
Exact and Approximate Aggregation in Constraint Query LanguagesMichael BenediktBell Laboratories1000 E Warrenville RdNaperville, IL 60566E-mail: benedikt@bell-labs.com Leonid LibkinBell Laboratories600 Mountain AvenueMurray Hill, NJ 07974E-mail: libkin@bell-labs.com
AbstractWe investigate the problem of how to extend constraintquery languages with aggregate operators. We dealwith standard relational aggregation, and also with ag-gregates speci�c to spatial data, such as volume. Westudy several approaches, including the addition of anew class of approximate aggregate operators which al-low an error tolerance in the computation. We showhow techniques based on VC-dimension can be used togive languages with approximation operators, but alsoshow that these languages have a number of shortcom-ings. We then give a set of results showing that it isimpossible to get constraint-based languages that admitde�nable aggregation operators, both for exact opera-tors and for approximate ones. These results are quiterobust, in that they show that closure under aggregationis problematic even when the class of functions permit-ted in constraints is expanded.This motivates a di�erent approach to the aggregationproblem. We introduce a language FO+Poly+ Sum,which permits standard discrete aggregation operatorsto be applied to the outputs of range-restricted con-straint queries. We show that this language has a num-ber of attractive closure and expressivity properties,and that it can compute volumes of linear-constraintdatabases. We also show, using techniques from ma-chine learning, that a small extension of FO +Poly+Sum can probabilistically �nd approximations of vol-umes for polynomial-constraint databases.

1 IntroductionNew applications of database technology, such as Ge-ographical Information Systems, have spurred a con-siderable amount of research into generalizations of thestandard relational model to deal with the manipula-tion of geometric or spatial data. One common ap-proach to modeling spatial databases is to consider in-put databases as given by a set of well-behaved re-lations in euclidean space { for example, by a set ofsemi-linear or semi-algebraic sets. There are a num-ber of proposed query languages that extend classicalrelational algebra to this setting, languages that allowthe use of various geometric operations in manipulatingspatial databases. One of the most well-developed mod-els for spatial queries is the constraint database model[23]. In this model, spatial databases are represented assets of linear or polynomial constraints. Databases arequeried using standard relational calculus with linear(resp. polynomial) inequalities as selection criteria, see[4, 5, 6, 19, 20, 32, 38]. These languages, denoted byFO+ Lin and FO +Poly, have become the dominantones in the constraint database literature. They havea very important closure property: the application of aFO + Lin query to a linear constraint set yields a newset of linear constraints; similarly FO+Poly queries onsets de�nable with polynomial constraints produce setsthat can still be de�ned with polynomial constraints.Constraint Query Languages, then, give a natural ana-log of relational calculus in the geometric context. Acrucial question, though, concerns how to extend stan-dard aggregation constructs from the relational modelto the geometric setting. This question has two compo-nents. First, we would like our languages to be ableto apply standard SQL operators such as TOTAL andAVG to spatial queries, whenever these operators makesense. Since the output of queries in constraint querylanguages (and in other spatial query languages) maybe merely �nitely representable (that is, representable



by some �nite means, e.g., a �nite set of constraints)and not �nite, the aggregation operators cannot be al-lowed to be applied to any constraint query output. Oneproblem then, is to design a language that allows thesafe application of classical aggregates.The second component of the `aggregation question'concerns aggregation notions that are speci�c to thespatial databases. Most commonly, given a databaseand the output of a query over it, one wishes to formnew queries about the volume of this output. One mayalso extend standard aggregates such as AVG, and askfor the average value of a polynomial over a spatial ob-ject. Such aggregates arise both from practical concernsof GIS, and also as the natural continuous analogs ofclassical aggregation queries. Thus, we would like toextend constraint query languages to incorporate theability to calculate volumes and other aggregates aris-ing in the spatial setting.In attempting to add aggregation to constraint querylanguages, one immediately encounters some dauntingobstacles. While standard constraint databases areclosed under �rst-order operations such as join andprojection, they are clearly not closed under takingof volumes. This fact is well-known in the literature[23, 27, 12], and stems from the fact that neither thesemi-linear nor semi-algebraic sets are closed under in-tegrals. To take an example from the semi-algebraicsetting, a query asking for the volume of initial slicesof the epigraph of 1=x outputs the graph of the lnfunction, while iterating volume queries in this fashionwould give as output transcendental functions that arenot even expressible using �eld operations, logarithmsand exponents. Thus, one cannot hope to add a generalvolume operator to existing �rst-order constraint querylanguages such as FO+Poly and get a closed languagewhile still remaining within the domain of polynomialconstraint databases.There are several approaches to the volume problemmentioned above. First, one could weaken the require-ment that volumes be computed exactly and instead aimonly to compute approximate volumes. Thus a querymight have a tolerance associated with each instance ofa volume operator, with output required only to be cor-rect within the given tolerance. There are a number ofpractical and theoretical motivations for this approach.While it is known that computing volumes of even sim-ple geometric objects (convex polytopes) is a hard prob-lem (#P-hard, see [14]), approximation of volumes, atleast of convex sets, can be done in polynomial time bya randomized algorithm [15]. Moreover, in contrast tothe well-known fact that semi-algebraic and semi-linearsets are not closed under volume operators, the papers[24, 25, 26] show that volumes of sets de�nable with

polynomial constraints can be approximated, for anygiven � > 0, by a �rst-order formula with polynomialconstraints. By giving up the exact volumes and set-tling for an approximation, one might hope to retaindesirable closure properties.A second approach to the aggregation problem would beto expand out of the domain of polynomial constraints,and add new functions to the signature of both the con-straints and the query language. This would give thepossibility of retaining a constraint-based representa-tion of databases, while gaining closure under volumeoperators. Of course, in this approach one should ex-pand the constraint set so that it still de�nes only topo-logically well-behaved objects.A third approach to the volume problem is to search forlanguages which can compute or approximate the vol-umes of important classes of sets, but which may not beclosed under iterative application of volume operators.For example, one could allow volume and other aggre-gation operators to be applied only to a subclass of theinput queries. Restrictions on the nesting of volumeoperators would then have to be imposed.An example of this last approach in the existing litera-ture is [11], where it is shown that polynomial constraintquery languages can express the (exact) volume for anyset that admits a special condition called `variable in-dependence'. This condition means, informally, that inthe constraint speci�cation of sets in, say, R2 , there isno interaction between x and y. Unfortunately, thiscondition is too restrictive: it excludes many of the setsthat arise most often in spatial applications.In this paper, we analyze the feasibility of each of theabove approaches in detail. For the �rst approach, weshow that techniques based on VC dimension, comingout of the work of [24, 25, 26] give us approximate vol-ume operators that give semi-algebraic output on semi-algebraic input. However, we show a number of short-comings of such an approach. Not only are the ap-proximate volume operators obtained according to thetechnique of [24, 25, 26] sensitive to the input repre-sentation, but the blow-up in the size of the constraintdatabases produced in query evaluation precludes anypossible use of these operators in practice.Turning to the second approach, we show that it is com-pletely infeasible. No �rst-order constraint languagebased on any reasonably well-behaved class of functionscan express, or even approximate, volume. In the pro-cess of showing this, we develop a new set of techniquesfor proving inexpressibility results, techniques not basedon the usual method of reduction to generic queries.We then consider solutions that give up full closure un-



der volume, and give a number of positive results. Wepresent a higher-order language that allows one to cal-culate the volume of arbitrary semi-linear sets. Speci�-cally, we give a language, called FO+Poly+Sum, thathas attractive closure properties, remains within the do-main of polynomial constraint databases, and allowsthe exact calculation of volumes for linear-constraintinput databases. This language also has the pleasantfeature that it is closed under the classical aggregationoperators SUM and AVG. Since FO+Poly+Sum in-cludes SQL aggregation, contains FO+Poly, and alsoallows one to make use of standard aggregation evalu-ation techniques in calculating volumes, it seems to bea good candidate for the constraint analog of classicalaggregation languages.We remark that another approach to the aggregationproblem was considered in [12], which gave a new ag-gregate operator �, under which FO + Lin is closed.However, �(X) = 0 for any bounded set X ; thus, thisoperator cannot be used to deal with volumes.Organization Section 2 introduces the notation. Ap-proximability is studied in Section 3. The method ofde�ning approximate volumes of [24, 25, 26] is analyzed,and the main di�culties in applying the approximationoperators coming from this work are outlined. Section 4shows that approximate volume operators cannot be de-�ned in �rst-order constraint languages, even when thesignature is expanded. Section 5 de�nes an extensionof FO + Poly with SQL-like aggregation (summationover �nite sets) and shows that this extension can ex-press volumes of semi-linear databases. All proofs canbe found in the full version [8].2 NotationStructures, instances, queries Most notations arefairly standard in the literature on constraint databases,cf. [5, 6, 32, 19]. Let M = hU ;
i be an in�nite struc-ture, where U is an in�nite set, called a universe (inthe database literature often called the domain), and 
is a set of interpreted functions, constants, and predi-cates. In the �eld of constraint databases, most exam-ples have U = R, the set of real numbers. Examplesof signatures (and corresponding classes of constraints)that have been considered are:Dense Order Constraints: hR; <i;Linear Constraints: Rlin = hR;+;�; 0; 1; <i;Polynomial Constraints: R = hR;+; �; 0; 1; <i;Exponential Constraints: Rexp = hR;+; �; ex ; <i.A (relational) database schema SC is a nonempty col-lection of relation names fS1; : : : ; Slg with associated

arities p1; : : : ; pl > 0. We shall consider both �niteand �nitely representable instances. Given M, an �-nite instance of SC over M is a family of �nite sets,fR1; : : : ; Rlg, where Ri � Upi . That is, each schemasymbol Si of arity pi is interpreted as a �nite pi-ary re-lation over U . Given a �nite instance D, adom(D) de-notes its active domain, that is, the set of all elementsthat occur in the relations in D.A �nitely-representable (f.r.) instance of SC over Mis a family of sets fX1; : : : ; Xlg, with Xi � Upi , suchthat for each Xi there exists a quanti�er-free formula�i(x1; : : : ; xpi) in the language of M with Xi = f~a 2Upi j M j= �i(~a)g. Most applications of constraintdatabases consider f.r. instances de�ned overRlin (theseare called semi-linear sets) or over R (called semi-algebraic sets). For example, in the spatial setting, af.r. instance interprets the schema predicates as semi-linear or semi-algebraic sets.As our basic query language, we consider relationalcalculus, or �rst-order logic, FO, over the underlyingstructure and the database schema. In what follows,FO(SC ;
) is the set of all �rst-order formulae in thelanguage that contains all symbols of SC and 
. Thatis, FO(SC ;
) formulae are built up from the atomic SCand 
 formulae by using Boolean connectives _;^;:and quanti�ers 8; 9.Regardless of whether we are in the `classical' setting,where queries are applied to �nite databases, or in theconstraint query setting, we will refer to the above syn-tactic query languages as relational calculus with 
 con-straints. This will be denoted by FO + 
. When 
 is(+;�; 0; 1; <), or (+; �; 0; 1; <), or (+; �; ex; <), we usethe standard abbreviations FO+ Lin, FO +Poly andFO+Exp.In the case of �nite databases, we shall also usethe active-domain quanti�ers: for a formula '(x; ~y),one can form formulae 9x 2 adom:'(x; ~y) and 8x 2adom:'(x; ~y). For a structureM and a SC-instance D,the notion of (M; D) j= ' is de�ned in a standard wayfor FO(SC ;
) formulae, where (M; D) j= 9x '(x; �)means that for some a 2 U we have (M; D) j= '(a; �),and (M; D) j= 9x2 adom '(x; �) means that for somea 2 adom(D) we have (M; D) j= '(a; �). If M is un-derstood, we write D j= '.Given '(~x; ~y) and ~a, we write '(~a;D) for f~b j D j='(~a;~b)g; in the absence of ~x we just write '(D) for theoutput of ' on D.The class of subformulae of FO that only use the active-domain quanti�cation is denoted by FOact. Over Rand Rlin, one does not lose expressiveness over �niteinstances by going from FO to FOact, see [6, 32].



Adding aggregate operators We shall use Vol(X)to denote the volume of a set X � Rn . More precisely,Vol(X) is the measure of any Lebesgue-measurable setX � Rn . We shall not worry about dealing with non-measurable sets, as all bounded sets de�ned with con-straints relevant for spatial applications (those listedabove, plus some extensions) are measurable.We shall consider adding volume to a query languageas follows. If '(~x; ~y) is a formula, then the following isa formula with free variables ~x; z:[Vol ~y:'(~x; ~y)](~x; z)Assume that a structure M = hR;
i is �xed. Let aninstance (�nite or f.r.) D be given. ThenD j= [Vol ~y:'(~x; ~y)](~a; v) i� v = Vol('(~a;D))Recall that '(~a;D) = f~b j D j= '(~a;~b)g.The extension of any query language L with Vol willbe denoted by L + Vol; for example, one can speakof FO + Lin + Vol or FO + Poly + Vol. Of coursewe know that due to the nonclosure results mentionedin the introduction, FO + Lin $ FO + Lin+Vol andFO+Poly $ FO+Poly+Vol.As the next step, we restrict our attention to boundedsets. Without any loss of generality, we shall deal withsubsets of In � Rn , where I throughout this paperdenotes [0; 1]. We de�ne VolI ~y:'(~x; ~y) just as above,except that now we require that v = Vol('(~a;D)\In).In particular, 0 � v � 1. We similarly de�ne languagesL +VolI . As with Vol, languages like FO+ Lin andFO + Poly are not closed under VolI : for example,arctan(x) = R x0 dyy2+1 = VolI(f(y; z) j (0 � y � x) ^(0 � z � 1=(y2 + 1))g), for 0 � x � 1.As standard languages are not closed under taking vol-ume, we address the question of whether one can ob-tain closure by lowering one's demands. In particu-lar, we would like to see if approximating the volume,rather than computing it directly, gives us a closed lan-guage. The hope that closure might be obtained inthis way is motivated by the fact that for every formula'(~x; ~y) in R and for every � > 0, one can �nd a formula �(~x; z) that gives �-approximation of volumes of sets'(~a;R) = VolI(f~b j R j= '(~a;~b)g), see [24, 25, 26].We have to explain what we mean by approximatingvolume in this context. Clearly, we cannot hope to �nd �(~x; z) with z de�ning an �-interval around the realvalue of the volume { then the volume itself would bede�nable as the center of the interval! Thus, we settlefor less. Similar to [24, 25, 26], we say for every � > 0,that an operator Vol� is an �-approximation operatorif for every f.r., over M, set A � Rn � Rm , given by a

formula '(~x; ~y), Vol� returns a f.r. set in Rn �R, givenby  �(~x; z) such that :1. For every ~a 2 Rn ,  �(~a; �) must be satis�able (thatis, M j= 9z: �(~a; z));2. If M j=  �(~a; v), then jv �Vol('(~a;R)) j < �.Thus, Vol� must return a  � that is guaranteed to �ndan (absolute) �-approximation of the volume. We nextsay that a query language L de�nes Vol�, if there is aquery in L that de�nes such an operator. That is, foreach query '(~x; ~y) in L and � > 0 there is a L-query �(~x; z) such that for any database D, and any ~a, wehave 1) D j= 9z: �(~x; z), and2) D j=  �(~a; v) implies jv �Vol('(~a;D)) j< �.Notice that in the last de�nition  � is independent ofD. We also de�ne �-approximation operators to vol-ume in the case where we restrict to bounded sets.As before, we use, w.l.o.g., In as bounding set. An�-approximation operator in the bounded setting is de-noted by Vol�I . Such an operator must satisfy the vari-ant of condition 2) above: jv�Vol('(~a;D)\In) j < �.These operators, and their de�nability in query lan-guages, are studied in Sections 3 and 4.O-minimality, VC dimension Many results that weprove extend beyond linear and polynomial constraints.To state them in greater generality, we shall use o-minimality [37], which plays an important role in thestudy of constraint query languages (cf. [5, 6, 7]).A structure M = hU ;
i is o-minimal, if every de�n-able set is a �nite union of points and open intervals(a; b) = fx j a < x < bg, (�1; a) = fx j x < ag,and (a;1) = fx j x > ag (we assume that < is in 
).De�nable sets are those of the form fx j M j= '(x)g,where ' is a �rst-order formula in the language of M,possibly supplemented with symbols for constants fromM. All the structures on the reals we mentioned sofar { Rlin, R, Rexp { are o-minimal (the �rst two byTarski's quanti�er-elimination, the last one by [39]).If M = hR;
i, we de�ne M+;� to be hR;
;+; �i. Weoften require that not just M but also M+;� be o-minimal. Note that this requirement is satis�ed byRlin;R and Rexp.We also consider structures having �nite VC dimen-sion of de�nable families [3, 28] (also known as struc-tures without the independence property [36]). VC di-mension, introduced in statistics to study uniform con-vergence of stochastic processes, has become central to



computational learning theory [3, 10], and found appli-cation in other areas, e.g., complexity [31].Suppose X is an in�nite set, and C � 2X . Let F �X be �nite; we say that C shatters F if the collectionfF \C j C 2 Cg is 2F . The Vapnik-Chervonenkis (VC)dimension of C, VCdim(C), is the maximal cardinalityof a �nite set shattered by C. If arbitrarily large �nitesets are shattered by C, we let VCdim(C) =1.Let M = hU ;
i, and let '(~x; ~y) be a formula in thelanguage of M with j~x j= n; j~y j= m. For each ~a 2 Un,de�ne '(~a;M) = f~b 2 Um j M j= '(~a;~b)g, and letF'(M) be f'(~a;M) j ~a 2 Ung. Families of sets aris-ing in such a way are called de�nable families. We saythat M is a structure with �nite VC dimension if theVC dimension of each de�nable family is �nite. Everyo-minimal structure is a structure with �nite VC di-mension [28], and the latter class is in fact much largerthan the class of o-minimal structures.3 Approximating aggregates in constraint querylanguagesThe VC dimension-based implementation of approx-imate volume operators We now start our investiga-tion of the expressibility of approximate volume oper-ators. The results of [24, 25, 26] do immediately givea closed language for computing approximate volumes.We then examine those operators and show that theycan blow up the size of the database enormously.Lemma 1 Let � > 0, and let '(~x; ~y) be a FO + Polyquery. Then for every semi-algebraic database instanceD there exists a formula '�D(~x; z) such that '�D(~a; �)is satis�able for all ~a, and j= '�D(~a; v) implies j v �VolI('(~a;D)) j< �. Hence, there is a collection of �-approximation operators Vol�I , � > 0, for R.Proof. Replace each occurrence of a SC predicate byits de�nition (a FO formula over R) and apply the ap-proximating formulae of [24, 25, 26] (see below). 2The addition of the operators Vol�I , � > 0, to FO +Poly allows the calculation of approximate volumes,while retaining the property of FO+Poly that the out-put of a query is representable as a constraint database.We give a rough sketch of the formulae approximatingthe volume that are constructed in [24, 25, 26]. As-sume that we are given a �rst-order formula '(~x; ~y)over the real �eld R, with j ~x j= n and j ~y j= m, and� > 0. We want to �nd a formula  (~x; z) approximating

VolI('(~x;R)) = Vol(f~y j '(~x; ~y)g \ Im). 1The construction of  is based on two key observations.First, one can �nd a small random sample that gives agood volume approximation uniformly for all ~x. Second,the sampling procedure can be derandomized.The �rst observation follows from the �niteness of VCdimension of de�nable families. As we noted before,o-minimal structures, and the real �eld in particular,are structures with �nite VC dimension. That is, eachde�nable family F'(R) = f'(~a;R) j ~a 2 Rng � 2Rmhas a �nite VC dimension d (we assume from nowon that all sets are restricted to [0; 1]). Then, theclassical result relating VC dimension and learnabil-ity [3, 10] states the following. Fix �; � > 0, and letM > max( 4� log 2� ; 8d� log 13� ). Assume that an M -pointsample X = f~x1; : : : ; ~xMg is randomly chosen in Im.For each ~a, let v(~a;X) be the fraction of X that fallsinto '(~a;R). Then j v(~a;X) � VolI('(~a;R)) j< � forall ~a 2 Rn , with probability at least 1� �.Since the VC dimension of F'(R) is a �nite numberd, one can write a formula that takes as input an M -sample and calculates the number of elements in thesample that fall into sets '(~a;R). Note that the Mgiven in the paragraph above depends only on d, � and�, not ~a. Hence with probability > 1 � � a sample Xplugged into the formula gives us a good approximationto the volume over ~a for every ~a. The constructionin [24, 25, 26] then derandomizes this sampling, alongthe lines of the classical proof of BPP � PH. Namely,one gets a formula (~x; v) that determines whether theset fX j X is an M -sample from Im whose portionfalling into '(~x;R) is within �=2 from vg has a certainnumber of translates covering the entire unit cube in theappropriate dimension. Then [24, 25, 26] prove that av for which these translates cover the cube must be an�-approximation to the volume of '(~x;R).Shortcomings of the approximation technique Wenote here some shortcomings of the technique of Lemma1 in the context of constraint databases. In the tech-nique, one has to put the de�nition of a constraintdatabase D into a query ', and then apply the methodof [24, 25, 26] to the result. That method produces anoutput formula whose size is a polynomial in the inputformula and 1� : theoretically, a nice bound. In attempt-ing to apply this technique in practice, however, we �ndthat the bounds obtained are rather unpleasant, evenfor modest values of �, as the size of the quanti�er pre�xis quite large. In the constraint database setting, thosewill have to be eliminated, via a quanti�er-elimination1The notion of approximation in [24, 25, 26] is slightly more spe-ci�c: it requires that j=  (~a; v) imply j v � VolI ('(~a;R)) j< �, andjv � VolI ('(~a;R)) j< �=4 imply j=  (~a; v).



procedure, which will be very costly. Let us illustratethis by a simple example.Example: Let the schema contain one unary pred-icate U interpreted as a subset of [0; 1]. The query'(x1; x2; y1; y2) is given byU(x1) ^ U(x2) ^ x1 < y1 ^ y1 < x2 ^ 0 � y2 ^ y2 � y1Let � = 1=10. We want to evaluate the query(Vol�I~y:'(x1; x2; y1; y2))(x1; x2; z) saying that z is an�-approximation to the volume of '(x1; x2; U) =f(y1; y2) j U j= '(x1; x2; y1; y2)g, where Vol�I is the op-erator obtained through the method above. Note thatVolI('(a; b; U)) = (b2 � a2)=2. To evaluate this queryon a database where U consists of n elements, by ap-plying Lemma 1, we would �rst plug U in ' to obtaina formula with > 2n atomic subformulae that does notmention U . Using the bounds from [25], we obtain aformula for �-approximation of the volume that has atleast 109 atomic subformulae, and at least 1011 quan-ti�ers. Thus, applying the method of [24, 25, 26] `asis' appears to be infeasible in the context of constraintdatabases.The technique of Lemma 1 also tells us nothing aboutthe de�nability of the operators Vol�I , nor the power ofthe language that results from adding them to a stan-dard language, like FO+Poly, since the approximatingformula '�D varies with the input database.4 Uniformly de�nable volume operators and expan-sion of the signatureWe saw in the last section that the main shortcomingof all known examples of approximate volume opera-tors was the blow-up in the size of the representation.It was also left open whether some volume approxima-tion operators can be de�ned in standard languages, likeFO + Poly, uniformly for all database instances. Wenow investigate whether we can �nd other approxima-tion methods that can be expressed in nicely-behavedlanguages and that admit low complexity evaluationtechniques. The main result is that one cannot cap-ture approximate volume operators in a nice constraintlanguage such as FO+Poly. That is,Inexpressibility of Approximate Operators FO+Lin, FO + Poly and FO + Exp cannot express Vol�Ifor any � < 1=2. 2In fact, we prove a stronger result. Theorem 2 showsthat even if one extends the constraint signature to in-clude functions beyond FO + Exp, as long as we staywithin a well-behaved structure, we cannot capture ap-proximate volume. Furthermore, we show that in lan-

guages like FO+Poly, only trivial approximations arepossible. An example of a trivial approximation is re-turning 1=2 for every subset of In { in this case weknow that the di�erence between the real volume andits approximation is � 1=2.Proving expressivity bounds such as Theorem 2 andCorollary 1 is not very simple. Almost all, if not all,existing expressivity bounds for constraint query lan-guages either involve generic queries (e.g., the paritytest, see [5, 6, 32, 4]) or are proved by reduction togeneric queries (e.g., [20]). However, queries involv-ing approximation de�ned as in Section 2 are extremelynongeneric. We introduce the main ideas for the proofin several steps. We �rst consider an easier case of theaggregate Avg for �nite instances and prove that it canbe neither de�ned nor approximated in languages likeFO+Poly. The proof introduces the idea of reductionto what we call a (c1; c2)-separating sentence, with c1; c2being constant real numbers. We then show how thesame reduction easily proves that FO + Poly and thelikes cannot produce relative approximations of Vol.For the absolute approximation Vol�I , the reductiononly works under very special assumptions on the in-put, and to conclude the proof we need to use resultsfrom circuit complexity.This section gives further evidence that if one wants tostay within a reasonable (for spatial applications) classof constraints, one must give up uniform closure underany nontrivial approximation to the volume.Separating sentences We shall consider a relationaldatabase schema SC that consists of two unary rela-tions, U1 and U2. Let c1; c2 > 1 be two real numbers.We say that � is a (c1; c2)-separating sentence if for any�nite instance D of SC , it is the case that card(U1) >c1 �card(U2) impliesD j= � and card (U2) > c2 �card (U1)implies D j= :�. Note that this de�nition says noth-ing about the case when 1c2 � card(U2) � card(U1) �c1 � card(U2), and thus direct application of bounds onexpressiveness of generic queries is impossible. Still, wecan show:Proposition 1 Let M = hU ;
i be o-minimal, c1; c2 >1, and SC as above. Then no (c1; c2)-separating sen-tence is de�nable in FO(SC ;
).Proof sketch. Assume such a sentence � is de�nable.By [6], there exists a de�nable extensionM0 ofM suchthat over M0, � is equivalent to an active semanticssentence 	. By [5], there is an in�nite subset of U overwhich 	 is de�nable in the language of U1; U2 and <.Then one uses Ehrenfeucht-Fra��ss�e games to show thatthis is impossible. 2



4.1 Dealing with AVGWe assume that instances store elements of a numer-ical domain, for example R. Given a query '(~x; z),we de�ne Avg'(~x; y) by letting D j= Avg'(~a; v) i�card('(~a;D)) < 1 and v = Avg('(~a;D)), whereAvg(C) = (Pc2C c)=card(C). Note that the aggregateAvg is typically de�ned using the bag semantics; how-ever, as we show inexpressibility results, dealing withthis simpli�ed version will su�ce. 2It is easily shown (by reduction to equal cardinality)that Avg' is not de�nable in FO + Poly, even ifD j= '(~a; c) implies 0 � c � 1. We now de�ne �-approximation of Avg just as we did it for Vol. As-sume a query '(~x; z) is given. An operator Avg�I , whenapplied to ', produces a query  �(~x; z) such that, forany instance D and any ~a, D j= 9z:'(~a; z), and ifD j= '(~a; v), then j v � Avg('(~a;D) \ I) j< � and0 � v � 1. For convenience, we let Avg(C) = 0 for Cin�nite.For � � 1=2, Avg�I is de�nable in FO(SC ;
) if the inputis �nite or f.r. over 
, as long as the constants 0; 1=2and 1 are de�nable. However,Theorem 1 Let M = hR;
i, and let M+;� be o-minimal. Let � < 1=2. Then Avg�I is not de�nablein FO + 
, even over �nite instances. In particular,Avg�I is not de�nable in FO+Poly.Proof sketch. Given 0 < � < 1=2, it is possible to �nda number 0 < � < 1=2 and two FO + Poly queriesthat translate two �nite sets U1 and U2 into intervals(0;�) and (1 � �; 1) respectively, in such a way thatfor the results of translation, U 01 and U 02, Avg(U 01 [U 02)can be written as a function of card(U1)card(U2) . Using this, andassuming that Avg�I is de�nable, one obtains a (c1; c2)-separating sentence in FO+(
[f+; �g) for appropriatec1; c2 > 1 that depend on �. This contradicts Proposi-tion 1. 24.2 Dealing with volumeWe start with two easy results. First, for unboundedmeasures (no restriction to In) volume cannot be ap-proximated in languages like FO+Poly.Proposition 2 Let M = hR;
i, and let M+;� be o-minimal. Then no �-approximation operator Vol� isde�nable in FO+
. 22We shall come back to the multiset semantics later.

The proof is by reduction to equal cardinality, for sparse�nite sets. It relies on the fact that there is no a pri-ori bound on the outputs of queries. Thus, a di�erentapproach is needed to show inexpressibility of Vol�I .For a query '(~x; ~y) and two constants 0 < c1 < c2, wesay that  (~x; z) gives a (c1; c2)-relative approximationof the volume if for any ~a,  (~a; �) is satis�able, andD j=  (~a; v) ) c1 < (v=Vol('(~a;D))) < c2An easy reduction to separating sentences shows:Proposition 3 Assume that hR;
i is such thathR;
;+; �i is o-minimal. Then for any 0 < c1 < c2,the (c1; c2)-relative approximation of the volume is notde�nable in FO+
, for any dimension k > 0, even forqueries restricted to [0; 1]k. 2One often is interested in an �-relative approximationVapp or volume V 6= 0 de�ned such that j Vapp � V j=V < �, for 0 � � < 1. Since the existence of an �-relative approximation means the existence of a (1 ��; 1 + �)-relative approximation to the volume in thesense de�ned above, we get that languages like FO +Lin, FO+Poly and FO+Exp cannot express relativeapproximations of the volume, even for subsets of [0; 1].4.3 Absolute approximationWe shall now prove the strongest of the inexpressibilityresults: that Vol�I , for � < 1=2, cannot be de�ned inlanguages like FO+ Lin and FO+Poly. First note:Proposition 4 FO+ Lin de�nes Vol�I for � � 1=2.Proof sketch. If the volume is not 0 or 1, then 1=2 isthe �-approximation. 2This trivial approximation is the bext one can hope forin languages like FO+ Lin and FO+Poly.Theorem 2 Let M = hR;
i, and let M+;� be o-minimal. Assume that � < 1=2. Then Vol�I is notde�nable in FO+
.Proof sketch. Let SC consist of two unary relations Aand B. Call a �nite instance good if A is an initial frag-ment of natural numbers, and B is a nonempty propersubset of A. Let c1 = (1 � 2�)=3 and c2 = (2 + 2�)=3.A sentence � in the language of SC and 
 is called a(c1; c2)-good sentence if card (B) < c1 � card(A) impliesD j= :� and card(B) > c2 � card(A) implies D j= �for any good instance D. Note that this is the same as



having a separating sentence for B and A�B; however,here we only require that the above conditions hold fora good instance. The theorem follows from two lemmas.Lemma 2 Assume Vol�I is de�nable in FO+
. Thenfor c1; c2 as above there exists a signature 
0 extending
 and a (c1; c2)-good sentence in FOact(SC ;
0).Proof sketch of Lemma 2. With an FO+Poly query, wecan map the active domain of a good instance into [0; 1]so that the distance between two consecutive elementsis the same. Next, consider the union X of all intervalsthat start with an element of B and span to the next(in the order <) element of A � B, or to 1 if thereis no such element. Let Y be obtained in the sameway by changing the roles of B and A � B. Then,using �-approximations of Vol(X) and Vol(Y ), onecan construct a (c1; c2)-good sentence in FO + 
. Theresult now follows from the natural-active collapse [6].Lemma 3 Let � be an arbitrary signature on R. ThenFOact(SC ;�) cannot de�ne a (c1; c2)-good sentence.Proof sketch of Lemma 3. Suppose � de�nes such a sen-tence. With each n > 0 and each B � f0; : : : ; n�1g, as-sociate a structure S(B; n) whose universe is f0; : : : ; n�1g, one unary symbol U is interpreted as B, and theremaining signature operators correspond to atomic �-subformulae of �, which naturally inherit their interpre-tation from �. We then show that there is a sentence 	such that for card(B) < c1n we have S(B; n) j= :	 andfor card(B) > c2n we have S(B; n) j= 	. Next, usingstandard techniques (see, e.g., [13]) we convert 	 intoa family of non-uniform AC0 circuits (nonuniformitycomes from the interpretation of �-predicates). Thus,this family of circuits can distinguish cardinalities> c2nfrom those < c1n; in particular, from large enough n,it can distinguish some cardinalities in [pn; n � pn].However, AC0 circuits are not capable of doing this,cf. [13]. This proves Lemma 3 and thus the theorem. 2Corollary 1 FO + Lin, FO + Poly and FO + Expcannot express Vol�I for any � < 1=2. 2Theorem 2 shows that one cannot possibly adjust themethod of [24, 25, 26] to get the approximation opera-tors uniformly de�nable. This is somewhat surprising,for the following reasons. It is possible that there existsan o-minimal structure which is closed under taking in-tegrals. That is, for every '(~x; ~y) in the language of thestructure, there is a formula  (~x; z) such that j=  (~a; v)i� v = R : : : R �'(~a;Rn)\Ind~y = Vol('(~a;Rn )\In). Theexistence of such a structure is conjectured in [25]. ByTheorem 2, even if such a structure M = hR;
i ex-

isted, the volume of outputs of very simple queries on�nite instances could not be approximated in FO+
!Is it possible that one can express the approximate vol-ume computation over outputs of some particularly sim-ple queries? We now show that for two very simpleclasses, this remains impossible in FO+Poly and sim-ilar languages.Corollary 2 In languages FO + Lin, FO + Poly,FO + Exp, it is impossible to express Vol�I even re-stricted to a) outputs of conjunctive <-queries over �-nite instances, or b) schema predicates, interpreted asf.r. instances de�nable with dense-order constraints. 2Remarks One may ask where the procedure of [24, 25,26] fails if we try to apply it, in a uniform way, to,say, FO + Poly queries. Note that the method of[24, 25, 26] produces a formula whose quanti�er pre-�x is proportional to the VC dimension of the familyof sets de�ned by the input formula. However, for re-lational calculus queries, this may depend on the sizeof the database, thus making it impossible to quantifyuniformly over random samples. For a query '(~x; ~y)with and a database D, the de�nable family given by' and D is F'(D) = f'(~a;D) j ~a 2 Ung where'(~a;D) = f~b j D j= '(~a;~b)g. The size of a �nitedatabase D, jD j, is de�ned to be card(adom(D)).Proposition 5 There exists a (quanti�er-free) rela-tional calculus query '(x; y), and a sequence ofdatabases D1; D2; : : : of increasing size such thatVCdim(F'(Dn)) � log jDn j. 2We also remark that under some special assumptions onthe outputs of the queries, their volumes can be approxi-mated. We can show, using L�owner-John ellipsoids [18],that for a FO + Poly query '(~x; ~y) with j ~y j= k, un-der the assumption that '(~a;D) is convex, a relative(c1; c2) approximation of its volume can be found withc1 = kk+12�kk � � and c2 = kk+12 + � for an arbitrarily small� > 0.5 FO + Poly + Sum: An aggregate language forconstraint databasesWe now introduce a language for extending FO+Polywith a summation operator. The main di�culty is tomake sure that when summation is done over all el-ements in some query output, we are guaranteed thatthe query output is �nite. To do this, we use techniquesfrom [7] for guaranteeing that a query is safe (that is,that a query yields �nite output).



Let Q be a non-boolean query over a database schemaSC . We say that Q is a semi-algebraic query if it givessemi-algebraic output on semi-algebraic inputs. Wesay Q is semi-algebraic-to-�nite and write Q 2 SAFif Q produces �nite output on semi-algebraic inputdatabases. If Q is expressed as '(y; ~x), we say thatQ is ~x-semi-algebraic-to-�nite if for every ~a the query'(y;~a), with one free variable y, is in SAF. In the lan-guage FO+Poly+Sum, all queries are semi-algebraicqueries, but in the construction we will have to ensurethat certain subqueries are in the smaller class SAF.A �rst-order formula (x; ~w) with distinguished vari-able x in the language of the real �eld is said to bedeterministic if it produces at most one output x forevery vector of real numbers ~w. Deterministic formulaeare the building blocks from which safe queries can beformed. Given a deterministic formula (x; ~w) and a�nite set of tuples of reals A (having the same lengthas ~w), we let (A) refer to the bag ]~a2Af(~a), wheref is the corresponding partial function taking ~w to theunique x such that (x; ~w) holds. Note that it is decid-able if a formula is deterministic.De�nition of FO+Poly+ Sum The query languageFO + Poly + Sum is de�ned inductively as follows.Atomic queries are the same as for FO + Poly. Theformulae of FO+Poly+Sum are closed under booleanconnectives and quanti�cation 8 and 9 (over the reals).Next, we de�ne the summation term-former. Givenany FO + Poly + Sum formula '(y; ~z), we letEnd[y; '(y; ~z)](u; ~z) be the query that holds for a tuple(b;~a) on an input database D i� b is an endpoint ofthe intervals that compose '(D;~a). Note that if ' is asemi-algebraic query (which is guaranteed by Lemma 4below), then End[y; '(y; ~z)] is ~z-SAF.A range-restricted FO + Poly + Sum expressionis an expression of the form �(~w; ~z) �('1(~w; ~z)jEnd[y; '2(y; ~z)]) where '1(y; ~z) and '2(~w; ~z)are FO + Poly + Sum queries. It binds y, that is,the free variables are ~z; ~w. We have D j= �(~a;~b) for~a = (a1; : : : ; an) i� D j= '1(~a;~b) andD j= (End[y; '2(y; ~z)])(ai;~b); i = 1; : : : ; n:It then follows from the closure property (Lemma 4)that for any D and any ~b, the set �(D;~b) = f~a j D j=�(~a;~b)g is �nite.For any deterministic formula (x; ~w) in the language ofthe real �eld and any range-restricted expression �(~w; ~z)as above we now de�ne a term t(~z) by[ X�(~w;~z) ](~z)

Given D and ~b, the value of t(~b) in D is the sum of allthe members of the �nite bag (A), where A = �(D;~b).Finally, new terms in FO + Poly + Sum can be builtby applying composition with the real functions +; �. Iftis are terms and ' is a formula, then t1 = t2; t1 < t2and '(t1; : : : ; tk) are FO+Poly+ Sum formulae.Examples of FO+Poly+ Sum queries Let '(w) bean FO+Poly query. Let (x;w) � (x = w) and �(w) =(w = w)jEnd[w;'(w)]. Then the FO + Poly + Sumterm (without free variables) P�(w)  gives the sum ofall the endpoints of the intervals that compose '(D).The area of a convex polygon in R2 can be de�ned inFO + Poly + Sum. Assume that the polygon is givenby a predicate P (x; y) (it could be an input relation orthe output of a query). There is a FO + Poly query'P (x; y) that computes all the vertices of P { this isbecause ~a is vertex i� ~a 62 conv(P �f~ag). Since one cancompute the boundary of P by a FO + Poly query, itfollows that there is a FO + Poly query �P (~x; ~y) thattests if ~x; ~y are two adjacent vertices of P .We now form two FO + Poly queries. The query 2(u) tests if u is a coordinate of a vertex of P . Thequery  1(~x; ~y; ~z) tests the following conditions: (1)'P (~x)^'P (~y)^'P (~z) holds; (2) ~x is a lexicographicallyminimal vertex of P ; (3) either �P (~y; ~z) holds and ~y islexicographically less than ~z and :�P (~x; ~y)^:�P (~x; ~z),or �P (~x; ~y) ^ �P (~y; ~z) ^ :�P (~x; ~z).We now let �(~x; ~y; ~z) be the range-restricted expression( 1(~x; ~y; ~z)jEnd[u;  2(u)]). It can be easily seen thatfor P convex, the output of � is �nite and produces atriangulation of P .Since for each triangle with vertices (a1; a2), (b1; b2),(c1; c2), its area is computable as (a1b2 � a2b1 + a2c1 �a1c2 + b1c2 � c2b1)=2, we obtain a deterministic for-mula (v; ~x; ~y; ~z) saying that v is the area of the trianglewith vertices ~x; ~y; ~z. We then conclude that the termP�(~x;~y;~z)  de�nes the area of P .Note that the above method codes a standard computa-tion of area used in computational geometry [34] whichgeneralizes to nonconvex polygons, and is in fact usedin GISs for area computation [40].Properties of FO+Poly+Sum The language FO +Poly+Sum has a number of attractive features. It ex-tends both FO+Poly and the relational calculus withsummation and other standard aggregates. It is alsorelated to aggregate languages for statistical databasesstudied recently in [21]. Furthermore, we have the fol-



lowing properties.Lemma 4 � Every FO+Poly+Sum query returnssemi-algebraic output on a semi-algebraic input.� For any SAF FO + Poly + Sum query '(~z), wecan express in FO + Poly + Sum the cardinalityof the output of '.� For any SAF FO + Poly query '(~z) and anydeterministic formula �(x; ~w) we can express inFO+Poly+Sum the sum of the x values of � for~w ranging over the output of ' and the average ofthe x values of � over the output of '.The most important of these properties { closure { isobtained from the fact that there is a uniform boundon the number of intervals composing de�nable sets�(~x;R) for any formula �(~x; y) in the language of thereal �eld.6 Computing and approximating the volumeIn this section we show how to use the aggregate lan-guage FO + Poly+ Sum for volume computation andapproximation. We �rst show it can precisely com-pute volumes of semi-linear sets. We then show howit can be used to uniformly approximate volumes ofsemi-algebraic sets.6.1 Computing the volume of semi-linear sets inFO+Poly+ SumOur �rst goal is to prove that FO + Poly + Sum cancompute the volume of semi-linear sets. We start bynoting that taking volumes of semi-linear sets does nottake us out of the semi-algebraic setting. This fact iseasily derived from known results in the literature (andmay have been published before, see, for example, [9]for a closely related result).Lemma 5 For any formula '(~x; ~y) over the real or-dered group Rlin, the volume of ' is semi-algebraic.That is, f~a; v j [Vol ~y:'(~x; ~y)](~a; v)g is a semi-algebraicset. 2We now prove that the language FO+Poly+Sum canexpress volumes of semi-linear sets.Theorem 3 � For every schema predicate S 2 SCthere is an FO + Poly + Sum term � which, forany semi-linear database D, computes the volumeof S in D.

� For every FO + Lin query ' there is an FO +Poly+Sum term �' such that for any semi-lineardatabase D, �'(D) returns the volume of '(D).Proof is by induction on dimension. We sketch itin dimensions 1 and 2, assuming S is bounded. IfS � R is semilinear, it is a �nite union of intervals,and hence volume is de�nable with summation. IfS � R2 , then Vol(S) = R R �S(x; y)dy dx, where �Sis the characteristic function. The innermost integralis [P�1(l;u;x) ](x), where �1 is the query saying that land u are the lower and the upper endpoints of a maxi-mal interval from the set fy j S(x; y)g, and (w; l; u) �(w = u � l). The function g(x) = [P�1(l;u;x) ](x) isa piecewise linear function of x { this follows from theproof of Lemma 5. We can de�ne in FO+Poly+Sumthe set of points x where it is not smooth. Let T bethe sum of all values (mu2 �ml2)=2 + b(u � l), wherethe quadruples (u; l;m; b) vary over all quadruples ofpoints such that (l; u) are consecutive points of nons-moothness of g, and g(x) = mx+b on the interval (l; u).Since g is piecewise linear, there are only �nitely manypairs of consecutive points of nonsmoothness. There-fore there are only �nitely many quadruples (u; l;m; b)as above. Also note that the formula (w; l; u;m; b)given by w = (mu2 �ml2)=2+ b(u� l) is a determinis-tic formula. Hence there is an FO+Poly+Sum queryreturning the sum of all  output values w as (l; u;m; b)vary. Therefore, T is FO+Poly+Sum de�nable. ThatT = Vol(S) follows from Fubini's theorem. 26.2 Approximating volumes of semi-algebraic setsand FO+Poly+ SumWe now discuss a possible extension of FO+Poly+Sumto approximate volumes of semi-algebraic sets. The ideais to get a random sample and use it to approximatevolume, since we can compute the number of points inthe sample that fall into a given set. The samplingidea was used previously for approximating traditionalrelational aggregates (see [16, 22]). We extend this tothe spatial context, and also obtain uniform dependenceon parameters: for a query '(~x; ~y), one can �nd onesample that will provide a good approximation for allVol('(~x;D)), with high probability.The addition to the language that we propose is thewitness, or choice, operator W of [2]. Given a query'(~x; ~y), W~y:' is a new query, with the same free vari-ables, that randomly selects for each ~a one tuple from'(~a;D), if it is nonempty. W~x:'(~x) selects randomlyone tuple from '(D). For the use of the witness opera-tor in query languages, see [2, 29].We �rst deal with the case of �nite instances D.



Theorem 4 Let '(~x; ~y) be a FO + Poly query, withj~x j= n; j~y j= m. Let �; � > 0. Then there exists a FO+Poly + Sum +W query  �;�(~x; z) such that for every~a, there is a unique element v~a satisfying  �;�(~a; �), andsup~a2In jv~a �VolI('(~a;D)) j < �with probability at least 1� �. Moreover, this query hasat most max( 4� log 2� ; C logjDj� log 13� )) calls to the witnessoperator W, where C is a constant that depends only on'.Proof sketch. The proof follows from the classical resultsin learning theory on the size of a sample [10] and aC log jD j bound on the VC dimension. The latter isestablished in the Proposition below.Proposition 6 Let M = hU ;
i be o-minimal. Let SCbe a relational schema, and '(~x; ~y) a FO(SC ;
) query.Then there is a number C that depends on ' only suchthat for the family F'(D) = f'(~x;D) j ~x 2 U j~xjg wehave: VCdim(F'(D)) < C log(jD j). If M is a struc-ture with �nite VC dimension, the same is true for allactive-semantics '. 2With this result, [10] gives us the bound on the size of asingle sample that tests multiple volumes; the sample isthen generated using counting abilities of FO+Poly+Sum and the W operator. 2In some cases, it is possible to determine the constantC. For example, let '(~x; ~y) be an active semantics FO+Poly query, with j~y j= k. Let q be the quanti�er rankof ', and let p be the maximal arity of a relation in theschema. Let d be the maximal degree of a polynomialconstraint used in ' (1, if none is used), and let s bethe total number of atomic subformulae of '. Then thebounds of [17] can be used to show that C can be takento be 16k(p+ q)(log(8edps) + 1).Remark Note that the bound of Theorem 4 holds for f.r.instances if querying is done via �nite codings whosesize is at most polynomial in the size of the �nite rep-resentation. Such codings are known; see, e.g., [7, 30];several papers studied querying via such �nite codings[35, 7, 38]. Note also that the method of Theorem 4 canonly be applied as top-level aggregation, as the result isnot guaranteed to be semi-algebraic.7 ConclusionsThis paper has dealt with the key question of how toadd aggregation to constraint query languages. The

�rst fundamental question is whether there can be alanguage that is closed under the natural spatial ag-gregation operators, and which also retains the basicclosure property that is fundamental to a constraint-based approach: namely, that every query output canbe again represented as a constraint solution set. Ourresults give indication that this is impossible: these twoclosure properties are fundamentally incompatible. Per-haps more surprisingly, we show that the problem is notparticular to the polynomial or linear constraint model;even going to a larger well-behaved constraint set doesnot remedy the problem.The results above motivated us to look for languagesthat are not closed under volume operators, but whichare closed under natural discrete aggregations andwhich permit the computation of volumes for semi-linear sets. The language FO + Poly + Sum de�nedhere gives a natural approach to the addition of dis-crete aggregation operators to a constraint language.The key idea is the notion of range-restricted query-ing: allowing aggregation to be formed only on setsthat are guaranteed to be �nite. We show not only thatFO+Poly+Sum has some attractive closure propertiesanalogous to classical aggregate languages, but it allowsone to do a signi�cant amount of spatial aggregation,e.g., volumes of semi-linear sets.The approach given here based on classical summationover range-restricted sets is natural, and allows oneto re-use many of the evaluation strategies for classi-cal aggregation operators; it is clear, however, that thesyntax given here for FO + Poly+ Sum is quite awk-ward. We hope to �nd more streamlined and naturalsyntax for FO + Poly + Sum, and we are looking atsubsets of FO + Poly + Sum that can be more e�-ciently evaluated than the full language. It remains todiscover how one could best provide support for directlyexpressing volumes in some language built `on top of'FO+Poly+Sum, and how to add grouping constructsto the language.Acknowledgements Part of this work was done while thesecond author was visiting INRIA. We thank Serge Abite-boul, St�ephane Grumbach, Michel Scholl and Luc Segou�nfor helpful discussions. Libkin thanks all the members ofthe Verso team for their hospitality.References[1] S. Abiteboul, R. Hull and V. Vianu. Foundations ofDatabases. Addison-Wesley, 1995.[2] S. Abiteboul, V. Vianu. Datalog extensions fordatabase queries and updates. JCSS 43 (1991), 62{124.[3] M. Anthony and N. Biggs. Computational LearningTheory. Cambridge Univ. Press, 1992.
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