
Logics Capturing Local PropertiesLeonid Libkin1?Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA.Email: libkin@research.bell-labs.comAbstract. Well-known theorems of Hanf's and Gaifman's establishinglocality of �rst-order de�nable properties have been used in many appli-cations. These theorems were recently generalized to other logics, whichled to new applications in descriptive complexity and database theory.However, a logical characterization of local properties that correspond toHanf's and Gaifman's theorems, is still lacking. Such a characterizationonly exists for structures of bounded valence.In this paper, we give logical characterizations of local properties behindHanf's and Gaifman's theorems. We �rst deal with an in�nitary logicwith counting terms and quanti�ers, that is known to capture Hanf-locality on structures of bounded valence. We show that testing iso-morphism of neighborhoods can be added to it without violating Hanf-locality, while increasing its expressive power. We then show that addinglocal second-order quanti�cation to it captures precisely all Hanf-localproperties. To capture Gaifman-locality, one must also add a (potentiallyin�nite) case statement. We further show that the hierarchy based onthe number of variants in the case statement is strict.1 IntroductionIt is well known that �rst-order logic (FO) only expresses local properties. Twobest known formal results stating locality of FO are Hanf's and Gaifman's the-orems [12, 8]. They both found numerous applications in computer science, dueto the fact that they are among relatively few results in �rst-order model theorythat extend to �nite structures. Gaifman's theorem itself works for both �niteand in�nite structures, while for Hanf's theorem an extension to �nite structureswas formulated by Fagin, Stockmeyer, and Vardi [7].More recently, the statements underlying Hanf's and Gaifman's theoremshave been abstracted from the statements of the theorems, and used in theirown right. In essence, Hanf's theorem states that two structures cannot be dis-tinguished by sentences of quanti�er rank k whenever they realize the same mul-tiset of d-neighborhoods of points; here d depends only on k. Gaifman's theoremstates that in a given structure, two tuples cannot be distinguished by formulaeof quanti�er rank k whenever d-neighborhoods of these tuples are isomorphic;again d is determined by k.? Part of this work done while visiting INRIA.



It was shown that Hanf's theorem is strictly stronger than Gaifman's, andthat both apply to a variety of logics that extend FO with counting mechanismsand limited in�nitary connectives [11, 14, 15, 19, 22]. Since the complexity classTC0 (with the appropriate notion of uniformity) can be captured by FO withcounting quanti�ers [1], these results found applications in descriptive complex-ity, where they were used to prove lower bounds for logics coming very close tocapturing TC0 [6, 21]. They were also applied in database theory, where theywere used to prove expressivity bounds for relational query languages with ag-gregation [4, 15] that correspond to practical query languages such as SQL. Forapplications to automata, see [24].The abstract notions of locality were themselves characterized only on �nitestructures of bounded valence (e.g., for graphs of �xed maximum degree). Thecharacterization for Hanf-locality uses a logic L�1!(C) introduced in [19] as acounterpart of a �nite variable logic L!1! . While L!1! subsumes a number of�xpoint logics and is easier to study, L�1!(C) subsumes a number of countingextensions of FO (such as FO with counting quanti�ers [17], FO with unarygeneralized quanti�ers [13, 18], FO with unary counters [2]) and is quite easyto deal with. A result in [14] states that Hanf-local properties on structures ofbounded valence are precisely those de�nable in L�1!(C).The question naturally arises whether this continues to hold for arbitrary�nite structures. We show in this paper that this is not the case. We do so by�rst �nding a simple direct proof of Hanf-locality of L�1!(C), and then using itto show that adding new atomic formulae testing isomorphism of neighborhoodsof a �xed radius does not violate Hanf-locality, while strictly increasing theexpressive power. We next de�ne a logic that captures precisely the Hanf-localproperties. It is obtained by adding local second-order quanti�cation to L�1!(C).That is, second-order quanti�ers bind predicates that are only allowed to rangeover �xed radius neighborhoods of free �rst-order variables. We will also showthat this amounts to adding arbitrarily powerful computations to L�1!(C) aslong as they are bound to some neighborhoods.For Gaifman-locality, a characterization theorem in [14] stated that it isequivalent, over structures of bounded valence, to �rst-order de�nition by cases.That is, there are m > 0 classes of structures and m FO formulae 'i such thatover the ith class, the given property is described by 'i. Again, this falls shortof a general characterization. We show that over the class of all �nite structures(no restriction on valence), Gaifman-locality is equivalent to de�nition by cases,where the number of classes can be in�nite. Furthermore, the hierarchy given bythe number of those classes (that is, the number of cases) is strict.Organization. Section 2 introduces notations and notions of locality. Section3 gives a new simple proof of Hanf-locality of L�1!(C) which is then used toshow that adding tests for neighborhood isomorphism preserves locality. Section4 characterizes Hanf-local properties as those de�nable in L�1!(C) with localsecond-order quanti�cation. Section 5 characterizes Gaifman-local properties asthose de�nable by (�nite or in�nite) case statements, and show the strictness ofthe hierarchy. All proofs can be found in the full version [20].



2 NotationFinite Structures and Logics All structures are assumed to be �nite. A relationalsignature � is a set of relation symbols fR1, ..., Rlg, with associated arities pi > 0.A �-structure is A = hA;RA1 ; : : : ; RAl i, where A is a �nite set, and RAi � Apiinterprets Ri. The class of �nite �-structures is denoted by STRUCT[�]. Whenthere is no confusion, we write Ri in place of RAi . Isomorphism is denoted by�=. The carrier of a structure A is always denoted by A and the carrier of B isdenoted by B.Given a structure A, its Gaifman graph [5, 8, 7] G(A) is de�ned as hA;Eiwhere (a; b) is in E i� there is a tuple ~c 2 RAi for some i such that both a and bare in ~c. The distance d(a; b) is de�ned as the length of the shortest path froma to b in G(A); we assume d(a; a) = 0. If ~a = (a1; : : : ; an) and ~b = (b1; : : : ; bm),then d(~a;~b) = minij d(ai; bj). Given ~a over A, its r-sphere SAr (~a) is fb 2 A jd(~a; b) � rg. Its r-neighborhood NAr (~a) is de�ned as a structure in the signaturethat extends � with n new constant symbols:hSAr (~a); RA1 \ SAr (~a)p1 ; : : : ; RAk \ SAr (~a)pl ; a1; : : : ; aniThat is, the carrier of NAr (~a) is SAr (~a), the interpretation of the �-relationsis inherited from A, and the n extra constants are the elements of ~a. If A isunderstood, we write Sr(~a) and Nr(~a).If A;B 2 STRUCT[�], and there is an isomorphism NAr (~a) ! NBr (~b) (thatsends ~a to ~b), we write ~a �A;Br ~b. If A = B, we write ~a �Ar ~b.Given tuples ~a = (a1; : : : ; an) and ~b = (b1; : : : ; bm), and an element c, wewrite ~a~b for the tuple (a1; : : : ; an; b1; : : : ; bm), and ~ac for (a1; : : : ; an; c).Hanf's and Gaifman's theorems Anm-ary query on �-structures,Q, is a mappingthat associates to each A 2 STRUCT[�] a structure hA;Si, where S � Am. Wealways assume that queries are invariant under isomorphisms.We write ~a 2 Q(A)if ~a 2 S, where hA;Si = Q(A). A query Q is de�nable in a logic L if there existsan L formula '(x1; : : : ; xm) such that Q(A) = hA; f~a j A j= '(~a)gi. If m = 0,then Q is naturally associated with a subclass of STRUCT[�] and de�nabilitymeans de�nability by a sentence of L.De�nition 1. (cf. [4, 14]) An m-ary query Q, m � 1, is called Gaifman-local ifthere exists a number r � 0 such that, for any structure A and any ~a;~b 2 Am~a �Ar ~b implies ~a 2 Q(A) i� ~b 2 Q(A):The minimum such r is called the locality rank of Q, and is denoted by lr(Q). �Theorem 1 (Gaifman). Every FO formula '(x1; : : : ; xm) de�nes a Gaifman-local query Q with lr(Q) � (7qr(') � 1)=2.The statement of Gaifman's theorem actually provides more informationabout FO de�nable properties; it states that every formula is a Boolean combi-nation of sentences of a special form and open formulae in which quanti�ers are



restricted to certain neighborhoods. However, it is the above statement that isused in most applications for proving expressivity bounds, and it also extendsbeyond FO. Note also that better bounds of the order O(2qr(')) are known forlr(Q), see [19].For A;B 2 STRUCT[�], we write A�dB if the multisets of isomorphismtypes of d-neighborhoods of points are the same in A and B. That is, A�dBif there exists a bijection f : A ! B such that NAd (a) �= NBd (f(a)) for everya 2 A. We also write (A;~a)�d(B;~b) if there is a bijection f : A ! B such thatNAd (~ac) �= NBd (~bf(c)) for every c 2 A.De�nition 2 (Hanf-locality). (see [12, 7, 14]) An m-ary query Q, m � 0, iscalled Hanf-local if there exist a number d � 0 such that for any two structuresA;B and any ~a 2 Am;~b 2 Bm,(A;~a)�d(B;~b) implies ~a 2 Q(A) i� ~b 2 Q(B):The minimum d for which this holds is called Hanf locality rank of Q, and isdenoted by hlr(Q).For a Boolean query Q (m = 0) this means that Q cannot distinguish twostructures A and B whenever A�dB.Theorem 2 (Hanf, Fagin-Stockmeyer-Vardi). Every FO sentence � de-�nes a Hanf-local Boolean query Q with lr(Q) � 3qr(�). �An extension to open formulae, although easily derivable from the proof of[7], was probably �rst explicitly stated in [14]: every FO formula '(~x) de�nesa Hanf-local query. Better bounds of the order O(2qr(')) are also known forHanf-locality [16, 19].It was shown in [14] that every Hanf-local m-ary query, m � 1, is Gaifman-local.Logic L�1!(C) The logic L�1!(C) subsumes a number of counting extensions ofFO, such as FO with counting quanti�ers [6, 17], unary quanti�ers [13], and unarycounters [2]. (When we speak of counting extensions of FO, we mean extensionsthat only add a counting mechanism, as opposed to those { extensively studiedin the literature, see [3, 23] { that add both counting and �xpoint.) It is a two-sorted logic, with one sort being the universe of a �nite structure, and the othersort being N, and it uses counting terms that produce constants of the secondsort, similarly to the logics studied in [10]. The formal de�nition is as follows.We denote the in�nitary logic by L1!; it extends FO by allowing in�niteconjunctions V and disjunctions W. Then L1!(C) is a two-sorted logic, thatextends in�nitary logic L1!. Its structures are of the form (A;N), where A isa �nite relational structure, and N is a copy of natural numbers. We shall use~x; ~y; etc for variables ranging over the �rst (non-numerical) sort, and ~{;~|, etc forvariables ranging over the second (numerical) sort. Assume that every constantn 2 N is a second-sort term. To L1! , add counting quanti�ers 9ix for every



i 2 N, and counting terms: If ' is a formula and ~x is a tuple of free �rst-sortvariables in ', then #~x:' is a term of the second sort, and its free variables arethose in ' except ~x. Its interpretation is the number of ~a over the �nite �rst-sortuniverse that satisfy '. That is, given a structure A, a formula '(~x; ~y;~|), ~b � A,and ~|0 � N, the value of the term #~x:'(~x;~b;~|0) is the cardinality of the (�nite)set f~a � A j A j= '(~a;~b;~|0)g. For example, the interpretation of #x:E(x; y) isthe in-degree of node y in a graph with the edge-relation E. The interpretationof 9ix' is #x:' � i.As this logic is too powerful (it expresses every property of �nite structures),we restrict it by means of the rank of a formulae and terms, denoted by rk. Itis de�ned as quanti�er rank (that is, it is 0 for atomic formulae, rk(Wi 'i) =maxi rk('i); rk(:') = rk('); rk(9x') = rk(9ix') = rk(') + 1) but does not takeinto account quanti�cation over N: rk(9i') = rk('). Furthermore, rk(#~x: ) =rk( )+ j~x j.De�nition 3. (see [19]) The logic L�1!(C) is de�ned to be the restriction ofL1!(C) to terms and formulae of �nite rank.It is known [19] that L�1!(C) formulae are closed under Boolean connectivesand all quanti�cation, and that every predicate on N � : : :� N is de�nable by aL�1!(C) formula of rank 0. Thus, we assume that +; �;�;�, and in fact everypredicate on natural numbers is available. Furthermore, counting terms can beeliminated in L�1!(C) without increasing the rank (that is, counting quanti�erssu�ce, although expressing properties with just counting quanti�ers is oftenquite awkward).Fact 3 (see [15, 19]) Queries expressed by L�1!(C) formulae without free vari-ables of the second-sort are Hanf-local and Gaifman-local. �Gaifman-locality of L�1!(C) was proved by a simple direct argument in [19];Hanf-locality was then shown in [15] using bijective Ehrenfeuct-Fra��ss�e games of[13].Structures of bounded valence (degree) If A 2 STRUCT[�], and Ri is of arity pi,then degreej(RAi ; a) for 1 � j � pi is the number of tuples ~a in RAi having a inthe jth position. In the case of directed graphs, this gives us the usual notionsof in- and out-degree. By deg set(A) we mean the set of all degrees realizedin A. We use the notation STRUCTk[�] for fA 2 STRUCT[�] j deg set(A) �f0; 1; : : : ; kgg.Fact 4 (see [14]) For any �xed k, a query Q on STRUCTk[�] is Hanf-local i�it is expressed by a formula of L�1!(C) (without free second-sort variables). �An m-ary query Q on a class C � STRUCT[�] is given by a �rst-orderde�nition by cases if there exists a number p, a partition C = C1 [ C2 [ : : : [ Cpand �rst order formulae �1(x1; : : : ; xm); : : : ; �p(x1; : : : ; xm) in the language �such that on all structures A 2 Ci, Q is de�nable by �i. That is, for all 1 � i � pand A 2 Ci, ~a 2 Q(A) i� A j= �i(~a).



Fact 5 (see [14]) For any �xed k, a query Q on STRUCTk[�] is Gaifman-locali� it is given by a �rst-order de�nition by cases. �3 Isomorphism of neighborhoods and L�1!(C)We start with a slightly modi�ed de�nition of locality that makes it convenientto work with two-sorted logics, like L�1!(C). We say that such a logic expressesHanf-local (or Gaifman-local) queries if for every formula '(~x;~{) there exists anumber d such that for every ~{0 � N, the formula '~{0(~x) = '(~x;~{0) (withoutfree second-sort variables) expresses a query Q with hlr(Q) � d (lr(Q) � d,respectively).Consider a set � of relation symbols, disjoint from �, and de�ne L�1!(C)+ �by allowing for each k-ary U 2 � and a k-tuple ~x of variables of the �rst sort,U(~x) to be a new atomic formula. The rank of this formula is 0. Assume thatwe �x a semantics of predicates from �. We then say that � is Hanf-local if thereexists a number d such that each predicate in � de�nes a Hanf-local query Qwith hlr(Q) � d.Theorem 6. Let � be Hanf-local. Then L�1!(C) + � expresses only Hanf-localqueries.Proof sketch. Let d witness Hanf-locality of �. We show that every L�1!(C) + �formula of rank m de�nes a Hanf-local query Q with hlr(Q) � 3m �d+ 3m�12 (forall instantiations of free variables of the second sort).The proof is by induction on a formula. The atomic case follows from theassumption that � is Hanf-local (note that atomic �-formulae de�ne queries ofHanf locality rank 0). The cases of Boolean and in�nitary connectives, as wellas negation and quanti�cation over the numerical sort are simple.It remains to consider the case of  (~x;~{) � 9iy('(y; ~x;~{)) (as counting termscan be eliminated without increasing the rank [19]) and to show that if ' de�nes aquery of Hanf locality rank r for every~{0, then  de�nes a query Q with hlr(Q) �3r+1. For this, we need the following result from [14]: if (A;~a)�3r+1(B;~b), thenthere exists a bijection f : A ! B such that (A;~ac)�r(B;~bf(c)) for all c 2 A.We then �x ~{0 and assume (A;~a)�3r+1(B;~b). Then, for f as above, it is thecase that A j= '(c;~a;~{) i� B j= '(f(c);~b;~{), due to Hanf-locality of ', and thusA j=  (~a;~{) i� B j=  (~b;~{), as the number of elements satisfying '(�;~a;~{) and'(�;~b;~{) is the same. This completes the proof. �We now consider the following example. For each d; k, de�ne a 2k-ary pred-icate Ikd (x1; : : : ; xk; y1; : : : ; yk) to be interpreted as follows: A j= Ikd (~a;~b) i�NAd (~a) �= NAd (~b). Clearly, (A;~a1~a2)�d(B;~b1~b2) implies NAd (~a1~a2) �= NBd (~b1~b2),and thus ~a1 �Ad ~a2 i� ~b1 �Bd ~b2. This shows Hanf-locality of Ikd and gives usCorollary 1. For any �xed d, L�1!(C)+fIkd j k > 0g only expresses Hanf-localproperties. �



We next show that this gives us an increase in expressive power. The resultbelow is proved using bijective games,Proposition 1. For any d; k > 0, L�1!(C)+ Ikd is strictly more expressive thanL�1!(C). �Corollary 2. The logic L�1!(C) fails to capture Hanf-local properties over ar-bitrary �nite structures. �Note that we only used Ikd s as atomic formulae. A natural extensionwould be to use them as generalized quanti�ers. In this case we extendthe de�nition of the logic by a rule that if '1(~v1; ~z); : : : ; 'l(~vl; ~z) are for-mulae with ~vi being an mi-tuple of �rst-sort variables, then  (~x; ~y; ~z) �Ikd[m1; : : : ;ml](~v1; : : : ; ~vl)('1(~v1; ~z); : : : ; 'l(~vl; ~z)) is a formula with ~x and ~y beingk-tuples of fresh free variables of the �rst sort. The semantics is that for each Aand ~c, one de�nes a new structure on A in which the ith predicate of arity mi isinterpreted as f~u 2 Ami j A j= 'i(~u;~c)g. Then A j=  (~a;~b;~c) if in this structurethe d-neighborhoods of ~a and~b are isomorphic. However, this generalization doesnot preserve locality.Proposition 2. Adding Ikd[m1; : : : ;ml] to L�1!(C) violates Hanf-locality. Infact, with addition of I11[2] to FO one can de�ne properties that are neitherHanf-local nor Gaifman-local. �4 Characterizing Hanf-local propertiesWe have seen that the logic L�1!(C) fails to capture Hanf-local properties overarbitrary �nite structures. To �ll the gap between L�1!(C) and Hanf-locality,we introduce the notion of local second-order quanti�cation. The idea is similarto local �rst-order quanti�cation which restricts quanti�ed variables to �xedradius neighborhoods of free variables. This kind of quanti�cation was used inGaifman's locality theorem [8] as well as in translations of various modal logicsinto fragments of FO [9, 25].De�nition 4. Fix r � 0 and a relational signature �. Suppose that we have,for every arity k > 0, a countably in�nite set of k-ary relational symbols T ik,i 2 N, disjoint from �. De�ne a set of formulae F by starting with L�1!(C)atomic formulae involving symbols from � as well as T iks, and closing under theformation rules of L�1!(C) and the following rule: If '(~x;~{) is a formula, ~y is asubtuple of ~x and d � r, then 1(~x;~{) � 9T ik v Sd(~y) '(~x;~{) and  2(~x;~{) � 8T ik v Sd(~y) '(~x;~{)are formulae of rank rk(') + 1. We say that the symbol T ik is bound in theseformulae.We then de�ne LSOr1!(C) over STRUCT[�] as the set of all formulae in Fof �nite rank in which all occurrences of the symbols T iks are bound. The logicLSO�1!(C) (local second-order with counting) is de�ned as Sr�0 LSOr1!(C).



The semantics of the new construct as follows. Given a �-structure A andan interpretation T for all the symbols T iks occurring freely in  , we have(A; T ) j=  1(~a;~{) i� there exists a set T � Sd(~b)k, where ~b is the subtuple of ~acorresponding to ~y, such that (A; T ; T ) j= '(~a;~{). For  2, one replaces `exists'by `for all'. �For example, the formula9x9T v Sr(x)9T 0 v Sr(x) 0@ 8y 2 Sr(x) (T (y) ^ :T 0(y)) _ (:T (y) ^ T 0(y))^ 8z; v (T (z) ^ E(z; v)!T 0(v)) ^ (T 0(z) ^ E(z; v)! T (v)) 1Atests if there is a 2-colorable r-neighborhood of a node in a graph. Note thatlocal �rst-order quanti�cation 8y 2 Sr(x) is de�nable in FO for every �xed r.Our main result can now be stated as follows.Theorem 7. An m-ary query Q, m � 0, is Hanf-local i� it is de�nable by aformula of LSO�1!(C) (without free second-sort variables).Proof sketch. We �rst show that queries de�nable in LSO�1!(C) are Hanf-local.The same argument as in [19] shows that counting terms can be eliminated fromLSOr1!(C) without increasing the rank of a formula. Suppose we are given asignature �0 disjoint from �. If A 2 STRUCT[�], ~a is a k-tuple of elements of A,and ~C is an interpretation of �0 predicates as relations of appropriate arity overA, we write (A; ~C;~a) for the corresponding structure in the language of � [ �0union constants for elements of ~a. By adom(~C) we mean the active domain of~C, that is, the set of all elements of A that occur in relations from ~C . We thenwrite, for d � r, (A; ~C;~a) �rd (B; ~D;~b)if ~D interprets �0 over B, ~a, ~b are of the same length, and the following threeconditions hold: (1) (A;~a)�d(B;~b); (2) adom(~C) � SAr (~a) and adom( ~D) �SBr (~b); and (3) there exists an isomorphism h : NAd (~a) ! NBd (~b) such thath(~C) = ~D. The if direction is now implied by the lemma below, simply bytaking �0 to be empty.Lemma 1. Let '(~x;~{; ~X) be a LSOr1!(C) formula. Then there exists a numberd � r such that, for every interpretation ~{0 of ~{, it is the case that (A;~a; ~C) �rd(B;~b; ~D) implies A j= '(~a;~{0; ~C) i� B j= '(~b;~{0; ~D):Proof of the lemma is by induction on formulae. Let rk0(') be de�ned asrk(') but without taking into account second-order quanti�cation (in particu-lar, rk0(') � rk(')). We show that d can be taken to be 9mr + 9m�12 wherem = rk0('). The case requiring most work is that of counting quanti�ers; thatis, of a formula  (~x;~{; ~X) � 9iz '(~x; z;~{; ~X). Applying the hypothesis to ',we obtain a number d � r such that for every ~{0, (A;~a; c; ~C) �rd (B;~b; e; ~D)



implies that A j= '(~a; c;~{0; ~C) i� B j= '(~b; e;~{0; ~D). To conclude, we must provethat (A;~a; ~C) �r9d+4 (B;~b; ~D) implies that A j=  (~a;~{0; ~C) i� B j=  (~b;~{0; ~D).For this, it su�ces to establish a bijection f : A ! B such that for every c,(A;~a; c; ~C) �rd (B;~b; f(c); ~D) { then clearly the number of elements satisfying' will be preserved. This proof in turn is based on the following combinato-rial lemma: Assume that (A;~a)�9d+4(B;~b), and h is an arbitrary isomorphismNA9d+4(~a) ! NB9d+4(~b). Then there exists a bijection f : A ! B such that onS6d+3(~a) it coincides with h, and (A;~ac)�d(B;~bf(c)) for every c 2 A.To prove the only if part, we show that with local second-order quanti�cation,one can de�ne local orderings on neighborhoods, and then the counting power ofL�1!(C) allows one to code neighborhoods with numbers. The construction canbe carried out in such a way that the entire multiset of isomorphism types ofneighborhoods in a structure is coded by a formula whose rank is only determinedby the radius of neighborhoods and the signature �. Using this, one can expressany Hanf-local query in LSO�1!(C). �There are several corollaries to the proof. First notice that if we de�nedLSO�1!(C) without increasing the rank of a formula for every second-orderlocal quanti�er, the proof would go through verbatim. We can also de�ne alogic Lr1! (C) just as LSOr1!(C) except that �rst-order local quanti�cation9z 2 Sr(~x) and 8z 2 Sr(~x) is used in place of second-order local quanti�ers,and those local quanti�ers do not increase the rank (in particular, the depthof their nesting can be in�nite, which allows one to de�ne arbitrary computa-tions on those neighborhoods). Let then L�1! (C) be Sr Lr1! (C). The proof ofHanf-locality of L�1! (C) goes through as before, and proving that every Hanf-local query is de�nable in L�1! (C) is very similar to that of LSO�1!(C) as within�nitely many local �rst-order quanti�ers we can write out diagrams of neigh-borhoods. We thus obtain:Corollary 3. The following have the same expressive power as LSO�1!(C) (andthus capture Hanf-local properties):{ the logic obtained from LSO�1!(C) by allowing the depth of nesting of localquanti�ers to be in�nite, and{ the logic L�1! (C). �Analyzing the proof of Theorem 7, we also obtain the following normal formfor LSO�1!(C) formulae, which shows that the depth of nesting of local second-order quanti�ers need not exceed 1.Corollary 4. Every LSO�1!(C) formula '(~x) is equivalent to a formula in theform _i ĵ (nij = #y:(9S v Sd(~x)  ij(~x; y; S)))where the conjunctions are �nite, S is binary, and each  ij is a L�1!(C) formula.



As a �nal remark, we note that LSO�1!(C) is strictly more expressive thanL�1!(C) extended with tests for neighborhood isomorphisms.Proposition 3. Sd>0(L�1!(C) + fIkd j k > 0g) $ LSO�1!(C). �5 Characterizing Gaifman-local propertiesWe now turn to Gaifman's notion of locality, which states that a query Q islocal with lr(Q) � r if NAr (~a1) �= NAr (~a2) implies that ~a1 2 Q(A) i� ~a2 2 Q(A).For structures of bounded valence, this notion was characterized by �rst-orderde�nition by cases. An extended version of this notion captures Gaifman-localityin the general case.De�nition 5. An m-ary query, m > 0, on STRUCT[�] is given by a Hanf-localde�nition by cases if there exists a �nite or countable partition of STRUCT[�]into classes Ci, i 2 N, a number d � 0, and Hanf-local queries Qi, i 2 N,with hlr(Qi) � d, such that for every i and every A 2 Ci, it is the case thatQ(A) = Qi(A).Theorem 8. A query is Gaifman-local i� it is given by a Hanf-local de�nitionby cases.Proof sketch. Assume that Q is given by a Hanf-local de�nition by cases. Letd be an upper bound on hlr(Qi). Then Q is Gaifman-local and lr(Q) � 3d + 1.Fix A, and assume A 2 Ci. Let ~a1 �A3d+1 ~a2. Then by [14], (A;~a1)�d(A;~a2),and Hanf-locality of Qi implies ~a1 2 Qi(A) = Q(A) i� ~a2 2 Qi(A) = Q(A).Conversely, let a Gaifman-local Q be given, with lr(Q) = d. Let �1; �2 : : : be anenumeration of isomorphism types of �nite �-structures. Let Ci be the class ofstructures of type �i. We de�ne Qi as follows: ~b 2 Qi(B) i� there exists A of type�i and ~a 2 Am such that (B;~b)�d(A;~a) and ~a 2 Q(A). One then shows that eachQi is Hanf-local, with hlr(Qi) � d, and for every A of type �i, Q(A) = Qi(A). �Unlike in Fact 5, the number of cases in a Hanf-local de�nition by casescan be in�nite. A natural question to ask is whether a �nite number of casesis su�cient (in particular, whether the statement of Fact 5 holds for arbitrary�nite structures). We now show that the in�nite number of cases is unavoidable.In fact, we show a stronger result.De�nition 6. For k > 0, let Localk be the class of queries given by a Hanf-local de�nition by cases, where the number of cases is at most k. Let Local� beSk>0 Localk, and G Local be the class of all Gaifman-local queries.Note that Local1 is precisely the class of Hanf-local queries.Theorem 9. The hierarchyLocal1 � Local2 � : : : � Local� � G Localis strict.



Proof sketch. We �rst exhibit a query Q 2 Locall+1 � Locall. Intuitively,a query from Locall cannot make l + 1 choices, and thus is di�erent fromevery query in Locall+1 on some of the classes of structures. More precisely,we de�ne a class Cl+1i , 1 � i � l + 1 to be the class of graphs with the numberof connected components being i� 1 modulo l + 1. Let Ql+1i be a FO-de�nablequery returning the set of nodes reachable by a path of length i� 1 from a nodeof indegree 0. Form the query Q that coincides with Ql+1i on Cl+1i . (Note thatit is not FO, as the classes Cl+1i are not FO-de�nable.) From Theorem 8, thisis a Gaifman-local query, and it belongs to Locall+1. Suppose Q is in Locall;that is, there is a partition of the class of all �nite graphs into l classes C01; : : : ; C0land Hanf-local queries Q0i such that on C0i, Q coincides with Q0i, i = 1; : : : ; l. Letd = 1+max hlr(Q0i). Let G0 be a successor relation on l+1 nodes. De�ne a graphH l+1i as the union of i cycles with (l+1)!(2d+1)i nodes each, i = 1; : : : ; l+1. As thetotal number of nodes in each H l+1i is (l + 1)!(2d+ 1) and all d-neighborhoodsare isomorphic, we have H l+1i �dH l+1j for all i; j � l + 1. Let now Gl+1i be thedisjoint union of G0 and H l+1i , i = 1; : : : ; l + 1. By pigeonhole, there exists aclass C0k and i 6= j; i; j � l + 1 such that Gl+1i ; Gl+1j 2 C0k. We then show thatQ cannot give correct results on both Gl+1i and Gl+1j . The separation G Localfrom Local� is proved by a minor modi�cation of the construction above. �Thus, similarly to the case of Hanf-local queries, the characterization forstructures of bounded valence fails to extend to the class of all �nite structures.Corollary 5. There exist Gaifman-local queries that cannot be given by �rst-order de�nition by cases. �6 ConclusionNotions of locality have been used in logic numerous times. The local nature of�rst-order logic is particularly transparent when one deals with fragments cor-responding to various modal logics; in general, Gaifman's and Hanf's theoremsstate that FO can only express local properties. These theorems were general-ized, and, being applicable to �nite structures, they found applications in areassuch as complexity and databases.However, while more and more powerful logics were proved to be local, therewas no clear understanding of what kind of mechanisms can be added to logicswhile preserving locality. Here we answered this question by providing logicalcharacterizations of local properties on �nite structures. For Hanf-locality, ar-bitrary counting power and arbitrary computations over small neighborhoodsand can be added to �rst-order logic while retaining locality; moreover, with alimited form of in�nitary connectives, such a logic captures all Hanf-local prop-erties. For Gaifman-locality, one can in addition permit de�nition by cases, andthe number of cases be either �nite or in�nite.
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