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Abstract. Well-known theorems of Hanf’s and Gaifman’s establishing
locality of first-order definable properties have been used in many appli-
cations. These theorems were recently generalized to other logics, which
led to new applications in descriptive complexity and database theory.
However, a logical characterization of local properties that correspond to
Hanf’s and Gaifman’s theorems, is still lacking. Such a characterization
only exists for structures of bounded valence.

In this paper, we give logical characterizations of local properties behind
Hanf’s and Gaifman’s theorems. We first deal with an infinitary logic
with counting terms and quantifiers, that is known to capture Hanf-
locality on structures of bounded valence. We show that testing iso-
morphism of neighborhoods can be added to it without violating Hanf-
locality, while increasing its expressive power. We then show that adding
local second-order quantification to it captures precisely all Hanf-local
properties. To capture Gaifman-locality, one must also add a (potentially
infinite) case statement. We further show that the hierarchy based on
the number of variants in the case statement is strict.

1 Introduction

It is well known that first-order logic (FO) only expresses local properties. Two
best known formal results stating locality of FO are Hanf’s and Gaifman’s the-
orems [12,8]. They both found numerous applications in computer science, due
to the fact that they are among relatively few results in first-order model theory
that extend to finite structures. Gaifman’s theorem itself works for both finite
and infinite structures, while for Hanf’s theorem an extension to finite structures
was formulated by Fagin, Stockmeyer, and Vardi [7].

More recently, the statements underlying Hanf’s and Gaifman’s theorems
have been abstracted from the statements of the theorems, and used in their
own right. In essence, Hanf’s theorem states that two structures cannot be dis-
tinguished by sentences of quantifier rank k whenever they realize the same mul-
tiset of d-neighborhoods of points; here d depends only on k. Gaifman’s theorem
states that in a given structure, two tuples cannot be distinguished by formulae
of quantifier rank k& whenever d-neighborhoods of these tuples are isomorphic;
again d is determined by k.
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It was shown that Hanf’s theorem is strictly stronger than Gaifman’s, and
that both apply to a variety of logics that extend FO with counting mechanisms
and limited infinitary connectives [11,14,15,19,22]. Since the complexity class
TC® (with the appropriate notion of uniformity) can be captured by FO with
counting quantifiers [1], these results found applications in descriptive complex-
ity, where they were used to prove lower bounds for logics coming very close to
capturing TC® [6,21]. They were also applied in database theory, where they
were used to prove expressivity bounds for relational query languages with ag-
gregation [4,15] that correspond to practical query languages such as SQL. For
applications to automata, see [24].

The abstract notions of locality were themselves characterized only on finite
structures of bounded valence (e.g., for graphs of fixed maximum degree). The
characterization for Hanf-locality uses a logic L% ,(C) introduced in [19] as a
counterpart of a finite variable logic £¥ . While £ , subsumes a number of
fixpoint logics and is easier to study, £%__,(C) subsumes a number of counting
extensions of FO (such as FO with counting quantifiers [17], FO with unary
generalized quantifiers [13,18], FO with unary counters [2]) and is quite easy
to deal with. A result in [14] states that Hanf-local properties on structures of

bounded valence are precisely those definable in £%_ (C).

The question naturally arises whether this continues to hold for arbitrary
finite structures. We show in this paper that this is not the case. We do so by
first finding a simple direct proof of Hanf-locality of L%, (C), and then using it
to show that adding new atomic formulae testing isomorphism of neighborhoods
of a fixed radius does not violate Hanf-locality, while strictly increasing the
expressive power. We next define a logic that captures precisely the Hanf-local
properties. It is obtained by adding local second-order quantification to £%_,(C).
That is, second-order quantifiers bind predicates that are only allowed to range
over fixed radius neighborhoods of free first-order variables. We will also show
that this amounts to adding arbitrarily powerful computations to £% _(C) as
long as they are bound to some neighborhoods.

For Gaifman-locality, a characterization theorem in [14] stated that it is
equivalent, over structures of bounded valence, to first-order definition by cases.
That is, there are m > 0 classes of structures and m FO formulae ¢; such that
over the ith class, the given property is described by ;. Again, this falls short
of a general characterization. We show that over the class of all finite structures
(no restriction on valence), Gaifman-locality is equivalent to definition by cases,
where the number of classes can be infinite. Furthermore, the hierarchy given by
the number of those classes (that is, the number of cases) is strict.

Organization. Section 2 introduces notations and notions of locality. Section
3 gives a new simple proof of Hanf-locality of £* _(C) which is then used to
show that adding tests for neighborhood isomorphism preserves locality. Section
4 characterizes Hanf-local properties as those definable in £ (C) with local
second-order quantification. Section 5 characterizes Gaifman-local properties as
those definable by (finite or infinite) case statements, and show the strictness of
the hierarchy. All proofs can be found in the full version [20].



2 Notation

Finite Structures and Logics All structures are assumed to be finite. A relational
signature o is a set of relation symbols { Ry, ..., R; }, with associated arities p; > 0.
A o-structure is A = (A, R{%,..., Rf), where A is a finite set, and R{* C AP:
interprets R;. The class of finite o-structures is denoted by STRUCT[s]. When
there is no confusion, we write R; in place of R;“. Isomorphism is denoted by
2. The carrier of a structure A is always denoted by A and the carrier of B is
denoted by B.

Given a structure A, its Gaifman graph [5,8,7] G(A) is defined as (4, E)
where (a,b) is in E iff there is a tuple & € R for some i such that both a and b
are in €. The distance d(a,b) is defined as the length of the shortest path from
a to bin G(A); we assume d(a,a) = 0. If @ = (ay,...,a,) and b= (by,...,by),
then d(a@,b) = min;; d(a;, b;). Given @ over A, its r-sphere S;A(a@) is {b € A |
d(a@,b) < r}. Its r-neighborhood N;*(@) is defined as a structure in the signature
that extends o with n new constant symbols:

(SAM@), RAn SA@)P, ..., RANSA@"P, a1, ..., a,)

Y

That is, the carrier of NA(@) is S;(@), the interpretation of the o-relations
is inherited from A, and the n extra constants are the elements of d@. If A is
understood, we write S, (@) and N, (@).

If A,B € STRUCT|[o], and there is an isomorphism N:(@) — NF(_’) (that

sends @ to b), we write @ ~AB8 b, If A= B, we write @ ~A b.
Given tuples @ = (a1,...,a,) and b = (by,...,bn), and an element ¢, we
write @b for the tuple (a1,...,an,b1,...,bn), and dc for (ay,...,an,c).

Hanf’s and Gaifman’s theorems An m-ary query on o-structures, ), is a mapping
that associates to each A4 € STRUCT][o] a structure (A4,S), where S C A™. We
always assume that queries are invariant under isomorphisms. We write @ € Q(A)
ifd@e S, where (4,S) = Q(A). A query @ is definable in a logic £ if there exists
an £ formula ¢(z1,...,2y) such that Q(A) = (A, {@ | A E ¢(@)}). If m =0,
then @) is naturally associated with a subclass of STRUCT[o] and definability
means definability by a sentence of L.

Definition 1. (cf. [4,14]) An m-ary query @, m > 1, is called Gaifman-local if

there exists a number r > 0 such that, for any structure A and any @, be A™
anltb implies @€ Q(A) iff beQ(A).

The minimum such r is called the locality rank of @, and is denoted by Ir(Q). O

Theorem 1 (Gaifman). Every FO formula p(z1,...,z,,) defines a Gaifman-
local query Q with Ir(Q) < (797(¥) —1)/2.

The statement of Gaifman’s theorem actually provides more information
about FO definable properties; it states that every formula is a Boolean combi-
nation of sentences of a special form and open formulae in which quantifiers are



restricted to certain neighborhoods. However, it is the above statement that is
used in most applications for proving expressivity bounds, and it also extends
beyond FO. Note also that better bounds of the order O(29(¥)) are known for
Ir(Q), see [19].

For A,B € STRUCT(o], we write A5 B if the multisets of isomorphism
types of d-neighborhoods of points are the same in 4 and B. That is, A5 ;B
if there exists a bijection f : A — B such that Nj'(a) = NZ(f(a)) for every

a € A. We also write (A,@)S4(B,b) if there is a bijection f : A — B such that
NA(dc) = Nf(gf(c)) for every c € A.

Definition 2 (Hanf-locality). (see [12,7,14]) An m-ary query Q, m > 0, is
called Hanf-local if there exist a number d > 0 such that for any two structures
A, B and any @ € A™,b € B™,

-

(A,@)S4(B,B)  implies @€ Q(A) iff be Q(B).

The minimum d for which this holds is called Hanf locality rank of @, and is
denoted by hlr(Q).

For a Boolean query @ (m = 0) this means that @ cannot distinguish two
structures A and B whenever A5 ;B.

Theorem 2 (Hanf, Fagin-Stockmeyer-Vardi). Every FO sentence & de-
fines a Hanf-local Boolean query Q with 1r(Q) < 397(®), O

An extension to open formulae, although easily derivable from the proof of
[7], was probably first explicitly stated in [14]: every FO formula ¢(#) defines
a Hanf-local query. Better bounds of the order O(29(%)) are also known for
Hanf-locality [16,19].

It was shown in [14] that every Hanf-local m-ary query, m > 1, is Gaifman-
local.

Logic L%, (C) The logic L%, (C) subsumes a number of counting extensions of
FO, such as FO with counting quantifiers [6, 17], unary quantifiers [13], and unary
counters [2]. (When we speak of counting extensions of FO, we mean extensions
that only add a counting mechanism, as opposed to those — extensively studied
in the literature, see [3,23] — that add both counting and fixpoint.) It is a two-
sorted logic, with one sort being the universe of a finite structure, and the other
sort being N, and it uses counting terms that produce constants of the second
sort, similarly to the logics studied in [10]. The formal definition is as follows.
We denote the infinitary logic by Lo, ; it extends FO by allowing infinite
conjunctions A and disjunctions \/. Then L, (C) is a two-sorted logic, that
extends infinitary logic Loy . Its structures are of the form (A, N), where A is
a finite relational structure, and N is a copy of natural numbers. We shall use
Z, 7, etc for variables ranging over the first (non-numerical) sort, and 7, 7, etc for
variables ranging over the second (numerical) sort. Assume that every constant
n € N is a second-sort term. To Ly, add counting quantifiers iz for every



i € N, and counting terms: If ¢ is a formula and # is a tuple of free first-sort
variables in ¢, then #Z.p is a term of the second sort, and its free variables are
those in ¢ except Z. Its interpretation is the number of @ over the finite first-sort
universe that satisfy ¢. That is, given a structure A, a formula ¢(Z,7; 7), bC A,
and 75 C N, the value of the term #Z.¢(Z, g;j{]) is the cardinality of the (finite)
set {@d C A|AE ¢(a, g;ﬁ))}. For example, the interpretation of #x.E(x,y) is
the in-degree of node y in a graph with the edge-relation E. The interpretation
of Jizy is #x.p > i.

As this logic is too powerful (it expresses every property of finite structures),
we restrict it by means of the rank of a formulae and terms, denoted by rk. It
is defined as quantifier rank (that is, it is 0 for atomic formulae, rk(\/, ¢;) =
max; rk(e;), rk(—g) = rk(p), rk(3zp) = rk(Jizp) = rk(y) + 1) but does not take
into account quantification over N: rk(Jip) = rk(y). Furthermore, rk(#2.¢) =
k() + | 7).

Definition 3. (see [19]) The logic L%, (C) is defined to be the restriction of
Loow(C) to terms and formulae of finite rank.

It is known [19] that £, (C) formulae are closed under Boolean connectives
and all quantification, and that every predicate on N x ... x N is definable by a
L, (C) formula of rank 0. Thus, we assume that +, x, —, <, and in fact every
predicate on natural numbers is available. Furthermore, counting terms can be
eliminated in £, (C) without increasing the rank (that is, counting quantifiers
suffice, although expressing properties with just counting quantifiers is often
quite awkward).

Fact 3 (see [15,19]) Queries expressed by L%, (C) formulae without free vari-
ables of the second-sort are Hanf-local and Gaifman-local. d

Gaifman-locality of L% _(C) was proved by a simple direct argument in [19];
Hanf-locality was then shown in [15] using bijective Ehrenfeuct-Fraissé games of
[13].

Structures of bounded valence (degree) If A € STRUCT|[o], and R; is of arity p;,
then degreej(R;“, a) for 1 < j < p; is the number of tuples @ in R* having a in
the jth position. In the case of directed graphs, this gives us the usual notions
of in- and out-degree. By deg_set(A) we mean the set of all degrees realized
in A. We use the notation STRUCT[o] for {A € STRUCT|s] | deg-set(A) C

0,1,... k}}.

Fact 4 (see [1{]) For any fized k, a query Q on STRUCT[o] is Hanf-local iff
it is expressed by a formula of L, (C) (without free second-sort variables). O

An me-ary query @ on a class C C STRUCT]o] is given by a first-order
definition by cases if there exists a number p, a partition C =C, UCaU...UC,
and first order formulae ay(z1,...,2Zm),...,p(%1,...,Tm) in the language o
such that on all structures A € C;, @ is definable by «;. That is, forall 1 <i <p
and A € C;, d € Q(A) iff A E «;(ad).



Fact 5 (see [1]]) For any fixed k, a query Q@ on STRUCT}[o] is Gaifman-local
iff it is given by a first-order definition by cases. d

3 Isomorphism of neighborhoods and L%  (C)

We start with a slightly modified definition of locality that makes it convenient
to work with two-sorted logics, like £*_ (C). We say that such a logic expresses
Hanf-local (or Gaifman-local) queries if for every formula ¢(Z,7) there exists a
number d such that for every 7 C N, the formula ¢z (Z) = ¢(Z,%) (without
free second-sort variables) expresses a query @ with hir(Q) < d (Ir(Q) < d,
respectively).

Consider a set 6 of relation symbols, disjoint from o, and define £%_,(C)+6
by allowing for each k-ary U € 6 and a k-tuple & of variables of the first sort,
U(#) to be a new atomic formula. The rank of this formula is 0. Assume that
we fix a semantics of predicates from 6. We then say that 6 is Hanf-local if there
exists a number d such that each predicate in 6 defines a Hanf-local query @
with hlr(Q) < d.

Theorem 6. Let 6 be Hanf-local. Then L% (C) + 6 expresses only Hanf-local
queries.

Proof sketch. Let d witness Hanf-locality of §. We show that every L% (C) + 6
formula of rank m defines a Hanf-local query @ with hlr(Q)) < 3™-d+ ?’WT_l (for
all instantiations of free variables of the second sort).

The proof is by induction on a formula. The atomic case follows from the
assumption that 6 is Hanf-local (note that atomic o-formulae define queries of
Hanf locality rank 0). The cases of Boolean and infinitary connectives, as well
as negation and quantification over the numerical sort are simple.

It remains to consider the case of ¥ (Z,7) = Jiy(p(y, £,7)) (as counting terms
can be eliminated without increasing the rank [19]) and to show that if ¢ defines a
query of Hanf locality rank r for every ip, then ¢ defines a query @ with hlr(Q) <

-

3r+ 1. For this, we need the following result from [14]: if (A, @)3, (B, b), then
there exists a bijection f : A — B such that (A,dc)S,(B,b5f(c)) for all ¢ € A.
We then fix 75 and assume (A, 6)S3T+I(B,g). Then, for f as above, it is the
case that A = ¢(c,@,7) iff B = ©(f(c),b,7), due to Hanf-locality of ¢, and thus
A = (@,7) iff B |= (b,7), as the number of elements satisfying ¢(-,@,7) and
(- g,i’) is the same. This completes the proof. O

We now consider the following example. For each d, k, define a 2k-ary pred-

o

icate IX(z1,..., 2k, 41,...,y%) to be interpreted as follows: A = I%(@,b) iff

N @) = Ni(b). Cleatly, (A, @12)S 4(B,b1by) implies Ni(@ dy) = NE(byb,)

and thus @ ~7' @ iff by ~5 by. This shows Hanf-locality of I¥ and gives us

Y

Corollary 1. For any fized d, L%, (C)+ {I5 | k > 0} only expresses Hanf-local
properties. O



We next show that this gives us an increase in expressive power. The result
below is proved using bijective games,

Proposition 1. For any d,k > 0, L%, (C) + I is strictly more expressive than
cx . (C). O

Corollary 2. The logic L, ,(C) fails to capture Hanf-local properties over ar-
bitrary finite structures. O

Note that we only used IU’;S as atomic formulae. A natural extension
would be to use them as generalized quantifiers. In this case we extend
the definition of the logic by a rule that if ¢1(01,2),...,¢(4,2) are for-
mulae with 9; being an m;-tuple of first-sort variables, then (%, 7,2) =
ma,...,m(@, ..., %) (p1 (31, 2), ..., (@1, 2)) is a formula with # and § being
k-tuples of fresh free variables of the first sort. The semantics is that for each A
and ¢, one defines a new structure on A in which the ith predicate of arity m; is
interpreted as {@ € A™ | A = p;(@,7)}. Then A |=9(d,b,¢) if in this structure
the d-neighborhoods of @ and b are isomorphic. However, this generalization does
not preserve locality.

Proposition 2. Adding 1%[m4,...,m] to L% (C) violates Hanf-locality. In

fact, with addition of T}[2] to FO one can define properties that are neither
Hanf-local nor Gaifman-local. O

4 Characterizing Hanf-local properties

We have seen that the logic £%_(C) fails to capture Hanf-local properties over
arbitrary finite structures. To fill the gap between L%, (C) and Hanf-locality,
we introduce the notion of local second-order quantification. The idea is similar
to local first-order quantification which restricts quantified variables to fixed
radius neighborhoods of free variables. This kind of quantification was used in
Gaifman’s locality theorem [8] as well as in translations of various modal logics
into fragments of FO [9, 25].

Definition 4. Fiz r > 0 and a relational signature o. Suppose that we have,
for every arity k > 0, a countably infinite set of k-ary relational symbols T},
i € N, disjoint from o. Define a set of formulae F by starting with L% (C)
atomic formulae involving symbols from o as well as T,js, and closing under the
formation rules of L%, (C) and the following rule: If o(&,7) is a formula, § is a
subtuple of ¥ and d < r, then

are formulae of rank rk(¢) + 1. We say that the symbol T} is bound in these
formulae.

We then define LSO, ,(C) over STRUCT([o] as the set of all formulae in F
of finite rank in which all occurrences of the symbols T,ﬁs are bound. The logic
LSO}, (C) (local second-order with counting) is defined as |J,~o LSO, (C).

oCw



The semantics of the new construct as follows. Given a o-structure A and
an interpretation T for all the symbols Tis occurring freely in v, we have
(A, T) = 1(@,7) iff there exists a set T C Sy(b)*, where b is the subtuple of @
corresponding to ¥, such that (A, T,T) |E ¢(@,7). For 1, one replaces ‘exists’
by ‘for all’. O

For example, the formula

Vy € Sp(x) (T(y) A=T"(y)) V (=T (y) AT'(y))
33T C S, (z)3T' C S, (x) | AVz,v (T(2) A E(z,0) —
T'(v)) A(T"(2) A E(2,0) = T (v))

tests if there is a 2-colorable r-neighborhood of a node in a graph. Note that
local first-order quantification Vy € S, (z) is definable in FO for every fixed 7.
Our main result can now be stated as follows.

Theorem 7. An m-ary query Q, m > 0, is Hanf-local iff it is definable by a
formula of LSO%, ,(C) (without free second-sort variables).

Proof sketch. We first show that queries definable in £50% ,(C) are Hanf-local.
The same argument as in [19] shows that counting terms can be eliminated from
LSO, ,(C) without increasing the rank of a formula. Suppose we are given a
signature o' disjoint from o. If 4 € STRUCT][o], d is a k-tuple of elements of A,
and C is an interpretation of ¢’ predicates as relations of appropriate arity over
A, we write (A, C, @) for the corresponding structure in the language of ¢ U ¢’
union constants for elements of @. By adom(é) we mean the active domain of
é, that is, the set of all elements of A that occur in relations from C'. We then
write, for d > r, .

(A, C,a@) ~5 (B,D,b)

if D interprets o' over B, @, l_)'are_‘of the same length, and the following three
conditions hold: (1) (A,@)S4(B,b); (2) adom(C) C SA(@) and adom(D) C
Sf(g); and (3) there exists an isomorphism h : N{(a@) — Nf(l_;) such that
h(é) = D. The if direction is now implied by the lemma below, simply by
taking o’ to be empty.

Lemma 1. Let o(#,7, X) be a LSO, (C) formula. Then there exists a number

d > r such that, for every interpretation iy of 7, it is the case that (A,d, é) ~
(B,b,l_j) implies

A ¢@1,C) iff Bl (b, D).

Proof of the lemma is by induction on formulae. Let rko(y) be defined as
rk(y) but without taking into account second-order quantification (in particu-
lar, rko(¢) < rk(¢)). We show that d can be taken to be 9™r + ng_l where
m = rko(y). The case requiring most work is that of counting quantifiers; that
is, of a formula ¢(5:’,Z’,)?) = diz w(f,z,f,f). Applying the hypothesis to ¢,
we obtain a number d > 7 such that for every 7y, (A4,d,c, 6) ~h (B,g,e,ﬁ)



implies that A |= ¢(d, ¢, 1, C_") ift B = <p(l_;, e, 0, 5) To conclude, we must prove
that (A,a@C) ~by,, (B,b, D) implies that A |= ¢(d@,7%,C) iff B = 9(b,7, D).
For this, it suffices to establish a bijection f : A — B such that for every c,
(A, @, c,C) ~n (B, b, f(c), D) — then clearly the number of elements satisfying
¢ will be preserved. This proof in turn is based on the following combinato-

-

rial lemma: Assume that (A, @)Sg,4,4(B,b), and h is an arbitrary isomorphism
Niipa(@) — N§d+4(g). Then there exists a bijection f : A — B such that on
Sears(@) it coincides with h, and (A, @c)S (B, bf(c)) for every ¢ € A.

To prove the only if part, we show that with local second-order quantification,
one can define local orderings on neighborhoods, and then the counting power of
L:.,,(C) allows one to code neighborhoods with numbers. The construction can
be carried out in such a way that the entire multiset of isomorphism types of
neighborhoods in a structure is coded by a formula whose rank is only determined

by the radius of neighborhoods and the signature o. Using this, one can express
any Hanf-local query in £SO} ,(C). a

There are several corollaries to the proof. First notice that if we defined
LSO}, ,(C) without increasing the rank of a formula for every second-order
local quantifier, the proof would go through verbatim. We can also define a
logic L., (C) just as LSO ,(C) except that first-order local quantification
3z € S, (%) and Vz € S,.(Z) is used in place of second-order local quantifiers,
and those local quantifiers do not increase the rank (in particular, the depth
of their nesting can be infinite, which allows one to define arbitrary computa-
tions on those neighborhoods). Let then L% (C) be |, LL,,, (C). The proof of
Hanf-locality of L  (C) goes through as before, and proving that every Hanf-
local query is definable in L%__ (C) is very similar to that of £50% (C) as with
infinitely many local first-order quantifiers we can write out diagrams of neigh-
borhoods. We thus obtain:

Corollary 3. The following have the same expressive power as LSO, ,(C) (and
thus capture Hanf-local properties):

— the logic obtained from LSO% ,(C) by allowing the depth of nesting of local
quantifiers to be infinite, and
— the logic L%, (C). O

Analyzing the proof of Theorem 7, we also obtain the following normal form
for LSO?,,(C) formulae, which shows that the depth of nesting of local second-
order quantifiers need not exceed 1.

Corollary 4. Every £SO% ,(C) formula ¢(Z) is equivalent to a formula in the
form

\/ /\ (nij = #y.(3S T Sa(@) ¢i(Z,y. 9)))

J

where the conjunctions are finite, S is binary, and each ¢;; is a L%, ,(C) formula.



As a final remark, we note that £50% _(C) is strictly more expressive than
L:,,(C) extended with tests for neighborhood isomorphisms.

Proposition 3. [J;. (L%, (C) +{Ij | k> 0}) G LSO%,(C). O

5 Characterizing Gaifman-local properties

We now turn to Gaifman’s notion of locality, which states that a query @ is
local with Ir(Q) < r if NA(@,) = NA(dy) implies that @ € Q(A) iff @ € Q(A).
For structures of bounded valence, this notion was characterized by first-order
definition by cases. An extended version of this notion captures Gaifman-locality
in the general case.

Definition 5. An m-ary query, m > 0, on STRUCT]o] is given by a Hanf-local
definition by cases if there exists a finite or countable partition of STRUCT][o]
into classes C;, i € N, a number d > 0, and Hanf-local queries Q;, i € N,
with hlr(Q;) < d, such that for every i and every A € C;, it is the case that

Q(A) = Qi(A).

Theorem 8. A query is Gaifman-local iff it is given by a Hanf-local definition
by cases.

Proof sketch. Assume that @ is given by a Hanf-local definition by cases. Let
d be an upper bound on hlr(Q;). Then @ is Gaifman-local and Ir(Q) < 3d + 1.
Fix A, and assume A € C;. Let @ 3y, @2. Then by [14], (A4,@1)5,(A, d>),
and Hanf-locality of @; implies @ € Qi(A) = Q(A) iff @ € Qi(A) = Q(A).
Conversely, let a Gaifman-local @ be given, with Ir(Q) = d. Let 71,72 ... be an
enumeration of isomorphism types of finite o-structures. Let C; be the class of
structures of type 7;. We define @); as follows: b € Q;(B) iff there exists A of type

7; and @ € A™ such that (B,0)S,(A,d) and @ € Q(A). One then shows that each
Q; is Hanf-local, with hlr(Q;) < d, and for every A of type 7;, Q(A) = Q;(A). O

Unlike in Fact 5, the number of cases in a Hanf-local definition by cases
can be infinite. A natural question to ask is whether a finite number of cases
is sufficient (in particular, whether the statement of Fact 5 holds for arbitrary
finite structures). We now show that the infinite number of cases is unavoidable.
In fact, we show a stronger result.

Definition 6. For k > 0, let LOCALy be the class of queries given by a Hanf-
local definition by cases, where the number of cases is at most k. Let LOCAL™ be
Ukso LOCALg, and G_LOCAL be the class of all Gaifman-local queries.

Note that LOCAL; is precisely the class of Hanf-local queries.
Theorem 9. The hierarchy
LocaL; € LocAL, C ... C LocaL* € G_LocAL

s strict.



Proof sketch. We first exhibit a query ) € LOCAL;;1 — LOCAL;. Intuitively,
a query from LOCAL; cannot make [ + 1 choices, and thus is different from
every query in LOCAL;;1 on some of the classes of structures. More precisely,
we define a class CzH'l, 1 <i <141 to be the class of graphs with the number
of connected components being i — 1 modulo [ + 1. Let Qi“ be a FO-definable
query returning the set of nodes reachable by a path of length ¢ — 1 from a node
of indegree 0. Form the query Q that coincides with Q4™ on C!™'. (Note that
it is not FO, as the classes C/™' are not FO-definable.) From Theorem 8, this
is a Gaifman-local query, and it belongs to LOCAL;11. Suppose @ is in LOCALy;
that is, there is a partition of the class of all finite graphs into [ classes Ci,...,C;
and Hanf-local queries @} such that on C}, @ coincides with @}, i =1,...,l. Let
d = 1+maxhlr(Q}). Let Gg be a successor relation on [+ 1 nodes. Define a graph
HZHl as the union of ¢ cycles with w nodes each,i=1,...,1+1. As the
total number of nodes in each H!™ is (I + 1)!(2d + 1) and all d-neighborhoods
are isomorphic, we have H{*'<,H!*" for all i,j < I+ 1. Let now G{*' be the
disjoint union of Gg and Hf"'l, 1 =1,...,1 + 1. By pigeonhole, there exists a
class C;, and i # j,4,j < I+ 1 such that GiH,GSH € C;,. We then show that
@) cannot give correct results on both Gif"l and Gé"’l. The separation G_LOCAL
from LocCAL* is proved by a minor modification of the construction above. O

Thus, similarly to the case of Hanf-local queries, the characterization for
structures of bounded valence fails to extend to the class of all finite structures.

Corollary 5. There exist Gaifman-local queries that cannot be given by first-
order definition by cases. O

6 Conclusion

Notions of locality have been used in logic numerous times. The local nature of
first-order logic is particularly transparent when one deals with fragments cor-
responding to various modal logics; in general, Gaifman’s and Hanf’s theorems
state that FO can only express local properties. These theorems were general-
ized, and, being applicable to finite structures, they found applications in areas
such as complexity and databases.

However, while more and more powerful logics were proved to be local, there
was no clear understanding of what kind of mechanisms can be added to logics
while preserving locality. Here we answered this question by providing logical
characterizations of local properties on finite structures. For Hanf-locality, ar-
bitrary counting power and arbitrary computations over small neighborhoods
and can be added to first-order logic while retaining locality; moreover, with a
limited form of infinitary connectives, such a logic captures all Hanf-local prop-
erties. For Gaifman-locality, one can in addition permit definition by cases, and
the number of cases be either finite or infinite.
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