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A brief summary of the results of this paper is given below.� BALG has more expressive power than RA.� Some properties enjoyed by RA do not hold for BALG. For example, BALG does not admit0/1 laws, and can express some queries that do not have AC0 complexity.� BALG is equivalent in expressive power to RA with arithmetic and aggregate functions.� BALG has LOGSPACE complexity.� Even though BALG has more power than RA, it cannot express recursive queries such astransitive closure and connectivity test.2 An Algebra for BagsThe algebra presented here extends the complex object algebra [AB87] in the spirit of the bagalgebras of [Alb91]. To give motivation for the operations in this language, we use the approachcombining [Car88] and [BBW92]. The idea is that a data-oriented language must be organizedaround the type system of its data objects. For each type constructor, we need two kinds ofoperations. The introduction operations build objects of a given type. The manipulation operationscompute over objects of a given type. We also need operations that provide interaction between typeconstructors. We present below the basic operations for bags and records, following an extensionof [BBW92] to bags.We assume the existence of a number of basic types b1; b2; : : :, such as Booleans, integers, andstrings. Types are de�ned using the basic types, and the tuple and bag constructors. [T1; :::; Tn] is atuple type, whose domain is the set of tuples over T1; : : : ; Tn. That is, dom([T1; :::; Tn]) = dom(T1)�: : :� dom(Tn). A bag is a (homogeneous) collection of objects that may contain duplicates. fjT jgis a bag type, whose domain is the set of �nite bags of objects of type T . We say that an elementn-belongs to a bag if it belongs to that bag and has exactly n occurrences.We assume that all the operations are typed in a polymorphic way. The restrictions on the inputtypes of operations assure that the output is a homogeneous bag. For example, additive bag union(]) can only be applied on bags of the same type. The type system is obvious and we omit theformal de�nitions. The reader can �nd them in [GM93, LW93, LW94]. In the presentation below,we use one level of lambda-abstraction (�x:e(x), where x ranges over objects of a given type) andconditional if c(x) then f(x) else g(x), where c is of type T ! bool and both f and g are of typeT ! T 0. As explained in [BBW92], adding these constructs does not increase expressiveness. Onthe other hand, it allows us to express certain operations in a simpler way.Operations of the Basic Bag Language (BBL)� Operations on records{ Introduction operation: tupling (�): �(o1; : : : ; ok) = [o1; : : : ; ok], is a k-ary tuple, con-taining oi (i = 0 : : :k) in its ith attribute.{ Manipulation operation: Attribute projections (�i): �i([o1; :::; on]) = oi.� Operations on bags{ Introduction operations:Empty bag: We use the fjjg constant to denote the empty bag.Bagging, or bag singleton (�): �(o) = fjojg is a bag containing o as a single element, i.e.o 1-belongs to �(o). 2



Additive union (U) : BUB0 is a bag of type fjT jg, such that o n-belongs to BUB0 i� op-belongs to B and q-belongs to B0 and n = p+ q.{ Manipulation operation:extension (EXT): if f is a function of type T ! fjT 0jg, then EXTf extends f to afunction of type fjT jg ! fjT 0jg by EXTf(fjx1; : : : ; xnjg) = f(x1)] : : :] f(xn).We use MAPg as a syntactic sugar for EXT��g.� Interaction operation: Cartesian product (�) : if B and B0 are bags containing tuples ofarity k and k0 respectively, then B � B0 is a bag containing tuples of arity k + k0, such thato = [a1; : : : ; ak; ak+1; : : : ; ak+k0 ] n-belongs to B � B0 i� o1 = [a1; : : : ; ak] p-belongs to B,o2 = [ak+1; : : : ; ak+k0 ] q-belongs to B0 and n = pq.The operations de�ned so far constitute our basic bag language, BBL. This language does notcontain a number of algebraic operations such as di�erence or duplicate elimination. We consideradding them to BBL and then describe their expressive power relative to BBL.Additional operations on bags� Subtraction, � : B�B0 is a bag of type fjT jg, such that o n-belongs to B�B0 i� o p-belongsto B and q-belongs to B0 and n = sup(0; p� q).� Maximal union, S : BSB0 is a bag of type fjT jg, such that o n-belongs to B SB0 i� op-belongs to B and q-belongs to B0 and n = sup(p; q).� Intersection, T : BTB0 is a bag of type fjT jg, such that o n-belongs to BTB0 i� o p-belongsto B and q-belongs to B0 and n = inf(p; q).� Duplicate elimination, � : �(B) is a bag containing exactly one occurrence of each object ofB. More formally, an object o 1-belongs to �(B) i� o p-belongs to B for some p > 0, and0-belongs to �(B) otherwise.� Equality test, eq: eq has type T � T ! bool . eq(o; o0) is true i� o and o0 are equal objects.� Membership test, member of type T �fjT jg ! bool returns true on a pair (o; B) i� o p-belongsto B for p > 0.� Subbag test, subbag of type fjT jg � fjT jg ! bool returns true on a pair (B;B0) i� whenever op-belongs to B, then o p0-belongs to B0 for some p0 � p.Do we need to add all these operations to BBL to get a standard bag algebra? Some opera-tions are interde�nable, e.g. member and subbag tests are expressible using BBL and bag di�er-ence. The following characterizes precisely the relative expressive power of the additional opera-tions.Theorem 2.1 With respect to BBL, the expressive powerof these additional operations is as follows: � can expressall primitives other than �. � is independent of the rest ofthe primitives. \ is equivalent to subbag and can expressboth [ and eq. member and eq are interde�nable, both areindependent of [, and together with [ can express \. 2 �\ subbag ��[ eq member3



Thus, as our standard bag algebra BALG, we take BBL endowed with the strongest combi-nation of primitives, that is, � and �. (This language was called BQL | bag query language | in[LW93a, LW94].) Note that the operations above work for at bags (bags of records with attributesof basic types) as well as for nested bags (where tuple attributes can also contain nested bags).The bag algebra can express many operations commonly found in database languages. For in-stance, MAP�x:[�2(x);�3(x)] denotes the projection of a tuple type on its second and third arguments.(For brevity, we shall denote below the map projecting the attributes i1; : : : ; in by �i1;:::;in). Moreinterestingly, bag manipulation o�ers gain of expressive power. It allows the de�nition of severalfundamental database primitives. For example, bags can be used to simulate aggregate functions,such as sum and count. For this, an integer i can be represented by a bag containing i occurrencesof an element, say a, and if B is a bag of tuples, then count(B) = �1(fj[a]jg �B):3 Bag Languages vs Set LanguagesAs in the classical relational case, we are aiming for characterizations of the expressiveness of BALGin terms of complexity classes of queries. In particular, we compare the expressive power of the bagalgebra to that of the relational algebra, RA. Since we are considering complex (nested) objectsas well as at relations, we also look at the relationship between BALG when applied on complexobjects and the nested relational algebra, NRA [AFS89]. NRA is an extension of RA to nestedrelations. Essentially, it is the same as BALG with complex objects, when all operations on bagsare turned into their set analogs. That is, � becomes the usual set di�erence, both [ and ] becomethe usual set union, � becomes the identity function and so on. It was shown that that nestingdoes not add any extra power to RA in the sense that any NRA query from at relations to atrelations can be de�ned in RA [Won93].We �rst look at the primitives one needs to add to RA or NRA to match the correspondinglanguage on bags. Let arithmetic stands for the following addition to the language. It includes thetype nat of natural numbers, together with the operations of addition, multiplication, and modi�edsubtraction : (i.e. n : m = max(0; n�m)) and a general summation operator �f . Here f is of typeT ! nat , andPf is of type fTg ! nat with the semanticsPf(fx1; : : : ; xkg) = f(x1)+ : : :+f(xk).Theorem 3.1 BALG when restricted to at bags is equivalent to RA + arithmetic. BALG overnested bags is equivalent to NRA+ arithmetic. 2We next present an example illustrating the power of the bag di�erence.Example 3.1 Consider a directed graph whose edges are recorded in a binary relation G. Thequery (�2(�2=aG))� (�1(�1=aG)) 6= ; expresses the fact that the in-degree of a node a is biggerthan its out-degree. Here �i=a, is a shorthand for ��x:�i(x)=a for i = 1; 2.This example shows the power of the language, since the above query is not even expressible inthe in�nitary logic L!1;! [KV92]. L!1;! is the extension of �rst-order logic to in�nite formulas within�nite conjunctions and disjunctions but a �nite number of variables. In�nitary logic subsumesvarious kinds of �xpoint logics, but has weak counting ability. The bags give a counting power.Indeed, counting quanti�ers [IL90] of the form \there exists at least i x's", H�artig (Rescher) quan-ti�ers of the form \there exists equally many (less) x's satisfying property P and (than) propertyQ", are all de�nable in BALG. 4



Another area where BALG di�ers from RA is its behavior with respect to asymptotic probabili-ties of de�nable properties. Consider unnested databases. The probability, �n(P ), that a (boolean)property P holds for databases over an n-element domain is the ratio of the number of databasesover an n-element domain satisfying P to the number of all databases over an n-element domain.The asymptotic probability of P is the limit of this ratio (if it exists) when n goes to 1. Booleanexpressions in RA containing no constants admit a 0/1 law (that is, the asymptotic probabilityexists and can only be 0 or 1), while BALG doesn't enjoy such a regularity.Consider a schema over two monadic relation symbols R and S. The query (�1(R � R) ��1(R�S)) 6= ; expresses the fact that the cardinality of R is bigger than the cardinality of S. Theasymptotic probability of the above query is 12 . The result follows from [FGT93], where it is shownthat �rst-order sentences with limited Rescher's quanti�ers (expressing cardinality comparison)have asymptotic probability 0, 12 , or 1. For more details on the asymptotic probabilities of queriesexpressing counting properties, see [GT95, FGT93].4 Complexity of BALGBALG di�ers from RA not only in expressive power but also in its data complexity. Indeed BALGdoes not enjoy the AC0 data complexity upper-bound of RA. AC0 [FSS84] is the class of problemsthat can be solved on boolean circuits, with arbitrary fan-in gates, of constant size and polynomiallymany processors. The AC0 upper-bound o�ers potential for e�cient parallel evaluation. RA enjoysan AC0 upper-bound [AHV94], and so does NRA [ST94]. It is well known that there are simplefunctions that are not computable in AC0, such as multiplication and parity test [FSS84]. It followsthen from Theorem 3.1, that BALG is not in AC0.As a more interesting example of violation of the AC0 upper bound, we show that the parity ofthe cardinality of a relation (bag with no duplicates) becomes de�nable in BALG in the presence ofan order on the domain. The following boolean expression states that the parity of the cardinalityof relation R is even: ��x:(MAP[a](��y:(y�x)R)=MAP[a](��y:(x<y)R))(R) 6= fjjg:The expression states the existence of an x such that the number of elements smaller than orequal to x equals the number of elements strictly bigger than x. (The counting is simulated usingbags containing [a] tuples, one tuple for each element). It is clear that the existence of such anelement in R guarantees parity of the cardinality of R.Even though BALG is not contained in AC0, its complexity is nevertheless not too dramatic.Theorem 4.1 BALG � LOGSPACE.5 Limitations of expressive power of BALGAlthough BALG has more expressive power than RA (equal cardinality is de�nable), some fun-damental limitations on the expressive power of �rst-order logic still hold. We �rst consider bagscontaining occurrences of a single constant c. The query bag-even tests the parity of the numberof duplicates in a bag. More precisely, bag-even(B) = true if c's multiplicity in B is even, and falseotherwise.Proposition 5.1 The query bag-even is not expressible in BALG.This proposition is true for both at and nested bags. It can be better understood if one looksat RA+ arithmetic and NRA+ arithmetic | the set-based languages equivalent to BALG. In this5



context it says that it is impossible to test if a given number n is even. The technique used toprove this proposition reduces the problem to �nding roots of a polynomial, and is based on thefact that there are �nitely many of those for non-zero polynomials. In fact, a more general resultcan be proved : Every property of the number of duplicates of a single constant that can be testedin BALG is either �nite (i.e holds for a �nite number of bags) or co-�nite ( i.e its complement holdsfor a �nite number of bags).It is interesting to contrast this result with de�nability of parity of the cardinality of a relationin the presence of order (demonstrated in the previous section). Note that RA cannot test parityeven in the presence of order.To present a more powerful inexpressibility result, assume a base type b with a countably in�nitedomain of uninterpreted constants. That is, only equality test is available, and no order relation isgiven. A graph G, that is, an object of type fjb� bjg without duplicates, is called a k-multi-cycleif it consists of a number of unconnected simple cycles of equal length l � k.Theorem 5.2 Let q : fjb� bjg ! bool be a Boolean query in BALG. Then there exists a number ksuch that q(G) = q(G0) for any two k-multi-cycles G and G0.That is, multi-cycles cannot be distinguished by BALG queries as long as their components arelong enough. From this we conclude that many recursive queries are not de�nable in BALG, mostnotably those complete for LOGSPACE and NLOGSPACE.Corollary 5.3 The following are not de�nable in BALG over unordered domains: the parity ofthe cardinality of a relation, transitive closure, deterministic transitive closure, testing acyclicity,testing connectivity, testing for balanced binary trees.6 Extending the LanguageSince BALG has a number of limitations similar to those of the relational algebra, several attemptshave been made to extend the power of BALG. First, in the nested case, the powerset operatorcan be added to BALG, following the ideas of [AB87]. When applied to a bag B, powerset returnsthe bags of all subbags of B, each with multiplicity 1. A related operator, powerbag returns thebag of subbags of B, in which the multiplicity of each subbag is the product of multiplicities ofits elements in B. It was shown in [LW93a] that powerset and powerbag are interde�nable. Thecomplexity of BALG+powerset and BALG+powerbag was studied in [GM93].However, there are serious problems with the powerset. While all queries in Corollary 5.3become de�nable, they are not de�nable e�ciently. That is, under the natural evaluation strategy,computing transitive closure would require exponential space [SP94]. Even though more advancedquery evaluation techniques proposed in [AH95, Lib95a] reduce this to polynomial space, it isunknown whether the exponential time complexity bound can be improved.Another way of enriching the language is adding the structural recursion operator to it. Thiswas done for sets in [BBN91], and extended to bags in [LW93a]. Without getting into details, weonly remark here that the main problem with using structural recursion is that it requires certainpreconditions on its parameters for well-de�nedness. However, these preconditions are generallyundecidable [BS91]. In order to overcome this, [LW93a] introduced the loop construct loop thattakes as a parameter a function of type T ! T , an object o of type T and a bag B of any typefjT 0jg, and returns f applied to o card(B) times. It was shown in [LW93a] that nested BALG withstructural recursion is equivalent to nested BALG with loop.6



As a conclusion of this section, we present one result on expressiveness of these new primitives.Recall that a natural number n can be simulated as a bag with n occurrences of a constant. Thus,we can speak of classes of arithmetic functions simulated by bag languages.Proposition 6.1 The classes of arithmetic functions simulated by nested BALG with powerset andloop are the classes of Kalmar-elementary and primitive-recursive functions, respectively.7 Open problemsThere are two open problems we would like to mention in conclusion. First, a di�erent theoreticalparadigm, the relational complexity, was introduced by Abiteboul and Vianu [AV91], to deal withgeneric database queries. The complexity is relative to a new generic model of computation, calledthe relational machine. Relational complexity applies as well very naturally to queries on bagdatabases, since they are generic mappings. We have not investigated this issue. Nevertheless, anextension of the relational machines with counters was proposed in [GO93], and we have seen thatthere is a close relationship between bags and counters.Second, we conjecture that the bounded degree property of [LW94] extends from RA to BALG.This property says that for any graph query q and a number k, one can �nd a number c(q; k) suchthat for any graph G whose in- and out-degrees are bounded by k, the graph q(G) does not havemore than c(q; k) distinct in- and out-degrees. This property, which holds in RA, allows us to provea number of inexpressibility results easily and in a uniform way. For instance, inexpressibility ofmost queries from Corollary 5.3 would follow immediately.References[AB87] S. Abiteboul and C. Beeri. On the power of languages for the manipulation of complex objects.INRIA research report n 846. To appear in the VLDB journal.[AFS89] S. Abiteboul, P.C. Fischer, and H.-J. Schek. Nested Relations and Complex Objects. LNCS 361.Springer-Verlag, 1989.[AH95] S. Abiteboul and G. Hillebrand. Space usage in functional query languages. In Proc. of Intl. Conf.on Database Theory, pages 437{454. LNCS 893, Springer Verlag, 1995.[AHV94] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1994.[Alb91] J. Albert. Algebraic properties of bag data types. In Proc. 17th Int'l Conf. on Very Large DataBases, pages 211{219, 1991.[AV91] S. Abiteboul and V. Vianu. Generic computation and its complexity. In Proc. ACM Symp. onTheory of Computing, New Orleans, May 1991.[BBN91] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query language. In Proc.3rd Int. Workshop on database programming languages, Aug. 1991. Morgan Kaufman.[BK90] C. Beeri and Y. Kornatzky. Algebraic optimization of object oriented query languages. In Proc.3rd Intl. Conf. on Database Theory, ICDT 90, Paris, France, 1990.[BS91] V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of programmingwith sets/bags/lists. In Proc. 18th Int. Col. on Automata, Languages and Programming, 1991.[BBW92] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In Proc. ofIntl. Conf. on Database Theory, pages 140{154. LNCS, Springer Verlag, 1992.7
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