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The relational theory on which these results are based deals only with pure relational queries: that is,those containing no interpreted predicates. Practical query languages, in contrast, contain interpretedfunctions such as + and �. The resulting queries, then, make use of the domain semantics, rather thanbeing independent of them as pure relational queries are. For example, if the underlying structureis the �eld of real numbers hR;+; �; 0; 1; <i, the extension of relational calculus is achieved by usingpolynomial (in)equalities. For example, the query '(x; y) � 9z:R(x; z) ^R(z; y) ^ x2 + y2 = z de�nesa subset of the self-join with the condition that in joinable tuples (x; z) and (z; y), z must be the sumof squares of x and y. A natural question, then, is what sort of restrictions still apply to queries givenwith interpreted structure.Clearly, many standard results fail in the presence of interpreted structure; for example, queries mayno longer express only local properties of inputs. Complexity bounds are often dependent on fragileproperties of both the functions present and the encodings of the structures in some computationalmodel. In contrast, we show here that certain kinds of structural properties of relational calculusqueries remain when a reasonable interpreted structure is present. These include the classical equiv-alence of safe and range-restricted queries, decidability of safety for restricted classes of queries, aswell as combinatorial properties of the queries; restrictions on the growth rate of the result sets, forexample. A primary example of well-behaved combinatorics of these structures is a growth dichotomytheorem, which says that the output of a query is either polynomial in the database or in�nite. Weshow that the well-behavedness of a structure, together with the decidability of its �rst-order the-ory, has algorithmic consequences; for example, the set of range-restricted formulae can be e�ectivelycomputed.A problem related to safety is that of state-safety, studied in [3]: for a query and a database, determineif the output is �nite. Unlike the safety problem, which is undecidable (cf. [1]), the state-safetyproblem is decidable for some domains, for example, natural numbers with the order relation, see[3, 5]. However, there are interpreted structures (even having a decidable �rst-order theory) for whichthis problem is undecidable [36]. Moreover, [36] established that for the same interpreted structure,no recursive set of queries captures the class of safe queries; that is, it is impossible to have an analogof the concept of range-restriction. In contrast, we show that for many well-behaved structures, state-safety is decidable. Furthermore, safety over all states is decidable for restricted classes of queries(namely, Boolean combinations of conjunctive queries).The above results are for the standard relational calculus with interpreted functions on �nite structures;we then apply these results to get structural restrictions on the behavior of queries in other models,particularly the constraint database model introduced by Kanellakis, Kuper and Revesz [20]. Thismodel is motivated by new applications involving spatial and temporal data, which require storingand querying in�nite collections. The constraint model generalizes the relational model by means of\generalized relations". These are possibly in�nite sets de�ned by quanti�er-free �rst-order formulaein the language of some underlying in�nite structure M = hU ;
i. Here U is a set (assumed to bein�nite), and 
 is a signature that consists of a number of interpreted functions and predicates overU . For example, in spatial applications, M is usually the real �eld hR;+; �; 0; 1; <i, and generalizedrelations describe sets in Rn .A database given by a quanti�er-free formula �(x1; : : : ; xn) in the language of 
 de�nes a (possiblyin�nite) subset of Un given by D� = f~a 2 Un j M j= �(~a)g. Such databases are called �nitelyrepresentable [16], as the formula � provides a �nitary means for representing an in�nite set. Forexample, if �(x; y) � (x2 + y2 � 1), then D� is the circle of radius 1 with the center in (0; 0).Relational calculus can be straightforwardly extended to this model, by incorporating atomic formulas2



which are 
-constraints, that is, atomic 
-formulae. For example, '(x; y) � (D(x; y) ^ y = x2) is a�rst-order query which, on D� de�ned above, returns the intersection of the circle with the graph ofthe function y = x2.One of the reasons why the constraint model can be used in spatial applications is that such queriesadmit a form of safety: the closed form evaluation over structures hR;+;�; 0; 1; <i (linear constraints)and hR;+; �; 0; 1; <i (polynomial constraints), most often used to represent spatial data. This sortof closure is a reformulation of the fact that the two structures above admit e�ective quanti�er-elimination. To evaluate a query, one can replace each occurrence of a database symbol D by itsrepresentation as a collection of constraints, apply the quanti�er-elimination procedure to the resultingformula, and obtain a quanti�er-free formula giving a �nite representation of the output. There hasbeen work in extending these closure properties to other classes of constraint databases and other logics,and this work indicates that the existence of closure properties is often problematic. For example,for integer gap-order constraints x <n y (meaning x < y + n), restrictions guaranteeing safety werestudied in [32] for relational calculus and strati�ed datalog, and the inherent incompleteness of thoserestrictions was later shown in [38]. However, in this paper we do obtain new positive results onclosure properties for constraint queries| albeit of a di�erent nature than [32] and [38] | and we doso in domains that are quite relevant to spatial applications.For those domains, we consider the preservation of restricted geometric classes of databases withinpowerful constraint query languages. In particular, we consider the behavior of queries with polynomialfunctions over linear constraint databases. Linear constraints are used to represent spatial data inmany applications, see [13, 17, 29] and references therein. Linear constraints have several advantagesover polynomial: the quanti�er-elimination procedure is less costly, and numerous algorithms havebeen developed to deal with �gures represented by linear constraints, cf. [26]. At the same time, theextension of relational calculus with linear constraints has severely limited power as a query language,see [2, 29]. Thus, it appears to be natural to use a more powerful language, such as relational calculuswith polynomial constraints, to query databases represented by linear constraints [43].As soon as the class of constraints used in queries is more general than the class used to de�nedatabases, we encounter the safety/closure property again: the output of a query using polynomialconstraints may fail to be de�nable with linear constraints alone! More generally, if spatial databasesare required to have certain geometric properties, then the safety problem is whether those geometricproperties are preserved by a given query language.When the underlying query language is relational calculus with polynomial constraints, there is arecursively enumerable class of programs that express exactly those queries that preserve the propertyof being de�nable with linear constraints; this follows from the decidability of the latter property,shown in [13]. Corresponding to our results in the �rst part of the paper, we are interested in gettingexplicit and natural complete languages for preserving linear-constraints, and also natural e�ectivesyntax for other geometric properties. We give a general schema for coming up with such languages.As applications, we consider the properties of being a convex polytope, a convex polyhedron and acompact semi-linear set. For those classes, we provide an e�ective syntax for polynomial constraintqueries preserving the properties. We also show that for unions of conjunctive queries with polynomialconstraints, it is decidable whether the properties of being a convex polytope or a compact semi-linearset are preserved. By applying the growth bounds for the relational calculus with interpreted functions,we �nd restrictions of the growth in the number of vertices of polytopes, and use them to show thatcertain kinds of triangulations cannot be done even with very powerful constraints.3



Organization In Section 2, we present the notations. Sections 3 through Section 6 all deal primar-ily with the standard relational calculus with interpreted functions (although generalizations to the\natural semantics" hold, and are given here, as well). Section 3 shows that the underlying interpretedstructure one uses does matter: we de�ne the concept of a safe translation of queries, and show thatsome structures admit it, and some don't. It follows that for many common structures the state-safetyproblem is decidable.In Section 4, we de�ne the concept of range-restriction, and show that the classes of safe and range-restricted queries coincide over well-behaved structures. The general concept of range-restriction isbased on the notion of algebraic formulae in the underlying model. We show that for polynomialfunctions, these range-restricted formulae have a particularly nice characterization, namely as queriesthat are bounded by roots of polynomials with coe�cients from the database. We then show thatfor underlying structures admitting quanti�er-elimination, it is possible to construct, e�ectively, arange-restricted query that coincides with a given query Q on all databases for which Q is safe.In Section 5 we show that over well-behaved structures, it is decidable whether a Boolean combinationof conjunctive queries is safe.Section 6 establishes the dichotomy result: for every query Q over a well-behaved structure, one can�nd a polynomial p such that the size of Q(D) is either in�nite, or at most the value of p on the sizeof D. We also prove a stronger trichotomy theorem for monotone queries.Section 7 deals with �nitely representable databases. We �rst introduce a general schema for trans-ferring results about query safety to the �nitely-representable setting. We then apply this to showbounds on the growth of vertices of polytopes in safe constraint queries, and give e�ective syntaxfor queries preserving geometric properties, such as the classes of convex polytopes, polyhedra andcompact semi-linear sets (the latter only in two-dimensional case). We also show that it is decidablewhether unions of conjunctive queries with polynomial constraints preserve the �rst and the thirdproperty. Concluding remarks are given in Section 8.An extended abstract of this paper appeared in the Proceedings of the 17th Symposium on Principlesof Database Systems [9].2 NotationsThe notations we use are fairly standard in the literature on constraint databases, cf. [6, 8, 7, 28, 29].We study databases over in�nite structures. Let M = hU ;
i be an in�nite structure, where U is anin�nite set, called a carrier (in the database literature it is often called domain), and 
 is a set ofinterpreted functions, constants, and predicates. For example, for the real �eld hR;+; �; 0; 1; <i, thecarrier is R (the set of real numbers), and the signature consists of the functions + and �, constants0 and 1, and predicate <.A (relational) database schema SC is a nonempty collection of relation names fS1; : : : ; Slg with associ-ated arities p1; : : : ; pl > 0. GivenM, an instance of SC over M is a family of �nite sets, fR1; : : : ; Rlg,where Ri � Upi . That is, each schema symbol Si of arity pi is interpreted as a �nite pi-ary relationover U . Given an instance D, adom(D) denotes its active domain, that is, the set of all elementsthat occur in the relations in D. We normally assume adom(D) 6= ;. Although often convenient insimplifying notation, this restriction is by no means necessary, as all results straightforwardly extendto empty databases. 4



As our basic query language, we consider relational calculus, or �rst-order logic, FO, over the un-derlying models and the database schema. In what follows, L(SC;
) stands for the language thatcontains all symbols of SC and 
; by FO(SC;
) we mean the class of all �rst-order formulae builtup from the atomic SC and 
-formulae by using Boolean connectives _;^;: and quanti�ers 8;9 and8x 2 adom;9x 2 adom. When 
 is (+;�; 0; 1; <), or (+; �; 0; 1; <), or (+; �; ex; 0; 1; <), we use thestandard abbreviations FO + Lin, FO + Poly and FO + Exp, often omitting the schema when it isunderstood. Regardless of whether we are in the `classical' setting, where these queries are applied to�nite databases, or in the constraint query setting discussed later in the paper, we will refer to thesyntactic query languages as relational calculus with 
 constraints.The semantics is as follows. For a structure M and a SC-instance D, the notion of (M;D) j= ' isde�ned in a standard way for FO(SC;
) formulae, where 9x 2 adom is the active-domain quan-ti�cation. That is, (M;D) j= 9x '(x; �) if for some a 2 U we have (M;D) j= '(a; �), and(M;D) j= 9x2adom '(x; �) if for some a 2 adom(D) we have (M;D) j= '(a; �). If M is understood,we write D j= '. The output of a query '(x1; : : : ; xn) on D is f~a = (a1; : : : ; an) 2 Un j D j= '(~a)g,and it is denoted by '[D]. For example, '(x; y) � (S(x; y)^ y = x �x) is a FO+Poly query over theschema that contains one binary relation S; and '[D] is the set of pairs in (x; y) in D where y = x2.We now, following [21, 22] say that a FO(SC;
) query '(~x) is safe for a SC-database D if it has�nitely many satis�ers for D; that is, '[D] is �nite. A query is safe if it is safe for all databases.As we explained before, we need to distinguish a class of well-behaved models. Following [6, 7, 8], weuse o-minimality [30, 42] and quanti�er-elimination [11] for this purpose. We say thatM is o-minimal,if every de�nable set is a �nite union of points and open intervals fx j a < x < bg, fx j x < ag, andfx j x > ag, (we assume that < is in 
). De�nable sets are those of the form fx j M j= '(x)g, where' is a �rst-order formula in the language of M, possibly supplemented with symbols for constantsfrom M. We say that M admits quanti�er-elimination (QE) if, for every formula '(~x), there is anequivalent quanti�er-free formula  (~x) such that M j= 8~x:'(~x) $  (~x). Below we list the mostimportant examples, which correspond to classes of interpreted structures and constraints often usedin applications.Linear Constraints: hR;+;�; 0; 1; <i is o-minimal, has QE, and its �rst-order theory is decidable,cf. [11].Polynomial Constraints: The real �eld hR;+; �; 0; 1; <i is o-minimal, has QE, and its �rst-ordertheory is decidable. This follows from Tarski's theorem, cf. [11, 42].Exponential Constraints: hR;+; �; ex ; 0; 1; <i is o-minimal [48] but does not have QE [41].An example of a structure that is not o-minimal is hN;+; <i as the formula 9y(x = y + y) de�nesthe set of even numbers. Figure 1 provides examples of some often-encountered structures and theirstanding with respect to o-minimality and quanti�er-elimination.We will need the following result about o-minimal structures, that will be used numerous times inproofs:Fact 1 (Uniform Bounds) (see [30]) If M is o-minimal, and '(x; ~y) is a �rst-order formula in thelanguage of M, possibly supplemented with symbols for constants from M, then there is an integer Ksuch that, for each vector ~a from M, the set fx j M j= '(x;~a)g is composed of fewer than K intervals.5



structure o-minimal has quanti�er-eliminationhR; <i Y YhR;+;�; 0; 1; <i Y YhR;+; �; 0; 1; <i Y YhR;+; �; exi Y NhQ ; <i Y YhQ ;+; �; 0; 1; <i N NhN; <i Y NhN;+; 0; 1; f�kgk>1; <i N YhN;+; �; 0; 1; <i N NFigure 1: Examples of structuresIf only quanti�ers 8x2adom and 9x2adom are used in a query, it is called an active-semantics query.This is the usual semantics for databases, and it will be the one used in most of the results in thispaper. If quanti�cation over the entire in�nite universe is allowed, we speak of a natural-semanticsquery. Active-semantics queries admit the standard bottom-up evaluation, while for natural-semanticsit is not clear a priori if they can be evaluated at all. However, in many cases one can restrict one'sattention to active-semantics queries. The following result was �rst shown for the pure case (nointerpreted structure) in [18] and for linear constraints [28], and then for a large class of structures asfollows:Fact 2 (Natural-Active Collapse) (see [7, 8]) IfM is o-minimal and has QE, and ' is an arbitraryFO(SC;
) query, then there exists an equivalent FO(SC;
) active-semantics query 'act. Moreover, ifthe �rst-order theory of M is decidable and QE is e�ective, then the translation '! 'act is e�ective.2We now de�ne the classes of conjunctive queries (CQ), unions of conjunctive queries (UCQ) andBoolean combination of conjunctive queries (BCCQ) in the interpreted setting. CQs are built up fromatomic SC formulae and arbitrary 
-formulae by using ^ and quanti�ers 9x and 9x2adom. Note thatwe can always assume that parameters of each SC relation are variables, as 
-terms can be eliminatedby using existential (active-domain) quanti�ers. It is easy to see that each CQ can be represented inthe form '(~z) � 9~x9~y2adom S1(~u1) ^ : : : Sk(~uk) ^ (~x; ~y; ~z)where Sis are schema relations (not necessarily distinct), ~ui is a vector of variables from ~x; ~y; ~z ofappropriate arity, and  is a 
-formula. If 
 = ; and ~x = ;, this is the usual notion of conjunctivequeries. If  is quanti�er-free, this is the notion of conjunctive queries used in [19].We de�ne UCQs to be built up from atomic SC formulae and arbitrary 
-formulae by using ^, _ andquanti�ers 9x and 9x2adom. Again, it is easy to see that those are precisely the queries of the form'1 _ : : : _ 'k where each 'i is a CQ. Finally, BCCQ are arbitrary Boolean combinations of CQs.Although we could de�ne active domain versions of conjunctive queries, the results we state here (e.g.decidability of safety) for the more general classes above will automatically imply the correspondingresults for the more restricted class of active-domain conjunctive queries.For background on �nitely representable databases, see the beginning of Section 7.6



3 Safe translationsThe main goal of this section is to show that what kind of interpreted structure one uses does matter,when one studies query safety. As a by-product, we show that the state-safety problem is decidableover certain structures. We study safe translations, that is, translations from arbitrary queries intosafe ones that do not change the result of a query if it is �nite. Formally:De�nition 3.1 We say that there is a safe translation of (active-semantics) �rst-order queries overM if there is a function '! 'safe on (active-semantics) formulae such that for every ',1. 'safe is safe, and2. if ' is safe for D, then '[D] = 'safe[D].A translation is canonical if 'safe[D] = ; whenever ' is not safe on D. A translation is recursive ifthe function '! 'safe is recursive. 2It is known that there are domains over which safe translations do not exist, see [36]. The result of[36] uses quanti�cation over the entire universe in an essential way. Here we restrict our attention toactive-domain quanti�cation. The following generalizes our result from [8].Proposition 3.1 Let M be o-minimal, based on a dense order, admit e�ective QE, and have adecidable theory. Then there exists a recursive canonical safe translation of active-semantics formulaeover M.Proof: Given an active-semantics formula ', let Let �(x) be a formula de�ning the active domain ofthe output of '. Let 	 be an active-semantics sentence equivalent to:9x1; x2 ((x1 < x2) ^ (8x x1 < x < x2 ! �(x)))(it exists by Fact 2). We then de�ne 'safe as ' ^	. The proposition then follows from the followingclaim: D j= 	 i� '[D] is �nite.First, assume that D j= :	; then clearly '[D] is in�nite because < is dense. Suppose D j= 	. Wethen look at all occurrences of SC predicates in � and replace each of them with a disjunction oftuples. This results in �0(x) in the language of 
 and constants for elements of U ; further, D j= �(a)i� M j= �0(a). Let 	0 be obtained from 	 by substituting �0 for �. We then have M j= 	0. Since�0(M) = fa j M j= �0(a)g is a �nite union of points and intervals, and since M j= 	0, it follows thatno nondegenerate interval is in �0(M). Thus, from o-minimality, we get that �0(M) is a �nite unionof points. Hence, fa j D j= �(a)g is �nite, thus showing �niteness of '[D]. 2Examples of structures satisfying the conditions of Proposition 3.1 are hR;+;�; 0; 1; <i andhR;+; �; 0; 1; <i. An immediate corollary to the proposition above is the following:Corollary 3.1 Let M be as in Proposition 3.1. Then the state-safety problem over M is decidable.That is, given a �rst-order query ', and a database D, it is decidable whether '[D] is �nite.Proof: We showed that the active-semantics sentence 	 tests if '[D] is �nite. 27



We next show that safe translations (recursive or not!) need not exist even when one restrict one'sattention to active-semantics queries, and all predicates in the signature 
 are computable.Proposition 3.2 There is a structure M = hN; P i, where P is a computable predicate, such thatthere is no safe translation of active-semantics �rst-order queries over M.Proof: Let P be a ternary predicate de�ned as: P (i; j; k) i� the ith Turing machine on the inputj makes at least k moves (assuming some standard encoding of machines and inputs). Considerthe schema that consists of a single binary relation U . Assume to the contrary that there is a safetranslation over M. Let '(k) � 9i; j 2 adom U(i; j) ^ P (i; j; k), and let  (k) be 'safe. Note that  is an active-domain formula in the language of U and P . We now show how to use  to decide thehalting problem.Suppose we are given the ith machine Mi and the input j. We assume without loss of generality thatMi makes at least one move on j. De�ne D that consists of a single pair (i; j). Since we know that is safe, we then compute the minimum number l such that D 6j=  (l). It is computable since a) itexists, and b) for each k, it is decidable whether D j=  (k).Assume that D j= '(l). ThenMi does not halt on j. Indeed, ifMi halts, then '[D] is �nite, and hence'[D] =  [D], but we have l 2 '[D] �  [D]. Assume that D 6j= '(l). Then Mi makes k < l moves onj, and thus halts. Hence, D j= '(l) i� Mi halts on j. Since it is decidable whether D j= '(l), we geta contradiction. 2In the remainder of the paper, we concentrate on well-behaved structures; typically, o-minimal ones.For computability, we often impose QE and decidability of �rst-order theory.4 Range-restriction and safetyLet us informally describe the concept of range-restriction for databases over interpreted structures.It can be seen as a generalization, to arbitrary structures, of the idea of �niteness dependencies [31].Consider a query '(x) over a database which is a �nite set S of real numbers:'(x; y) � 9z [S(z) ^ (x > y) ^ (x > 0) ^ (x � x = z) ^ (y + y = z)]:This query de�nes a set of pairs of reals. Clearly, it is safe, as the size of its output is at most twicethe size of the input. Moreover, and this is the key observation, from the query ' and any database S,one can compute an upper bound on the output '[S]: indeed, every element in adom('[S]) is eitherpa or a2 for some element a 2 S. Equivalently, in this upper bound every element is a solution toeither x2 = a or 2x = a when a ranges over S. That is, in this example, an upper bound on the resultof a safe query can be found as the set of roots of polynomials with coe�cients coming from the activedomain of the database and a �nite set of constants.This is essentially the idea of range-restriction: we �nd, for a safe query, a set of formulae de�ningan upper bound on the output. A similar approach was used in [14], although the focus of [14]is di�erent: it does not consider how the underlying structure a�ects safety, but instead gives asyntactically restricted class of queries with interpreted functions that can be translated into algebraexpressions, along the lines of [46]. In contrast, we are interested in how the underlying structureinteracts with queries. For example, we show that not only a set of range-restriction formulae exists8



for any query over a well-behaved structure, but also, under additional conditions, it can be founde�ectively. The result that we prove is actually a bit stronger, as it shows that the upper bound worksnot only for safe queries, but for arbitrary queries, provided they are safe on a given database.The �rst di�culty we encounter is �nding an analog of the set of roots of polynomials, when we dealwith arbitrary structures (e.g., hR;+; �; exi). The solution to this is provided by the model-theoreticnotion of algebraic formulae, reviewed in subsection 4.1. The range-restriction theorem is proved insubsection 4.2. Then, in subsection 4.3, we give two examples: the pure case, where our main resulttrivially translates into a classical relational theory result, and a much less trivial FO + Poly case,where we con�rm the original intuition that the upper bound is a set of roots of polynomials. We�nish the section by giving a couple of extensions of the main result.4.1 Algebraic formulae over o-minimal structuresIn this subsection, we study formulae over M, that is, �rst-order formulae in the language L(
). Weshall consider formulae '(~x; ~y) with distinguished parameter variables ~y; we use \;" to separate thosevariables. Assume that ~x is of length n and ~y is of length m. Such a formula (in the language of 
 andconstants for elements of U) is called algebraic if for each ~b in Um there are only �nitely many satis�ersof '(~x;~b); that is, the set f~a 2 Un j M j= '(~a;~b)g is �nite. A collection of formulae is algebraic ifeach of its elements is algebraic.For example, the formula '(x; y) � (x2 = y) is algebraic over hR;+; �; 0; 1; <i. It can be easily seenthat if '1(~x; ~y) and '2(~x; ~y) are algebraic, then so are '1 ^ '2, '1 _ '2 and 9x'1 where x is one ofthe variables in ~x; however, algebraic formulae are not closed under negation.Let us list some simple properties of algebraic formulae over o-minimal structures.Lemma 4.1 Let M = hU ;
i be o-minimal and based on a dense order, and let (~x; ~y) be algebraic.Then:� There exists a number K such that for any ~b 2 Um, the set f~a 2 Un j M j= (~a;~b)g has fewerthan K elements.� There is a recursively enumerable collection of algebraic formulae f�i(~x; ~y)g such that everyalgebraic formula (~x; ~y) is equivalent to one of the �i 1. If M is decidable, then the collectionof algebraic formulae is recursive.Proof: For the �rst item, consider all formulae i(xi; ~y) � 9~x(i) (~x; ~y), where ~x(i) contains all compo-nents of ~x except xi. By Fact 1, there is an integer Ki such that for each ~b, fa j M j= i(a;~b)g is com-posed of fewer than Ki intervals. Since  is algebraic and < is dense, it means that fa j M j= i(a;~b)ghas fewer than Ki elements. Hence, there are at most K =Qni=1Ki vectors ~a such that M j= (~a;~b).For the second item, for each (~x; ~y), let �k(~x) be a �rst-order formula8~y:9~x1 : : : 9~xk: k̂i=1 (~xi; ~y) ^ î6=j(~xi 6= ~xj)1Provided that 
 is a recursive set. 9



saying that there are fewer than k vectors ~x that satisfy (~x; ~y), for all ~y. Consider the recursivelyenumerable collection of formulae of the form (~x; ~y)^�k(~x) where  ranges over FO(
) and k rangesover N. It follows from the �rst item that it enumerates all algebraic formulae. If M is decidable,it is also decidable whether (~x; ~y) is algebraic. Indeed, the latter happens i� �(x; ~y) = Wi i(x; ~y)is algebraic (see the proof of the �rst item), which in turn happens i� there is no open intervalcontained in fa j M j= �(a;~b)g for any ~b. The latter can be formulated as a �rst-order sentence8~y:9u; v8z:(u < z < v ! �(z; ~y)). 2While we do get an enumeration of algebraic formulae from Lemma 4.1, we need one more represen-tation for algebraic formulae as a tool in proofs. This representation is provided below. We �rst treatthe one-variable case, that is, formulae '(x; ~y).Let � = f�1(x; ~y); : : : ; �k(x; ~y)g be a collection of formulae. Letsame�(x; x0; ~y) � k̂i=1(�i(x; ~y)$ �i(x0; ~y)):Now de�ne ��(x; ~y) � 8x0; x00:x0 < x < x00 ! (9z:x0 � z � x00 ^ :same�(x; z; ~y)):Proposition 4.1 Let M be an o-minimal structure based on a dense order. Then a formula '(x; ~y)is algebraic (over M) i� there exists a collection of formulae � such that ' is equivalent to ��. Aformula '(~x; ~y) is algebraic i� there exists a collection of formulae � in variables (x; ~y) and a formula (~x; ~y) such that ' is equivalent to ��(x1; ~y) ^ : : : ^ ��(xn; ~y) ^  (~x; ~y).Proof. Prove the one-variable case �rst.Let � be a collection of formulae, and assume that �� is not algebraic. That is, for some ~b over U ,��(M;~b) = fa j M j= ��(a;~b)g is in�nite. Since M is o-minimal, ��(M;~b) is a �nite union of pointsand intervals. Since < is dense, it means that there exist a0 < b0 2 U such that [a0; b0] � ��(M;~b).We now consider the formulae �0i(x) = �i(x;~b) for all �i 2 �. Since both �0i(M) = �i(M;~b) and:�0i(M) = :�i(M;~b) are �nite unions of intervals and < is dense, for every non-degenerate interval J ,it is the case that either J \ �0i(M) or J \:�0i(M) contains an in�nite (closed) interval. Using this, weconstruct a sequence of intervals as follows: I0 = [a0; b0], I1 � I0 is an interval that is contained eitherin I0 \ �01(M) or in I0 \ :�01(M). At the jth step, Ij � Ij�1 is an interval that is contained either inIj�1 \ �0j(M) or in Ij�1 \ :�0j(M). Let I = Ik. Then, for any c; d 2 I, M j= �i(c;~b)$ �i(d;~b).Since I = [a0; b0] � [a0; b0] and M j= ��(c;~b) for all c 2 I, we obtain that, for every c 2 (a0; b0), thereexists d 2 [a0; b0] such that M j= :same�(c; d;~b). That is, for some �i 2 �, M j= :(�i(c;~b)$ �i(d;~b)),which is impossible by construction of I. This proves that �� is algebraic.For the converse, we let, for any '(x; ~y), � consist of just '. That is, ��(x; ~y) is8x0; x00:x0 < x < x00 ! (9z:x0 � z � x00 ^ :('(x; ~y)$ '(z; ~y))):We claim that ' and �� are equivalent, if ' is algebraic. Fix any ~b of the same length as ~y, andassume that '(a;~b) holds. If ��(a;~b) does not hold, then there exist a0 < a < a00 such that for everyc 2 [a0; a00], '(c;~b)$ '(a;~b) holds; thus, '(c;~b) holds for in�nitely many c, contradicting algebraicityof '. Hence, ��(a;~b) holds. Conversely, assume that ��(a;~b) holds. If '(a;~b) does not hold, thenthere is an interval containing a on which '(�;~b) does not hold. Indeed, :'(M;~b) is a �nite union of10



intervals, whose complement is a �nite set of points, so the above observation follows from the density.We now pick a0 < a00 such that '(�;~b) does not hold on [a0; a00]. Since ��(a;~b) holds, we �nd c 2 [a0; a00]such that :('(a;~b) $ '(c;~b)) holds; that is, '(c;~b) holds for c 2 [a0; a00], which is impossible. Thus,we conclude that '(a;~b) holds, proving that for any ~b, 8x: ('(x;~b)$ ��(x;~b)). This �nishes the onevariable case.For the multi-variable case, we note that algebraicity of �� implies that '0(~x; ~y) = ��(x1; ~y) ^ : : : ^��(xn; ~y) ^  (~x; ~y) is algebraic. Conversely, let '(~x; ~y) be algebraic. Consider'i(xi; ~y) = 9x1 : : : 9xi�19xi+1 : : : 9xn:'(x1; : : : ; xi; : : : ; xn; ~y):Let �(x; ~y) be '1(x; ~y) _ : : : _ 'n(x; ~y). Obviously each 'i is algebraic, and thus �(x; ~y) is algebraic.Hence, �(x; ~y) is equivalent to ��(x; ~y) for some �nite collection � of formulae in (x; ~y). Note that if'(~a;~b) holds and ai is the ith component of ~a, then �(ai;~b) holds and thus ��(ai;~b) holds. This showsthat ' is equivalent to ��(x1; ~y) ^ : : : ^ ��(xn; ~y) ^ '(~x; ~y), thus completing the proof. 2Corollary 4.1 If M is an o-minimal structure based on a dense order, and '(~x; ~y) is algebraic overM, then ' is algebraic over any M0 elementary equivalent to M.Proof: There exists a collection of formulae � such that M j= 8~x8~y:'(~x; ~y)$ ('(~x; ~y)^Vi ��(xi; ~y)).Hence the same sentence is true in M0. Since M0 is also o-minimal and based on a dense order, weget from Proposition 4.1 that ' is algebraic in M0, too. 24.2 Main theoremWe start with a few de�nitions. For a L(
)-formulae (~x; ~y) and database D, let(D) = f~a j 9~b 2 adom(D)m such that D j= (~a;~b)gIf � is a collection of formulae in ~x; ~y, de�ne�(D) = [2� (D):Note that if � is algebraic and �nite, then �(D) is �nite.De�nition 4.1 (Range-restriction) Let M be an interpreted structure. A range-restricted queryover M and a database schema SC is a pair Q = (�; '(~x)), where � is a �nite collectionf1(~x; ~y); : : : ; m(~x; ~y)g of algebraic L(
) formulae, and '(~x) is a L(SC ;
) query.The semantics of Q is as follows:Q[D] = f~a 2 �(D) j D j= '(~a)g:That is, � provides an upper bound on the output of a query; within this bound, a usual �rst-orderquery is evaluated. For example, let '(x) be the FO + Poly query S(x) _ (x > 5). Clearly, it is notsafe. Let now (x; y) � (x � x = y) and Q = (fg; '). Then, for any database S (which a �nite setof the reals), Q[S] is the set of those elements a such that a2 2 S and either a 2 S or a > 5. Clearly,this is a �nite set. 11



Observation Every range-restricted query is safe.We call a range-restricted query (�; ') active-semantics if ' is an active-semantics formula. Note that� does not mention the database. It turns out that range-restricted active queries characterize all thesafe active-semantics queries in the following sense.Theorem 4.1 Let M be any o-minimal structure based on a dense linear order. Then there is afunction Make Safe that takes as input an active-domain formula '(~x), and outputs a range-restrictedactive query Q = (�;  ) with the property that Make Safe(') is equivalent to ' on all databases D forwhich ' is safe. Furthermore, if M has e�ective quanti�er-elimination, then Make Safe is recursive.Proof: We deal with the one-variable case �rst. Let'(z) � Q1w1 2 adom : : : Q1wl 2 adom:�(z; ~w)where each Qi is 9 or 8 and �(z; ~w) is quanti�er-free, and all atomic subformulae R(� � �) contain onlyvariables, excluding z. Any formula can be transformed into such by adding existential quanti�ers,cf. [6, 8]. Let � = f�i(z; ~w) j i = 1; : : : ; kg be the collection of all 
-atomic subformulae of �. We mayassume without loss of generality that the length of ~w is nonzero, and that � is nonempty (if this isnot true for ', take ' ^ 8w2adom(w = w) and transform it to the above form).De�ne same�(a; b; ~w), as before, to be Vki=1(�i(a; ~w) $ �i(b; ~w)), and de�ne (x; ~w) to be ��(x; ~w);that is, (x; ~w) � 8x0; x00:x0 < x < x00 ! 9y:(x0 � y � x00 ^ :same�(x; y; ~w)). Now � consists just of, with ~w being distinguished parameters. We let Make Safe(') output (fg; ').Since  is algebraic by Proposition 4.1, we must show that fa j D j= '(a)g = fa 2 �(D) j D j= '(a)gfor every nonempty database for which ' is safe.Assume otherwise; that is, for some nonempty D for which ' is safe, we have D j= '(a) but a 62 �(D).Let ~c1; : : : ;~cM be an enumeration of all vectors of the length of ~w of elements of the active domain.Note that M > 0. Since a 62 �(D), we have that for each i = 1; : : : ;M , there exist a0i; a00i such thata0i < a < a00i and M j= same�(a; c;~ci) for all c 2 [a0i; a00i ].Let b0 = maxfa0ig; b00 = maxfa00i g. We have b0 < a < b00, and for each ~c (of length of ~w) over theactive domain, we have �i(a;~c) $ �i(c;~c) for every c 2 [b0; b00]. From this, by a simple induction onthe structure of the formula (using the fact that z does not appear in any atomic formula R(� � �)),we obtain that D j= �(a;~c) $ �(c;~c) for every ~c over adom(D) and every c 2 [b0; b00], and thusD j= '(a) $ '(c), which implies that ' is not safe for D. This contradiction proves correctness ofMake Safe for the one-variable case.This completes the proof for the one-variable case. We handle the multivariable case by reducing tothe one-variable case.Let M0 = hU ;
0i be a de�nable extension of M that has quanti�er-elimination. Note that M0 iso-minimal. Let '(z1; : : : ; zn) be given, and de�ne'i(zi) � 9z1 : : : 9zi�19zi+1 : : : 9zn:'(z1; : : : ; zi�1; zi; zi+1; : : : ; zn):By [7, 8], there is a L(SC ;
0) active formula  i(zi) such that D j= 8z: i(z) $ 'i(z) for all D. Let(fi(zi; ~wi)g;  i(zi)) be the output of Make Safe on  i. Since M0 is a de�nable extension, we canassume without loss that i is a 
-formula.We now de�ne (~z; ~w1; : : : ; ~wn) � 1(z1; ~w1) ^ : : : ^ n(zn; ~wn);12



where each ~wi is of the same length as the vector of distinguished parameters in the formulae i.Finally, Make Safe(') outputs (fg; '). To see that it works, �rst notice that algebraicity of all isimplies algebraicity of . Now assume that D j= '(~a) where ~a = (a1; : : : ; an). Then D j= 'i(ai), andthus for some vector ~ci of elements of the active domain, we have that i(ai;~ci) holds. Thus, if ~c is theconcatenation of all ~cis, then (~a;~c) holds, showing that ~a 2 �(D), where � = fg. This completesthe proof of the multivariable case.We �nally notice that Make Safe for one-variable formulae is recursive, no matter what M is. Forthe multivariable case, to make it recursive, we need a procedure for converting natural-quanti�cationformulae into active-quanti�cation formulae. Such a procedure exists by Fact 2. 2Corollary 4.2 (Range-restricted = Safe) For any o-minimal structure based on a dense order,the class of safe active-semantics queries is the same as the class of range-restricted queries. 2Combining this with the natural-active collapse (Fact 2), we obtain:Corollary 4.3 Let M be any o-minimal structure based on a dense linear order that admit QE. Thenthere is a function Make Safe (recursive if so is QE and M is decidable) that takes as input a natural-semantics formula '(~x), and outputs a range-restricted active query Q = (�;  ) with the property thatMake Safe(') is equivalent to ' on all databases D for which ' is safe. In particular, over M, theclasses of safe natural-semantics queries and range-restricted queries coincide. 2Corollary 4.4 For any o-minimal structure based on a dense order (decidable or not), the collectionof safe queries is recursively enumerable. 2We �nish this section with a proposition that follows from the special form of formulae in �, asestablished in the proof of Theorem 4.1.Proposition 4.2 Let M be o-minimal and based on a dense order. Let '(~x) be a �rst-order query.Then there exists a set � of algebraic formulae (x; ~y) (that can be e�ectively constructed in M hase�ective QE and is decidable) such that, for any database D, if '[D] is �nite, then adom('[D]) ��(D).Proof: Assume ' is active-semantics. Then the proof follows the proof of Theorem 4.1, but at the endwe replace (x1; : : : ; xn; ~y) by0(x; ~y) = n_i=1 9x1; : : : ; xi�1; xi+1; : : : ; xn (x1; : : : ; xi�1; x; xi+1; : : : ; xn; ~y)to get a bound on the active domain, and output (f0g; ').For an arbitrary ', let M0 be a de�nitional expansion of M that has QE (such an expansion alwaysexists, cf. [11]). Since M and M0 are elementary equivalent, M0 is o-minimal [30] and the order isdense. Thus, there exists an active-semantics FO(M0;SC) query  (~x) that is equivalent to ' (seeFact 2), and, by the above, we have a formula 0 in the language of M0 such that adom('[D]) =adom( [D]) � 0(D). Now obtain a L(
) formula  from 0 by replacing each new predicate symbolfrom M0 by its de�nition by a L(
) formula. Then (D) = 0(D), which proves the proposition. 213



4.3 ExamplesBelow we give two examples { we consider the pure case, where Theorem 4.1 translates into a wellknown result; and we also consider the case of polynomial constraints and show a more explicit formof range-restriction.The pure case We assume that we have the pure relational calculus; that is, our underlying struc-ture isM; = hU ; ;i. The reason we can apply Theorem 4.1 is that we can extendM to M< = hU ; <iby adding a dense order without endpoints on U ; although it is never mentioned in queries, M< iso-minimal (and has QE), and hence the results are applicable. Next, we need:Lemma 4.2 Let (x; ~y) be algebraic over M<. If M< j= (a;~b), then a coincides with one of ~b'scomponents.Proof: Assume not and �x a counterexample a;~b and let B be the set of components of ~b together with�1;1. Let b0; b00 in B be such that b0 < a < b00 and (b0; b00) contains no other member of B. SinceM< has QE,  is equivalent to a quanti�er-free formula. For any a0 2 (b0; b00), (a;~b) and (a0;~b) satisfythe same atomic <-formulae, and hence M< j= (a;~b)$ (a0;~b), which contradicts algebraicity. 2This immediately implies that for an algebraic � and a database D, �(D) is either empty (if �contains no formulae) or �(D) = adom(D). Thus, the classes of safe pure relational calculus queriesand relational calculus queries whose output is restricted to the active domain, coincide. Of course,this is a standard result in database theory, proved here in a rather unusual way.The real �eld: FO+Poly Can we �nd a more concrete representation of range-restricted queriesover the real �eld? Intuitively, it should be su�cient to look for roots of polynomials p(x;~a) where ~aranges over tuples of elements of the active domain, as was suggested by the example in the beginning ofthe section. However, even quanti�er-free algebraic formulae do not give us directly this representation.Nevertheless, the following can be shown.Let p(x; ~y) be a multivariate polynomial over the real �eld. De�ne Root(p;~a) as ; if p(x;~a) isidentically zero, and the set of roots of p(x;~a) otherwise. Given a collection P of polynomialsfp1(x; ~y); : : : ; pm(x; ~y)g and a database D, letP (D) = m[i=1 [~a�adom(D) Root(pi;~a)where ~a ranges over tuples of elements of adom(D), of the same length as ~y.De�nition 4.2 A query in polynomial range-restricted form is a pair (P;'), where P is a �nitecollection of multivariate polynomials, and '(x1; : : : ; xn) is a FO + Poly query. The semantics isde�ned as (P;')[D] = '[D] \ P (D)n.Proposition 4.3 The class of safe FO+Poly queries (arbitrary or active-semantics) coincides withthe class of queries in polynomial range-restricted form. Moreover, for every FO + Poly query ',14



a collection of polynomials P can be e�ectively found such that ' and (P;') are equivalent on alldatabases on which ' is safe.Proof: Given a query '(~x), �nd e�ectively a collection of algebraic formulae � = fj(x; ~y)g such that forany D for which ' is safe, adom('[D]) � �(D). For each ~a and each  2 �, the set [~a] = fc j (c;~a)gis �nite, and by o-minimality there is a uniform bound M such that card ([~a]) < M for all ~a and 2 �.Now let ij(x; ~y), i < M , be de�ned as follows: M j= ij(c;~a) if either (1) j [~a] has at least i elements,and c is the ith element in the order <, or (2) j[~a] is nonempty, has fewer than i elements, and c is thelargest element of j [~a], or (3) j[~a] is empty, and c = 0. Note that ij(x; ~y)'s are indeed L(+; �; 0; 1; <)formulae. It is easy to see that each ij(x; ~y) de�nes a function fij : Rm ! R, where m is the lengthof ~y, by fij(~a) = c i� c is the unique element such that ij(c;~a) holds. Furthermore, this function issemialgebraic and the following property holds: if ' is safe for D, then adom('[D]) is contained inSi;jS~a fij(~a), where ~a ranges over adom(D).It follows from [23] that each fij(~y) is algebraic, that is, there exists a polynomial pij(x; ~y) such thatpij(x; ~y) = 0 i� x = fij(~y). It is easy to see that for P = fpij j i < M; j 2 �g, �(D) � P (D) andP (D) is always �nite. To complete the proof, we must show e�ectiveness. We can e�ectively construct�, and thus �nd M (by writing formulae saying that each (x; ~y) has fewer than M satis�ers for each~y, and checking if it is true by applying QE; since it is true for some M , the process terminates).Hence, we can e�ectively construct ijs, and the procedure for �nding pijs is e�ective (although notstated in [23], it follows from the analysis of the proof there). 24.4 ExtensionsSuppose we are given two elementary equivalent structures M and M0, for example, hR;+; <i andhQ ;+; <i. Assuming M is o-minimal based on a dense order, so is M0, and thus the characterizationof a safe queries applies to M0 as well. However, we would like to know more. Suppose ' is safe overM. Is the same ' safe over M0? The positive answer is provided for o-minimal structures.Proposition 4.4 If M is an o-minimal structure based on a dense order, and ' is a safe active-semantics query, then ' is safe in any structure elementary equivalent to M.Proof: Let '(~z) be safe, and let (f(~z; ~w)g; ') be the output of Make Safe (we just saw that it alwayscan be made to have this form). Since ' is safe, we obtain that for every database D over M and forevery ~a of the same length as ~z of elements of M, D j= '(~a) ! 9~w2adom:(~a; ~w). Now putting :'in prenex form where only quanti�ed variables appear inside the schema predicates (which can alwaysbe done), we have D j= 9~w2adom:Q1y1 : : : Qnyn:(�(~a; ~y) _ (~a; ~w))where all quanti�cation Qiyi is active, and � is the quanti�er-free part of :'. We now claim that thesame is true in M0 for every D over M0 and every ~a of elements of M0, as long as M0 is elementaryequivalent to M. Note that this would imply that D j= '(~a) ! 9~w 2 adom:(~a; ~w) holds in M0 aswell.To prove this claim, assume to the contrary that this fails for some D and ~a over M0. Letfb1; : : : ; bmg be adom(D). We now de�ne a sequence of formulae as follows: �n(~a;~b; ~w; y1; : : : ; yn�1) =Wmi=1 �(~a; y1; : : : ; yn�1; bi) _ (~a; ~w) if Qn is 9; if Qn is 8, we change W to V. Similarly,15



�j(~a;~b; ~w; y1; : : : ; yj�1) = Wmi=1 �j+1(~a;~b; ~w; y1; : : : ; yj�1; bi) if Qj is 9; otherwise change W to V. Next,de�ne �0(~a;~b) as W~w2B �1(~a;~b; ~w) where B is the collection of all vectors from fb1; : : : ; bmg of the samelength as ~w. Notice that the only occurrence of the schema predicates is of the form R(�), where welist some of bis as parameters. We �nally replace those by true or false, depending on whether a par-ticular tuple is in the database D. This results in a formula �(~a;~b) that does not mention the schemapredicates and has the property that M0 j= �(~a;~b) i� 9~w 2 adom:Q1y1 : : : Qnyn:(�(~a; ~y) _ (~a; ~w))holds for ~a and the given D with the active domain fb1; : : : ; bmg. Now the assumption gives us thatM0 j= 9~a9~b:(:�(~a;~b)^Vi6=j :(bi = bj)), thereby showing that the same sentence is true inM. Then,by picking ~a and ~b in M that witness the failure of � and de�ning a database D0 on ~b in the sameway as D was de�ned, we see, by an argument similar to the one above, that D0 j= :�0(~a;~b) and thus9~w2adom:Q1y1 : : : Qnyn:(�(~a; ~y) _ (~a; ~w)) fails in D0, which is impossible. This �nishes the proof ofthe claim.Thus, D j= '(~a) ! 9~w2 adom:(~a; ~w) holds in M0, and all we need to show to prove safety of ' isthat  is algebraic inM0. From Proposition 4.1 we know that 8~z8~w:(~z; ~w)$ (Vi ��(zi; ~w)^(~z; ~w))holds in M for an appropriately chosen �, and thus in M0. Since both o-minimality and density arepreserved under elementary equivalence, we get that �� is algebraic in M0, and hence  is algebraicin M0, too. 25 Deciding safety of conjunctive queries and relativesSafety of arbitrary calculus queries is undecidable even in the pure case [47], and of course it remainsundecidable when interpreted functions are present. The main goal of this section is to show thatsafety is decidable for Boolean combinations of conjunctive queries in the presence of an interpretedstructure such as hR;+; �; 0; 1; <i. In particular, safety of FO+Poly and FO+Lin conjunctive queriesis decidable.Recall that we are using CQ, UCQ and BCCQ for conjunctive, unions of conjunctive, and Booleancombinations of conjunctive queries (see Section 2 for their de�nition in the presence of an interpretedstructure). Conjunctive queries, having dominated early research in relational theory because of theirnice properties, resurfaced recently in a number of new applications, cf. [24, 19, 40]. Our proof will beby reduction to the containment problem, which is decidable for UCQs over certain structures. (Ofcourse, without an interpreted structure, this is well known [35], as is the decidability of safety forBCCQs, cf. [1]). Note that CQs and UCQs are monotone (that is, D � D0 implies '[D] � '[D0]).Since there are nonmonotone BCCQs, the class of UCQs is strictly contained in the class of BCCQs.The main result is:Theorem 5.1 Let M be o-minimal, based on a dense order, decidable, and admit e�ective QE. Thenit is decidable if a given BCCQ '(~x) over M is safe.The proof is contained in the following two lemmas, which are of independent interest, and will beused later in Section 7. Recall that by containment ' �  we mean '[D] �  [D] for any D.Lemma 5.1 Let M be o-minimal and based on a dense order, and '(~x) be a �rst-order query. Thenthere exists an active-semantics CQ  (~x) such that ' is safe i� ' �  .16



Proof follows from Proposition 4.2: take � = f1(x; ~y); : : : ; k(x; ~y)g given by the proposition; let = Wi i and let  (x1; : : : ; xn) be9~y12adom : : : 9~yn2adom (x1; ~y1) ^ : : : ^ (xn; ~yn)If ' �  , then ' is safe since all is are algebraic. If ' is safe, then adom('[D]) � �(D) for every D,which implies ' �  . 2Lemma 5.2 Let M be as in Theorem 5.1. Then containment of a BCCQ in a UCQ is decidable; thatis, for a BCCQ '(~x) and a UCQ  (~x) it is decidable if ' �  . This continues to hold if both ' and are active-semantics queries.Proof. We start with the following:Claim 5.1 Given ' and  , one can e�ectively �nd a number k such that ' �  i� for every databaseD with at most k tuples, '[D] �  [D].This clearly implies the result, as the latter condition can be expressed as a L(
) sentence. Forexample, if the schema contains one relational symbol S, this sentence is 8~x1 : : : ~xk8~x: '(~x)[f~xig=D]! (~x)[f~xig=D] where '(~x)[f~xig=D] is obtained from '(~x) by replacing each occurrence of S(~z) byWi(~z = ~xi), and similarly for an arbitrary schema. The decidability of M now implies the lemma.The proof of the claim proceeds similarly to [19]. Note that every BCCQ � can be represented asWni=1(�i(~x) ^ :�i(~x)) where each �i is CQ and each �i is UCQ; this follows if one writes � as a DNF.We take k to be the maximum length of �i (measured as the sum of the number of atomic formulaeand the number of quanti�ed variables).Assume that '[D] 6�  [D] for some D; that is, we have ~a 2 '[D] 6�  [D]. Assume D j= �i(~a)^:�i(~a)and let �i(~x) = 9~y9~z 2 adom Vlj=1 �j(~x; ~y; ~z). Then, for some ~b over U and ~c over adom(D), weget D j= Vlj=1 �j(~a;~b;~c). Consider those �js which are SC-formulae. For each such �j , which is ofthe form R(� � �) where R 2 SC, there is a tuple in D that satis�es it. Select one such tuple for eachSC-atomic �j , and let D0 be D restricted to those tuples. Choose a set of at most length(~c) tuples inD contain all the components of ~c, and add it to D0. Let the resulting database be D00. Clearly, it hasat most k tuples.Note that D00 j= Vlj=1 �j(~a;~b;~c), and thus D00 j= �i(~a) since ~c � adom(D00). On the other hand,D00 j= :�i(~a) by monotonicity of �i. Thus, we get that ~a 2 '[D00] �  [D00] where D00 has at most ktuples. This implies that each counterexample to containment is witnessed by a � k-element database,and �nishes the proof Lemma 5.2. 2To complete the proof of Theorem 5.1, note that under the assumption on M, the CQ  such that' �  is equivalent to safety of ' can be e�ectively constructed { this follows from the procedure forconstructing � given in Proposition 4.2. The theorem now follows from Lemma 5.2. 2Corollary 5.1 It is decidable whether any Boolean combination of FO+Lin or FO+Poly conjunctivequeries is safe. 2Note, however, that safety of CQs is not decidable over every structure. For example, forhN;+; �; 0; 1; <i, decidability of CQ safety would imply decidability of checking whether a Diophantineequation has �nitely many solutions, which is known to be undecidable [12].17



6 Dichotomy theorem and outputs of queriesThe main result of this section is a simple but powerful combinatorial structure theorem, saying thatover a well-behaved structure, outputs of safe queries cannot grow arbitrarily large in terms of the sizeof the input. In fact, we prove a dichotomy result: either a query ' is not safe on D, or '[D] is at mostpolynomial in the size of D, where the bounding polynomial depends only on '. This result showstame behavior of relational calculus queries over some important interpreted structures, in particularthose giving rise to linear, polynomial and exponential constraints. It can be used to show negativeresults, that is, new expressivity bounds, as well as positive results: the dichotomy theorem is a keyingredient in the decidability results of the next section.We use the notation size(D) for the size of a database, measured here as the number of tuples. It canequivalently be measured as the cardinality of the active domain, or the number of tuples multipliedby their arity, and all the results will hold.Theorem 6.1 (Dichotomy Theorem) Let M be o-minimal and based on a dense order. Let '(~x)be a �rst-order query. Then there exists a a polynomial p' : R ! R such that, for any database D,either '[D] is in�nite, or size('[D]) � p'(size(D)).Proof: Consider � given by Proposition 4.2. Since each  2 � is algebraic, there exists, by Lemma4.1, a number c such that card (fx j (x; ~y)g) < c for every ~y. Thus, if adom('[D]) is �nite, then itscardinality is at most X2� c � nmwhere m is the number of ~y variables in , and n is the size of the active domain of D. This is clearlybounded by card (�) � C� � nM�, where C� = max c and M� = maxm .Now notice that for every schema SC, there exist constants c0; d0; c1 > 0 such that c1�card (adom(D)) �size(D) � c0 � card (adom(D))d0 for every D. Hence, for appropriately chosen c0; d0 > 0, we obtainthat if '[D] is �nite, thensize('[D]) � c0 � card (adom('[D]))d0 � c0 � (card (�) � C� � nM�)d0 � cnd;where n = card (adom(D)) and c; d are constant that depend only on '. Hence, for some c1 > 0 thatdepends on the schema only, we have size('[D]) � c � ( nc1 )d, which proves the theorem. 2Are the assumptions on a structure important for the dichotomy result? That is, can we �nd structuresover which it fails? The following is a simple counterexample to the dichotomy theorem: Let M =hN; <i. Let '(x) be the following active-semantics query: 9y 2 adom:x < y. Clearly, '(x) is safe,but size('[D]) can be arbitrarily large even for a database whose active domain consists of just oneelement.The dichotomy theorem can also be stated in terms of a function measuring the growth of the outputsize. Formally, given a query ', de�ne growth' : N ! N [ f1g asgrowth'(n) = maxfsize('[D]) j size(D) = ng:Corollary 6.1 Let '(~x) be a FO + Lin, or FO + Poly, or FO + Exp query. Then there exists apolynomial p' such that, for every n 2 N, either growth'(n) =1, or growth'(n) � p'(n). 218



Note that for the query '(x) over hN; <i, which we used as a counterexample to the dichotomytheorem, growth'(n) = 1 for all n > 0. Thus, we have a question whether corollary 6.1 fails oversome structures. The following proposition provides an example.Proposition 6.1 Let M = hN;+; <; 1i. Then there exists an active-semantics �rst-order query '(x)over M such that growth'(n) = 2n for every n > 0.Proof: Let SC consist of one unary relation S. We show that there exists a FO(M;SC) sentence 	such that S j= 	 i� S is of the form Sn = f2i j 1 � i � ng. This is done by letting 	 be(9x2adom:x = 1 + 1 ^ S(x))^ (8x2adom:x = 1 + 1 _ x > 1 + 1)^ (8x2adom:x = 1 + 1 _ 9y2adom:y + y = x)^ (8x2adom:(8y2adom:y < x _ y = x) _ (9y2adom:y = x+ x))Now de�ne '(x) as 	 ^ :(x < 1) ^ (9y 2 adom:x < y _ x = y). Then, for S not of the form Sn, wehave '[S] = ;, and '[Sn] = f1; 2; 3; : : : ; 2ng. Since card (Sn) = n, this implies growth'(n) = 2n forn > 0. 2The dichotomy theorem gives easy expressivity bounds based on the growth of the output size, infact, sometimes somewhat surprising ones: even if we use exponentiation, we still cannot express anyqueries with superpolynomial growth. For example, consider the following query Q: given a binaryrelation S containing n+1 distinct points x0; x1; : : : ; xn on a plane, return the vertices of the projectionof an n-dimensional cube [0; 1]n, where the edges along the axes are projected onto ~x0x1; : : : ; ~x0xn. Itis easy to see that for each �xed n, this query is expressible in FO + Poly. As a consequence of thedichotomy theorem, we conclude that Q cannot be expressed uniformly for all n even as a FO +Expquery.For monotone queries, we can do better. We prove a trichotomy theorem that provides us with a lowerbound as well. Recall that monotone queries are those for which D1 � D2 implies '[D1] � '[D2]. Forexample, any union of conjunctive queries is monotone.Theorem 6.2 Let M be o-minimal based on a dense order. Then, for each monotone query '(~x),there exist two polynomials p1' and p2' such that either growth' is bounded by a constant, or, for everyn, either p1'(n) � growth'(n) � p2'(n), or growth'(n) =1.Proof: In view of the previous theorem, it remains to show that if growth' is not bounded by aconstant, then it is bounded below by a polynomial. Assuming growth' is not bounded by a constant,we get a family of databases fDigi2N such that size('[Di]) > i for all i. Because of monotonicity, wecan ensure, by adding elements to Di, that size(Di) � i.In the proof of Lemma 5.2 we showed that there exists a constant k that depends on ' only, such that~a 2 '[D] i� there is D0 � D with at most k tuples such that ~a 2 '[D0]. Thus, there is D0i � Di withat most k(i+ 1) tuples such that size('[D0i]) > i.Now, for a given n, let i be the maximal such that k(i+1) � n. Consider D0i and extend it to containexactly n tuples. For the resultingD00i , we have size('[D0i]) > i by monotonicity; hence growth'(n) > i.Since n � k(i + 1), we get from this that growth'(n) � nk � 1, which completes the proof. 2It also follows from the proof that the lower polynomial bound does not require o-minimality. Thisgives us some new expressivity bounds. It is possible to �nd �rst-order queries with growth' = O(f(n))19



for many non-polynomial functions f . For example, consider a schema consisting of one unary relationX and one binary relation E, and a sentence 	 saying that E codes the powerset of X; that is, thefamily of sets Xa = fy j E(y; a)g is exactly the family of all nonempty subsets of X, when a rangesover the second projection of E. Such a sentence 	 can be de�ned in �rst-order logic, cf. [1]. Wenow let '(x) � X(x) ^ 	; it then follows that growth' = O(log n). Similarly, one can �nd querieswith growth' = O( kpn) for any constant k. The trichotomy theorem says that such queries cannot bede�ned as monotone queries (e.g., unions of conjunctive queries) over any interpreted structure.7 Preserving geometric properties of constraint databasesIn this section, we switch from the �nite world to the in�nite; that is, we deal with constraint databasesthat represent potentially in�nite objects. The notion of safety over constraint databases is di�erent:we are interested in identifying languages that guarantee preservation of certain geometric properties.To give a very simple example, assume that spatial objects stored in a database are convex polytopesin Rn . A simple query \return the convex hull of all the vertices x with k x k< 1" does always returna convex polytope. This query must be written in a rather expressive language: it can be expressedin FO+Poly but not FO+Lin [43]. Now, our question is: can we ensure in some way that a class ofFO +Poly programs preserves a given property, like being a convex polytope? That is, can we �ndan e�ective syntax for the class of queries that preserve certain geometric properties?For FO + Poly and the class of databases de�nable with linear constraints (semi-linear databases),[13] gave a solution, based on deciding semi-linearity by a FO +Poly query. The resulting languageis not quite natural, and [13] posed a problem of �nding natural languages that capture queries withcertain preservation properties. Our �rst goal here is to present a general scheme, di�erent from thedecidability approach, for enumerating such queries in FO(M). HereM is some structure on the reals,not necessarily hR;+; �; 0; 1; <i. The approach is based on reduction to the �nite case, and using ourresults about �nite query safety. A similar approach was used in [37], where a coding was applied toreduce certain questions about ordered constraint databases to ones about �nite databases.As it often happens, the general case is solved rather easily, and gives us a pleasant characterization ofqueries preserving geometric properties, but working out the details of important motivating examplesis a painful process. We do so for three properties: being a convex polytope, a convex polyhedron, anda compact semi-linear set in R2 (the latter are perhaps the most often encountered class of constraintdatabases).We then use our characterizations together with the dichotomy theorem of the previous section toshow a somewhat surprising result that for unions of conjunctive FO + Poly queries, it is decidablewhether they preserve convex polytopes or compact semi-linear sets in R2 .To de�ne a general framework for talking about queries that preserve geometric properties, we recallsome basic de�nitions on constraint (or �nitely representable) databases. As before, we have a languageof some underlying structureM and a schema SC, but now m-relations in SC are given by quanti�er-free formulae2 �(x1; : : : ; xm) in L(
). If M is hR;+;�; 0; 1; <i, then sets so de�ned are called semi-linear; for hR;+; �; 0; 1; <i they are called semi-algebraic, cf. [42]. The query languages for constraintdatabases are the same as those we considered for �nite ones: FO(SC;
).2Without loss of generality, we do not assume relational attributes, as in [13, 27] and some other papers. They donot a�ect our results, but would make notation heavier. 20



If M = hU ;
i is an in�nite structure, let Obj(
) be the class of �nitely representable databasesover M, that is, Obj(
) = Sn<! Objn(
) and Objn(
) is the collection of subsets of Un of the formf(x1; : : : ; xn) j M j= �(x1; : : : ; xn)g where � is quanti�er-free �rst-order formula in L(
). We useSAlgn for semi-algebraic sets.Let S be an m-ary relational symbol, and let  (y1; : : : ; yn) be a �rst-order formula in the language ofS and 
. Then this query de�nes a map from Objm(
) to Objn(
) as follows: for any X 2 Objm(
), [X] = f~y j (M;X) j=  (~y)g. Clearly  [X] 2 Obj(
), if M has quanti�er-elimination.Let C be a class of objects in Obj(
). We say that a �rst-order query  preserves C if for any X 2 C, [X] 2 C. For example, C can be the class of convex polytopes in SAlg.Thus, the safety question for constraint databases is the following. Is there a e�ective syntax for theclass of C-preserving queries? Below, we show an approach to solution, based on the characterizationtheorems for the �nite case.De�nition 7.1 The class C has a canonical representation in Obj(
) if there is a recursive injectivefunction g : N ! N with computable inverse, and for each n, two functions coden : 2Un ! 2Um anddecoden : 2Um ! 2Un , where m = g(n), such that:1. decoden � coden(x) = x if x 2 Objn(
);2. jcoden(x) j< ! if x 2 C; decoden(x) 2 C if x is �nite;3. coden is FO(
)-de�nable on Objn(
);4. decoden is FO(
)-de�nable on �nite sets.Intuitively, the canonical representation is a �nite representation of C within Obj(
) that can bede�ned in �rst-order logic over M. For example, an approach to obtaining a canonical representationof convex polytopes would be to compute their vertices. This su�ces to reconstruct the polytope,and the vertices can be de�ned by a �rst-order formula. The actual representation (Proposition 7.1)is indeed based on computing the vertices.Next, we show that canonical representations solve the safety problem. We always assume that theset 
 is recursive.Theorem 7.1 Let M = hU ;
i be o-minimal, based on a dense order, decidable, and have e�ectiveQE. Suppose C is a class that has a canonical representation in Obj(
). Then there is an e�ectivesyntax for C-preserving FO(
) queries; that is, there exists a recursively enumerable set of C-preservingFO(
) queries such that every C-preserving FO(
) query is equivalent to a query in this set.Proof: Consider an enumeration of all safe FO(
) queries h'ii (from Corollary 4.4, we know that itexists). Let ' use the extra relation symbol of arity m, and assume that n is such that g(n) = m;given the assumptions, we can compute that. Let 'i have l parameters, and again let k be such thatg(k) = l. If n and k are found for a given 'i, we let  be:decodek � 'i � coden:This produces the required enumeration. So we have to check that every query above preserves C,and for every C preserving  , we can get ' such that decode � ' � code coincides with  . The �rst21



one is clear: if we have X 2 C, then coden(X) is �nite, hence 'i[coden(X)] is �nite too, and applyingdecodek we get an object in C.For the converse, suppose we have a C-preserving query  : Objn(
)! Objk(
). De�ne � as follows:� = codek �  � decoden. That is, � is a query Objm(
)! Objl(
). Given this, notice thatdecodek � � � coden = decodek � codek �  � decoden � coden =  on Objn(
). Thus, it remains to show that � is safe, i.e. preserves �niteness. Let X be a �niteset in Um. Then decoden(X) 2 C, decoden(X) � Un. Since  is C-preserving, we get that Y = [decoden(X)] 2 Objk(
) is in C, too, and thus codek(Y ) is �nite. This proves �niteness of �, andconcludes the proof of the theorem. 2We now turn to examples in the case when 
 = (+; �; 0; 1; <); that is, we are looking for canonicalrepresentations in SAlg. Let CPH be the class of convex polyhedra (intersections of a �nite numberof closed halfspaces) and CPT be the class of convex polytopes (bounded polyhedra). For the basicfacts on convex sets that will be used in the proofs of the propositions below, see [33].Proposition 7.1 The class CPT has canonical representation in SAlg.Proof: Given a convex polytope X in Rn , its vertices can be found as V (X) = f~x 2 Rn j ~x 2 X;~x 62conv(X�~x)g. Thus, vertices of convex polytopes are de�nable in FO(+; �; 0; 1; <), because the convexhull of a �nite set of points is de�nable, and, in view of Carath�eodory's theorem, we haveV (X) = f~x 2 Rn j ~x 2 X;8~x1; : : : ; ~xn+1 2 X � ~x: ~x 62 conv(f~x1; : : : ; ~xn+1g)g:We now de�ne coden. To simplify the notation, we let it produce a pair of n-ary relations, but itcan be straightforwardly coded by one relation. If X = conv(V (X)), then coden(X) = (V (X); ;);otherwise, coden(X) = (Rn ;X). The function decoden : 2Rn � 2Rn ! 2Rn is de�ned as follows:decoden(Y;Z) = � S(~y1;:::;~yn+1)2Y conv(f~y1; : : : ; ~yn+1g) if Y 6= Rn ;Z otherwise.Clearly, decoden � coden is the identity function for any (semialgebraic) set; these functions are also�rst-order de�nable. If X is a polytope, V (X) is �nite, and by Carath�eodory's theorem each pointof X is contained in the convex hull of at most n + 1 vertices of X. Hence, card (coden(X)) �card (V (X))n+1 < !. If (Y;Z) is �nite, then decoden(Y ) is conv(Y ), and thus a convex polytope. Thisproves the proposition. 2Proposition 7.2 The class CPH has canonical representation in SAlg.Proof: We �rst give a brief sketch of the coding scheme. Start by recalling a few basic facts aboutconvex polyhedra (see [15, 33]). Let X be a convex polyhedron in Rn . Then X = L+(X \L?), whereL is its lineality space, de�ned as f~y j ~y = ~0 or 8~x 2 X8�: ~y+ � � ~x 2 Xg (it is a subspace of Rn) andL? is the orthogonal subspace f~y j 8~x 2 L: h~x; ~yi = 0g. We shall use X0 for X \ L? in this proof. Itis known that X0 is a convex polyhedron of lineality zero, that is, it contains no line. By A + B wemean f~a+~b j ~a 2 A;~b 2 Bg. Note the di�erence between the translate X � ~x = f~y � ~x j ~y 2 Xg andthe set-theoretic di�erence X � x; we use ~x to distinguish between them.For X0, de�ne its vertices as x 2 X0 such that x 62 conv(X0 � x). A direction is given by a vector~y and corresponds to the equivalence class of rays which are translate of each other. Note that each22



direction can be canonically represented by ~y such that k ~y k= 1. A direction ~y is an extreme directionof X0 if for some vertex ~x, the ray through ~x in the direction of ~y, l(~x; ~y) = f~x+� �~y j � � 0g, is a faceof X0. Since X0 is polyhedral of lineality zero, the set of vertices and extreme directions is �nite. By(generalized) Carath�eodory's theorem [15, 33], every point ~z of X0 is a combination of at most n+ 1vertices and extreme directions,�1~x1 + : : : + �k~xk + �1~y1 + : : :+ �m~ym;where �i; �j � 0; �1 + : : :+ �k = 1; k +m � n+ 1.This suggests the following coding scheme. As before, for simplicity of exposition, we assume severalcoding relations, but they can be combined into one easily. We also do not spell out every �rst-orderformula, but the reader should be convinced from the mathematical de�nitions that all the concepts weuse are �rst-order de�nable over the real �eld. We use relations LINEALk; each such relation containsa canonical representation (roughly, an orthogonal basis) of the lineality space of X, provided itsdimension is k. That is, at most one of these relations actually contains some information. We thenhave the relations Vert and ExtDir for storing vertices and extreme directions of X0. Finally, we havea relation Points that contains points that do not belong to L + X0 (recall that the coding schemeapplies to any semi-algebraic set, so there could be such points, and we need to record them for thedecode function).Thus, to code (an arbitrary semi-algebraic) set X, we �rst note that its lineality space L(X) = f~y j8~x 2 X: ~x + ~y 2 Xg and its orthogonal L(X)? = f~y j 8~x 2 L(X): h~x; ~yi = 0g are de�nable inFO+Poly (note that one can de�ne the inner product in FO+Poly). Furthermore, for each k � n,there exists a FO + Poly sentence dimk expressing the fact that L(X) is a subspace of Rn and itsdimension is k. This is true because in FO + Poly we can test linear independence; thus, we cancheck if there exists a system of k linearly independent vectors in L such that every vector in L is alinear combination of them.Next, we show how to compute LINEALk andVertDir. We �rst sketch the coding scheme for LINEALk.The set L(X) is FO+Poly-de�nable. Assume that it is a k-dimensional linear space (which is testedby dimk). Let �n be some canonically chosen n-dimensional simplex of diameter 1 such that theorigin has barycentric coordinates ( 1n ; : : : ; 1n). Consider intersection of L(X) with 1-dimensional facesof �n (unless L(X) is a line, in which case we consider its intersection with 2-dimensional faces of�n). If the intersection is a point, we record that point; if it contains the whole face, we recordboth endpoints of the face. From the selected points, �nd a linearly independent subsystem (notethat it can be done canonically, for example, by listing the vertices and 1-dimensional faces of �n insome order). It then serves as a basis of L(X), which we use to code L(X). Note that L(X) can bereconstructed in FO +Poly from its basis.Now that we have a representation for the lineal space of X, and a �rst-order formula de�ning L?,we have a FO +Poly-formula de�ning X0. Using it, we can compute verticesV (X0) = fx 2 X0 j :9x1; : : : ; xn+1 2 X0 � x: x 2 conv(fx1; : : : ; xn+1g)g:Clearly, this is a �rst-order de�nition. Next, we �nd the setE(X0) = f~y j h~y; ~yi = 1 and 9~x 2 V (X0): l(~x; ~y) is a faceg:A subset Y of X0 is a face if every closed line segment in X0 with a relative interior point in Y has bothendpoints in Y . Clearly, this is �rst-order de�nable, and thus E(X0), the set of extreme directions ofX0, is �rst-order de�nable. 23



Given two sets V and E in Rn , by conv(V;E) we denote their convex hull, that is, the set of elementsof Rn de�nable as Pki=1 �i � ~xi +Pmj=1 �j � ~yj, where ~xi 2 V , ~yj 2 E, Pki=1 �i = 1, �i; �j � 0 andk +m � n+ 1. Again, this can be done in FO +Poly.We now describe coden. For a semi-algebraic set X, it produces a tuple of relations(LINEAL0; : : : ;LINEALn;Vert;ExtDir;Point)as follows. It �rst determines, by computing L(X), L(X)?, V (X0) and E(X0) if it is the case thatL(X) is a linear subspace of Rn andX = L(X) + conv(V (X0); E(X0)):If this is the case, then LINEALk; Vert, and ExtDir are produced as before, and Point is empty.Otherwise, Point coincides with X, and all other sets in the coding are taken to be Rn . From thedescription above it follows that coden is FO +Poly-de�nable.To compute decoden, we �rst check if the �rst n + 2 relations in the code coincide with Rn , and, ifthis is the case, output the last relation in the code. Otherwise, we use the nonempty LINEALk withleast k to compute a linear subspace L of Rn generated by the vectors in LINEALk (if all LINEALkare empty, we let this subspace be f~0g). Next, compute Y = conv(Vert;ExtDir). Note that both areFO +Poly-de�nable. Finally, return L+ Y \ L?; this is FO +Poly-de�nable also.We now sketch the proof that this coding scheme satis�es the conditions of the de�nition of canonicalrepresentation. Both code and decode are FO + Poly-de�nable. If X 2 CPH, then L(X) is alinear space, X0 has �nitely many vertices and extreme directions, and X = L + X0 implies thatPoint is empty, thus showing that code produces a �nite set. Assume that decode is given a �niteinput Y . Then none of the �rst n + 2 relations is Rn , and thus the output of decode is the sumof a vector space and a convex hull of a �nite set of vertices and directions, and thus a convexpolyhedron. To show that decode � code(X) = X for any semi-algebraic X, consider two cases. IfX = L(X) + conv(V (X0); E(X0)), then Point is empty, and Vert and ExtDir record all vertices andextreme directions of X0, and one of LINEALk codes the lineality space. Thus, decode applied tocode(X) will return L +X0 = X. If X 6= L(X) + conv(V (X0); E(X0)), then all relations but Pointcoincide with Rn , and Point contains X, and thus decode returns X. This completes the proof. 2Let SLinComp be the class of compact (closed and bounded) semi-linear sets. We resolve this case fordimension 2.Proposition 7.3 The class SLinComp2 has canonical representation in SAlg2.Proof (sketch): An object in SLinComp2 is a �nite union of convex polytopes in R2 { this easilyfollows from cell decomposition. Any such object X admits a triangulation that does not introducenew vertices [26]. Thus, the idea of the coding is to �nd the set V (X) of vertices and use as thecode triples of vertices (not necessarily distinct) (~x; ~y; ~z) with conv(f~x; ~y; ~zg) � X. More precisely, atriple (~x; ~y; ~z) belongs to code(X) if either ~x; ~y; ~z 2 V (X) and conv(f~x; ~y; ~zg) � X, or ~x = ~y = ~z andthere is no triple of elements of V (X) whose convex hull is contained in X and contains ~x. Thus,code(X) � R6 . For decode , we usedecode(Y ) = [(~x;~y;~z)2Y conv(f~x; ~y; ~zg):24



Clearly, decode � code is the identity, decode is �rst-order de�nable, and decode(Y ) is compact andsemi-linear when Y is �nite. Thus, it remains to show that V (X) is �nite and FO +Poly-de�nable.The former is well-known (see [25]). For the �rst-order de�nition of V (X) we use the following resultfrom [25, 10]. Let X be a �nite union of polyhedra (in Rn) and let B�(~x) be the ball of radius � around~x. Then for each ~x, there exists � > 0 such that for any 0 < �1; �2 < �, we have~x+ [�>0� � [(X \B�1(~x))� ~x] = ~x+ [�>0� � [(X \B�2(~x))� ~x]:We denote this set by X(~x). De�ne the equivalence relation �X by ~y �X ~z if X(~y) = X(~z). Then thevertices of X are precisely the one-element equivalence classes of �X . It is routine to verify that theabove can be translated into a FO +Poly de�nition of vertices. This completes the proof. 2Note that the coding scheme used in the proof of Proposition 7.3 cannot be used in higher dimensions.We used the fact there is a triangulation of a 2-dimensional polygon that does not introduce newvertices. However, in 3-dimensional case, there exist (non-convex) polygons for which such a trian-gulation is impossible, cf. [34]. In fact, [34] shows that the problem of deciding if a 3-dimensionalpolygon admits such a triangulation is NP-complete.Summing up, we haveTheorem 7.2 There exists a recursively enumerable class of FO + Poly queries that captures theclass of CPT (CPH and SLinComp2, respectively) preserving queries. 2The coding technique given here gives more information, however, as shown in the next section.7.1 Decidability results and geometric boundsWhile the classes of FO+Poly queries preserving certain properties have been shown to be recursivelyenumerable, in general, testing nontrivial preservation properties for arbitrary �rst-order queries isundecidable. For example, it is shown in [44] that it is undecidable whether a FO + Poly-querypreserves semi-linearity. Here, we show that for a restricted class of FO + Poly queries { unionsof conjunctive queries { preserving two of the properties considered here is decidable. The proofsare based on the representation theorems of this section, and the dichotomy theorem of the previoussection. We �rst give the following bound on the behavior of conjunctive queries on convex polytopes.Lemma 7.1 Let '(x1; : : : ; xn) be a union of FO + Poly CQs that mention one m-ary relationalsymbol S. Then one can e�ectively �nd two numbers k and l such that ' is CPT -preserving i� forevery convex polytope D in Rm with at most k vertices, the output '[D] is a convex polytope with atmost l vertices in Rn .Proof: We can assume without loss of generality that '(~x) is of the form_j 9~z î �ij(~x; ~z)where each �ij is either S(� � �) or a L(+; �; 0; 1; <) formula. Let k0 be the maximal number of S-atomicformulae in a disjunct of '. Then the argument made in the proof of Lemma 5.2 shows that for each~a 2 '[D], there exists a subset of D0 � D with at most k0 points such that ~a 2 '[D0].25



Now assume that D is a convex polytope in Rm , and V (D) is the set of its vertices. Then eachelement of D belongs to conv(V 0) where V 0 is a subset of V of cardinality at most m + 1. Now letk0 = k0(m + 1). Then it follows from monotonicity that for every ~a 2 '[D], there is a subset ofV 0 � V (D) of cardinality at most k such that a 2 '[conv(V 0)]; in particular,'[D] = [V 0�V (D);card (V 0)�k0 '[conv(V 0)]:We now set k = 2k0.Next, consider the following FO + Poly query '0 which uses one m-ary relational symbol R. First,'0 constructs the convex hull of points in Rm which are in R. Then it applies ' to the result, to get aset Y . Finally, it returns V (Y ), that is, the set fy 2 Y j y 62 conv(Y � y)g. Clearly, '0 is expressiblein FO+Poly. From the dichotomy theorem, we know that there is a polynomial p with the followingproperty: if R is �nite and contains i points, then either '0[R] is in�nite, or it contains at most p(i)points. We now let l = maxfp(i) j i = 1; : : : ; kg. Note that both k and l can be e�ectively calculatedfor a given '.It remains to show that if ' has the property that it sends a convex polytope with � k vertices inRm into a convex polytope with � l vertices in Rn , then it is CPT -preserving. First, assume thatD is a convex polytope with � k vertices in Rm . Assume '[D] is a convex polytope. If we apply'0 to a relation storing vertices of D, then the result is a �nite set of vertices of '[D]. Hence, bythe dichotomy theorem, it has at most l vertices. That is, it now su�ces to show that if ' has theproperty that it sends a convex polytope with � k vertices in Rm into a convex polytope, then it isCPT -preserving.Let D be a convex polytope. We know that '[D] = SV 0 '[conv(V 0)] where V 0 ranges over subsetsof V (D) that have at most k0 � k elements. Thus, each '[conv(V 0)] is a convex polytope. Assumethat '[D] is not convex. Then we can �nd two sets of vertices V1; V2, having at most k0 elementseach, and two points ~a 2 '[conv(V1)], ~b 2 '[conv(V2)], and ~c between ~a and ~b such that ~c 62 '[D].Let V0 = V1 [ V2. Then, by monotonicity of ', ~a;~b 2 '[conv(V0)]. By the assumption, '[conv(V0)]is convex (since card (V0) � k) and thus ~c 2 '[D]. Hence, we showed that '[D] is convex. Since it isconvex and a �nite union of convex polytopes, it is a convex polytope itself. This completes the proofof Lemma 7.1 2.We now prove a similar bound for compact semi-linear sets in R2 . When we speak of a triangle, wemean convex hulls of three points in R2 . In particular, a degenerate triangle can be a segment or apoint. We now prove the following.Lemma 7.2 Let '(x; y) be a union of conjunctive FO+Poly queries that mention one binary rela-tional symbol S. Then one can e�ectively �nd two numbers k and l such that ' is SLinComp2-preservingi� for every set D � R2 which is a union of at most k triangles in R2 , it is the case that '[D] is aunion of at most l triangles in R2 .Proof: Assume, as in the proof of Lemma 7.1, that '(~x) is of the form Wj 9~z Vi �ij(~x; ~z) whereeach �ij is either S(� � �) or a L(+; �; 0; 1; <) formula, and let k be the maximal number of S-atomicformulae in a disjunct of '. Then, by the same argument as in the proof of Lemma 7.1, we obtainthat if ~x 2 '[D], then there exist k points ~z1; : : : ; ~zk in D such that ~x 2 '[f~z1; : : : ; ~zkg]. Assume thatD is compact and semi-linear; since D � R2 , it can be triangulated using only vertices of D. LetV (D) be the set of vertices of D, which can be computed by a FO + Poly query, as shown in the26



proof of Proposition 7.3. Since every point of D is in the convex hull of a triangle whose vertices comefrom V (D), we obtain, by monotonicity of ', that if ~x 2 '[D], then there exists a set V 0 of triples ofelements from V (D) such that card (V 0) � k and~x 2 '[ [(~u;~v;~w)2V 0 conv(f~u;~v; ~wg)]:Next, consider the following FO+Poly query  on �nite databases. It uses one 6-ary schema relationR, that can be thought of as storing triples (~u;~v; ~w) of points in R2 . First,  computesP (R) = [(~u;~v;~w)2R conv(f~u;~v; ~wg);which is a compact semi-linear set, and then it computes the set V (P (R)) of vertices of P (R), usingthe technique of [25], that we exploited in the proof of Proposition 7.3: for each ~x, the set P (R)(~x) =~x + [(P (R) \ B�(~x)) � ~x] does not depend on a particular value � below some threshold �. We thende�ne vertices as those ~x for which there is no ~x0 6= ~x with P (R)(~x) = P (R)(~x0). Thus, the querycomputing V (P (R)) is de�nable in FO+Poly, and by the dichotomy theorem, there is a polynomialp such that, for each R, either V (P (R)) is in�nite, or has at most p(n) vertices, where n is the numberof tuples in R. We now let l be maxfp(i) j i = 1; : : : ; kg.To show that these k and l witness the conclusion of the lemma, assume that ' is SLinComp2-preserving.Then the output of every ' on every union of k triangles is a compact semi-linear set. From theconstruction above, it follows that such an output can have no more than l vertices. Conversely,assume that the output of every union of k or fewer triangles is a union of l or fewer triangles. Since'[D] is the union of '[S(~u;~v;~w)2V conv(f~u;~v; ~wg)], where V ranges over k-element sets of triples ofvertices of D, we obtain that '[D] is a union of a �nite number of triangles, and thus compact andsemi-linear. This concludes the proof of the lemma. 2The promised decidability results now follow from the bounds established in the lemmas above.Theorem 7.3 The following two properties of unions of conjunctive FO+Poly queries are decidable:(a) being CPT -preserving;(b) being SLinComp2-preserving.Proof of (a): Note that for each i, there is a FO + Poly query  i for each i that tests if a set Dis a convex polytope with at most i vertices: it checks that the set of vertices V (D) = fx 2 D jx 62 conv(D � x)g has at most i elements, and that D = conv(V (D)). In order to check if a UCQ' in FO + Poly is CPT -preserving, one applies Lemma 7.1 to compute the numbers k and l, andthen writes a sentence saying that for every � k-element set V in Rm , applying ' to conv(V ) yieldsa polytope with at most l vertices. Since conv and  l are de�nable, this property can be expressedas a FO(+; �; 0; 1; <) sentence and thus it is decidable if it is true. Hence, the property of beingCPT -preserving is decidable.Proof of (b): As in the proof of (a), we notice that the condition of Lemma 7.2 can be written as a�rst-order L(+; �; 0; 1; <) sentence equivalent to:8f~xjigj=1;2;3i=1;:::;k 9f~ypsgp=1;2;3s=1;:::;l 8~x: (~x 2 l[s=1 conv(f~yps j p = 1; 2; 3g)) $ '0(~x)27



where '0 is obtained from ' by replacing each occurrence of S(u; v) with a formula expressing thefact that (u; v) 2 Ski=1 conv(f~xji j j = 1; 2; 3g). Since the convex hull of a �nite number of points isFO + Poly-de�nable, the condition of the lemma is indeed de�nable by a L(+; �; 0; 1; <) sentence,and thus its validity is decidable. Hence, it is decidable if a union of conjunctive FO +Poly queriesis SLinComp2-preserving. 27.2 New expressivity boundsWe can also obtain new expressivity bounds by combining the dichotomy theorem with the idea ofcanonical representation. First, as an immediate consequence of the technique of Proposition 7.1,Lemma 7.1, and the dichotomy theorem, we obtain the following.Corollary 7.1 Let '(~x) be a FO + Poly or FO + Exp CPT -preserving query. Then there exists apolynomial p' such that, whenever D is a convex polytope with n vertices, '[D] has at most p'(n)vertices. 2From the proof of Lemma 7.2, one can extract the following, by applying the dichotomy theorem toa query that works on representations of compact semi-linear sets in R2 as �nite unions of triangles:Corollary 7.2 Let '(x; y) be a FO +Poly query that is SLinComp2-preserving. Then there exists apolynomial p' such that, whenever D is a compact semi-linear set with n vertices, '[D] has at mostp'(n) vertices. 2Consider the following problem: given a polyhedron P and � > 0, �nd a triangulation of P of mesh< �. That is, a triangulation such that the diameter of each simplex (triangle in dimension 2) is lessthan �. It is a well-know result that each polyhedron admits such a triangulation [4]. The output ofsuch a query can be structured in several ways, for example, by storing the information about the facestructure of the triangulation. We only impose one requirement that the vertices of the triangulationbe computable.Proposition 7.4 There is no FO + Exp query that �nds a triangulation of a given polygon with agiven mesh. This continues to hold if we restrict to convex polytopes on a plane.Proof: Suppose such a query exists; now consider a new query that does the following. Its input isone binary relation containing a set X of points ~x1; : : : ; ~xn on the real plane, and one unary relationcontaining a single real number � > 0. First, in FO+Poly, construct conv(X), and then �nd verticesof a triangulation with mesh < �. This is clearly a safe query, so by the dichotomy theorem, thereexists a polynomial p such that the number of vertices of the triangulation is at most m = p(n+ 1)(n+1 is the size of the input). Let d be the maximal distance between the points ~xi; ~xj (and thus thediameter of conv(X)). Since the segment [~xi; ~xj ] with d(~xi; ~xj) = d must be covered by the simplexesof the triangulation, it is possible to �nd a number � such that it cannot be covered by fewer thanm + 1 triangles of diameter �, and hence the number of points in the triangulation is > m. Thiscontradiction proves the proposition. 2
28



8 Conclusion and future workLet us summarize the main themes of the paper.� The relational calculus with interpreted functions is a nontrivial and interesting extension ofthe relational calculus. Many useful properties of the relational calculus remain in place in thepresence of built-in functions, but many don't. Identifying the analogs to classical results in theinterpreted setting can be tricky; proving them is not necessarily a piece of cake either.� What sort of interpreted structure one adds matters.� By combining results on the relational calculus with interpreted functions with some simplecanonical representations of constraint databases, one can get interesting bounds on the behaviorof constraint queries.We now discuss extensions of each of these themes to other settings. In the �rst part of the paper,we identi�ed some helpful properties of the relational calculus that remain in the presence of well-behaved built-in functions, with the real arithmetic functions being our prototypical example. Lookingat structures such as real arithmetic or rational addition was quite helpful in discovering these results,but these characterization theorems are by no means limited to functions on real or even rationaldomains. Results in this paper and in [8] indicate that the safety and bound results fail badly forfull integer arithmetic. However, we are currently working on extensions of these results to well-behaved structures over the integers, such as linear integer constraints. Although the growth dichotomyand range-restriction theorems as stated here fail for integer linear constraints, modi�cations of thecharacterization results still hold. In addition, several of their algorithmic consequences, such as thedecidability results for conjunctive queries are still valid in the integer case.In this paper we focused mainly on the relational calculus. Many of the proofs here, such as theresults on range-restriction and safety, generalize straightforwardly to higher-order logics (�xpoint,second-order). Still, the safety question for many higher-order logics { particularly �xpoint logic inits many variations { is quite intricate, and we lack a full picture of what interpreted structures andrecursion constructs permit a well-behaved theory of query safety.Our emphasis here was showing that a wide class of interpreted functions satisfying some weak struc-tural assumptions all exhibit certain kinds of tame behavior. In contrast, papers such as [19] give moredetailed algorithmic analyses for speci�c structures. It still remains to give a complexity-theoretic anal-yses of both the safe translation problem and the query safety problem for conjunctive queries in thecase of polynomial and linear constraints. A related interesting question is the complexity of decidingpreservation properties for conjunctive queries over �nitely representable databases.We are working on several kinds of extensions of the growth bound theorems of Section 6. Some ofour current work is on broadening the class of models these results apply to, and some of it concernsgetting more precise bounds on the behavior of the growth function. It is fairly clear why these boundshave never been stated for the pure case: they are completely obvious for any pure query language.However, the pure case does put some strong limits on what sort of more precise information onecan obtain on the behavior of the growth function. For example, results in the pure �rst-order caseshow that the function f(n) giving the minimum nonzero size of output over models of size n can besublogarithmic. Well-known results on the spectrum problem give restrictions on the structure of theset fn : growth'(n) = kg, for k any constant or 1. One can, however, give theorems relating the29



behavior of the growth function of a polynomial constraint query to that of a pure �rst-order query.We are also working on characterizations of the classes of interpreted structures for which the growthbound dichotomy theorem holds, and on characterizations of structures for which the growth functionis bounded not by a polynomial, but by other de�nable functions of the input size (e.g., exponential).The second part of the paper deals with applying our results on �nite databases to �nitely-representableones, with the main technique coming via canonical codes. The main point of our codings was tofacilitate this transfer of results. We are working on re�ning the results here to get natural canonicalcodings for larger geometric classes, and on studying these codes in themselves. The codings given hereoften capture a signi�cant model-theoretic observation about the geometric class (e.g., the codingsbased on Carath�eodory's theorem and its generalizations show that membership is determined by abounded number of elements, and that these elements are de�nable from the database); they also givequite a bit of intuition on how queries that preserve these classes behave. We think this approach isquite promising one for arriving at useful languages for queries that preserve geometric structure. Infact, very recently, a syntactically de�ned subquery language of FO + Poly for manipulating semi-linear databases was given in [45]. Their approach was to combine Theorems 4.1 and 7.1 with thecoding technique of [13] to �nd a canonical coding for semi-linear sets. Further study of canonicalcodes may also shed light on decidability of preservation properties for special classes of queries.Acknowledgements We thank Ken Clarkson, Steve Fortune and Jianwen Su for helpful discussions,and anonymous referees for numerous comments and suggestions.References[1] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.[2] F. Afrati, S. Cosmadakis, S. Grumbach and G. Kuper. Linear vs. polynomial constraints indatabase query languages. In Proceedings of Conference on Principles and Practice of ConstraintProgramming, Springer Verlag, 1994.[3] A.K. Ailamazyan, M.M. Gilula, A.P. Stolboushkin and G.F. Shvarts. Reduction of a relationalmodel with in�nite domains to the �nite-domain case. Doklady Akademii Nauk SSSR, 286 (1)(1986), 308{311. Translation in Soviet Physics { Doklady, 31 (1986), 11{13.[4] P.S. Aleksandrov. Combinatorial Topology. Graylock Press, 1956.[5] A. Avron and J. Hirshfeld. On �rst order database query languages. In LICS'91, pages 226{231.[6] M. Benedikt, G. Dong, L. Libkin and L. Wong. Relational expressive power of constraint querylanguages. J. ACM 45 (1998), 1{34.[7] M. Benedikt and L. Libkin. On the structure of queries in constraint query languages. In LICS'96,pages 25{34.[8] M. Benedikt and L. Libkin. Languages for relational databases over interpreted structures. InPODS'97, pages 87{98.[9] M. Benedikt and L. Libkin. Safe constraint queries. In PODS'98, pages 99{108.[10] H. Bieri and W. Nef. Elementary set operations with d-dimensional polyhedra. In Proc. Workshopon Computational Geometry (CG'88), Springer LNCS 333, pages 97{112.30



[11] C.C. Chang and H.J. Keisler. Model Theory. North Holland, 1990.[12] M. Davis. On the number of solutions of Diophantine equations. Proc. AMS 35 (1972), 552{554.[13] F. Dumortier, M. Gyssens, L. Vandeurzen, and D. Van Gucht. On the decidability of semi-linearity of semi-algebraic sets, and its implications for spatial databases. In PODS'97, pages68{77.[14] M. Escobar-Molano, R. Hull and D. Jacobs. Safety and translation of calculus queries with scalarfunctions. In PODS'93, pages 253{264.[15] M. Gr�otschel, L. Lov�asz and A. Schrijver. Geometric Algorithms and Combinatorial Optimization.Springer, 1993.[16] S. Grumbach and J. Su. Finitely representable databases, JCSS 55 (1997), 273{298.[17] S. Grumbach, J. Su, and C. Tollu. Linear constraint databases. In Proceedings of Logic andComputational Complexity, pages 426{446, Springer Verlag, 1994.[18] R. Hull and J. Su. Domain independence and the relational calculus. Acta Informatica 31:513{524,1994.[19] O.H. Ibarra and J. Su. On the containment and equivalence of database queries with linearconstraints. In PODS'97, pages 32{43.[20] P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. Journal of Computer andSystem Sciences, 51 (1995), 26{52. Extended abstract in PODS'90, pages 299{313.[21] M. Kifer. On safety, domain independence, and capturability of database queries. In Proc. Dataand Knowledge Base, Jerusalem, 1988.[22] M. Kifer, R. Ramakrishnan and A. Silberschatz. An axiomatic approach to deciding query safetyin deductive databases. In PODS'88, pages 52{60.[23] D. Marker, M. Messmer and A. Pillay. Model Theory of Fields. Springer Verlag, 1996.[24] A. Levy and D. Suciu. Deciding containment for queries with complex objects. In PODS'97,pages 20{31.[25] W. Nef. Beitr�age zur Theorie der Polyeder. Herbert Lang, Bern, 1978.[26] J. O'Rourke. Computational Geometry in C. Cambridge Univ. Press, 1994.[27] J. Paredaens, J. Van den Bussche, and D. Van Gucht. Towards a theory of spatial databasequeries. In PODS'94, pages 279{288.[28] J. Paredaens, J. Van den Bussche, and D. Van Gucht. First-order queries on �nite structuresover the reals. SIAM J. Comput. 27 (1998), 1747{1763.[29] J. Paredaens, B. Kuijpers, G. Kuper and L. Vandeurzen. Euclid, Tarski and Engeler encompassed.In DBPL'97, Sprinegr LNCS 1369, 1998, pages 1{24.[30] A. Pillay, C. Steinhorn. De�nable sets in ordered structures. III. Transactions of the AMS 309(1988), 469{476. 31



[31] R. Ramakrishnan, F. Bancilhon and A. Silberschatz. Safety of recursive Horn clauses with in�niterelations. In PODS'87, pages 328{339.[32] P. Revesz. Safe query languages for constraint databases. ACM TODS 23 (1998), 58{99.[33] R.T. Rockafellar. Convex Analysis. Princeton Univ. Press, 1970.[34] J. Ruppert and R. Seidel. On the di�culty of triangulating three-dimensional nonconvex poly-hedra. Discrete and Computational Geometry 7 (1992), 227{254.[35] Y. Sagiv and M. Yannakakis. Equivalence among relational expressions with the union anddi�erence operators. J. ACM 27 (1980), 633{655.[36] A. Stolboushkin and M. Tsaitlin. Finite queries do not have e�ective syntax. In PODS'95, pages277{285. Full version to appear in Information and Computation.[37] A. Stolboushkin and M.Tsaitlin. Linear vs. order constraint queries over rational databases. InPODS'96, pages 17{27.[38] A. Stolboushkin and M. Tsaitlin. Safe strati�ed datalog with integer order does not have syntax.ACM TODS 23 (1998), 100{109.[39] J. D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science Press,1988.[40] J. D. Ullman. Information integration using logical views. In ICDT'97, pages 19{40.[41] L. van den Dries. Remarks on Tarski's problem concerning (R,+,*,exp). In Logic Colloquium'82,North Holland, 1984, pages 97{121.[42] L. van den Dries. Tame Topology and O-Minimal Structures. Cambridge, 1998.[43] L. Vandeurzen, M. Gyssens and D. Van Gucht. On the desirability and limitations of linearspatial database models. In SSD'95, pages 14{28.[44] L. Vandeurzen, M. Gyssens and D. Van Gucht. On query languages for linear queries de�n-able with polynomial constraints. In Proc. Principles and Practice of Constraint Programming,Springer LNCS 1118, 1996, pages 468{481.[45] L. Vandeurzen, M. Gyssens and D. Van Gucht. An expressive language for linear spatial databasequeries. In PODS'98, pages 109{118.[46] A. van Gelder and R. Topor. Safety and translation of relational calculus queries. ACM TODS,16 (1991), 235{278.[47] M.Y. Vardi. The decision problem for database dependencies. Inf. Proc. Let., 12 (1981), 251{254.[48] A.J. Wilkie. Model completeness results for expansions of the ordered �eld of real numbersby restricted Pfa�an functions and the exponential function. J. Amer. Math. Soc. 9 (1996),1051{1094.
32


