
Query Languages with Arithmetic and ConstraintDatabasesLeonid LibkinBell Laboratories600 Mountain AvenueMurray Hill, NJ 07974E-mail: libkin@research.bell-labs.com1 IntroductionCan we store an in�nite set in a database? Clearly not, but instead we canstore a �nite representation of an in�nite set and write queries as if the entirein�nite set were stored. This is the key idea behind constraint databases,which emerged relatively recently as a very active area of database research.The primary motivation comes from geographical and temporal databases:how does one store a region in a database? More importantly, how does onedesign a query language that makes the user view a region as it if were anin�nite collection of points stored in the database?Finite representations used in constraint databases are �rst-order formu-lae; in geographical applications, one often uses Boolean combinations oflinear or polynomial inequalities. One of the most challenging questions inthe development of the theory of constraint databases was that of the ex-pressive power: what are the limitations of query languages for constraintdatabases? These questions were easily reduced to those on the expressive-ness of query languages over ordinary relational databases, with additionalcondition that databases may store numbers and arithmetic operations maybe used in queries.It turned out that the classical techniques for analyzing the expressivepower of relational query languages no longer work in this new setting. Inthe past several years, however, most questions on the expressive power havebeen settled, by using new techniques that mix the �nite and the in�nite,and bring together results from a number of �elds such as model theory,algebraic geometry and symbolic computation.1



In this column we briey survey of some of the results on expressivenessof query languages for constraint databases. Mathematically, these can beviewed as results on expressiveness of logics over �nite or de�nable setsembedded in certain structures. We �rst deal with the �nite case, that isformalized by embedded �nite models. We give a new type of expressivitybounds { collapse results { and explain how they can be applied in thesetting of constraint databases.2 Embedded �nite models and relationaldatabasesThe de�nition of embedded �nite models is rather simple. We consider a�rst-order language L and an L-structure M with an in�nite universe U .Consider a separate �rst-order language SC = (R1; : : : ; Rn) that consistsof relational symbols only. (The notation SC comes from the databasename \schema".) A SC structure on M (or an embedded �nite model) is astructure hU;LM; RM1 ; : : : ; RMn iwhere each RMi is a �nite subset of Uki , where ki is the arity of Ri, andLM is the interpretation of L in M. In this setting, we want to studythe expressive power of �rst-order logic (FO) with respect to the �nite SC-reduct. That is, we look at sentences like 9x9y R(x; y) ^ y � x = x + 2that states the existence of a speci�c edge (x; y) in a graph whose nodes arenumbers. We want to know what one can express over such �nite structuresembedded in an in�nite one.At the �rst glance, the problem may appear a bit esoteric, and certainlymore appropriate for the Logic Column than for the Database one. Toprove that the �rst impression is false, let me explain how this problemnaturally arises in the theory of relational databases. A relational databaseis just a �nite relational structure. Databases are queried using languagesthat correspond to �rst-order logic (FO) and its fragment (in fact, the coreSQL { minus aggregation { has precisely the power of FO). These languagesusually come in two avors: declarative, like relational calculus (which is justFO), and procedural, like relational algebra, that give evaluation mechanismfor declarative queries.When relational algebra and calculus are introduced in textbooks, the con-ditions for selecting tuples from relations are usually de�ned to be boolean2



combinations of x = y and x < y, where x and y are variables or con-stants. This is often followed by a number of examples faithful to thede�nitions, as well as examples of the kind \�nd employees who make atleast 90% of their manager's salary," which involves conditions of the formx > 0:9 � y. This addition corresponds exactly to the formal setting in-troduced in the �rst paragraph: we may assume that M is, for example,the real �eld R = hR;+; �; 0; 1; <i, and one can thus write queries such as'(x) � 9y; s1; s2 (M(x; y) ^ S(x; s1) ^ S(y; s2) ^ s1 > 0:9 � s2), where Mrecords the employee-manager relation, and S has salaries of all employees.How does one analyze this very natural extension of the standard rela-tional calculus? We know many results about expressivity of FO without theinterpreted structure M; in fact, much of the development of �nite-modeltheory was motivated by database problems. Standard techniques such as0-1 laws [15] and locality [16] tell us that queries such as parity of cardi-nality or the transitive closure of a graph are inexpressible in FO. However,these techniques become inapplicable in the embedded setting. Other tech-niques, such as Ehrenfeucht-Fra��ss�e games, become extremely awkward toapply with interpreted operations present.The full scope of interaction between �nite databases and �xed, possiblyin�nite, interpreted structure, has not, until recently, been fully explored inthe database community, although the question was already raised in theseminal paper of Chandra and Harel [13]. One of the reasons the databasecommunity started looking at these problems recently is the emergence ofconstraint databases as a very active area of research. We discuss them next.3 Constraint DatabasesConstraint databases were invented about ten years ago [23] and have be-come a well-established topic in the database �eld. The mathematical modelis very simple. We consider the setting of embedded �nite models, and in-stead of interpreting each n-ary symbol S from SC as a �nite n-relation,we interpret it as de�nable subset of Un. That is, the interpretation of S isf~a 2 Un j M j= �(~a)g for some formula � in the language L.The key idea is that the formula � gives a �nitary representation of anin�nite objects. Consider, for example, sets de�nable over the real orderedgroup Rlin = hR;+;�; 0; 1; <i. These are Boolean combinations of setsde�nable with linear inequalities of the formPni=1 ai�xi � b, with coe�cientsais being rational { this follows from the fact that over Rlin, every formula is3



equivalent to a quanti�er-free one (one also says that Rlin admits quanti�er-elimination). Sets arising in such a way are called semi-linear [11, 33].Such representation is very convenient in geographical applications, asregions are often represented as semi-linear sets on the real plane R2 . Iflinear constraints are not su�cient, one can use polynomial ones. That is,one can consider sets de�nable over the real �eld R. Such sets, called semi-algebraic [11, 33], are Boolean combinations of sets de�nable by polynomialinequalities p(x1; : : : ; xn) � 0. This again follows from the classical result ofTarski's [32] that the real �eld has quanti�er-elimination.We use the notation FO +Poly for FO over the real �eld and SC (FOwith polynomial constraints) and FO + Lin for FO over the real orderedgroup and SC (FO with linear constraints). An example of de�nability inFO +Poly is the property that all points in a relation S lie on a com-mon circle: 9a9b9r (8x8y S(x; y) ! (x � a)2 + (y � b)2 = r2). In general,FO +Poly can de�ne many useful topological concepts such as closure, inte-rior and boundary. These are de�nable in FO + Lin as well. In FO +Polyone can also de�ne the convex hull of a set. To see how this is done in thetwo-dimensional case, assume that a set a semi-algebraic set S 2 R2 is given.Then '(x; y) given by9x1; y1; x2; y2; x3; y3 9�1�2�3 (S(x1; y1) ^ S(x2; yy) ^ S(x3; y3) ^ �1 � 0 ^ �2 � 0 ^ �3 � 0 ^(x = �1 � x1 + �2 � x2 + �3 � x3) ^ (y = �1 � y1 + �2 � y2 + �3 � y3))is true on (x; y) i� (x; y) 2 conv(X). In general, to de�nite the convex hullof a set in Rn , one uses Carath�eodory's theorem stating that x is in theconvex hull of X � Rn i� x is in the convex hull of some n+1 points in X,and codes this by a FO formula just as we did above for the case of R2 . Wenote in passing that multiplication is essential for de�nability of the convexhull; in fact, even adding a predicate for collinearity to FO + Lin, one getsthe full power of FO +Poly.Thus, FO +Poly is a rather expressive language to talk about semi-algebraic sets. In fact, many typical GIS queries can already be expressedin the weaker language FO + Lin. We next turn to a very basic topologicalproperty: connectivity. Suppose we are given a semi-algebraic or semi-linearset S, and we want to test if it is topologically connected. Can we do thisin FO +Poly or FO + Lin?The �rst reaction is to say 'no'. Indeed, it is well known that over �-nite structures, FO cannot de�ne graph connectivity (see, e.g., [14]), andtopological connectivity appears to be a natural continuous analog of graph4



connectivity. This intuition was made precise in [29] where it was shownthat if FO +Poly de�nes topological connectivity of semi-algebraic sets,then it de�nes graph connectivity of �nite graphs. (The idea of the reduc-tion is to embed a �nite graph G into R3 without self-intersections.) Thisreduces the problem of topological connectivity of semi-algebraic sets to theproblem of de�nability of graph connectivity of �nite graphs. However, byde�nability we still mean de�nability in FO +Poly. That is, we now dealwith a problem that perfectly �ts the setting of embedded �nite models: wehave a �nite graph whose nodes are in R, and we want to see if in FO overthe language of the graph and the real �eld, one can say that the graph isconnected.Questions of this kind were asked in early 90s; after several partial results(all inherently limited to deal with languages like FO +Poly), de�nite an-swers appeared a few years ago. In fact, by now we have a very good pictureof the expressive power of FO over embedded �nite models, depending onthe the properties of the underlying structure M. But before we surveythose, we must deal with the crucial issue of the semantics of FO in theembedded setting.4 Semantics of �rst-order queriesWe use two simple examples to review the concepts of active and naturalsemantics in the relational model. Assume that we have a �nite binaryrelation S on a set A, which is a subset of some in�nite set U . Suppose wewant to test if S is reexive. The most obvious way to write this in FO is8x S(x; x). How do we interpret 8x here? It is essential that we interpret itas \for all x 2 A." Indeed, if by 8x we mean \for all x 2 U ," then the resultof the above query is always false: as A is �nite and U is in�nite, there isalways some x 2 U �A for which S(x; x) fails.The set A in the above example is what is usually called the active domainof a database { the set of all constants that occur in relations of a databaseD. We denote this by adom(D). Thus, one possible semantics of FO queriesis the active semantics: under this semantics, 9x'(x) is interpreted as \thereexists x in adom(D)."For the next example, consider the real �eld R = hR;+; �; 0; 1; <i, and letagain S be a �nite binary relation on a set A � R. Suppose we want to askthe following query: do all elements in S, considered as points in R2 , lie ona line? To answer this, one has to test for the existence of a slope a and a5



base b such that y = ax + b holds for every (x; y) in S. That is, the queryis 9a9b8x8y (S(x; y) ! y = ax + b). In contrast to the previous example,here the quanti�ers 9a and 9b are to be interpreted as \exist real numbersa and b." Indeed, if we restrict the range of these two quanti�ers to A, thequery above may produce a wrong result, as there is no guarantee that aand b will be found in A.The interpretation under which 9x and 8x mean \exists x 2 U" and\for all x 2 U ," where U is the in�nite universe of a structure over whichdatabases are interpreted, is called the natural semantics, or natural inter-pretation.Notation: FO(M;SC) denotes the class of queries on SC-structures de-�nable in FO over M, under the natural interpretation; likewise, we usethe notation FOact(M;SC) for the active interpretation. Since adom(D)is de�nable in FO, we have FOact(M;SC) � FO(M;SC). When we writeFO +Poly and FO + Lin, we mean the natural interpretation of formulae.5 Collapse resultsOur goal is to obtain general results on limitations of the expressive power ofa query language. Our main tools are collapse results: these say that queryclass A is contained in query class B, where A is a class that could a prioribe much bigger than B. Such results answer most questions on expressivepower in the embedded context.An important class of collapse result is generic collapse, describing expres-siveness with respect to `pure', or generic, queries. Generic queries are thosethat conform to the principle of data independence. Formally, they commutewith permutations on the domain. Informally, this means that database en-tries are just \tags" of objects and one cannot use any extra informationabout them. Connectivity is an example of a generic query. So are manyothers: acyclicity, parity of cardinality, etc. In fact, every query that canbe expressed in traditional relational languages like relational algebra anddatalog, is generic.We shall deal with three kinds of collapse results:Natural-Active Collapse We say that a structureM admits this collapseif FO(M;SC) = FOact(M;SC); that is, every query de�nable underthe natural semantics is de�nable under the active semantics.Active Generic Collapse Let M be ordered (that is, < is one of the6



symbols in L, interpreted as a linear order on the universe U). Wesay that M admits the active-generic collapse if the classes of genericqueries in FOact(M;SC) and FOact(hU;<i;SC) are the same; thatis, every query de�nable under the active-domain semantics with M-constraints is de�nable under the active-domain semantics with justorder constraints.Natural Generic Collapse over ordered M states the classes of genericqueries in FO(M;SC) and FO(hU;<i;SC) are the same; that is, everyquery de�nable under the natural semantics with M-constraints isde�nable under the natural semantics with just order constraints.As an illustration of the power of these collapse results, let us sketch theproof that graph connectivity is not expressible in FO +Poly (assumingthat we have already proved the above collapse results for the real �eld R).Assume to the contrary that connectivity is de�nable in FO +Poly. By thenatural-active collapse, it is then de�nable in FO +Poly under the activesemantics; being generic, it is thus de�nable with just the order relation.However, it well known that graph connectivity is not de�nable in FO, over�nite ordered graphs [21].We now consider the active generic collapse. This is the easiest kind ofcollapse results, and it turns out that it works over all ordered structures:Theorem 1 ([6, 27]) Any ordered structure M admits the active genericcollapse. 2The proof { relatively easy { is based on Ramsey's theorem. In fact, oneshows that for any in�nite set X � U and any FOact(M;SC) formula �(~x),one can �nd an in�nite subset Y � X and a FOact(hU;<i;SC) formula�(~x) such that D j= �(~a) $ �(~a) holds whenever adom(D) � Y and allcomponents of ~a are in Y . Using this, and genericity, one derives the collapseresult.And what about the collapse to pure FO, without an order relation? Ingeneral, it cannot be guaranteed, as FOact(SC) 6= FOact(hU;<i;SC) (see,e.g., [1] for a separating example). However, for several classes of structuresthe collapse to equality can be proved: for example, for hR;+; �; exi [9].We next deal with the natural-active collapse. Can it possibly be provedfor all structures? The answer, as was pointed out in [20], is clearly 'no':over N = hN;+; �i every computable property of �nite SC-structures is7



expressible by a FO sentence (simply by coding), while we saw that graphconnectivity, for example, is not in FOact(N ;SC).To �nd a suitable class of structures over which the collapse holds, weconsider the model theoretic notion of o-minimality [31, 33]. An orderedstructure M is called o-minimal if every de�nable set is a �nite union ofpoints and open intervals. A de�nable set is one of the form fc j M j= '(c)gwhere ' is a formula in the language of M, possibly supplemented by con-stants for some elements of M. Classical examples of o-minimal structuresinclude the real �eld R and the real ordered group Rlin (as an easy con-sequence of Tarski's quanti�er-elimination and the fundamental theorem ofalgebra). More recently, it was shown that the exponential �eld hR;+; �; exiis o-minimal [34].Theorem 2 ([8, 9]) Let M be an o-minimal structure admitting quanti�erelimination. Then M admits the natural-active collapse: FO(M;SC) =FOact(M;SC). 2Thus, the natural-active collapse holds for FO +Poly and FO + Lin.The �rst result on the natural-active collapse was the Hull-Su theorem [22],treating the case of FO without any interpreted structure, but over an in�-nite universe. The relatively complicated proof of [22] was later simpli�ed in[9, 12]. Even before [22], the \4 Russians" paper [3] showed that quanti�ca-tion over �nite domains su�ces to recover the full power of FO(hU; ;i;SC).The natural-active collapse for FO + Lin (that is, over Rlin) was estab-lished { by constructive means { in [30]. Theorem 2 was �rst proved non-constructively in [8], and then [9] gave an algorithm for converting everyFO(SC;M) formula into an equivalent FOact(SC ;M) one (assuming thatthe quanti�er elimination is e�ective). In general, the complexity of suchtransformation depends on the complexity of the quanti�er elimination pro-cedure. For the case of FO +Poly, a partial complexity analysis was givenin [5], which handled the case of schemas SC containing only unary predi-cates.The natural generic collapse can now be obtained as a corollary of thetwo previous theorems:Corollary 1 Any o-minimal structure M admits the natural generic col-lapse. 2Note that we no longer need the quanti�er-elimination assumption, aswe can always take a de�nable extension that admits quanti�er-elimination8



(extra predicates do not hurt when we deal with the active semantics, as allordered structures admit the active generic collapse).Corollary 1 �rst appeared in [6] where it was proved using techniquesfrom nonstandard analysis. It was recently generalized to other structures,including quasi-o-minimal ones (see [7] for the de�nition and the proof) andthose of �nite VC dimension. We �rst recall the de�nition (cf. [2]). SupposeX is an in�nite set, and C � 2X is a family of subsets of X. Let F � X be�nite; we say that C shatters F if the collection fF \C j C 2 Cg is 2F . TheVapnik-Chervonenkis (VC) dimension of C is the maximal cardinality of a�nite set shattered by C, or 1 if arbitrarily large �nite sets are shatteredby C.Let '(~x; ~y) be a formula in the language of M with j ~x j= n; j ~y j= m.For each ~a 2 Un, de�ne '(~a;M) = f~b 2 Um j M j= '(~a;~b)g, and letF'(M) be f'(~a;M) j ~a 2 Ung. Families of sets arising in such a way arecalled de�nable families. We say that M has �nite VC dimension if everyde�nable family over M has �nite VC dimension. Examples include all o-minimal structures [26] as well as quasi-o-minimal ones [4] (including, forexample, hN;+; <i).Theorem 3 (see [4]) Let M have �nite VC dimension. Then M admitsthe natural generic collapse. 2When the collapse fails We have seen one example of the failure of thenatural-active collapse: N = hN;+; �i. However, this structure is highlyundecidable. Can one �nd a structure with a decidable �rst-order theoryover which the natural-active collapse fails?To see an example, let RG = hU;Ei be the random graph on a countablyin�nite set U : that is, any model that satis�es every sentence that is truein almost all �nite graphs. Here `almost all' is with respect to the uniformprobability distribution: E(a; b) holds of nodes a; b with probability onehalf, independently for each pair a; b. It is known [15] that the set of allsuch sentences forms a complete theory with in�nite models, and that thistheory is decidable.Proposition 1 (see [27]) The natural-active collapse fails over the randomgraph. 2The idea of the proof is to use the extension axioms to simulate monadicsecond-order logic over SC structures, using nodes of the random graph. Asmonadic second-order logic is more expressive than FO, the result follows.9



6 Expressive power of constraint query languagesWe now return to the question of expressive power of languages such asFO + Lin or FO +Poly over constraint databases, that is, de�nable sets.We indicated earlier that with topological connectivity, one can expressgraph connectivity over �nite databases, and thus the former should notbe expressible. Other reductions of this kind are summarized below.Proposition 2 (see [20]) Assume that testing of any of the following prop-erties of semi-linear sets in R2 is expressible in FO + Lin or FO +Poly:topological connectivity, existence of exactly one/at least one hole, homeo-morphism. Then the same language can express evenness. 2Since testing for even cardinality is generic, and not de�nable inFOact(hU;<i;SC), we conclude the following from the natural generic col-lapse:Corollary 2 None of the problems mentioned in Proposition 2 is de�nablein FO+Poly, even when inputs are restricted to semi-linear sets in R2 . 2Most reductions to the �nite case presented in [20] were quite ad-hoc.More systematic ways of getting expressivity bounds for queries over semi-algebraic sets are described in [24]. Those techniques work for topologicalqueries, that is, queries invariant under homeomorphisms of input databases,which are in�nite semi-algebraic sets on the real plane (cf. [28]). In such aset X, every point ~x has a small neighborhood B�(~x) = f~y j d(~x; ~y) � �gwhose intersection with X is conic, that is, homeomorphic to the cone withthe center ~x and the base S�(~x) \ X, where S�(~x) = f~y j d(~x; ~y) = �g.For example, in the set X = f(x; y) j x2 + y2 � 1g, there are two typesof cones. Points in the interior of X have full cones (that is, for smallenough �, B�(~x) � X), and points on the boundary have \half-�lled" cones(homeomorphic to the half-disc). Both types of cones have in�nitely manypoints in the disk realizing them. A remarkable result of [24] says that thenumber of realizers of cone types is all one needs to know to �nd out ifFO +Poly can express a given topological property.Theorem 4 Assume that SC consists of a single binary predicate. Let �be a sentence in FO +Poly which expresses a topological property (that is,a property invariant under homeomorphisms). Let X1 and X2 be two semi-algebraic sets in R2 such that for any cone type, there are equally manypoints in X1 and X2 realizing this type. Then X1 j= � i� X2 j= �. 210



We now show how to use this result to obtain an alternative proof thattopological connectivity is not expressible in FO +Poly. Assume that it isexpressible by a sentence �. Let X1 be a disk, and X2 be a disjoint unionof two disks. Since there are only two types of cones realized in X1 and X2(full cone, and half-a-disk cone), and both have continuum many realizers,Theorem 4 implies X1 j= � i� X2 j= �. However, X1 is connected, X2 isnot, and thus � cannot de�ne topological connectivity.Other techniques for proving expressivity bounds Complexitybounds were used to prove some early expressivity bounds for FO + Lin.In particular, it was proven that, assuming all coe�cients used in linear(in)equalities are integers, the complexity of query evaluation is AC0 [19].This implies inexpressibility of queries such as parity of cardinality. How-ever, the technique fails for FO +Poly, as multiplication is not in AC0.The following growth bounds result was established as a by-product of thework on query safety in constraint databases, and led to new expressivitybounds. Let '(~x) be an FOact(M;SC) formula. De�ne growth' : N ! Nby letting growth'(n) be the maximum cardinality of f~a j D j= '(~a)g as Dranges over SC-structures of size n.Theorem 5 (see [10]) Let M be o-minimal, based on a dense order. Thenfor any '(~x) there exists a polynomial p' such that, for any n 2 N, eithergrowth'(n) < p'(n), or growth'(n) =1.As a geometric application, one derives from here that polygons cannot betriangulated with arbitrary precision in FO +Poly. Note that o-minimalityis essential for the dichotomy theorem: over hN;+; <; 1i one can de�ne 'with growth'(n) = 2n.Further reading For a general overview of the �eld of constraintdatabases, see the forthcoming book [25]. Chapters 1 and 2 provide anintroduction to constraint databases, while chapters 3 and 4 contain an ex-tensive treatment of expressive power. Other issues addressed in [25] includequery safety (including preservation of geometric properties), dealing withspatial aggregation, datalog in constraint databases, topological queries, andsemi-linear databases in spatial applications. Another interesting methodof combining �nite and in�nite structures is the meta�nite model theoryof [17]; it is, however, outside of the scope of this column. For practicalaspects, see a report on the implementation of a constraint database systemfor linear constraints [18]. 11
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