

Incomplete Data:
What Went Wrong, and How to Fix It

Leonid Libkin (University of Edinburgh)

PODS 2014 Incomplete Information 1/1

Incomplete information

◮ It is everywhere.

◮ The more data we accumulate, the more incomplete data we
accumulate.

◮ Sources:
◮ Traditional (missing data, wrong entries, etc)
◮ The Web
◮ Integration/translation/exchange of data, etc

◮ The importance of it was recognized early
◮ Codd, “Understanding relations (installment #7)”, 1975.

◮ And yet the state is very poor:
◮ Both practice and theory

PODS 2014 Incomplete Information 2/1

SQL: example 1

Orders Payments

order id title

ord1 ‘SQL Standard’

ord2 ‘Database Systems’

ord3 ‘Logic’

pay id order id amount

p1 ord1 –

p2 – $50

PODS 2014 Incomplete Information 3/1

SQL: example 1

Orders Payments

order id title

ord1 ‘SQL Standard’

ord2 ‘Database Systems’

ord3 ‘Logic’

pay id order id amount

p1 ord1 –

p2 – $50

Query: all payment ids. Written as:

SELECT pay id FROM Payments
WHERE amount ≥ 50 OR amount < 50

PODS 2014 Incomplete Information 3/1

SQL: example 1

Orders Payments

order id title

ord1 ‘SQL Standard’

ord2 ‘Database Systems’

ord3 ‘Logic’

pay id order id amount

p1 ord1 –

p2 – $50

Query: all payment ids. Written as:

SELECT pay id FROM Payments
WHERE amount ≥ 50 OR amount < 50

Answer: only p2!

PODS 2014 Incomplete Information 3/1

SQL: it gets worse

Query: unpaid orders:

SELECT order id FROM Orders
WHERE order id NOT IN (SELECT order id FROM Payments)

Answer:

PODS 2014 Incomplete Information 4/1

SQL: it gets worse

Query: unpaid orders:

SELECT order id FROM Orders
WHERE order id NOT IN (SELECT order id FROM Payments)

Answer: EMPTY!

PODS 2014 Incomplete Information 4/1

SQL: it gets worse

Query: unpaid orders:

SELECT order id FROM Orders
WHERE order id NOT IN (SELECT order id FROM Payments)

Answer: EMPTY!

◮ This goes against our intuition: 3 orders, 2 payments.

◮ At least one must be unpaid!

PODS 2014 Incomplete Information 4/1

SQL: it gets worse

Query: unpaid orders:

SELECT order id FROM Orders
WHERE order id NOT IN (SELECT order id FROM Payments)

Answer: EMPTY!

◮ This goes against our intuition: 3 orders, 2 payments.

◮ At least one must be unpaid!

◮ SQL tells us that |X | > |Y | and X − Y = ∅ are compatible.

◮ This is cast in stone (SQL standard).

PODS 2014 Incomplete Information 4/1

SQL: quotes

“. . . this topic cannot be described in a manner that is
simultaneously both comprehensive and comprehensible”
“Those SQL features are . . . fundamentally at odds with the
way the world behaves”

C. Date & H. Darwen, ‘A Guide to SQL Standard’

“If you have any nulls in your database, you’re getting wrong
answers to some of your queries. What’s more, you have no
way of knowing, in general, just which queries you’re getting
wrong answers to; all results become suspect. You can never
trust the answers you get from a database with nulls”

C. Date, ‘Database in Depth’

PODS 2014 Incomplete Information 5/1

The world, as theoreticians see it
In theory:

◮ We produce beautiful theoretical results
◮ Practitioners read our papers
◮ and build their systems as our results suggest.

PODS 2014 Incomplete Information 6/1

The world, as theoreticians see it
In theory:

◮ We produce beautiful theoretical results
◮ Practitioners read our papers
◮ and build their systems as our results suggest.

It all looks rosy for us:

PODS 2014 Incomplete Information 6/1

The world, as theoreticians see it
In practice:

◮ We produce beautiful theoretical results
◮ Practitioners don’t read our papers (usually)
◮ and build their systems as they please.

PODS 2014 Incomplete Information 7/1

The world, as theoreticians see it
In practice:

◮ We produce beautiful theoretical results
◮ Practitioners don’t read our papers (usually)
◮ and build their systems as they please.

We feel like:

PODS 2014 Incomplete Information 7/1

Incomplete information: these scenarios don’t apply

Because: we don’t have the right theory yet.

We certainly don’t yet have a theory that can be applied in practical
settings

PODS 2014 Incomplete Information 8/1

Incomplete information: these scenarios don’t apply

Because: we don’t have the right theory yet.

We certainly don’t yet have a theory that can be applied in practical
settings

Plan:

◮ A quick review of the theory of incompleteness
◮ with lots of criticism

◮ An alternative approach
◮ some basic ideas and early results

◮ List of things to do

PODS 2014 Incomplete Information 8/1

Models of incompleteness
There are a few elements present in all models of incompleteness:

◮ A set of database objects D
◮ e.g., all databases (with or without nulls) of the same schema

◮ A set of complete objects C ⊆ D
◮ databases of the same schema without nulls

◮ Semantics of incompleteness:

[[]] : D → 2C

◮ The semantics of an incomplete object D is the set of complete
objects it can possibly represent:

[[D]] ⊆ C

PODS 2014 Incomplete Information 9/1

Näıve nulls

Also called marked nulls. Often arise in exchanging/integrating data:

Order(order id,title) −→ Customer(x), Prefers(x, title)

PODS 2014 Incomplete Information 10/1

Näıve nulls

Also called marked nulls. Often arise in exchanging/integrating data:

Order(order id,title) −→ Customer(x), Prefers(x, title)

From Orders, we generate:

customer

⊥1

⊥2

⊥3

customer product

⊥1 ‘SQL Standard’

⊥2 ‘Database Systems’

⊥3 ‘Logic’

PODS 2014 Incomplete Information 10/1

Näıve nulls

Also called marked nulls. Often arise in exchanging/integrating data:

Order(order id,title) −→ Customer(x), Prefers(x, title)

From Orders, we generate:

customer

⊥1

⊥2

⊥3

customer product

⊥1 ‘SQL Standard’

⊥2 ‘Database Systems’

⊥3 ‘Logic’

Some nulls can repeat and denote the same value.

PODS 2014 Incomplete Information 10/1

Näıve nulls

Also called marked nulls. Often arise in exchanging/integrating data:

Order(order id,title) −→ Customer(x), Prefers(x, title)

From Orders, we generate:

customer

⊥1

⊥2

⊥3

customer product

⊥1 ‘SQL Standard’

⊥2 ‘Database Systems’

⊥3 ‘Logic’

Some nulls can repeat and denote the same value.

Easily implementable (in fact used already: Clio, ++Spicy).

PODS 2014 Incomplete Information 10/1

Näıve nulls

Also called marked nulls. Often arise in exchanging/integrating data:

Order(order id,title) −→ Customer(x), Prefers(x, title)

From Orders, we generate:

customer

⊥1

⊥2

⊥3

customer product

⊥1 ‘SQL Standard’

⊥2 ‘Database Systems’

⊥3 ‘Logic’

Some nulls can repeat and denote the same value.

Easily implementable (in fact used already: Clio, ++Spicy).

SQL model: an easy subcase – nulls don’t repeat.

PODS 2014 Incomplete Information 10/1

Two common semantics via valuations of nulls

pay id order id amount

p1 ord1 ⊥1

p2 ⊥2 $50
p3 ⊥3 ⊥1

PODS 2014 Incomplete Information 11/1

Two common semantics via valuations of nulls

pay id order id amount

p1 ord1 ⊥1

p2 ⊥2 $50
p3 ⊥3 ⊥1

v(⊥1) = $100
v(⊥2) = ord2
v(⊥3) = ord3

=⇒

PODS 2014 Incomplete Information 11/1

Two common semantics via valuations of nulls

pay id order id amount

p1 ord1 ⊥1

p2 ⊥2 $50
p3 ⊥3 ⊥1

v(⊥1) = $100
v(⊥2) = ord2
v(⊥3) = ord3

=⇒

pay id order id amount

p1 ord1 $100
p2 ord2 $50
p3 ord3 $100

PODS 2014 Incomplete Information 11/1

Two common semantics via valuations of nulls

pay id order id amount

p1 ord1 ⊥1

p2 ⊥2 $50
p3 ⊥3 ⊥1

v(⊥1) = $100
v(⊥2) = ord2
v(⊥3) = ord3

=⇒

pay id order id amount

p1 ord1 $100
p2 ord2 $50
p3 ord3 $100

Closed-World-Assumption semantics (CWA semantics):

[[D]]cwa =
{

v(D)

∣

∣

∣

∣

v is a valuation
}

PODS 2014 Incomplete Information 11/1

Two common semantics via valuations of nulls

pay id order id amount

p1 ord1 ⊥1

p2 ⊥2 $50
p3 ⊥3 ⊥1

v(⊥1) = $100
v(⊥2) = ord2
v(⊥3) = ord3

=⇒

pay id order id amount

p1 ord1 $100
p2 ord2 $50
p3 ord3 $100
p4 ord4 $70
p5 ord5 $65

PODS 2014 Incomplete Information 11/1

Two common semantics via valuations of nulls

pay id order id amount

p1 ord1 ⊥1

p2 ⊥2 $50
p3 ⊥3 ⊥1

v(⊥1) = $100
v(⊥2) = ord2
v(⊥3) = ord3

=⇒

pay id order id amount

p1 ord1 $100
p2 ord2 $50
p3 ord3 $100
p4 ord4 $70
p5 ord5 $65

Open-World-Assumption semantics (OWA semantics):

[[D]]owa =

{

complete D ′
∣

∣

∣

∣

v(D) ⊆ D ′ for some valuation v

}

PODS 2014 Incomplete Information 11/1

Query answering

We want to answer queries Q over incomplete databases D, but only
know how to answer them over complete databases D ′

PODS 2014 Incomplete Information 12/1

Query answering

We want to answer queries Q over incomplete databases D, but only
know how to answer them over complete databases D ′

Answers to Q in all possible worlds of D:

Q([[D]]) = {Q(D ′) | D ′ ∈ [[D]]}

PODS 2014 Incomplete Information 12/1

Query answering

We want to answer queries Q over incomplete databases D, but only
know how to answer them over complete databases D ′

Answers to Q in all possible worlds of D:

Q([[D]]) = {Q(D ′) | D ′ ∈ [[D]]}

First approach — strong representation systems:

[[A]] = Q([[D]])

The answer to Q on D is an object A that represents Q([[D]]).

PODS 2014 Incomplete Information 12/1

Strong representation systems are quite strong

Database

B

1

⊥

CWA semantics Query σB=2

PODS 2014 Incomplete Information 13/1

Strong representation systems are quite strong

Database

B

1

⊥

CWA semantics Query σB=2

A possible world:

B

1

2

σB=2







B

1

2






=

B

2
.

PODS 2014 Incomplete Information 13/1

Strong representation systems are quite strong

Database

B

1

⊥

CWA semantics Query σB=2

A possible world:

B

1

2

σB=2







B

1

2






=

B

2
.

Another possible world:

B

1

3

σB=2







B

1

3






= ∅.

PODS 2014 Incomplete Information 13/1

Strong representation systems are quite strong

Database

B

1

⊥

CWA semantics Query σB=2

A possible world:

B

1

2

σB=2







B

1

2






=

B

2
.

Another possible world:

B

1

3

σB=2







B

1

3






= ∅.

No A so that both ∅ and
B

2
in [[A]]cwa:

◮ only empty tables have ∅ in their semantics.

PODS 2014 Incomplete Information 13/1

When strong is too strong, we need something weak
Certain answers: we are certain a tuple t is in the answer if it is in the
answer in all possible worlds.

certain(Q,D) =
⋂

D ′ ∈ [[D]]

Q(D ′)

PODS 2014 Incomplete Information 14/1

When strong is too strong, we need something weak
Certain answers: we are certain a tuple t is in the answer if it is in the
answer in all possible worlds.

certain(Q,D) =
⋂

D ′ ∈ [[D]]

Q(D ′)

◮ Came out of weak representation systems:

[[A]] = Q([[D]]) is replaced by [[A]] ∼ Q([[D]])

◮ ∼ is an equivalence relation, weaker than equality
◮ Idea: certain information in [[A]] and Q([[D]]) is the same

PODS 2014 Incomplete Information 14/1

Certain answers

Look again at

SELECT pay id FROM Payments
WHERE amount ≥ 50 OR amount < 50

on

pay id order id amount

p1 ord1 ⊥
p2 ⊥′ $50

SQL answer =
pay id

p2
Certain answer =

pay id

p1

p2

PODS 2014 Incomplete Information 15/1

Certain answers evaluation

Treat nulls as values: ⊥1 = ⊥1 but ⊥1 6= ⊥2 and ⊥1 6= 1, etc.
Often called näıve evaluation.

R :

A B

1 ⊥1

2 ⊥2

S :

B C

⊥1 3

⊥2 4

PODS 2014 Incomplete Information 16/1

Certain answers evaluation

Treat nulls as values: ⊥1 = ⊥1 but ⊥1 6= ⊥2 and ⊥1 6= 1, etc.
Often called näıve evaluation.

R :

A B

1 ⊥1

2 ⊥2

S :

B C

⊥1 3

⊥2 4

πA,C (R ⋊⋉B S) =⇒

A C

1 3

2 4

=
certain
answer

PODS 2014 Incomplete Information 16/1

Certain answers evaluation

Treat nulls as values: ⊥1 = ⊥1 but ⊥1 6= ⊥2 and ⊥1 6= 1, etc.
Often called näıve evaluation.

R :

A B

1 ⊥1

2 ⊥2

S :

B C

⊥1 3

⊥2 4

πA,C (R ⋊⋉B S) =⇒

A C

1 3

2 4

=
certain
answer

πA(R) − ρA←B(πB(S)) =⇒

A

1

2

6=
certain
answer

PODS 2014 Incomplete Information 16/1

Applications and certain answers

Certain answers is the standard method of query answering in
applications of incompleteness:

◮ Data exchange

◮ Data integration

◮ Consistent query answering

PODS 2014 Incomplete Information 17/1

Data Exchange

!"#$%&'!%(&)*

+"#$%&',-

.*$/&0'!%(&)*

)*1123/

1"
++
24
5&
'0*
$/
&0
',
-+

!

666

666
666

666

◮ A mapping M relates source and target schemas.

◮ A query Q is over the target schema.
◮ Potentially many target databases satisfying M:

◮ only one is materialized

◮ How to answer Q?

PODS 2014 Incomplete Information 18/1

Data Exchange – certain answers

◮ Given: a source S , a mapping M, a target query Q.

◮ Possible targets:

[[S]]
M

= {T | S and T satisfy M}

◮ Query answering:

certainM(Q,S) =
⋂

T ∈ [[S]]
M

Q(T)

◮ We want tuples that are in the answer for all possible targets.

PODS 2014 Incomplete Information 19/1

Virtual data integration

SOURCES

....................

...............

S1 S2 S3 Sn

mapping M (LAV)

GLOBAL SCHEMA

PODS 2014 Incomplete Information 20/1

Virtual data integration

SOURCES

....................

...............

S1 S2 S3 Sn

mapping M (LAV)

GLOBAL SCHEMA

◮ Global schema database is virtual.

◮ Possibly multiple instances of the global schema satisfying M.

PODS 2014 Incomplete Information 20/1

Data Integration – certain answers

◮ A query Q is posed against a virtual global schema database.

◮ We only have access to the sources SSS = (S1, . . . ,Sn)

◮ Possible virtual databases:

[[SSS]]
M

= {D of global schema | D and SSS satisfy M}

PODS 2014 Incomplete Information 21/1

Data Integration – certain answers

◮ A query Q is posed against a virtual global schema database.

◮ We only have access to the sources SSS = (S1, . . . ,Sn)

◮ Possible virtual databases:

[[SSS]]
M

= {D of global schema | D and SSS satisfy M}

◮ Query answering:

certainM(Q,SSS) =
⋂

D ∈ [[SSS]]
M

Q(D)

◮ We want tuples that are in the answer regardless of a specific
instance of a global schema.

PODS 2014 Incomplete Information 21/1

Inconsistent databases

◮ Often arise in data integration.

◮ Functional dependency name → salary but conflicting tuples
(John, 50K) and (John, 60K) in two sources.

◮ What if we cannot clean the data and must keep inconsistent
records?

Main issue: correct query answering.

PODS 2014 Incomplete Information 22/1

Inconsistent databases – certain answers

◮ a database D, a query Q, a set of integrity constraints Σ.

◮ D violates Σ.

◮ Repairs: minimal changes that restore integrity
◮ for functional dependencies, tuple removals

[[D]]
Σ

= {D ′ | D ′ is a repair of D wrt Σ}

PODS 2014 Incomplete Information 23/1

Inconsistent databases – certain answers

◮ a database D, a query Q, a set of integrity constraints Σ.

◮ D violates Σ.

◮ Repairs: minimal changes that restore integrity
◮ for functional dependencies, tuple removals

[[D]]
Σ

= {D ′ | D ′ is a repair of D wrt Σ}

◮ Query answering:

certainΣ(Q,D) =
⋂

D ′ ∈ [[D]]
Σ

Q(D ′)

We want tuples that are in the answer for all possible repairs.

PODS 2014 Incomplete Information 23/1

Typical theoretical results

◮ Foundational papers:
◮ Imielinski/Lipski 1984
◮ Abiteboul/Kanellakis/Grahne 1991

◮ Null-free tuples in the result of näıve evaluation is certain answers
for positive relational algebra (σ, π,⋊⋉,∪).

◮ under both CWA and OWA
◮ low complexity

◮ The result is optimal for OWA

◮ For full relational calculus, the complexity is:
◮ coNP-complete under CWA
◮ undecidable under OWA
◮ even for data complexity

PODS 2014 Incomplete Information 24/1

Summary

◮ Practice: sacrifice correctness for efficiency
◮ cast in stone: SQL standard

◮ Theory: standard notions of correctness
◮ cast in stone: representation systems, certain answers

◮ Theoretical notions of correctness quickly lead to high complexity
but they aren’t really questioned.

PODS 2014 Incomplete Information 25/1

Summary

◮ Practice: sacrifice correctness for efficiency
◮ cast in stone: SQL standard

◮ Theory: standard notions of correctness
◮ cast in stone: representation systems, certain answers

◮ Theoretical notions of correctness quickly lead to high complexity
but they aren’t really questioned.

◮ The two sides got it wrong, and they are not talking...

PODS 2014 Incomplete Information 25/1

Summary

◮ Practice: sacrifice correctness for efficiency
◮ cast in stone: SQL standard

◮ Theory: standard notions of correctness
◮ cast in stone: representation systems, certain answers

◮ Theoretical notions of correctness quickly lead to high complexity
but they aren’t really questioned.

◮ The two sides got it wrong, and they are not talking...

◮ Can we get efficiency and correctness guarantees at the same time?

◮ Efficiency = can use existing DBMSs for query evaluation (perhaps
with just slight modifications)

PODS 2014 Incomplete Information 25/1

Theory is not immune from criticism

◮ SQL’s handling of nulls has been criticized a lot, but theoretical
approaches have been mainly spared.

◮ But even the most basic notions are questionable: strong/weak
representation systems, certain answers.

◮ We now illustrate a few problematic points.

PODS 2014 Incomplete Information 26/1

Semantics of query answering

◮ Strong representation systems: [[A]] = Q([[D]])
◮ A represents answers in all possible worlds

PODS 2014 Incomplete Information 27/1

Semantics of query answering

◮ Strong representation systems: [[A]] = Q([[D]])
◮ A represents answers in all possible worlds

◮ But why should the answers have the same semantics [[]]?

PODS 2014 Incomplete Information 27/1

Semantics of query answering

◮ Strong representation systems: [[A]] = Q([[D]])
◮ A represents answers in all possible worlds

◮ But why should the answers have the same semantics [[]]?

◮ There is really no need for this.
◮ XML-to-relational or relational-to-XML queries
◮ why should results be open/closed if inputs are?

PODS 2014 Incomplete Information 27/1

Semantics of query answering

◮ Strong representation systems: [[A]] = Q([[D]])
◮ A represents answers in all possible worlds

◮ But why should the answers have the same semantics [[]]?

◮ There is really no need for this.
◮ XML-to-relational or relational-to-XML queries
◮ why should results be open/closed if inputs are?

◮ One should be more flexible:
(

|
(

|
(

|A|
)

|
)

|
)

= Q([[D]])

◮ But then what is the semantics of query answers
(

|
(

|
(

| |
)

|
)

|
)

?
◮ How does it depend on [[]] and Q?

PODS 2014 Incomplete Information 27/1

Why intersection?

◮ We always use intersection to define certain answers:

certain(Q,D) =
⋂

{Q(D ′) | D ′ ∈ [[D]]}

◮ But is this the only way? Is this the right way?
◮ doesn’t make sense beyond the relations: e.g., for XML queries

PODS 2014 Incomplete Information 28/1

Why intersection?

◮ We always use intersection to define certain answers:

certain(Q,D) =
⋂

{Q(D ′) | D ′ ∈ [[D]]}

◮ But is this the only way? Is this the right way?
◮ doesn’t make sense beyond the relations: e.g., for XML queries

◮ More importantly, do we really get certain information?
◮ Intersection takes information away from potential answers
◮ But we are removing data, not information!

◮ Removing data can actually add information.

PODS 2014 Incomplete Information 28/1

Why intersection? cont’d

◮ A single relation D:
1 2

3 ⊥

◮ Query Q: return D itself

◮ Semantics: CWA (interpret nulls, don’t add tuples)

◮ certain(Q,D) = 1 2

PODS 2014 Incomplete Information 29/1

Why intersection? cont’d

◮ A single relation D:
1 2

3 ⊥

◮ Query Q: return D itself

◮ Semantics: CWA (interpret nulls, don’t add tuples)

◮ certain(Q,D) = 1 2

◮ Removing the tuple (3, ⊥) adds information under CWA:

“there is no tuple whose first component is 3.”

◮ “Certain” answers are far from being certain!

PODS 2014 Incomplete Information 29/1

High complexity bounds

Too much emphasis on high complexity bounds.

A typical picture:

◮ Certain answers computable efficiently for
◮ conjunctive queries
◮ sometimes their unions
◮ sometimes just a subclass
◮ maybe small extensions (inequality, Boolean combinations)

◮ Beyond that, high lower bounds
◮ coNP and up, even undecidable

◮ One concedes defeat and moves over to the next problem.

But we still have to evaluate those queries somehow!

PODS 2014 Incomplete Information 30/1

What to do?

◮ Goal: bridge correctness and efficiency.

◮ Sad news: not much to rely on.

PODS 2014 Incomplete Information 31/1

What to do?

◮ Goal: bridge correctness and efficiency.

◮ Sad news: not much to rely on.

◮ But we can be optimistic and positive.
This is an opportunity to rethink the whole subject.

PODS 2014 Incomplete Information 31/1

What to do?

◮ Goal: bridge correctness and efficiency.

◮ Sad news: not much to rely on.

◮ But we can be optimistic and positive.
This is an opportunity to rethink the whole subject.

Next – we propose an alternative approach:

◮ work in progress, no claim this is the last word

◮ but one must start somewhere!

and lots of issues still to be dealt with.

PODS 2014 Incomplete Information 31/1

Basic idea

Combine three previously used approaches to incomplete information:

1. Certain answers, strong/weak representation systems;

2. Information orderings (1990s)
◮ D � D ′ means that D has less information than D ′

3. Databases as logical theories (1980s)
◮ a database is a set of facts given by formulas

PODS 2014 Incomplete Information 32/1

Orderings

◮ Popular in the early 1990s (Buneman, Ohori, PL people)

◮ Developed mostly for SQL’s view of nulls (non-repeating nulls)

PODS 2014 Incomplete Information 33/1

Orderings

◮ Popular in the early 1990s (Buneman, Ohori, PL people)

◮ Developed mostly for SQL’s view of nulls (non-repeating nulls)

◮ Idea: lift simple orderings to more complex data structures
◮ A null has less information that a value, e.g. ⊥ � 1
◮ Extend to tuples, e.g. (1,⊥,⊥′) � (1,⊥, 2)
◮ Extend to sets, e.g. X � Y ⇔ ∀x ∈ X ∃y ∈ Y : x � y

PODS 2014 Incomplete Information 33/1

Orderings

◮ Popular in the early 1990s (Buneman, Ohori, PL people)

◮ Developed mostly for SQL’s view of nulls (non-repeating nulls)

◮ Idea: lift simple orderings to more complex data structures
◮ A null has less information that a value, e.g. ⊥ � 1
◮ Extend to tuples, e.g. (1,⊥,⊥′) � (1,⊥, 2)
◮ Extend to sets, e.g. X � Y ⇔ ∀x ∈ X ∃y ∈ Y : x � y

◮ Results:
◮ orderings for different semantics
◮ connections with programming semantics
◮ influence on language design

PODS 2014 Incomplete Information 33/1

Databases as logical theories

◮ An older approach, from the 1980s, advocated by Reiter

◮ A database D is viewed as a formula ϕD , or even a theory

D =
1 2

3 ⊥
under OWA is seen as

ϕD = ∃x D(1, 2) ∧ D(3, x)

PODS 2014 Incomplete Information 34/1

Databases as logical theories

◮ An older approach, from the 1980s, advocated by Reiter

◮ A database D is viewed as a formula ϕD , or even a theory

D =
1 2

3 ⊥
under OWA is seen as

ϕD = ∃x D(1, 2) ∧ D(3, x)

◮ Query answering becomes logical implication.
To see if Q(t̄) is true with certainty, check whether

ϕD |= Q(t̄)

PODS 2014 Incomplete Information 34/1

Databases as logical theories

◮ An older approach, from the 1980s, advocated by Reiter

◮ A database D is viewed as a formula ϕD , or even a theory

D =
1 2

3 ⊥
under OWA is seen as

ϕD = ∃x D(1, 2) ∧ D(3, x)

◮ Query answering becomes logical implication.
To see if Q(t̄) is true with certainty, check whether

ϕD |= Q(t̄)

◮ Didn’t really take off back then:
◮ complexity issues
◮ finite vs infinite implication

PODS 2014 Incomplete Information 34/1

Old approaches

They didn’t deliver back then, and were dismissed.

◮ Reason 1: didn’t concentrate on the right questions;

◮ Reason 2: too deeply rooted in the relational world;
◮ a concrete model obscures the view!

◮ Reason 3: they were pursued in isolation.

PODS 2014 Incomplete Information 35/1

Old approaches

They didn’t deliver back then, and were dismissed.

◮ Reason 1: didn’t concentrate on the right questions;

◮ Reason 2: too deeply rooted in the relational world;
◮ a concrete model obscures the view!

◮ Reason 3: they were pursued in isolation.

Idea: combine the approaches

◮ but take just what’s needed from them, no more,

◮ and don’t be tied to just one data model.

PODS 2014 Incomplete Information 35/1

Reminder: the basic model

◮ A set of database objects D
◮ sets of all databases (with or without nulls) of the same schema

◮ A set of complete objects C ⊆ D
◮ databases of the same schema without nulls

◮ Semantics of incompleteness: [[]] : D → 2C

◮ the set of all complete objects represented by an incomplete object

[[D]] ⊆ C

PODS 2014 Incomplete Information 36/1

Adding order

When is D less informative than D ′?

PODS 2014 Incomplete Information 37/1

Adding order

When is D less informative than D ′?

◮ If we know nothing about D, every database is possible.

PODS 2014 Incomplete Information 37/1

Adding order

When is D less informative than D ′?

◮ If we know nothing about D, every database is possible.

◮ The more we learn about D, the fewer possible worlds there are.

PODS 2014 Incomplete Information 37/1

Adding order

When is D less informative than D ′?

◮ If we know nothing about D, every database is possible.

◮ The more we learn about D, the fewer possible worlds there are.

Information ordering:

D � D ′ ⇔ [[D ′]] ⊆ [[D]]

The more informative an object is, the fewer objects it denotes.

PODS 2014 Incomplete Information 37/1

Adding knowledge

A set F of formulae ϕ that may hold in database objects.

A minimal requirement: [[D]] can be described by a formula.

PODS 2014 Incomplete Information 38/1

Adding knowledge

A set F of formulae ϕ that may hold in database objects.

A minimal requirement: [[D]] can be described by a formula.

◮ Example: D =
1 2

3 ⊥

PODS 2014 Incomplete Information 38/1

Adding knowledge

A set F of formulae ϕ that may hold in database objects.

A minimal requirement: [[D]] can be described by a formula.

◮ Example: D =
1 2

3 ⊥

◮ under OWA: ∃x D(1, 2) ∧ D(3, x)

PODS 2014 Incomplete Information 38/1

Adding knowledge

A set F of formulae ϕ that may hold in database objects.

A minimal requirement: [[D]] can be described by a formula.

◮ Example: D =
1 2

3 ⊥

◮ under OWA: ∃x D(1, 2) ∧ D(3, x)

◮ under CWA:

∃x





D(1, 2) ∧ D(3, x)

∧ ∀y , z D(y , z) →

(

(y , z) = (1, 2)
∨ (y , z) = (3, x)

)





PODS 2014 Incomplete Information 38/1

Defining certainty

◮ To understand certain answers, we need to define certainty in the
set Q([[D]])

◮ So the first basic task:

define certainty in a set of objects X ⊆ D

◮ It can be represented in two ways:
◮ as object
◮ as knowledge

PODS 2014 Incomplete Information 39/1

Certainty as object: certainO(X)

X

certainO(X)

◮ Could not exceed the information content of objects in X :
◮ certainO(X) � D for all D ∈ X ;

◮ Must be the most informative among such objects;

◮ certainO(X) =
∧

X — the greatest lower bound of X .

PODS 2014 Incomplete Information 40/1

Certainty as knowledge: certainK(X)

◮ Formulae from F say what we know about objects.

◮ What we know with certainty about X :

Theory(X) = {ϕ ∈ F | ϕ is true in every D ∈ X}

PODS 2014 Incomplete Information 41/1

Certainty as knowledge: certainK(X)

◮ Formulae from F say what we know about objects.

◮ What we know with certainty about X :

Theory(X) = {ϕ ∈ F | ϕ is true in every D ∈ X}

◮ Idea of weak representation systems: certainK(X) is such that

certainK(X) ∼ Theory(X)

PODS 2014 Incomplete Information 41/1

Certainty as knowledge: certainK(X)

◮ Formulae from F say what we know about objects.

◮ What we know with certainty about X :

Theory(X) = {ϕ ∈ F | ϕ is true in every D ∈ X}

◮ Idea of weak representation systems: certainK(X) is such that

certainK(X) ∼ Theory(X)

◮ What is the equivalence ∼ between formulas?

they are satisfied in exactly the same objects.

◮ much more disciplined that the equivalence of WRSs

PODS 2014 Incomplete Information 41/1

Certainty as knowledge: another look

Theory(X)

certainK(X)

◮ Ordering: implication (or containment) ϕ → ϕ′

◮ certainK(X) is the greatest lower bound of Theory(X) in this order.

◮ Essentially, certainK(X) =
∧

Theory(X).

PODS 2014 Incomplete Information 42/1

Certain answers to queries

◮ Certain information in Q([[D]]) = {Q(D ′) | D ′ ∈ [[D]]}
Two ways of representing it:

as objects : certainO(Q,D) = certainO(Q([[D]]))

as knowledge : certainK(Q,D) = certainK(Q([[D]]))

PODS 2014 Incomplete Information 43/1

Certain answers to queries

◮ Certain information in Q([[D]]) = {Q(D ′) | D ′ ∈ [[D]]}
Two ways of representing it:

as objects : certainO(Q,D) = certainO(Q([[D]]))

as knowledge : certainK(Q,D) = certainK(Q([[D]]))

◮ Queries are mappings Q : D → D′ between two sets of objects
◮ e.g., sets of databases of different schemas

◮ D and D′ need not have the same semantics!

PODS 2014 Incomplete Information 43/1

Queries and semantics

◮ The basic principle:

we know more about the input to Q
⇓

we know more about the output of Q

PODS 2014 Incomplete Information 44/1

Queries and semantics

◮ The basic principle:

we know more about the input to Q
⇓

we know more about the output of Q

◮ Looks natural? Ignored by most of the work on incompleteness.

PODS 2014 Incomplete Information 44/1

Queries and semantics

◮ The basic principle:

we know more about the input to Q
⇓

we know more about the output of Q

◮ Looks natural? Ignored by most of the work on incompleteness.

◮ Query Q : D → D′

◮ D and D′ have semantics [[]] and
(

|
(

|
(

| |
)

|
)

|
)

◮ and information orderings � and 4

◮ We want:
D1 � D2 ⇔ Q(D1) 4 Q(D2)

PODS 2014 Incomplete Information 44/1

Queries and semantics

◮ The basic principle:

D1 � D2 ⇔ Q(D1) 4 Q(D2)

Queries preserve informativeness.

◮ Why was it ignored?

◮ Because one assumed the same semantics for inputs and outputs!
◮ even though a priori there is no good reason for it.

PODS 2014 Incomplete Information 45/1

One more condition and we are ready

◮ Queries are typically written in logical languages
◮ first-order logic, datalog, etc

and they cannot distinguish isomorphic structures

◮ Known as genericity.

PODS 2014 Incomplete Information 46/1

One more condition and we are ready

◮ Queries are typically written in logical languages
◮ first-order logic, datalog, etc

and they cannot distinguish isomorphic structures

◮ Known as genericity.

a

⊥ ⊥′

b a ⊥′′

G1: G2:

◮ Query Q: there is a path of length two starting in node a.

◮ Q cannot distinguish G1 and G2

PODS 2014 Incomplete Information 46/1

One more condition and we are ready

◮ Queries are typically written in logical languages
◮ first-order logic, datalog, etc

and they cannot distinguish isomorphic structures

◮ Known as genericity.

a

⊥ ⊥′

b a ⊥′′

G1: G2:

◮ Query Q: there is a path of length two starting in node a.

◮ Q cannot distinguish G1 and G2 :
there is an isomorphism preserving a: ⊥ ↔ ⊥′ and b ↔ ⊥′′

PODS 2014 Incomplete Information 46/1

Efficiency and correctness at once

Let Q

◮ preserve informativeness, and

◮ be generic.

Then
certainO(Q,D) = Q(D)

PODS 2014 Incomplete Information 47/1

Efficiency and correctness at once

Let Q

◮ preserve informativeness, and

◮ be generic.

Then
certainO(Q,D) = Q(D)

And certainK(Q,D) is the formula defining the semantics of Q(D).

PODS 2014 Incomplete Information 47/1

Efficiency and correctness at once

Let Q

◮ preserve informativeness, and

◮ be generic.

Then
certainO(Q,D) = Q(D)

And certainK(Q,D) is the formula defining the semantics of Q(D).

Magic: correct answers for free.

PODS 2014 Incomplete Information 47/1

Efficiency and correctness at once

Let Q

◮ preserve informativeness, and

◮ be generic.

Then
certainO(Q,D) = Q(D)

And certainK(Q,D) is the formula defining the semantics of Q(D).

Magic: correct answers for free.

Efficiency guaranteed too: can use existing query evaluation algorithms.

PODS 2014 Incomplete Information 47/1

The price of magic

◮ The right semantics of query answers:
◮ it must ensure that Q preserves informativeness

PODS 2014 Incomplete Information 48/1

The price of magic

◮ The right semantics of query answers:
◮ it must ensure that Q preserves informativeness

◮ A set of formulae F capable of at least defining semantics of objects
◮ without it, the result doesn’t hold
◮ but often it’s easy to find one

PODS 2014 Incomplete Information 48/1

Good bye intersection

No need to use it to get certain answers.

Recall our example: a single relation D =
1 2

3 ⊥

Query Q: return D itself.

PODS 2014 Incomplete Information 49/1

Good bye intersection

No need to use it to get certain answers.

Recall our example: a single relation D =
1 2

3 ⊥

Query Q: return D itself.

◮ Old way: certain(Q,D) = 1 2

PODS 2014 Incomplete Information 49/1

Good bye intersection

No need to use it to get certain answers.

Recall our example: a single relation D =
1 2

3 ⊥

Query Q: return D itself.

◮ Old way: certain(Q,D) = 1 2

◮ New way: certainO(Q,D) =
1 2

3 ⊥

PODS 2014 Incomplete Information 49/1

Good bye intersection

No need to use it to get certain answers.

Recall our example: a single relation D =
1 2

3 ⊥

Query Q: return D itself.

◮ Old way: certain(Q,D) = 1 2

◮ New way: certainO(Q,D) =
1 2

3 ⊥

We keep information about the tuple with first component 3.

PODS 2014 Incomplete Information 49/1

When the input/output semantics coincide

◮ This is the setting considered most often

◮ Queries preserve informativeness ⇒ efficient evaluation
◮ need to understand what it means under OWA and CWA

◮ Good news: orderings have nice descriptions

PODS 2014 Incomplete Information 50/1

When the input/output semantics coincide

◮ This is the setting considered most often

◮ Queries preserve informativeness ⇒ efficient evaluation
◮ need to understand what it means under OWA and CWA

◮ Good news: orderings have nice descriptions

◮ Information ordering under OWA

D �owa D
′ ⇔ ∃ homomorphism D 7→ D ′

PODS 2014 Incomplete Information 50/1

When the input/output semantics coincide

◮ This is the setting considered most often

◮ Queries preserve informativeness ⇒ efficient evaluation
◮ need to understand what it means under OWA and CWA

◮ Good news: orderings have nice descriptions

◮ Information ordering under OWA

D �owa D
′ ⇔ ∃ homomorphism D 7→ D ′

◮ Information ordering under CWA

D �cwa D
′ ⇔ ∃ restricted homomorphism D 7→ D ′

◮ restricted = strong onto

PODS 2014 Incomplete Information 50/1

Queries preserving informativeness

Preserving informativeness
=

preservation under (restricted) homomorphisms

◮ well known and studied concept in logic
◮ applications in database theory and AI (constraint satisfaction)

◮ It is easier to preserve informativeness under CWA

PODS 2014 Incomplete Information 51/1

Queries preserving informativeness

Preserving informativeness
=

preservation under (restricted) homomorphisms

◮ well known and studied concept in logic
◮ applications in database theory and AI (constraint satisfaction)

◮ It is easier to preserve informativeness under CWA

If Q is a positive relational algebra query (σ, π,⋊⋉,∪) then

certainO(Q,D) = Q(D)

when both inputs and outputs have OWA semantics.

PODS 2014 Incomplete Information 51/1

Certain answers under CWA

◮ Easier to preserve informativeness under CWA ⇒ can extend
positive relational algebra and still get correct answers efficiently

PODS 2014 Incomplete Information 52/1

Certain answers under CWA

◮ Easier to preserve informativeness under CWA ⇒ can extend
positive relational algebra and still get correct answers efficiently

◮ Reminder – relational algebra division

A B

a 1

a 2

b 1

÷
B

1

2

=
A

a

PODS 2014 Incomplete Information 52/1

Certain answers under CWA

◮ Easier to preserve informativeness under CWA ⇒ can extend
positive relational algebra and still get correct answers efficiently

◮ Reminder – relational algebra division

A B

a 1

a 2

b 1

÷
B

1

2

=
A

a

For a query Q expressed with

◮ σ, π,⋊⋉,∪, and

◮ R ÷ S , where S is a relation in the database,

certainO(Q,D) = Q(D)

when both inputs and outputs have CWA semantics.

PODS 2014 Incomplete Information 52/1

Summary

We can achieve correctness and efficiency at the same time.

What we needed to do:

PODS 2014 Incomplete Information 53/1

Summary

We can achieve correctness and efficiency at the same time.

What we needed to do:

◮ Drop the old intersection-based approach
◮ there is life both within and beyond the relational model

◮ Combine previously used approaches:
◮ rely on orderings to compare informativeness
◮ relate orderings and semantics
◮ introduce knowledge bases for query answers

◮ may not be visible to the user, but needed by us to provide

correctness guarantees

◮ Insist on the right semantics of query answers

PODS 2014 Incomplete Information 53/1

What to do #1

◮ Extending query classes

◮ How to handle negation? full relational algebra?
◮ What is the appropriate semantics of query answers?
◮ How to deal with aggregation? Intervals, distributions?
◮ Recursion: datalog and fragments.

◮ Evaluation techniques
◮ Is computing Q(D) enough?
◮ If not, what extra information needs to be computed?
◮ How easy is it?

PODS 2014 Incomplete Information 54/1

What to do #2

◮ Handling constraints
◮ Many constraints – keys, foreign keys, inclusion constraints –

come from classes which are hard to evaluate with certainty
◮ Heavy use of universal quantification and negation
◮ Led to ad hoc definitions in the past
◮ How to reconcile integrity constraints and incompleteness?

◮ XML data
◮ Incompleteness at the level of both structure and data
◮ Only restrictive classes admit efficient evaluation under the old

definition
◮ How to apply the new theory?
◮ How to incorporate constraints?
◮ Emphasis on XML-to-XML queries (unlike most earlier work).

PODS 2014 Incomplete Information 55/1

What to do #3

◮ Graph data and RDF

◮ Models of incompleteness for graphs? Topology vs data.
◮ Semantics, orderings, certainty.
◮ Applications to RDF data.

◮ Applications
◮ Revisit applications relying on certain answers.
◮ Find proper semantics?
◮ Can we extend good classes for data integration/exchange?
◮ Can database repairs fit into our approach?

PODS 2014 Incomplete Information 56/1

Thanks to:

• Marcelo Arenas • Filip Murlak
• Pablo Barceló • Juan Reutter
• Claire David • Cristina Sirangelo
• Diego Figueira • Domagoj Vrgoč
• Amélie Gheerbrant • Limsoon Wong

PODS 2014 Incomplete Information 57/1

Thanks to:

• Marcelo Arenas • Filip Murlak
• Pablo Barceló • Juan Reutter
• Claire David • Cristina Sirangelo
• Diego Figueira • Domagoj Vrgoč
• Amélie Gheerbrant • Limsoon Wong

Questions?

PODS 2014 Incomplete Information 57/1

	Intro
	SQL
	Theory
	Applications
	Critique
	An approach
	What to do

