it must
be done as close to the root as possible, and then
gotten rid of at the next step of the rewriting. To give
an example, ({{t}}) xs = ({{t)} xs) = ({{t}) x s} —
({{t} x s)) = ({t} x s) is a p-rewriting, but the one
that achieves the same result by doing ({{t}}) x s —
({{t})) x s first is not because introduction of the
double or-set subtype can be avoided.

Proposition 8 Let s and t be p-types and s —» t.
Then there exists a p-rewritingr : s —», t. i

Using this proposition, we can formulate the partial
normalization theorem.

Theorem 9 (Partial Normalization) Let s and ¢
be p-types such that s —» t. Then for any two u-
rewritings r1,72 1 s —», t and for any object z of
type s, the following holds:

appy(s,tyr1)(e) = appy(s,t,7a)(e)

This theorem tells us that any object of a p-type
s has an unambiguous representation of a u-type ¢ if
s <1 t. This representation is obtained by applying
any p-rewrite strategy that rewrites s to .

One may wonder if restricting rewritings to p-
rewritings only is really necessary, and if so, are
both the conditions on p-rewritings necessary. The
following proposition shows that it is.

Proposition 10 It is possible to find p-types s and
t, an object = of type s and two rewritings r1 and ro
from s to t which violate either the first or the second
property of p-rewritings such that appy(s,t,r1)(z) #
appy (s, t,r2)(z). a

4 Normalization algorithms and
primitives

There is, of course, a trivial normalization algorithm
based on the general normalization theorems. We
present it below for bag-based complex objects.

e If X is not an or-object, then nf(X) = (X).

o If X is (z,y) of type s x t, then nf(X)
or_cartprod(nf(z), nf(y)) if both s and ¢ involve
or-sets, nf(X) = or_p,(nf(z),y) if only s involves
or-sets and nf(X) = or_p,(z,nf(y)) if only ¢t
involves or-sets.
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then

o If X {z1,-- ., zal}
ba({nf(z1),...,nf(z)]}).

nf(X)

This algorithm does calculate the normal form, as
follows from theorem 3. It can be readily adapted to
the set-based complex objects.

The problem with this algorithm is its exponential
space complexity, as shown in [LW93a]. It creates the
whole normal form before any conceptual queries can
be asked. We believe it would be more reasonable to
design a new evaluation strategy, that produces the
elements in the normal form one-by-one. Then the
space usage would be linear and, in addition, some
conceptual queries can be evaluated much faster.

For example, for an existential query over a normal
form, satisfiability can now be verified for each newly
produced entry. If the condition is satisfied, the
evaluation stops without producing all elements in
the normal form. That is, if z is of type ¢ and
p is of type sk(t) — bool, and we want to find
out if there is an element of nf(z) that satisfies p
(e.g. is there a cheap reliable design?), then we
should be able to stop when such an element is
found. The query dp which will be shown later in
this section does precisely that. Note that using
the straightforward normalization algorithm, even
evaluation of I(Az.true) requires exponential space
as the normal form must be produced first!

The evaluation strategy that we are going to
present is essentially the depth first search on the
and-or tree underlying a complex object. This
strategy will work for both set- and bag- based
complex objects, as sets and bags will be translated
into lists to give an order of evaluation. Using this
evaluation strategy, we shall also suggest new, more
flexible, normalization primitives.

We create a special data structure, called annotated
complez objects, to represent and-or trees. Basically,
an annotation gives a choice of an element for each or-
set and also contains local conditions telling whether
all possibilities encoded by an object are exhausted.
For each object type ¢, we have a new annotated type
A(t) and the initial translation ¢ — A(¢). From each
annotated object, we can get an entry in the normal
form. At the heart of the algorithm lies a procedure
that takes an annotated object and produces the
“next” one. This enables us to list all normal form
entries sequentially.

We translate sets and bags into lists, assuming
some ordering. No matter which ordering is chosen,
the algorithm will produce all normal form entries.
However, the order in which they are produced does



depend on the translation, and can be used for
additional optimizations.

In what follows, we present the algorithm for set-
based complex objects. The algorithm for bag-based
complex objects can be obtained by repeating it
verbatim and replacing “set” by “bag”. We denote
the type of lists of type ¢ by [¢].

Definition (Annotated complex objects). Type
K (kind) has four possible values: B (base), P
(product), S (set), and O (or-set). For each type t,
we produce an annotated type A(t) as follows:

A(b) = K x b if b is a base type.

A(s x t) = K x bool x (A(s) x A(t)).
A({t}) = K x bool x [A(t)].

A({t)) = K x bool x [(A(t) x bool)].

The boolean value in these translation is set to
true if there are still entries encoded by the object
that have not been looked at. For or-sets, the
boolean component inside lists is used for indicating
the element that is currently used as the choice given
by that or-set. In all algorithms only one entry in
such a list will have the true boolean component.

Now we define three functions: initial : ¢ — A(2)
produces the initial annotation of an object; pick :
A(t) — sk(t) produces an element of the normal form
given by an annotation; end : A(t) — bool returns
true iff all possibilities encoded by its argument have
been exhausted.

The definitions of initial and pick are given in
figure 3. By wvoid we mean a special object used
to indicate the end of the process of going over the
normal form. P1-P5 give a simplified version of pick
in which void is not propagated to the top level. Such
propagation is done to detect inconsistencies encoded
by empty or-sets.

The function end always returns true on (B, z).
On any other annotated object z = (k, ¢, v), end z =
—c. We also define a function reset : A(t) — A(2) that
disregards the annotation of an object and restores
the initial one. The definition almost verbatim
repeats initial and is omitted here.

A recursive algorithm for nexzt is given in figure
4. We use the [] brackets for lists. For any list
X = [#1,...,2n], Xoi stands for [zq,...,2z;_1] and
X1, denotes [zit1,. .., 2] (they may be empty). We
use the notation :: and @ for consing and appending.
That is, a::z puts a as the new head before the list
z, and z@y appends y to the end of z.

Now we can produce the following algorithm that
lists elements of the normal form of an or-object o.
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Calculating norm(cond,init,update,out)(o)

acc := nit;
ao := initial o;
last := end ao;

while —(cond(pick ao) V last)

do
acc := update(pick ao,acc);
ao := nezxt ao;
last := end ao

end;

return out((pick ao,last),acc)

Figure 5: Algorithm for norm

ao := wnitial o;
repeat
print(pick ao);
ao := nert ao

until end(ao)

Theorem 11 For any or-object o, the algorithm
above prints all elements of nf(o) and nothing else.

Moreover, it has linear space complexity. a

Although no duplicate elimination is done in this
algorithm, it does not produce unnecessary copies.

Corollary 12 Let o be an or-object such that all
or-sets in it are pairwise disjoint. Then the above
algorithm prints each entry in nf(o) ezactly once. O

The correctness result suggests adding new, more
flexible normalization primitives to or-ARL. We
propose the following one called norm.

cond : sk(t) — bool update : sk(t) x u = u
out : (sk(t) X bool) x u — s mit : u

norm(cond,init,update,out) : t — s

Its “semantics” is given by the algorithm in figure
5. Intuitively, the output value is accumulated in
acc, cond is used to break the loop if the condition
is satisfied, last indicates if all possibilities have been
looked at, and out forms the output.

Now, a number of functions can be defined using
norm. Here we consider just two. In the first

definition, p is of type sk(¢) — bool.

dp = norm(p, false, Az.Xy.false, m1)
normalize = norm(Az.false, (), Az. Ay.orm(z)or Uy, m3)



I1  initial z = (B, z) if z is of base type.

12 initial (z,y) = (P, true, (initial z, initial y)).

13 indtial {z1,..., 2.} = (S, true, [initial z4, ..., initial z,]).

14 initial (z1,...,2n) = (O, true, [(initial ©1, true), (initial 3, false), .. ., (initial z,,, false)]).
15  indtial () = (O, false, []).

Pl pick (B,z) = z.

P2  pick (P,c,(z,y)) = if c then (pick z, pick y) else void.

P3  pick (S,c,[z1,...,2n]) = if c then {pick z1,...,pick z,} else void.

P4  pick (O,c,[z1,...,2,]) = if c then pick m1(z;) else void where ma(z;) = true.

P5 pick (O,c,[]) = void.

Figure 3: Definitions of initial (I1-15) and pick (P1-P5)

BAsE

nect (B,z) = (B, )
PAIr

—end(nezt y) end(nezt y) end(nezt )

next (P, c,(z,y)) = (P, true, (z, nezt y)) next (P, c, (z,y)) = (P, false, (z,y))

end(next y) —end(nezt z)
next (P, c,(z,y)) = (P, true, (next z, reset y))

SET
—end(nezt 1)

next (S,c,[]) = (S, false,[]) next (S,¢c,X) = (S, true, nezt z1 :: [22,...,24))

end(next ©1) next (S, true, [z2,...,2,]) = (5,c', X')
nezt (S,¢,X) = (5,c, reset 1 =+ X')

OR-SET

ma(z;) X1 =] end(next m1(z;))

next (O,c,[]) = (0, false,[]) next (0,¢,X) = (O, false, X)

ma(z;) X1 # ] end(next m1(z;))
next (0,c,X) = (0, true, Xoi @ [(m1(zs), false), (m1(ziq1), true)] Q [zi42,...,24])

ma(z;) —end(next m1(z;))
next (0,c,X) = (0, true, Xo; @ [(next m1(z;), true)] @ Xy;)

Figure 4: Algorithm for next

227




Corollary 13 For any or-object o, 1) Ip(o) = (z,¢)
where © is a normal form entry satisfying p if ¢ =
false and there are no normal form entries satisfying
p if c = true, and 2) normalize(o) is its normal form.
O

Note that dp is very useful in evaluation of existential
queries. If an entry that satisfies p is found, dp stops
and returns that entry without producing all other
normal form entries. In contrast to the standard
algorithm that requires exponential space to evaluate
such queries even if p is Az.true, 3(Az.true) needs
linear time and space to be evaluated.

As another application of the new evaluation
strategy, it is possible to run normalization for a
given time, and get the best entry in the normal form
obtained in that time. This is often helpful if an
approximate solution is satisfactory.

of recursive
Now we show a

Space-efficient  evaluation
queries using normalization.
somewhat surprising application of our normaliza-
tion algorithm — it deals with algorithmic expressive
power of query languages. Recall that the Abiteboul-
Beeri algebra A&B [ABS88] is the nested relational al-
gebra (general and set operators in figure 2) plus the
powerset operator. While the nested relational al-
gebra cannot express recursive queries such as tran-
sitive closure (¢c) [LW94], A&B can express tc by
first producing all possible relations on a given set of
nodes and then selecting those that contain a given
one and are transitive. Of course this way of com-
puting fc uses exponential space. A remarkable re-
sult of [SP94] says that no matter how we write an
A&B-expression to compute t¢, it will use exponential
space. However, it is based on a contrived restriction
that a “natural” evaluation strategy is used. If this
restriction is dropped, then it is possible to devise an
evaluation strategy that computes ic in polynomial
space, as shown in [AH95].

It was proved in [LW93a] that o has essentially the
expressive power of the powerset operator. Hence,
we can view or-A'RL as an extension of A8B with or-
sets. Now we explain how to use norm to compute tc
space-efficiently in this language. We use some meta-
notation, but everything can be expressed in or-ARL.

Let R : {b x b} be a nonempty binary relation.
Define Ng = map(m1) R U map(m2) R (the set of
nodes of R) and N% as cartprod(Ng, Ng). Now let

Pr = map(Az.orU(orn({}), orn(n 2))) (N%)

That is, for each pair of nodes (z,y), the set Pg
contains an element ({},{(z,y)}). Let re : {t x
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t} x {t x t} — {¢t x t} compute the relational
composition (it can be done in any language that
contains relational algebra as a sublanguage). Let
e be of type b x b (i.e. an edge). Define

ce = AS.(re(u S, S) = p S)&(R C p S)&(e ¢ p 5)

Finally, let tc. = norm(ce, (), Az.(), 72 0 m1)(PRr).

Proposition 14 tc. evaluates to true if e is in tc(R)
and it evaluates to false otherwise. Consequently,
tc(R) can be computed in polynomial space using
norm. O
This proposition can be regarded as a counterpart of
the result of [AH95] saying that tc can be evaluated
in A&B using polynomial space under a special
evaluation strategy. Here we used our space-efficient
strategy for normalization to achieve the same result.

5 Objects with partial information
and antichain semantics

The antichain semantics, defined in [Lib95, LW93a]
and based on the ideas from [BJO91, Lib91], is
used for objects with partial information. The key
idea is that the notion of partiality can be conveyed
by orderings, with z < y meaning that y is more
informative than .

This ordering is usually given for base types. For
example, a null value ni (no information) is less
informative than any integer or boolean. For pairs,
(z,y) < (2',y)iff 2 < 2’ and y < y/'. It was explained
in [LW93a] that the following two orderings, well-
known in semantics of concurrency [Gun92], must be
used for sets and or-sets respectively:

XC'Y & VeeXdyeY:z<y
XC'Y & WeYIzeX:z<y

Using these orderings suggests a new semantics in
which an object can denote any other object that
is more informative. This allows elimination of
redundancies given by comparable elements, because
XC'YiffmaxXC'Yand XC'Y if minX C!Y,
where max X and min X are sets of maximal and
minimal elements of X.

In maxX and minX elements are pairwise in-
comparable. Such sets are called antichains. Using
Ao (A) for the family of antichains over a poset A,
we define the following (structural) antichain-based
semantics. Here we consider only set-based objects.

e [b]a = (Ds, <) o [t x s]la = [t]a x [s]a
o [{t}a = (Aa([tla), 2°) @ [{B)]a = (Ana([t]a), C*)



As follows from the claims above, for each object =
of type t there exists a semantically equivalent object
z° in [t], defined by the following rules:

e z° = z for z of a base type.

o (z,y)° = (2°9°).

o {z1,...,2,}° = max{z},...,z2}.
o (z1,...,2,)° = min{z9,...,z3).

Consequently, for each operation f : s — ¢ in
or-NRL, we define a new operation f, that takes
z € [s]q and returns f(z)° € [t]q- It is known (see
[Lib92, LW93a]) that 4 is an isomorphism between
[{{t)} e and [{{t})]s. Using these operations f,, it is
possible to define app,(¢,¢/,7) : t — ¢’ that applies a
rewrite strategy r : ¢ —» t', exactly in the same way
as we defined app, but using the index a everywhere.

The following two results state the normalization
theorem for the antichain semantics, and the partial
normalization theorem.

Theorem 15 Let ¢ € [t]. be an object of type t
such that t involves or-sets. Then, for any rewriting
r it —> (sk(t)), the following holds:

appa (b, (sk (1)), 7)(2)

= nf(z)°
Theorem 16 Let s and t be two p-types such that
s —» t. Then for any two p-rewritings ri,7ry :
s—»ut and any z € [s],,

appa(s,1,)(2) app, (s, 1,72) ()

6 Experimental results

The basic normalization algorithm and the new
space efficient normalization algorithm have been
implemented in the system OR-SML?! [GL94], which
is a database programming language built on top of
Standard ML of New Jersey [HMT90].

We ran a number of experments to compare the
speed of the basic algorithm with the new algorithm
described in this paper. As our test objects, we chose
objects that are known to cause exponential blow-up
in the size of the normal form [LW93a]. In addition,
these objects are not well suited for the OR-SML
duplicate elimination algorithm [GL94], so we could
compare the speed of the standard algorithms for sets
and bags.

In the table below, the first column shows (approx-
imately) the number of entires in the normal form.
Entries themselves are relatively small. The second

1[GL94] describes the version of OR-SML in which the

primitive norm is not available.
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column shows running time? for the standard algo-
rithm for sets; that is, at the end duplicates are elimi-
nated. The third column is running time for the stan-
dard algorithm for bags. The last column is running
time for the new algorithm. Note that we compare
time rather than space. Despite its space efficiency,
then new algorithm still has to compute exponentially
many entries. There are several reasons why figures
in the last column are better; among them is winning
in time due to not running garbage collections.

| # entries | time (1) | time (2) | time (3) |

> 19,000 > 1lmin 0.9sec 1.8sec

> 59,000 > 90min 8.9sec 5.8sec

> 175,000 > 16hr 31l.1sec 19.1sec

> 525,000 | > 2 days | 1min35sec 59sec

t of

> 1.5-10° | not done n?eltlmgry 3min9sec

> 4.5-10° | not done same 9minb6sec

> 14-10° | not done same 31lminblsec

We have also considered an application of the
normalization algorithm where one has to select a
normal form entry which is best according to some
criterion F'. If the normal form is large, it is possible
to run the algorithm for a given time, returning
the best entry that was found so far. In one of
our examples, with almost 3.5 billion entries in the
normal form (going over them takes about 5 days),
we obatined the value of F' within 7% of the optimal
by running the algorithm for only 15 seconds, and the
value within 4% of the optimal in 30 minutes.

7 Conclusion

In this paper we have studied various techniques for
normalizing databases with disjunctive information
represented by or-sets. This problem is particularly
important in the areas of application such as design
and planning, as well as merging databases. Queries
against such databases often ask questions about
possibilities encoded by the database, rather than
the information that is stored there. We rigorously
defined the concept of normalization for both set
and bag semantics. We explained how normal forms
that list all possibilities encoded by an incomplete
object can be calculated. Only a limited number
of operations are needed for calculation of normal
forms, and the sequence in which they are applied
is irrelevant for both set and bag semantics.

Since normal forms can be of size exponential in the
size of the objects, we need better tools for answering
conceptual queries. We demonstrated two. Partial

20n SGI Challenge XL — 8 R4400 150MHz processors with
1 Gigabyte RAM.



normalization allows us to answer queries without
normalizing completely. We have also designed a new
space-efficient normalization algorithm.

There are immediate practical benefits of the re-
sults presented in this paper. The new space effi-
cient algorithm has been implemented in OR-SML -
a system for querying databases with disjunctions. In
addition to being space efficient and faster than the
standard algorithm, it allows more control over the
process of normalization. This makes the normaliza-
tion techniques applicable in practical problems, such
as computer automated design.
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