
Negative Knowledge for Certain Query Answers

Leonid Libkin1

School of Informatics, University of Edinburgh

Abstract. Querying incomplete data usually amounts to finding answerswe are
certain about. Standard approaches concentrate on positive information about
query answers, and miss negative knowledge, which can be useful for two rea-
sons. First, sometimes it is the only type of knowledge one can infer with cer-
tainty, and second, it may help one find good and efficient approximations of
positive certain answers. Our goal is to consider a framework for defining both
positive and negative certain knowledge about query answers and to show two
applications of it. First, we demonstrate that it naturallyleads to a way of repre-
senting certain information that has hitherto not been usedin querying incomplete
databases. Second, we show that approximations of such certain information can
be computed efficiently for all first-order queries over relational databases.

1 Introduction

If uncertainty occurs in a dataset, answering queries against it typically involves com-
putingcertain answers, i.e., answers one can be sure about. This happens in traditional
database query answering [2, 22] and in numerous applications such as data integra-
tion [26], data exchange [4], inconsistent databases [7], and ontology-based data ac-
cess [11, 25]. The most common approach is to look at all complete datasetsD′ that
can potentially represent an incomplete datasetD – i.e., itssemantics[[D]] – and an-
swers that are true in all suchD′. When a queryQ returns sets of objects (for ex-
ample, sets of tuples for relational database queries), certainty is typically defined by
certain(Q,D) =

⋂

{Q(D′) | D′ ∈ [[D]]}, see [30]. This definition has been so dom-
inant in the literature that even in models where queries do not return sets, languages
have been adjusted to make this definition applicable (e.g.,for XML and graph data [3,
5, 6]).

Certain answers defined this way can be viewed as a variant of the logical validity
problem. This, not surprisingly, leads to high complexity bounds; in fact, query an-
swering tends to be tractable for conjunctive queries or relatives, but computationally
infeasible beyond [1, 4, 5, 7, 8, 10, 26, 35]. A very common situation is that adding fea-
tures to conjunctive queries or their unions makes finding certain answersCONP-hard
or even undecidable. It is thus well understood that the inability of the standard the-
oretical solutions to handle the problem of querying incomplete data outside a limited
class of queries needs to be addressed. Recently, two lines of work in this direction have
been pursued. The first revisits the very notion of certaintyin query answering, and the
second attempts to approximate certain answers efficiently.

The first line of works in fact dates back to the 1980s, when an alternative (and,
as several papers [24, 28] have argued, better) definition ofcertain answers appeared

[31]. More recently, a general and data model-independent approach to defining query
answers over incomplete databases was proposed in [28]. It was based on combining
classical data management techniques with viewing databases as logical theories, as ad-
vocated by [33, 34], as well as using the idea of ordering incomplete databases in terms
of their informativeness [9]. Certain answers can be represented by logical formulae
true about answers in all possible worlds, and the notion of certainty is closely con-
nected to logical entailment, rather than an arbitrary choice of intersection in the defini-
tion of certain. Using informativeness ordering, one can state when a queryanswering
algorithm behaves rationally: this happens if it produces more informative answers on
more informative inputs. For relational databases, these ideas led to new large classes
of queries for which certain answers can be computed efficiently [17], and to a new
account of many-valued query answers [13], as employed by all standard DBMSs [14].

The second line of work, based on approximations, was also used recently to show
that an efficient approximation of certain answers can be computed for all first-order
queries [29], not just unions of conjunctive queries, as waspreviously known [22]. A
crucial element of that approach is that one needs to carrynegative certaininformation
while computing the answer, although at the end such negative information is dismissed
and only the positive answer is given to the user.

However, dismissing negative information is not always a good path to follow,
as it may in fact provide us with useful information about query answers. For ex-
ample, consider a databaseD with two unary relationsR andS, so thatR contains
an unknown value (anull in the database terminology),S = {1}, and the query
Q(x) = R(x)∧¬S(x) computes their difference. Then the certain answer is emptyun-
der every reasonable semantics. But we can be certain that1 is not in the answer; hence,
we are certain about the fact¬A(1) (withA for “answer”), which says that while we do
not know what may occur in the output, we do know that1 does not occur. Even though
in this exampleA(1) is the certain answer for the negation ofQ, in general certain
negative answers toQ are not the same as what is known with certainty about¬Q. In-
deed, consider relationsR′ = {(1,⊥)} andS′ = {(1,⊥′)}, where⊥,⊥′ indicate nulls
(not necessarily denoting the same value). The negation ofQ′(x̄) = R′(x̄) ∧ ¬S′(x̄) is
S′(x̄)∨¬R′(x̄), and thus, with certainty, the answer to¬Q′ will have a tuple whose first
component is1, i.e., we know∃yA(1, y) about the answer toQ′. However, we cannot
tell which tuples with certainty donotbelong to the answer toQ′.

Even these simple examples tell us that the user may benefit from having negative
certain information about query answers, and getting it involves more than just finding
certain answers for the negation of the query. To understandhow such negative infor-
mation can be incorporated into query answering, we need to address several questions:

(a) How do we define negative and positive knowledge about query answers, and what
is the connection between the two?

(b) In what logical languages can we express such negative knowledge? Can such
knowledge be represented in a user-friendly way, and if so, does it correspond to
any of the known ways of defining query answers?

(c) What is the complexity of finding positive and negative knowledge about query
answers?

(d) If exact computation is infeasible, can we effectively approximate answers with
some guarantees?

To answer the first question, we follow the approach of [17, 28] which treats in-
completeness at an abstract level applicable to many data models. The key elements of
the approach are the notions of complete and incomplete models, thesemanticsof an
incomplete object, which is a set of complete ones it can denote, and a set of formu-
lae representingknowledgeabout objects. The semantic function makes it possible to
defineinformativeness ordering, which says when one object is more informative than
another. The restriction of frameworks in [17, 28] was that knowledge waspositive:
if a fact is known about an object, it remains true in more informative ones. Negative
knowledge is not such: we can think of it as saying that we do not know some fact about
an object; therefore, we do not know that fact about less informative objects.

Positive formulae were used in [28] to define certain knowledge about sets of ob-
jects, providing a disciplined notion of certain answers, rather than an ad hoc one based
on the notion of intersection. The idea is as follows: thetheoryof a set of objects is
everything we know about that set with certainty. Such a theory of course could be infi-
nite, but if we find a single formula equivalent to it, then this formula gives us a proper
representation of certain knowledge.

To see what kinds of formulae we can use for negative knowledge, we follow a sim-
ilar approach, but conditions required for good behavior ofnegative knowledge impose
significant computational requirements, despite a seemingly simple reversal of the or-
dering. But we turn this to our advantage and use such conditions as a guide for finding
logical formalisms for negative formulae. For relational databases, this results in a new
formalism that exhibits aduality between formulae and objects, making it possible to
apply effective query evaluation to compute certain knowledge.

This new formalism for defining certain answers (both positive and negative) is
closely related to standard approaches used in the literature [22, 31] and yet is not cov-
ered by them. In essence, it allows nulls from the input database to be present in query
answers (which is more than [22] does) but only allows repetitions of such nulls within
a single tuple (as opposed to [31], which allows repetitionsacross different tuples in the
answer).

To demonstrate the usefulness of this approach and the new representation mech-
anism for relational databases, we show how to compute both positive and nega-
tive knowledge about certain answers for all first-order (equivalently, relational alge-
bra/calculus) queries over relational databases. Given the intractability of certain an-
swers even for Boolean first-order queries [1], our procedure gives an approximation
for those, which is efficient, and comes with correctness guarantees.

Organization Background material is presented in Section 2. Modeling negative
knowledge is described in Section 3, and certain negative knowledge is studied in Sec-
tion 4. Section 5 explains how to represent such knowledge for relational databases, and
in Section 6 we provide an efficient algorithm for computing it.

2 Preliminaries

A general model We now recall the basic setting of [17, 28] that lets us talk about the
essential features of incompleteness without recourse to aparticular data model. The
two basic concepts areobjects, andformulaethey satisfy. Objects could be incomplete
or complete; the semantics of an incomplete object is the setof complete objects it may
represent.

Formally, adatabase domainis a tripleD = 〈D, C, [[]]〉, whereD is a set of objects
(for instance, all relational databases over the same schema), C is the set of complete
objects (for instance, databases over the same schema without incomplete information),
and[[]] : D → 2C is the semantic function:[[x]] ⊆ C is the semantics of an objectx. We
require that a complete object denote at least itself: ifc ∈ C, thenc ∈ [[c]].

Theinformation orderingis defined by

x � y ⇔ [[y]] ⊆ [[x]]. (1)

That is, the more an object denotes, the less we know about it (indeed, if we know noth-
ing about something, it can denote everything). We require that objects in the semantics
of x be at least as informative asx: if c ∈ [[x]], thenx � c. This condition holds for all
the standard semantics of incompleteness.

We also assume that we have a set of formulaeF that express knowledge about
objects inD and a satisfaction relation|= betweenD andF; that is,x |= ϕ if ϕ is true
in x. For sets of objects and formulae, we writeX |= ϕ if x |= ϕ for eachx ∈ X , and
x |= Φ if x |= ϕ for eachϕ ∈ Φ. As usual,Th(X) = {ϕ | X |= ϕ} is thetheoryof X ,
andMod(Φ) = {x | x |= Φ} is the set of models ofΦ.

Previously, onlypositiveknowledge was considered, i.e., it was required thatx � y

andx |= ϕ imply y |= ϕ.
For domainsD = 〈D, C, [[]]〉 andD′ = 〈D′, C′, [[]]

′
〉, aqueryis modeled as a map-

pingQ : D → D′ such thatQ(c) ∈ C′ wheneverc ∈ C (no incompleteness is introduced
when a query acts on a complete object). Note that the semantics [[]]

′ of queryanswers
need not be the same as the semantics[[]] of query inputs.

The main object one then works with [2, 22] is

Q([[x]]) = {Q(c) | c ∈ [[x]]} ⊆ D′ (2)

which gives us the answers toQ in all possible worlds representingx. Finding cer-
tain answers toQ onx then amounts to extracting what we know with certainty about
Q([[x]]).

Certain knowledge Since computing certain answers amounts to extracting certain
information from a set of objects, typically of the form (2),we need to know how to
describe certain information in a setX ⊆ D. We know thatTh(X) is the set of facts
that are true in all objects ofX , i.e., this is what we know aboutX with certainty.
The whole theory is not an object we want to work with for performing computational
tasks (to start with, it is likely to be infinite). What we wantinstead is a single formula
equivalent to this theory; then such a formula describes allthe certain knowledge of

X . Of course formulae/theories are equivalent when they havethe same models. Using
this, [28] proposed to define certain knowledge of a set of objects as a formula✷X such
that

Mod(✷X) = Mod(Th(X)) (3)

Such a formula may not exist for all setsX (by a simple cardinality argument), although
in many cases relevant for query answering, it does. It need not be unique, but this is
not a problem: if bothMod(ϕ1) andMod(ϕ2) equalMod(Th(X)), thenϕ1 andϕ2 are
equivalent, as formulae having the same models, and hence either one can be used as
✷X .

Incomplete relational databasesAs a concrete example of incomplete information,
we consider relational databases with naı̈ve, or marked nulls [2, 22]. This model domi-
nates in applications such as exchange and integration of data [26, 4], and subsumes the
usual model of nulls implemented in commercial DBMSs. In this model, there are two
types of values:constantsandnulls. There are countably infinite setsConst of constants
(e.g.,1, 2, . . .), andNull of nulls, which will be denoted by⊥, with sub- or superscripts.

A relationalvocabulary(or schema) is a set of relation names, each with its arity. An
incomplete relational databaseD associates with eachk-ary relation symbolR from the
vocabulary ak-ary relationRD ⊆ (Const ∪ Null)k. WhenD is clear from the context,
we writeR rather thanRD. Sets of constants and nulls that occur inD are denoted by
Const(D) andNull(D). Theactive domainof D is adom(D) = Const(D) ∪ Null(D).
A completedatabaseD has no nulls, i.e., adom(D) ⊆ Const.

The basic semantics of incomplete databases is given by means of special kinds of
homomorphisms between instances. A maph : Null → Const∪Null is ahomomorphism
between two instancesD andD′ if for each relation symbolR, if t̄ ∈ RD, thenh(t̄) ∈
RD

′

. Hereh(v1, . . . , vk) = (h(v1), . . . , h(vk)), and we assume thath(v) = v for each
a ∈ Const.

A homomorphism is called avaluation if h(v) ∈ Const for eachv. By h(D) we
denote the image of a homomorphism, i.e., the database consisting of all the tuplesh(t̄)
for t̄ ∈ RD, for each relationR in the vocabulary.

The standard semantics of incompleteness [22] are theclosed world assumption
(CWA) and theopen world assumption(OWA) semantics:

[[D]]CWA = {h(D) | h is a valuation},

[[D]]OWA = {h(D) ∪D′ | h is a valuation, D′ is complete}.

The former simply replaces nulls by constants, and the latter in addition allows us to
add any set of complete tuples.

The information orderings (1) given by these semantics are as follows: for OWA,
D �OWA D

′ iff there is a homomorphismh : D → D′, and forCWA, D �CWA D
′ iff

there is a homomorphismh : D → D′ such thatD′ = h(D), see [17].

Queries A relational queryof arity k maps databasesD over a relational schema
into a singlek-ary relation, which we denote here byA (for ‘answers’). This is in line

with standard languages such as relational calculus, relational algebra, and SQL, whose
queries specify attributes of an output table [2, 14].

The classical definition [22] of certain answers in the literature is the set
certain(Q,D) of tuples ū over Const such thatū ∈ Q(D′) for everyD′ ∈ [[D]].
Note that answers depend on the semantics of the input. Another definition, which
has the advantage of keeping nulls in answers, is that ofcertain answers with nulls,
certain⊥(Q,D) (it was first defined in [31] although not given a name; the namewe use
is from [29]). ForCWA, the setcertain⊥(Q,D) consists of all tuples̄u over adom(D)
– thus having both constants and nulls – such that for every valuationh onD, we have
h(ū) ∈ Q(h(D)). It turns out that, underCWA, certain(Q,D) is precisely the set of
constant tuples incertain⊥(Q,D).

For relational databases, as our basic language we considerfirst-order logic (FO)
over the relational vocabulary (i.e., relational calculus, which also serves as the basis of
SQL [2]). More precisely, its atomic formulae are relational atomsR(x̄) and equality
atomsx = y, and its formulae are closed under Boolean connectives∧,∨,¬ and quan-
tifiers∃, ∀. The∃,∧-closure of atomic formulae is referred to as the set ofconjunctive
queries; those are of the formϕ(x̄) = ∃z̄

∧

i
Ri(z̄i) where eachRi is a relation symbol

and variables in tuplēzis come from̄x andȳ.

3 Modeling negative knowledge

So far we assumed that the knowledge of objects is positive: aformulaϕ true in an ob-
ject continues to be true when an object is replaced by a more informative one. While
in general we often deal with logical formalisms not closed under negation (e.g., con-
junctive queries), assume for now that we can negateϕ. If ¬ϕ is true an objectx, and
y � x, then we would havey |= ¬ϕ. Thus, to model negative knowledge in general, we
look at formulae whose sets of models are downward closed. Inother words, we now
have two sets of formulae,F+ andF−, such that,

– for ϕ ∈ F+, if x � y andx |= ϕ, theny |= ϕ;
– for ψ ∈ F−, if x � y andy |= ψ, thenx |= ψ.

There appear to be two possible approaches to extending the framework of [28] with
both certain positive and certain negative knowledge.

The first approach We follow the idea behind the definition (3). We can define
Th

+(X) = {ϕ ∈ F+ | X |= ϕ} andTh
−(X) = {ψ ∈ F− | X |= ψ} as the-

ories expressing positive and negative knowledge aboutX , and then, as in (3), try to
capture them with formulae✷+X and✷

−X such that

Mod(✷+X) = Mod(Th
+(X))

Mod(✷−X) = Mod(Th
−(X))

(4)

When they exist, these formulae represent certain positiveknowledge and certain neg-
ative knowledge aboutX . Note thatMod(✷+X) is upward-closed andMod(✷−X) is
downward-closed with respect to�.

The second approachNote that (3) is based on an equivalence between two theories:
Φ ≈tt Ψ whenever for each objectx, all formulae ofΦ are true inx iff all formulae of
Φ are true inx. Then we just required that✷+X ≈tt Th

+(X).
An alternative is to look at equivalence with respect to negative information, essen-

tially changing true and false. We letΦ ≈ff Ψ whenever for each objectx, all formulae
of Φ are false inx iff all formulae of Ψ are false inx. It would make sense then to
capture all things we know to be false inX using this equivalence. That is, we define

Th
+

¬ (X) = {ϕ ∈ F+ | X |= ¬ϕ}
Th

−
¬ (X) = {ψ ∈ F− | X |= ¬ψ}

as sets of formulae we know with certainty are false inX , and then try to capture them
with single formulae satisfying

✷
+
¬X ≈ff Th

+

¬ (X) and ✷
−
¬X ≈ff Th

−
¬ (X). (5)

Both of these seem to be reasonable ways of capturing negative information about
a set of objects; fortunately, they are closely related so wecan choose either (4) or (5)
as the main definition. For formulaeα, β, we writeα = ¬β if Mod(α) = D−Mod(β)
(soα = ¬β impliesβ = ¬α).

Theorem 1. Assume thatF− contains exactly the negations of formulae inF+. If for-
mulae✷

∗X and ✷
∗
¬X exist, when∗ is + or −, we have the following relationships

between them:✷+X = ¬✷
−
¬X and✷

−X = ¬✷
+
¬X .

To illustrate the difference between two ways of representing negative information,
consider a database with relationsR = {⊥} andS = {1, 2}, and a queryQ that
computes their differenceR − S, i.e.,Q(x) = R(x) ∧ ¬S(x). Let X = Q([[R,S]])
under eitherOWA or CWA, and considerF+ that consists of atomic relational formulae.
ThenTh

+

¬ (X) containsA(1) andA(2), and thus✷+
¬X is equivalent toA(1) ∨ A(2).

That is,✷+
¬X describes what we know with certainty willnothold in the answer to the

query. On the other hand,✷
−X is equivalent to¬A(1) ∧ ¬A(2) (again, assuming the

connection betweenF+ andF− as in the theorem) and describes negative information
that is guaranteed to be true in the query result.

Certain knowledge for query answering

Given an objectx and a queryQ, answeringQ onx in a way that provides both positive
and negative knowledge amounts to finding the pair of formulae

✷(Q, x) =
(

✷
+Q([[x]]), ✷

−Q([[x]])
)

(6)

whenever such formulae exist, and their computation is feasible. For representing the
second component, we can choose either✷

−Q([[x]])), or its negation✷+
¬Q([[x]]), as

Theorem 1 suggests. The components of (6) are the most general formulae defin-
ing positive and negative knowledge, as they imply all formulae inTh

+(Q([[x]])) and
Th

−(Q([[x]])), respectively. If computing them is infeasible, we can lookfor approxi-
mationsby means of returning a pair(α, β) of formulae such thatα ∈ Th

+(Q([[x]]))
andβ ∈ Th

−(Q([[x]])). They may not be as general as (6), but they still give us infor-
mation about query answers we can be certain about.

4 Certain negative knowledge

Our next goal is to understand how to represent certain negative and positive informa-
tion, particularly for setsX which are possible query answers, as in (2). That is, we will
see what requirements must be imposed on logical formalismsF+ andF− to ensure
feasible computation of certain answers.

Towards understanding these requirements, we present an alternative view of for-
mulae✷

+X and✷
−X . For that, consider the usual implication of formulae,ϕ ⊃ ψ

iff Mod(ϕ) ⊆ Mod(ψ). It generates a preorder (reflexive transitive relation) onsets
F+ andF−. Viewing implication as a preorder, we define, for a set of formulaeΦ, the
formula

∧

Φ as thegreatest lower boundin the preorder⊃. That is,
∧

Φ ⊃ Φ and
wheneverϕ′ ⊃ Φ, we have thatϕ′ ⊃

∧

Φ (hereϕ′ ⊃ Φ means thatϕ′ implies every
formulaϕ ∈ Φ). These formulae let us capture certain knowledge providedby Φ, so it
seems desirable to have✷

∗X to be the same as
∧

Th
∗(X), for ∗ being+ or−. We now

explain when this is possible.
First, we remark that formulae

∧

Φ may not exist in general, and if they exist, they
may not be unique, although any two such formulae are logically equivalent since they
have the same models. While the notation

∧

is standard for greatest lower bounds,
the connection with conjunction is natural: if there is a formulaϕ equivalent to the
conjunction of all formulae inΦ, thenMod(ϕ) = Mod(Φ) andϕ =

∧

Φ; in general
though we may haveMod(

∧

Φ) (Mod(Φ).
We now show when✷∗X =

∧

Th
∗(X). In fact, forTh

+, this was already shown
in [28], but under additional conditions that we now eliminate.

Let ↑x = {y | x � y} and↓x = {y | y � x}. By δ↑x andδ↓x we denote formulae (if
they exist) such thatMod(δ↑x) = ↑x andMod(δ↓x) = ↓x.

Theorem 2. – If F+ is closed under conjunction and contains formulaeδ↑x for all x,
then✷

+X =
∧

Th
+(X) for everyX .

– If F− is closed under disjunction and contains formulaeδ↓x for all x, then✷
−X =

∧

Th
−(X) for everyX .

The meaning of the equalities✷∗X =
∧

Th
∗(X) is that if one formula exists, then

so does the other, and the two are equivalent, i.e., have the same models.
For most common semantics of incompleteness, formulaeδ↑x are easy to construct,

and in fact they determine the shape of queries that can be answered easily under those
semantics [17]. For instance, underOWA, they are conjunctive queries, and forCWA,
they extend positive FO formulae with a limited form of guarded negation [12]. The
new condition forTh

− that formulaeδ↓x be definable is harder to achieve, and this
condition will let us choose the appropriate logical language forF−.

5 Representation of relational query answers: incomplete tuples

We now use the abstract results of two previous sections to suggest a representation
mechanism for relational query answers, and to show how to find positive and negative
answers using such a representation. For finding a representation mechanism, we an-
alyze computational properties of formulaeδ↑x andδ↓x. Restricting those to a tractable

class, gives us a representation of answers, calledincomplete tuples. This representation
exhibits adualitybetween formulae and objects: that is, positive and negative theories of
query answers can be viewed as set of conventional tuples that use null values. With this
duality, we define query answers using (6). To check that the definition makes sense, we
have to make sure that it preserves informativeness. This, in turn, means that we need
to define orderings on query answers, i.e., sets of incomplete tuples. We do so, and then
prove, in Theorem 3 that the resulting representation mechanism and query answering
by means of (6) do behave rationally, i.e., preserve informativeness.

We start by looking at the requirements of Theorem 2 and analyzing formulaeδ↑x
andδ↓x. While the former are easy to obtain for standard semantics of incompleteness,
the latter could become too expensive computationally, andit is their complexity that
will suggest the representation of positive and negative certain answers.

We deal with relational databases, as described in Section 2. When we deal with
outputs of relational queries, which are sets of tuples, it suffices to deal with one predi-
cate for each type of answers, positive or negative (of course usual relational databases
just return one set of tuples, for positive answers). As before, we refer to that predi-
cate asA(·); later, when we look in more detail at separation of positiveand negative
answers, we shall use predicatesA+(·) andA−(·).

The first observation shows that one must impose rather strong restriction on the
types of formulaeF+ that represent query answers (note that this doesnot imply any
restriction on queries themselves).

Proposition 1. For the class of conjunctive queries, data complexity of formulaeδ↓
A

for relationsA is in NP; in fact there is a relation for which data complexity ofδ↓
A

is
NP-complete.

Indeed, formulaeδ↓
A

test the existence of a homomorphism intoA, i.e., they en-
code the general constraint satisfaction problem. In particular, such formulae are not
expressible in FO, nor even its extensions with least and inflationary fixpoints.

Incomplete tuples The standard representation of query answers in relational
databases is by means of ground tuples: one simply says that atuple ā is in the an-
swer, or that predicateA(ā) holds. Proposition 1 says that extending it to conjunctive
queries as a representation mechanism is too much from the complexity point of view.
Over the vocabularyA(·) of query answers, Boolean conjunctive queries are of the form
∃x̄(A(x̄1, c̄1)∧ . . .∧A(x̄m, c̄m)), wherec̄is are tuples of constants fromConst andx̄is
are tuples of variables that together form̄x. Eliminating variables gives us sets of con-
stant tuples, i.e., the usual database query answers over complete data. Another way of
simplifying the definition is to eliminate variables that occur in more than onēxi, i.e.,
looking at formulae∃x̄1A(x̄1, c̄1)∧ . . .∧ ∃x̄mA(x̄m, c̄m). That is, we are dealing with
conjunctions of formulae∃x̄A(x̄, c̄).

We can think of such formulae∃x̄A(x̄, c̄) as incomplete tuples. Anincomplete tuple
is simply a tuple ofConst ∪ Null. There is a natural correspondence between formulae
∃x̄A(x̄, c̄) and incomplete tuples: for instance,∃x, x′A(x, 1, x, 2, x′) can be thought of
as an incomplete tuple(⊥, 1,⊥, 2,⊥′). Note that this duality between incomplete tuples

as formulae and as actual tuples lets us represent query answers of the form (6) just as
database relations.

Representation of answers by means of incomplete tuples is between the usual
marked nulls and the Codd interpretation of nulls, which model SQL’s view of nulls
[2, 22]. Marked nulls can be repeated, and appear in different tuples; Codd nulls cannot
be repeated at all. In incomplete tuples, a null can be repeated, but only within a tuple,
and not across several tuples.

Query answering and ordering

We now consider orderings on query answers which are viewed as sets of incomplete
tuples. Recall that we expect a rationally behaving query answering to produce more
informative answers when more informative inputs are given; hence orderings are nec-
essary to prove such rationality. For input databases, we have seen some standard or-
derings such as�OWA and�CWA . According to (6), a query answer will be given as a
pair of sets(A+, A−) of incomplete tuples. Tuples inA+ belong to the answer with
certainty; thus, when viewed as formulae, their conjunction is equivalent to the formula
✷

+Q([[x]]). Tuples inA− are those that certainly do not belong to the answer; hence
conjunction of their negations is equivalent to✷

−Q([[x]]).
First, we need to see how we can order incomplete tuples in terms of their informa-

tiveness. There are two ways of looking at it:

– What improves informativeness of a tuple? Replacing a null with a constant does,
and replacing a null with another null might (e.g., if we replace⊥′ with ⊥ in
(⊥,⊥′), we get a more informative tuple(⊥,⊥) giving extra information that
its components are the same). Thus, given two incomplete tuples ā and b̄ over
Const ∪ Null, b̄ is more informative than̄a if there is a homomorphismh so that
h(ā) = b̄.

– Alternatively, we view incomplete tuples as formulae and say that b̄ is more infor-
mative than̄a if it logically entails it, i.e.,̄b ⊃ ā.

The homomorphism theorem for conjunctive queries tell us that these two are equiva-
lent, so we can take either of them as the definition ofb̄ being more informative than̄a,
which will be denoted bȳa✁ b̄.

Next, we look at sets of incomplete tuplesA andB, and define orderings�+
IT and

�−
IT saying that one of the sets has more positive or negative information than the other.

First,
A �+

IT B ⇔ ∀ā ∈ A ∃b̄ ∈ B : ā✁ b̄.

This ordering says that we can improve an answer by improvingindividual tuples in it,
or adding new tuples that our initial attempt to approximatequery answers may have
missed. This is the ordering on positive query answers we shall use. Note that it is also
consistent with observations made in [28, 13] that for queryanswers (as opposed to
inputs), the prefer interpretation is open-world, as adding tuples improves the answer.

When it comes to negative information, if we are given two incomplete tuples̄a and
b̄ such that̄a ✁ b̄, then it is actually better to havēa in the answer, as it gives us more
information about tuples to exclude. For instance, having atuple(1, 2) in the negative

answer simply says that(1, 2) is never in the answer, but having a tuple(1,⊥) is more
informative as it says that no tuple whose first component is1 is in the answer. This
leads to the following ordering:

A �−
IT B ⇔ ∀b̄ ∈ B ∃ā ∈ A : ā✁ b̄.

Note that these are well-known orderings in the semantics ofconcurrency (so called
Hoare and Smyth powerdomain orderings [20]) where they are used to compare pos-
sible outcomes of different threads of concurrent computations in terms of the infor-
mation they carry. In terms of computational problems, unlike the relations�OWA and
�CWA , we can test relations�+

IT and�−
IT in polynomial (quadratic) time.

A setA of incomplete tuples can be viewed as a formula (which we alsodenoteA,
using the duality between tuples and formulae), which is theconjunction of all̄a in A.
Likewise, we can also look at conjunction of all formulae¬ā, giving us a formulaA¬.
That is, positive and negative formulae associated withA are:

A =
∧

{ā | ā ∈ A} A¬ =
∧

{¬ā | ā ∈ A} (7)

Note that the first equation simply extends the duality of incomplete tuples and formulae
to sets of incomplete tuples: it just tells us how to view a setA as a formula.

The following connection between orderings on sets and entailment of formulae is
easily obtained from the definitions and containment criteria for conjunctive queries
and their unions.

Proposition 2. A �+
IT B iff B ⊃ A, andA �−

IT B iff A¬ ⊃ B¬.

Equipped with this, we can show that query answering by meansof finding posi-
tive and negative incomplete tuples, i.e., by using (6), is always possible and preserves
informativeness when input databases are interpreted under OWA or CWA.

Theorem 3. Assume that input databases are interpreted underOWA or CWA, and that
F+ consists of incomplete tuples, andF− consists of their negations. Then for every
queryQ and every databaseD there exist finite setsQ+

✷
(D) andQ−

✷
(D) of incomplete

tuples that, when viewed as formulae (7), are equivalent to✷
+Q([[D]]) and✷

−Q([[D]]):

Mod(Q+
✷(D)) = Mod(Th

+(Q([[D]])))
Mod(Q−

✷(D)¬) = Mod(Th
−(Q([[D]])))

Moreover, this way of query answering preserves informativeness: ifD � D′ (under
the ordering given by theCWA or theOWA semantics), then

Q+
✷(D) �+

IT Q
+
✷(D′) and Q−

✷(D) �−
IT Q

−
✷(D′).

6 Certain information via incomplete tuples

The conclusion of the previous section is that incomplete tuples are a good representa-
tional mechanism for query answers over incomplete relational databases. What makes
them especially suitable for the task is theduality of incomplete tuples: each one can

be viewed both as a formula∃x̄A(ā, x̄), satisfied by the query answer, or as an actual
tuple(x̄, ā), wherex̄ is a tuple of nulls. Thus, a set of tuples can be seen both as sets of
formulae (7) representing our knowledge (positive and negative) about query answers,
and an actual database relation with nulls. This duality lets us compute such knowledge
using well established database query evaluation techniques, and present it to the user
in a familiar format.

Ideally, following Theorem 3, we want to compute, for a queryQ and a database
D, setsQ+

✷(D) andQ−
✷(D) of incomplete tuples such thatQ+

✷(D) is equivalent to
✷

+Q([[D]]) andQ−
✷

(D)¬ is equivalent to✷−Q([[D]]). That is,

Mod(
∧

{ā | ā ∈ Q+
✷
(D)}) = Mod(Th

+(Q([[D]]))) and
Mod(

∧

{¬ā | ā ∈ Q−
✷

(D)}) = Mod(Th
−(Q([[D]])))

This is problematic even for first-order queries, however, as computing such sets of
incomplete tuples is expensive. In fact, a simple examination of proofs in [1, 18] shows
that even whenQ is a fixed Boolean FO query, checking whether✷

+Q([[D]]CWA) is true
is CONP-complete, and the same question for✷

+Q([[D]]OWA) is undecidable.
But the discussion following the definition (6) showed a way out of this problem:

we need to compute approximate answers with some guarantees, that is, formulae from
positive and negative theories ofQ([[D]]). Using the duality of incomplete tuples, we
say that, for a queryQ, the pair(Q+, Q−) of queries returning sets of incomplete tuples
provides asound answerforQ under[[]] if, for every databaseD,

Q+(D) ⊆ Th
+(Q([[D]])) and Q−(D) ⊆ Th

+

¬ (Q([[D]])) . (8)

Indeed,Q+(D) andQ−(D) represent parts of certain positive and negative knowledge
aboutQ([[D]]). If furthermore they can be computed with tractable data complexity, we
say that they provide anefficient sound answertoQ onD.

Note that the right way to read sound answers istuple-by-tuple: for instance, if
(⊥, 1) and(⊥, 2) are inQ+(D), the correct interpretation is that for everyD′ ∈ [[D]],
the answerQ(D′) contains a tuple whose second component is1, and a tuple whose
second component is2. It is not meant to say that the first components of such tuples
are the same: incomplete tuples cannot make cross-tuple statements.

Efficient sound answers underOWA and CWA

There are trivial ways of finding sound answers: for instance, by lettingQ+ andQ−

return the empty set. Of course this is not what we want; instead we would like to find
a good approximation of positive and negative certain information. To find the exact
representation of such information, or a representation with some quality guarantees,
and to do so efficiently, is impossible due to the complexity considerations explained
earlier (which apply even to Boolean queries).

Thus, we shall present one particular inductive definition of queriesQ+ andQ−

that provides efficient sound answers for the most commonly used semantics of in-
completeness, i.e.,OWA andCWA semantics, for all FO queries. We also assume, as is
standard in the database context, that they are evaluated under the active domain seman-
tics, i.e., the answer to ak-ary queryQ(x̄) onD, denoted byQ(D), is the set of tuples

ā ∈ adom(D)k so thatD |= Q(ā). FormulaeQ+ andQ− will use additional atomic
formulaeconst(x) saying thatx is not a null, i.e., an element ofConst. We also write
const(x1, . . . , xn) for the conjunction of allconst(xi) for 1 ≤ i ≤ n.

The definitions ofQ+ andQ− are identical forOWA andCWA, except in the case of
relational atomic formulae. We now present them inductively for the following formulae
constructors:Q(x̄, ȳ, z̄) = Q1(x̄, ȳ) ∧Q2(x̄, z̄) (to account properly for the use of free
variables in conjuncts);Q(x̄, ȳ, z̄) = Q1(x̄, ȳ) ∨ Q2(x̄, z̄) (likewise for disjunction);
Q(x̄) = ¬Q1(x̄); andQ(x̄) = ∃yQ1(x̄, y); as well as equational atomsx = y and
x = a for a constanta ∈ Const.

– If Q(x̄, ȳ, z̄) = Q1(x̄, ȳ) ∧Q2(x̄, z̄), then

Q+(x̄, ȳ, z̄) = Q+

1 (x̄, ȳ) ∧Q+

2 (x̄, z̄) ∧ const(x̄)
Q−(x̄, ȳ, z̄) = Q−

1 (x̄, ȳ) ∨Q−
2 (x̄, z̄)

– If Q(x̄, ȳ, z̄) = Q1(x̄, ȳ) ∨Q2(x̄, z̄), then

Q+(x̄, ȳ, z̄) = Q+

1 (x̄, ȳ) ∨Q+

2 (x̄, z̄)
Q−(x̄, ȳ, z̄) = Q−

1 (x̄, ȳ) ∧Q−
2 (x̄, z̄)

– If Q(x̄) = ¬Q1(x̄), thenQ+(x̄) = Q−
1 (x̄) and Q−(x̄) = Q+

1 (x̄) ∧ const(x̄).

– If Q(x̄) = ∃yQ1(x̄, y), thenQ+(x̄) = ∃yQ+

1 (x̄, y) and Q−(x̄) = ∀yQ−
1 (x̄, y).

– If Q(x) = (x = a), thenQ+(x) = (x = a) and Q−(x) = ¬(x = a) ∧ const(x).

– If Q(x, y) = (x = y), then

Q+(x, y) = (x = y) and Q−(x, y) = ¬(x = y) ∧ const(x, y).

Note that the rules for∧ and∨ are not symmetric, due to the asymmetric rule for
negation.

Finally we define such queries for atomic formulaeR(x̄), whenR is a database
relation, as follows:

UnderOWA: R+(x̄) = R(x̄) R−(x, y) = false

UnderCWA: R+(x̄) = R(x̄) R−(x, y) = ¬∃ȳ(R(ȳ) ∧ α✁(x̄, ȳ))

Here we use an additional formulaα✁(x̄, ȳ) such thatα✁(ā, b̄) iff ā✁ b̄. It is not hard to
see that it can be defined as a quantifier-free formula that uses equalities andconst(·), as
a disjunction over possible instantiations of variablesx̄, ȳ as constants or nulls. These
give us complete definitions ofQ+ andQ− underOWA andCWA.

Theorem 4. The definitions ofQ+ andQ− above provide efficient sound answers to
FO queries underOWA andCWA. The data complexity of such queries is inAC0.

Example Consider the difference queryQ(x̄) = R(x̄)∧¬S(x̄) that is among the most
troublesome operations for relational query evaluation with nulls [22, 14, 29].

Then the queryQ+(x̄) is R(x̄) ∧ S−(x̄) ∧ const(x̄). Thus, underOWA, S− and
henceQ+ is equivalent to false, which is to be expected, as underOWA the difference
query returns the empty set. UnderCWA, on the other hand,Q+ computes the set of
constant tuples inR which do not match any tuple inS.

With Q−, we can also infer useful negative knowledge. Applying the rules,
Q−(x̄) = R−(x̄)∨(S(x̄)∧const(x̄)). Thus, underOWA it becomesS(x̄)∧const(x̄) and
we get information that constant tuples inS will never be in the answer, something that
traditional certain answers will miss. UnderCWA, we also see that tuples not mapped
into tuples ofR (i.e.,R−) can never be query answers.

These are exactly the query results one would expect, and they are obtained by a
direct application of transformations giving us queriesQ+ andQ−.

7 Conclusion

When answering queries over incomplete data, one should concentrate not only on what
is guaranteed to be true, but also on what is guaranteed to be false, i.e., negative infor-
mation. Finding such negative information however is oftenignored. We showed how to
apply the framework for dealing with incompleteness based on semantics, knowledge,
and ordering, to define negative information that can with certainty be inferred about
query answers. We showed how to use basic properties of such negative information to
find a good representational mechanism for relational queryanswering, resulting in a
natural, but hitherto not widely used mechanism of incomplete tuples. To prove its ap-
plicability, we demonstrated an efficient procedure for computing positive and negative
knowledge for all FO queries over relational databases.

As next steps, we would like to see how these notions behave instandard applica-
tions of incompleteness (integration, inconsistency, etc.), relate them to other approxi-
mate query answering notions, both in databases [16, 23, 15,34] and in AI [27, 32], and
to existing approaches that explain why tuples do not appearin query answers [36, 21].
As for quality of approximations of certain answers, these are best confirmed experi-
mentally, as was demonstrated recently [19].

Acknowledgments I am grateful to anonymous referees for their comments. Thiswork
was partly supported by EPSRC grants J015377 and M025268.

References

1. S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying of sets of
possible worlds.Theoretical Computer Science, 78(1):158–187, 1991.

2. S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-Wesley, 1995.
3. S. Abiteboul, L. Segoufin, and V. Vianu. Representing and querying XML with incomplete

information.ACM TODS, 31(1):208–254, 2006.
4. M. Arenas, P. Barceló, L. Libkin, and F. Murlak.Foundations of Data Exchange. Cambridge

University Press, 2014.

5. P. Barceló, L. Libkin, A. Poggi, and C. Sirangelo. XML with incomplete information.J.
ACM, 58(1), 2010.

6. P. Barceló, L. Libkin, and J. Reutter. Querying regular graph patterns.J. ACM, 61(1), 2014.
7. L. Bertossi.Database Repairing and Consistent Query Answering. Morgan&Claypool Pub-

lishers, 2011.
8. M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. Ontology-based data access: a study

through disjunctive datalog, CSP, and MMSNP.ACM TODS39(4) (2014).
9. P. Buneman, A. Jung, A. Ohori, Using powerdomains to generalize relational databases.

Theoretical Computer Science91 (1) (1991) 23–55.
10. A. Calı̀, D. Lembo, and R. Rosati. On the decidability andcomplexity of query answering

over inconsistent and incomplete databases. InPODS, pages 260–271, 2003.
11. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati. Tractable reasoning and

efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning
39(3):385–429 (2007).

12. K. Compton. Some useful preservation theorems.Journal of Symbolic Logic, 48(2):427–
440, 1983.

13. M. Console, P. Guagliardo, L. Libkin. Approximations and refinements of certain answers
via many-valued logics. InKR 2016, pages 349-358.

14. C. J. Date and H. Darwen.A Guide to the SQL Standard. Addison-Wesley, 1996.
15. R. Fink and D. Olteanu. On the optimal approximation of queries using tractable proposi-

tional languages. InICDT, pages 174–185, 2011.
16. M. Garofalakis and P. Gibbons. Approximate query processing: taming the terabytes. In

VLDB, 2001.
17. A. Gheerbrant, L. Libkin, and C. Sirangelo. Naı̈ve evaluation of queries over incomplete

databases.ACM TODS, 39(4):231, 2014.
18. A. Gheerbrant, L. Libkin. Certain answers over incomplete XML documents: extending

tractability boundary.Theory Comput. Syst.57(4): 892-926 (2015).
19. P. Guagliardo, L. Libkin. Making SQL queries correct on incomplete databases: a feasibility

study. InPODS 2016, pages 211–223.
20. C. Gunter.Semantics of Programming Languages. The MIT Press, 1992.
21. M. Herschel and M. Hernández. Explaining missing answers to SPJUA queries.PVLDB,

3(1):185–196, 2010.
22. T. Imielinski and W. Lipski. Incomplete information in relational databases.J. ACM,

31(4):761–791, 1984.
23. Y. Ioannidis. Approximations in database systems. InICDT, pages 16–30, 2003.
24. H. Klein. On the use of marked nulls for the evaluation of queries against incomplete rela-

tional databases. InFundamentals of Information Systems, T. Polle, T. Ripke, and K. Schewe,
Eds. Kluwer, 81–98.

25. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined ap-
proach to ontology-based data access. InIJCAI, pages 2656–2661, 2011.

26. M. Lenzerini. Data integration: a theoretical perspective. In ACM Symposium on Principles
of Database Systems (PODS), pages 233–246, 2002.

27. H. Levesque. A completeness result for reasoning with incomplete first-order knowledge
bases. InKR, pages 14–23, 1998.

28. L. Libkin. Certain answers as objects and knowledge.Artif. Intell. 232 (2016), 1–19.
29. L. Libkin. SQL’s three-valued logic and certain answers. ACM TODS41(1) (2016).
30. W. Lipski. On semantic issues connected with incompleteinformation databases.ACM

TODS, 4(3):262–296, 1979.
31. W. Lipski. On relational algebra with marked nulls. InPODS 1984, pages 201–203.
32. Y. Liu and H. Levesque. A tractability result for reasoning with incomplete first-order knowl-

edge bases. InIJCAI, pages 83–88, 2003.

33. R. Reiter. Towards a logical reconstruction of relational database theory. InOn Conceptual
Modelling, pages 191–233, 1982.

34. R. Reiter. A sound and sometimes complete query evaluation algorithm for relational
databases with null values.J. ACM, 33(2):349–370, 1986.

35. R. Rosati. On the decidability and finite controllability of query processing in databases with
incomplete information. InPODS, pages 356–365, 2006.

36. O. Shmueli and S. Tsur. Logical diagnosis of LDL programs. In ICLP, pages 112–129,
1990.

