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Abstract

Most database theory focused on investigating databases containing sets of tuples. In practice
databases often implement relations using bags, 1.e. sets with duplicates. In this paper we
study how database query languages are affected by the use of duplicates. We consider query
languages that are simple extensions of the (nested) relational algebra, and investigate their
resulting expressive power and complexity.

1 Introduction

In the standard approach to database modeling, relations are assumed to be sets, and no duplicates
are allowed. For real applications, many systems relax this restriction [Fis87, HM81] and support
bags in their data model, often to save the cost of duplicate elimination. Efforts have been made for
providing a theoretical framework for such systems. Algebras for manipulating bags were developed
by extending the relational algebra [Alb91, Klu82, OOMST7], and optimization techniques for these
algebras were studied [BK90, Mum90, Alb91]. Computational aspects of bags were studied in
[BS91]. However, while the expressive power of database languages is of major interest in database
research, it is only recently that the expressive power of languages for manipulating bags has been
investigated by the authors of the present paper [GM93, GMK93, LW93, LW93a, LW94]. We give
here a summary of the main results on the expressive power and complexity of bag languages. We
address the following issues:

(1) Design of a language for bags, BALG, playing a role similar to that of the relational algebra,
RA, for sets; (2) Relative expressive power of the primitives of the bag algebra; (3) Relationship
between set and bag languages; (4) Complexity of bag languages; and (5) Limitations of expressive
power of the basic bag language.
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A brief summary of the results of this paper is given below.

e BALG has more expressive power than RA.

e Some properties enjoyed by RA do not hold for BALG. For example, BALG does not admit
0/1 laws, and can express some queries that do not have AC0O complexity.

e BALG is equivalent in expressive power to RA with arithmetic and aggregate functions.

e BALG has LOGSPACE complexity.

o Even though BALG has more power than RA, it cannot express recursive queries such as
transitive closure and connectivity test.

2 An Algebra for Bags

The algebra presented here extends the complex object algebra [AB87] in the spirit of the bag
algebras of [Alb91]. To give motivation for the operations in this language, we use the approach
combining [Car88] and [BBW92]. The idea is that a data-oriented language must be organized
around the type system of its data objects. For each type constructor, we need two kinds of
operations. The introduction operations build objects of a given type. The manipulation operations
compute over objects of a given type. We also need operations that provide interaction between type
constructors. We present below the basic operations for bags and records, following an extension
of [BBW92] to bags.

We assume the existence of a number of basic types by, bs,..., such as Booleans, integers, and
strings. Types are defined using the basic types, and the tuple and bag constructors. [11,...,T}] is a
tuple type, whose domain is the set of tuples over 11, ...,T,. That is, dom([11, ..., T,]) = dom(Ty) X
... x dom(T,). A bag is a (homogeneous) collection of objects that may contain duplicates. {7}
is a bag type, whose domain is the set of finite bags of objects of type T. We say that an element
n-belongs to a bag if it belongs to that bag and has exactly n occurrences.

We assume that all the operations are typed in a polymorphic way. The restrictions on the input
types of operations assure that the output is a homogeneous bag. For example, additive bag union
(&) can only be applied on bags of the same type. The type system is obvious and we omit the
formal definitions. The reader can find them in [GM93, LW93, LW94]. In the presentation below,
we use one level of lambda-abstraction (Az.e(z), where & ranges over objects of a given type) and
conditional if ¢(z) then f(z) else g(z), where ¢ is of type T' — bool and both f and ¢ are of type
T — T'. As explained in [BBW92], adding these constructs does not increase expressiveness. On
the other hand, it allows us to express certain operations in a simpler way.

Operations of the Basic Bag Language (BBL)

e Operations on records

— Introduction operation: tupling (7): 7(01,...,0%) = [01,...,0k], is a k-ary tuple, con-

taining o; (i = 0...k) in its i** attribute.

— Manipulation operation: Attribute projections (a;): a;([o1,...,04]) = 0;.

e Operations on bags

— Introduction operations:

Empty bag: We use the {|[} constant to denote the empty bag.
Bagging, or bag singleton (3): (o) = {lo|} is a bag containing o as a single element, i.e.
o 1-belongs to §(o).



Additive union () : Bl B’ is a bag of type {|T[}, such that o n-belongs to Bl B iff o
p-belongs to B and ¢-belongs to B' and n = p + q.

— Manipulation operation:

extension (EXT): if f is a function of type T' — {7'[}, then EXTy extends f to a
function of type {{T} — {T'[} by EXT;({lz1,....2.[}) = fle1)¥... ¥ f(a,).

We use MAP, as a syntactic sugar for EXTg,.

e Interaction operation: Cartesian product (x) : if B and B’ are bags containing tuples of
arity k and &’ respectively, then B x B’ is a bag containing tuples of arity & + £’, such that
0 = [a1,...,0k, Qky1,.--,akrp] n-belongs to B x B' iff o = [aq,...,a;] p-belongs to B,
09 = [ags1,- .., akyp] g-belongs to B’ and n = pq.

The operations defined so far constitute our basic bag language, BBL. This language does not
contain a number of algebraic operations such as difference or duplicate elimination. We consider
adding them to BBL and then describe their expressive power relative to BBL.

Additional operations on bags
e Subtraction, — : B — B’ is a bag of type {T'|}, such that o n-belongs to B — B’ iff o p-belongs
to B and ¢-belongs to B’ and n = sup(0,p — ¢q).

o Maximal union, |J : B|J B’ is a bag of type {T[}, such that o n-belongs to B|J B’ iff o
p-belongs to B and ¢-belongs to B” and n = sup(p, q).

e Intersection, () : B[\ B’ is a bag of type {T'|}, such that o n-belongs to B B’ iff o p-belongs
to B and ¢-belongs to B’ and n = inf(p,q).

e Duplicate elimination, € : €(B) is a bag containing exactly one occurrence of each object of
B. More formally, an object o 1-belongs to €(B) iff o p-belongs to B for some p > 0, and
0-belongs to ¢(B) otherwise.

e FEquality test, eq: eq has type T' x T' — bool. eq(0,0') is true iff o and o’ are equal objects.

e Membership test, member of type T' X {|T[} — bool returns true on a pair (o, B) iff o p-belongs
to B for p > 0.

e Subbag test, subbag of type {|{T[} X {{T[} — bool returns true on a pair (B, B") iff whenever o
p-belongs to B, then o p’-belongs to B’ for some p’ > p.

Do we need to add all these operations to BBL to get a standard bag algebra? Some opera-
tions are interdefinable, e.g. member and subbag tests are expressible using BBL. and bag differ-
ence. The following characterizes precisely the relative expressive power of the additional opera-
tions.

Theorem 2.1 With respect to BBL, the expressive power

of these additional operations is as follows: — can express ‘

all primitives other than €. € is independent of the rest of N — subbag c
the primitives. N is equivalent to subbag and can express / ‘

both U and eq. member and eq are interdefinable, both are .

. . U eq —— member
independent of U, and together with U can express N. a



Thus, as our standard bag algebra BALG, we take BBL endowed with the strongest combi-
nation of primitives, that is, — and e. (This language was called BQL — bag query language — in
[LW93a, LW94].) Note that the operations above work for flat bags (bags of records with attributes
of basic types) as well as for nested bags (where tuple attributes can also contain nested bags).

The bag algebra can express many operations commonly found in database languages. For in-
stance, MAP \; [ay(c),0:(x)] denotes the projection of a tuple type on its second and third arguments.
(For brevity, we shall denote below the map projecting the attributes i,...,¢, by m;, . ;). More
interestingly, bag manipulation offers gain of expressive power. It allows the definition of several
fundamental database primitives. For example, bags can be used to simulate aggregate functions,
such as sum and count. For this, an integer ¢ can be represented by a bag containing ¢ occurrences
of an element, say a, and if B is a bag of tuples, then count(B) = m1({[a][} X B).

3 Bag Languages vs Set Languages

As in the classical relational case, we are aiming for characterizations of the expressiveness of BALG
in terms of complexity classes of queries. In particular, we compare the expressive power of the bag
algebra to that of the relational algebra, RA. Since we are considering complex (nested) objects
as well as flat relations, we also look at the relationship between BALG when applied on complex
objects and the nested relational algebra, NRA [AFS89]. NRA is an extension of RA to nested
relations. Essentially, it is the same as BALG with complex objects, when all operations on bags
are turned into their set analogs. That is, — becomes the usual set difference, both U and W become
the usual set union, € becomes the identity function and so on. It was shown that that nesting
does not add any extra power to RA in the sense that any NRA query from flat relations to flat
relations can be defined in RA [Won93].

We first look at the primitives one needs to add to RA or NRA to match the corresponding
language on bags. Let arithmetic stands for the following addition to the language. It includes the
type nat of natural numbers, together with the operations of addition, multiplication, and modified
subtraction ~ (i.e. n = m = max(0,n—m)) and a general summation operator ¥ ;. Here f is of type
T — nat, and 37, is of type {T'} — nat with the semantics 3 ({z1,...,2x}) = f(z1) +...+ f(2r).

Theorem 3.1 BALG when restricted to flat bags is equivalent to RA + arithmetic. BALG over
nested bags is equivalent to NRA + arithmetic. a

We next present an example illustrating the power of the bag difference.

Example 3.1 Consider a directed graph whose edges are recorded in a binary relation G. The
query (mg(02=4G)) — (m1(01=,G)) # 0 expresses the fact that the in-degree of a node a is bigger
than its out-degree. Here 0=, is a shorthand for oy, ,;(x)=o for i =1,2.

This example shows the power of the language, since the above query is not even expressible in
the infinitary logic £, , [KV92]. L%  is the extension of first-order logic to infinite formulas with
infinite conjunctions and disjunctions but a finite number of variables. Infinitary logic subsumes
various kinds of fixpoint logics, but has weak counting ability. The bags give a counting power.
Indeed, counting quantifiers [IL90] of the form “there exists at least ¢ 2’s”, Hartig (Rescher) quan-
tifiers of the form “there exists equally many (less) @’s satisfying property P and (than) property
)7, are all definable in BALG.



Another area where BALG differs from RA is its behavior with respect to asymptotic probabili-
ties of definable properties. Consider unnested databases. The probability, y,,(P), that a (boolean)
property P holds for databases over an n-element domain is the ratio of the number of databases
over an n-element domain satisfying P to the number of all databases over an n-element domain.
The asymptotic probability of P is the limit of this ratio (if it exists) when n goes to co. Boolean
expressions in RA containing no constants admit a 0/1 law (that is, the asymptotic probability
exists and can only be 0 or 1), while BALG doesn’t enjoy such a regularity.

Consider a schema over two monadic relation symbols R and 5. The query (m(R X R) —
T1(R x 5)) # 0 expresses the fact that the cardinality of R is bigger than the cardinality of 5. The
asymptotic probability of the above query is % The result follows from [FGT93], where it is shown
that first-order sentences with limited Rescher’s quantifiers (expressing cardinality comparison)
have asymptotic probability 0, %, or 1. For more details on the asymptotic probabilities of queries
expressing counting properties, see [GT95, FGT93].

4 Complexity of BALG

BALG differs from RA not only in expressive power but also in its data complexity. Indeed BALG
does not enjoy the ACO data complexity upper-bound of RA. ACO0 [FSS84] is the class of problems
that can be solved on boolean circuits, with arbitrary fan-in gates, of constant size and polynomially
many processors. The ACO upper-bound offers potential for efficient parallel evaluation. RA enjoys
an ACO upper-bound [AHV94], and so does NRA [ST94]. It is well known that there are simple
functions that are not computable in ACO, such as multiplication and parity test [FFSS84]. It follows
then from Theorem 3.1, that BALG is not in ACO.

As a more interesting example of violation of the ACO upper bound, we show that the parity of
the cardinality of a relation (bag with no duplicates) becomes definable in BALG in the presence of
an order on the domain. The following boolean expression states that the parity of the cardinality
of relation R is even: O-Ax'(MAP[a](Uky.(y§$)R):MAP[a](Uky.(.r<y)R))(R) ZA

The expression states the existence of an z such that the number of elements smaller than or
equal to  equals the number of elements strictly bigger than z. (The counting is simulated using
bags containing [a] tuples, one tuple for each element). It is clear that the existence of such an
element in R guarantees parity of the cardinality of R.

Even though BALG is not contained in ACO, its complexity is nevertheless not too dramatic.

Theorem 4.1 BALG C LOGSPACE.

5 Limitations of expressive power of BALG

Although BALG has more expressive power than RA (equal cardinality is definable), some fun-
damental limitations on the expressive power of first-order logic still hold. We first consider bags
containing occurrences of a single constant ¢. The query bag-even tests the parity of the number
of duplicates in a bag. More precisely, bag-even(B) = true if ¢’s multiplicity in B is even, and false
otherwise.

Proposition 5.1 The query bag-even is not expressible in BALG.

This proposition is true for both flat and nested bags. It can be better understood if one looks
at RA 4 arithmetic and NRA + arithmetic — the set-based languages equivalent to BALG. In this



context it says that it is impossible to test if a given number n is even. The technique used to
prove this proposition reduces the problem to finding roots of a polynomial, and is based on the
fact that there are finitely many of those for non-zero polynomials. In fact, a more general result
can be proved : Every property of the number of duplicates of a single constant that can be tested
in BALG is either finite (i.e holds for a finite number of bags) or co-finite ( i.e its complement holds
for a finite number of bags).

It is interesting to contrast this result with definability of parity of the cardinality of a relation
in the presence of order (demonstrated in the previous section). Note that RA cannot test parity
even in the presence of order.

To present a more powerful inexpressibility result, assume a base type b with a countably infinite
domain of uninterpreted constants. That is, only equality test is available, and no order relation is
given. A graph G, that is, an object of type {b x b} without duplicates, is called a k-multi-cycle
if it consists of a number of unconnected simple cycles of equal length [ > k.

Theorem 5.2 Let ¢ :{bx bl} — bool be a Boolean query in BALG. Then there exists a number k
such that ¢(G) = q(G") for any two k-multi-cycles G and G'.

That is, multi-cycles cannot be distinguished by BALG queries as long as their components are
long enough. From this we conclude that many recursive queries are not definable in BALG, most

notably those complete for LOGSPACE and NLOGSPACE.

Corollary 5.3 The following are not definable in BALG over unordered domains: the parity of
the cardinality of a relation, transitive closure, deterministic transitive closure, testing acyclicity,
testing connectivity, testing for balanced binary trees.

6 Extending the Language

Since BALG has a number of limitations similar to those of the relational algebra, several attempts
have been made to extend the power of BALG. First, in the nested case, the powerset operator
can be added to BALG, following the ideas of [AB87]. When applied to a bag B, powerset returns
the bags of all subbags of B, each with multiplicity 1. A related operator, powerbag returns the
bag of subbags of B, in which the multiplicity of each subbag is the product of multiplicities of
its elements in B. It was shown in [LW93a] that powerset and powerbag are interdefinable. The
complexity of BALGH powerset and BALGH powerbag was studied in [GM93].

However, there are serious problems with the powerset. While all queries in Corollary 5.3
become definable, they are not definable efficiently. That is, under the natural evaluation strategy,
computing transitive closure would require exponential space [SP94]. Even though more advanced
query evaluation techniques proposed in [AH95, Lib95a] reduce this to polynomial space, it is
unknown whether the exponential time complexity bound can be improved.

Another way of enriching the language is adding the structural recursion operator to it. This
was done for sets in [BBN91], and extended to bags in [LW93a]. Without getting into details, we
only remark here that the main problem with using structural recursion is that it requires certain
preconditions on its parameters for well-definedness. However, these preconditions are generally
undecidable [BS91]. In order to overcome this, [LW93a] introduced the loop construct loop that
takes as a parameter a function of type T — T, an object o of type T" and a bag B of any type
{T'[}, and returns f applied to o card(B) times. It was shown in [LW93a] that nested BALG with
structural recursion is equivalent to nested BALG with loop.



As a conclusion of this section, we present one result on expressiveness of these new primitives.
Recall that a natural number n can be simulated as a bag with n occurrences of a constant. Thus,
we can speak of classes of arithmetic functions simulated by bag languages.

Proposition 6.1 The classes of arithmetic functions simulated by nested BALG with powerset and
loop are the classes of Kalmar-elementary and primitive-recursive functions, respectively.

7 Open problems

There are two open problems we would like to mention in conclusion. First, a different theoretical
paradigm, the relational complexity, was introduced by Abiteboul and Vianu [AV91], to deal with
generic database queries. The complexity is relative to a new generic model of computation, called
the relational machine. Relational complexity applies as well very naturally to queries on bag
databases, since they are generic mappings. We have not investigated this issue. Nevertheless, an
extension of the relational machines with counters was proposed in [GO93], and we have seen that
there is a close relationship between bags and counters.

Second, we conjecture that the bounded degree property of [LW94] extends from RA to BALG.
This property says that for any graph query ¢ and a number k, one can find a number ¢(q, k) such
that for any graph GG whose in- and out-degrees are bounded by k, the graph ¢((') does not have
more than ¢(q, k) distinct in- and out-degrees. This property, which holds in RA, allows us to prove
a number of inexpressibility results easily and in a uniform way. For instance, inexpressibility of
most queries from Corollary 5.3 would follow immediately.
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