In conclusion, we believe that recent advances in the study of expressive
power of logics with counting and unary quantifiers make it promising to use
the tools of finite-model theory and descriptive complexity to attack some of the
hard separation problems.
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does the number of distinct sizes of equivalence classes in R equal to the cardi-
nality of U? It was shown to be inexperessible in FO(C) in [5], and we can show
that it is definable in FO(C)+ <. 0

However, this does not shed any light on what kind of examples might exist
(if there are any) in (FO(C)+ <) — (FO(C) 4+ Op), k > 1, as the separating
example of Proposition 7 is definable in FO(C) 4+ Oy. Thus, we have

Proposition8. FO(C) ; FO(C) + Oy. a

To find a separation from FO(C)+ <, we can only use a small class of
preorders which, in a sense, do not have equivalence classes comparable to the
size of the universe; this result will be stated in the full version. While this
gives us some partial results about expressivity of FO(C) with (pre)orders, it
is still not clear how to prove bounds for FO(C)+ < and ultimately for TCO.
We conclude by presenting a query whose inexpressibility in FO(C) (note the
absence of order!) would imply bounds on TCO.

Proposition9. a) If there is no FO(C) query that defines transitive closure on
bushy trees, then TCP ; NLOG.

b) If there is no FO(C) query that defines deterministic transitive closure on
inverses of bushy trees, then TC® ; DLOG. a

While we do not know whether queries of Proposition 9 are definable in
FO(C), we can give two partial results for canonical bushy trees.

Proposition10. Transitive closure of canonical bushy trees is definable in

FO(Qu), but not in FO. a

7 Open problems

It still remains an open problem to prove expressivity bounds in the presence
of an order relation. We believe that a descriptive complexity approach holds a
promise, partly because it does not appear to fit the general scheme of natural
proofs of Razborov and Rudich [20]. Tt is partly the case because we do not know
how to translate expressivity bounds with various kinds of auxiliary relations
into lower bounds for circuits (if indeed such a translation is possible). Another
attempt to interpret such expressivity bounds in terms of circuit complexity is
to find different notions of uniformity that will perhaps correspond to different
auxiliary relations. We have not explored this yet.

An approach to proving lower bounds for TC? circuits, based on arithmetic
circuits, was recently proposed in [1]. It may avoid the problems presented in
[20]. Tn [1], the strongest results are obtained in the P-uniform and nonuniform
setting, and the weakest for DLOGTIME-uniformity. Our results only apply to a
fragment of DLOGTIME-uniform TC?, so they appear to be of different nature
than those in [1].



5 Limitations of the technique

To summarize what has been achieved so far, we know that FO(C) + Oy =
TC?, and the above results show that for any & > 1, DLOG ¢ FO(C) + Oy.
Furthermore, DLOG ¢ FO(C) + P, for any nondecreasing function ¢ that is
not bounded by a constant. Thus, one may ask if the techniques can be pushed
further to prove expressivity bounds for FO(C)+ <.

The lemma below shows that removing the assumption that ¢ is not bounded
by a constant is essentially equivalent to having a linear order:

Lemmab. Let g(n) be bounded by some constant M for all n € N. Assume
that (deterministic) transitive closure is not in FO(C) + P,. Then it is not in
FO(C)+ < either. O

Thus, a possible avenue for attacking the problem of expressivity with linear
order seems to be the following: try to find a class of structures C so that both
Def;[Pa,C] and Sep,[g,C] would hold, where ¢ is ic, or dic, or any other query
we want to show to be outside of FO(C)+4 <. Here we use Py to denote P,
where g(n) < M for all n.

If we were able to find such a class C, it would show that ¢ € FO(C)+ <.
Unfortunately, as the following theorem shows, no such class exists!

Theorem 6. Let M be a constant, and let q be a query invariant under iso-
morphism. Let L be FO(C) or FO(Qu). Then there does not exist a class of
structures C such that both Def z[Par, C] and Sep,[q,C] hold.

Proof sketch: Let M = 1; then Pps is a linear order. Assume Def ;[P C]
and Sep,[q,C] hold. Then there is a formula ¢(z, y) that defines a linear order
<4 on each A with | A |> n. Let » = Ir(y) and d = 3r 4+ 1. Using Sep,[q,C],
we can find big enough A such that <4 is an order and there exist a,6 € A
with a # b and « %34 b. By [7, 16], there exists a permutation 7 on A such that
(a,2) sy (b,w(x)) for all x € A. Thus, a <4 = iff b <4 #(x) for all #, which is
impossible for a # b, since A is finite. For M > 1, Sep,[q,(C] is used to show
the existence of a structure with more than M pairs a; /4 b;, which implies the
existence of a &4 b with a <4 b and b £ 4 a. Then the above proof applies. O

6 On the relative expressive power of auxiliary relations

We give here a few comments about the murky area of expressivity with
(pre)orders vs. expressivity without (pre)orders. As was mentioned before, it
is known that FO ; FO+ <. Note that by FO+ < we mean the class of order-
wndependent queries in FO4 <, so this is not a trivial observation. A similar result
for FO(C) is implicit in [5]; it also follows from an example due to M. Otto [18].

Proposition7 (Benedikt-Keisler). FO(C) G FO(C)+ <.
Proof sketch: Consider structures A = (A, R, U) where R is binary and U is
unary. The separating query ¢ is the following: If R is an equivalence relation,



us b6 nodes at level 4, which will have 12(=11+1), 13, ..., 67(=11+56) children,
resp. We continue until we fully filled all k levels. See the picture in Figure 2.
We use Bj to denote the canonical k-bushy tree.

k levels

Fig. 2. Canonical k-bushy tree

Proof sketch of Proposition 4: We start by defining a family of graphs GY,,
d,k € Ny, d > k + 1. Let s be the total number of nodes in the canonical
k-bushy tree. The root of G?l,k has s 41 children. Two of them are roots of two
copies of a canonical k-bushy tree, denoted here by B} and B3. To other s — 1
nodes at the second level, we give sy + 2,51 +3,...,8p + (sp — 1) = 28, — 1
children respectively. Now, to those nodes at the second level that do not belong
to the two canonical k-bushy trees; we give 2s3,2s; + 1, ... children, as before,
increasing the number by one. We continue this process until we fully fill the
k + 1st level. After that, we look at the node at the level k& with most children,
say M of them, and start giving nodes at the k4 1st level M +1, M +2, M +3, ...
children. We stop the process when we completely fill the dth level.

This is the graph G?l,k' Note that every two non-leaf nodes # # y have
different outdegrees, unless one of them is in B} and the other is in B. We
define G5 by adding graph edges that form a linear ordering on the leaves.
When we speak of “leaf nodes” of G4, we actually mean the leaf nodes of G?l,k'

Let BY and BS$ be the sets of non-leaf nodes in B} and B. Then, for any
two distinct nodes #,y € B U B, it is the case that (in-deg(x), out-deg(x)) #
(in-deg(y), out-deg(y)). Next, define two binary relations on the set of nodes:
r <g y iff in-deg(z) < in-deg(y) or in-deg(z) = in-deg(y) and out-deg(z) <
out-deg(y). Let B® be By U BS. Then we let # < y iff either & B°,y € B°,
or £,y € B® and z <y y, or z,y & B° and z < y. This binary relation < is
definable in FO(C) and FO(Qy).

For a given k, let dj be the smallest number d > k + 1 such that 2s; < g(n)
for all n > Ngp, where Ng; is the total number of nodes in Gg4y. Since for
every fixed k, Ng; grows with d, and g is nondecreasing, dj, is well-defined and
depends only on k. Let C; = {Gar | d, k € N4, d > dp}. The rest of the proof is
to verify that both Def,(, [Py, Cy] and Sep, ;ltc, Cg] hold. To complete the
proof for deterministic transitive closure, we just reverse all the edges of Gg,
to make all the paths not involving leaves deterministic. ad



According to [14], FO 4 dtc+ < captures DLOG and FO + {c+ < captures
NLOG.

We next define the class of relations that we view as “almost linear orders.”
Let g : N — R be a nondecreasing function. Then P, is the class of binary
relations (A4, R) such that there is a partition 4 = B U C' with the following
properties: (1) | B |> n — g(n); (2) R restricted to B is a linear order; (3) R
restricted to ' is a relation from O, that is; a preorder where every equivalence
class has at most two elements; and (4) For any b € B and ¢ € C, (b,¢) € R.

See Figure 1 for a preorder from P,. Actually, we show the associated suc-
cessor relation in the Figure. A relation from P, is really the transitive closure
of the one shown in Figure 1. Intuitively, if g is very small, then this is the least
possible “damage” that can be done to a linear ordering. In the result below, ¢
can indeed be taken to be very small, for example, it could be loglog. . .logn.

>n—g(n) elements (n) elements

Fig.1. A relation from 779

Theorem2. Let g : N — R be a nondecreasing function that s not bounded by
a constant. Then (deterministic) transitive closure is not definable in FO(C) or
FO(Qu) in the presence of relations from P,. a

Corollary 3. (Deterministic) transitive closure is not definable in FO(C) or
FO(Qu) in the presence of relations from Oy for any k > 1. In particular,
DLOG € FO(C) + O,. O

This can be compared with the results of [6] where it was shown that first-
order with fixpoint and counting fails to express some polynomial-time problems
even in the presence of relations from @4 (of course first-order with fixpoint
captures polynomial time in the presence of an order relation, cf. [9]).

To prove Theorem 2, we need the following:

Proposition4. Let q be (deterministic) transitive closure, and £ be FO(C)
or FO(Qu). Assume that ¢ : N — R is a nondecreasing function that is not
bounded by a constant. Then there exists a class C of graphs such that both
Def(,,,1(Py,C) and Sep,, 1(q,C) hold.

Bushy trees In what follows, trees are directed graphs with edges oriented from
the root to the leaves. A tree is called bushy if, for any two non-leaf nodes z # y,
out-deg(x) # out-deg(y). A k-bushy tree is a bushy tree in which every path from
the root to a leaf has the same length k. A canonical k-bushy tree is obtained as
follows. We start with the root of outdegree 2. Its first child has 3 children, the
second child has 4 children. This completes level 2, and we now have 7 elements
at level 3. They will have 5, 6, 7, 8, 9, 10 and 11 children, respectively. This gives



Proving expressivity bounds in local logics Let ¢ be a query that takes
structures from STRUCT][o] as inputs and returns m-ary relations (e.g, transitive
closure takes graphs from STRUCT[oy,] as inputs and returns graphs). Let R
be a class of relations, and £ a logic. Suppose we want to prove that ¢ € L+ R.
For that purpose, we introduce two conditions.

Def;[,1[R,C] Assume C C STRUCT[c]. Then there exists a number n and an
L formula ¢ in the vocabulary o such that p[A] € R for every A € C with
|A|> n.

Sep,(,[¢,C] For any two numbers r,n > 0, there exists A € C with | A[>n

and two m-ary vectors @, b of elements of A such that & o E, d e q(A) and

b q(A).

That is, Def;[,[R, C] says that relations from R are definable by o-formulae
of £ on large enough structures from C, and Sep[, [¢,C] says that ¢ separates
similarly looking (in a local neighborhood) tuples on arbitrarily large structures
from C.

Theorem 1. Assume that £ is FO, or FO(C), or FO(Qy). Suppose for a
given query q on o-structures, one can find C C STRUCT[o] such thatl both
Def;(;)[R,C] and Sep,(,[q,C] hold. Then ¢ & L +R.

Proof: Assume that ¢ is definable in £ 4+ R by a formula ¢ in the vocabulary
that includes o and a symbol R for the relation from R. Let v be obtained
from ¢ by replacing each occurrence of R(---) by ¢(---), where ¢ is given by
Def;[;1[R,C]. Then, for every A € C with | A|> n, we have ¢//[A] = ¢(A). Note
that ¢’ is a L-formulain the vocabulary o. By Fact 4, ¢’ is local. Let » = Ir(¢’).
By Sep,[,lg, C], we find a structure A € C such that, for two m-vectors, @ and
I;, one has @ =, I;, d € q(A) and EQ q(A). Then A = —=(¢/(d) — 1//(5)), which

contradicts locality. a

Note that this theorem can be straightforwardly extended to the case of
several built-in relations of possibly different arities, by considering R instead of
R, where R is a tuple of classes of auxiliary relations. Then Def;[,1[R, C] says

that relations from each component of R can be defined by a o-formula of £ on
sufficiently large structures from C.

Theorem 1 can also be extended to any local logic that is closed under first-
order operations and allows a notion of substitution in a way that was used in
the proof. All naturally occurring extensions of FO that are known to be local
have these properties.

Lower bounds for (deterministic) transitive closure: FO(C) and FO(Qy,)
with “thin” preorders Deterministic transitive closure of a graph is obtained
by closing its deterministic paths, that is, if G = (V, E) is a directed graph, then
dte(G) = (V, E') where (a,b) € E' iff either (a,b) € F or there exists a path
(a,a1),(a1,az2),...,(ap—1,an),(an,b) € E such that a and each a;, i =1,...,n
have outdegree 1. We shall use {c to denote the transitive closure of a graph.



We shall use Oy for the class of preorders in which no equivalence class has
more than k elements; these can be viewed as being very close to linear orders
for small k. We also call them preorders of width k. In particular, O; is the class
of linear orders. We also write £+ < instead of £ + O for the class of queries
definable in £ in the presence of built-in order relation.

3 Local queries over finite models

A number of notions of locality have been introduced in finite-model theory in
order to prove inexpressibility results, cf. [9, 12, 11, 7, 16]. Here we describe one
of these notions, which will serve as a main technical tool.

Given a structure A, its Gaifman graph [9, 12] G(A) is defined as (A, E)
where (a,b) is in F iff there is a tuple ie R# for some i such that both @ and b
are in t. For example, if A is a graph itself, then G(A) is its reflexive-symmetric
closure. The distance d(a,b) is defined as the length of the shortest path from
a to b in G(A); we assume d(a,a) = 0. Given a € A, its r-sphere SA(a) is
{be A|d(a,b)<r}. For a tuple ¢, define SA(#) as Uaer S (a).

For i = (t1,...,tpn), its r-neighborhood N;“(f) is defined as a ¢, structure

(SAM), RN SAMDP, . RAENSAD! 1y, )

That is, the carrier of N;“(t_) is S;“(t_), the interpretation of the o-relations is
obtained by restricting them from A to the carrier, and the n extra constants
are the elements of 7. If A is understood, we write S, (f) and N, (t_>

We use the notation @ &4 b, or @ 2, b if A is understood, if NA(@) and N;“(E)
are isomorphic. Note that an isomorphism between these maps ith component
of @ onto ith component of b.

A formula ¢(z1, ..., 2m) in a logic £ is called local [7, 16] if there exists r > 0
such that, for every A € STRUCT][s] and for every two m-ary vectors @, b of
elements of A, N, (d) = NT(I_;) implies A = ¢(d) iff A 1/)(5) The minimum
r for which this holds is called the locality rank of ¢, and is denoted by Ir(¢).
Based on results of [13, 17], the following was shown in [16]:

Fact 4 Fvery FO(C) formula without free second-sort variables is local, and
every FO(Qy) formula is local. O

4 Expressivity bounds for FO(C) and FO(Q,) in the
presence of relations of large degree

We start by giving a general technique for proving expressivity bounds for local
logics. Then we apply it to FO(C) to prove our main result that DLOG-complete
problems (in particular, deterministic transitive closure) cannot be expressed in
it in the presence of relations that are very close to linear orderings. In particular,

it will follow that DLOG & FO(C) + O, for any k£ > 1.



omit the superscript. The class of finite o-structures is denoted by STRUCT[¢].
Isomorphism is denoted by 2. The carrier of A is always denoted by A.

We deal with three logics: FO,FO(C) and FO(Q,), the last one being
first-order logic with unary quantifiers. First-order formulae are built-up from
atomic formulae by using Boolean connectives and quantifiers 3 and V. First-
order logic with counting, FO(C), is defined as a two sorted logic, with sec-
ond sort being the sort of natural numbers. That is, a structure A is of the
form A = ({1,...,n},{v1,..., v}, <, BIT, 1, max, R, ..., R*). Here the rela-
tions RZA are defined on the domain {vy, ..., v, }, while on the numerical domain
{1,...,n} one has 1, max, < and the BIT predicate available (BIT(4, j) iff the
ith bit in the binary representation of j is one). It also has counting quantifiers
Jiz.p(x), meaning that ¢ has at least ¢ satisfiers; here ¢ refers to the numerical
domain and # to the domain {vy,..., v, }. These quantifiers bind & but not 1.

Let 0,"""? be a signature of k unary symbols, and let K be a class of
oY -structures which is closed under isomorphisms. Then K gives rise to
a generalized quantifier @k, and FO(Qx) extends the set of formulae of FO
with the following additional rule: if ¢q(21,81),. .., ¥s(2g, ¥) are formulae,
then Qxzy...xp.(Y1(x1, 1), ..., Ye(zs, ¥5)) is a formula. Here Qg binds ;
in the ith formula, for each ¢ = 1,..., k. The semantics is defined as follows:
A ': QKl‘l e .l‘k.(l/)l(l‘l, 51), ceey 1/)k(l‘k, Eik)) iff (A, 1/)1[./4, 51], e .,1/)k[A, Eik]) S
K, where ¢;[A,d;] = {a € A | A= ¢i(a,d;)}. In this definition, d@; is a tuple
of parameters that gives the interpretation for those free variables of ¢;(z;, %)
which are not equal to x;. Examples of unary quantifiers include the usual 3 and
Vv, as well as Rescher (bigger cardinality) and Hartig (equicardinality) quantifiers.
We use the notation FO(Q,,) for FO extended with al/l unary quantifiers.

Every FO(C) sentence can be expressed in FO(Q,), while there exist prop-
erties definable in FO(Q,) but not in FO(C).

While the results in this paper refer to these three logics, they can also be
extended to abstract logics in the sense of [8], which are regular (e.g., closed
under first-order operations and substitutions).

With each formula ¢(x1, ..., 2y) in the logical language whose symbols are
in o, we associate a query (semantic mapping) that maps a o-structure A into
a m-ary relation ¢[A] = (4, {(a1,...,am) € A" AEY(ar,...,am)}).

Given a relational signature o and a class R of ¢’-structures, where o’ is
another relational signature, disjoint from o, we say that a query ¢, producing
an m-ary relation, is definable on o-structures in the presence of R-structures if
there exists a o U o’-formula ¢(Z) such that, for any o-structure A with carrier
A and for any structure A’ € R on A, we have:

¢(A) ={a e A" | (A, A) | o(a@)}

where (A, A"} is the o U ¢’ structure obtained by putting A and A’ together.
We most often encounter the situation where R is the class of preorders (with
special properties), or linear orders. Note that, according to this definition, a
query definable in the presence of R-structures is independent of a particular R
structure being used. We use the notation £+R for the class of queries definable
in £ the presence of relations from R.



one has to at least be able to lift the results from constant degrees to those that
depend on the size of the input.

A result in this direction was proved in [16], using a definition on moderate
degree from [11]. A class C of graphs (more generally, relational structures) is of
moderate degree, if degmaz(n), the maximal in- or out-degree of an n-element
graph from C, is at most logo(l) n. That is, for some function §(n) such that
limy, o0 8(n) = 0, we have degmaz,(n) < logé(") n.

Fact 3 ([16]) Deterministic transitive closure cannot be defined by FO(C) in the
presence of auzxiliary relations of moderate degree. a

In [11], auxiliary relations of moderate degree were shown to be of no help for
expressing connectivity of graphs in monadic X1. This was extended to degrees
n°(1) [22] and to a linear order [21]. So one may wonder if a similar program can
be carried out for FO(C).

There is a significant difference between Facts 1, 2 and 3, and the desired
separation for the ordered case: in those Facts, we only deal with auxiliary rela-
tions of small degrees — these are either constant, or very small compared to the
size of the input structure. In contrast, a linear order realizes as many degrees
as there are elements in the input. Hence, one needs techniques to lift the results
for FO(C) from relations of small degrees to relations of large degrees, i.e. those
comparable with the size of the input.

Organization After introducing the notation in Section 2, and the technical ma-
chinery based on local properties of logics in Section 3, we describe, in Section 4,
a general approach to proving expressivity bounds for local logics in the presence
of auxiliary relations. We then define the class of “almost linear orders” (shown
in figure 1) and use the general technique to show that deterministic transitive
closure (and thus other DLOG-complete problems) are not expressible in FO(C)
in the presence of those relations. In Section 5, we show that, in a precise sense,
this is the best partial result that can be obtained using locality techniques. In
Section 6, we analyze expressivity of FO(C) in the pure case (without auxil-
iary relations) vs. built-in orders or preorders. We also describe problems whose
inexpressibility in FO(C) (note the absence of an order relation!) would imply
TC ; DLOG(NLOG). Complete proofs can be found in the full version, which
also contains a more detailed comparison with known results, and shows some
applications in database theory.

2 Notations

A relational signature o is a set of relation symbols {Ry, ..., R}, with an asso-
ciated arity function. In what follows, p;(> 0) denotes the arity of R;. We write
oy for o extended with n new constant symbols. We use o, for the signature of
graphs (that is, one binary predicate E). A o-structure is A = (A, R{, ..., R,
where A is a finite set, and RZA C APi interprets R;. If A is understood, we will



expressivity bounds 1s one of the central problems in Finite-Model Theory. In
this paper we show how tools based on locality of logics can be applied to the
complexity class TC? and, more generally, how they allow us to derive new
expressivity bounds in the presence of complex auxiliary relations.

The class TC? is an important complexity class: problems such as integer
multiplication and division, and sorting belong to TCY; this class has also been
studied in connection with neural nets, cf. [19]. Despite serious efforts and a
number of proved lower bounds (see [2] for a survey), it is still not known if
TC® C NP, and the results of [20] suggest that traditional approaches to lower
bounds are unlikely to succeed in proving this separation.

A starting point for our study is a result of [4] stating that:

FO(C) + < = uniform TCO.

Here, as usual, TC? is the class of problems solvable by polynomial-size, constant-
depth threshold circuits, and uniform means DLOGTIME-uniform, see [4] for
more details. From now on, whenever we write TC®, we mean the uniform class.

By FO(C) we mean the extension of first-order logic with counting quantifiers
34, where Jiz.p(x) means that ¢ has at least ¢ satisfiers. For example, 3¢, j((j +
J = 1) A Jliz.p(x)) (where 37 is a shorthand for “exists exactly ¢”) states that
the number of satisfiers of ¢ is even — this 1s known not to be expressible in
first-order logic alone. By FO(C)+ < we mean FO(C) in the presence of a built-
in order relation. Note that if we are interested in FO(C)+ < sentences, then it
does not matter which linear order 1s used. However, it is known that the mere
presence of an order relation increases expressiveness (cf. [3]).

Thus, the problem of separation of uniform TC® from classes such as
DLOG, NLOG, P, etc, is reduced to proving that some problems in these classes
are not expressible in FO(C)+ <. However, it appears that the presence of an
order relation is a major obstacle to proving such expressivity bounds. The first
partial result was given in [10], using counting games of [15]:

Fact 1 There exist a problem complete for DLOG wunder first-order reductions
that cannot be defined by FO(C) in the presence of a successor relation.

The result of [10] also shows that dic, deterministic transitive closure, is not
in FO(C) + succ, while FO + dtc + succ captures the class DLOG. This was
extended in [16] as follows.

Fact 2 ([16]) Deterministic transitive closure cannot be defined by FO(C) in the
presence of auxiliary relations, whose degrees are bounded by a fized constant k.

If we talk about directed graphs, by degrees we mean in- and out-degrees of
nodes. (A more general definition can be given for arbitrary relational structures,
cf. [7].) In the successor relation, every node has in- and out-degree either 0 or
1. In contrast to these two results, in a linear order on an n-element set, all n
different (in- and out-) degrees from 0 to n — 1 are realized. Thus, in order to
move closer to proving expressivity bounds in the presence of an order relation,
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Abstract. This paper studies expressivity bounds for extensions of first-
order logic with counting and unary quantifiers in the presence of rela-
tions of large degree. There are several motivations for this work. First, it
is known that first-order logic with counting quantifiers captures uniform
TC® over ordered structures. Thus, proving expressivity bounds for first-
order with counting can be seen as an attempt to show TCP ; DLOG
using techniques of descriptive complexity. Second, the presence of aux-
iliary built-in relations (e.g., order, successor) is known to make a big
impact on expressivity results in finite-model theory and database the-
ory. Our goal is to extend techniques from “pure” setting to that of
auxiliary relations.

Until now, all known results on the limitations of expressive power
of the counting and unary-quantifier extensions of first-order logic dealt
with auxiliary relations of “small” degree. For example, it is known that
these logics fail to express some DLOG-queries in the presence of a suc-
cessor relation. Our main result is that these extensions cannot define the
deterministic transitive closure (a DLOG-complete problem) in the pres-
ence of auxiliary relations of “large” degree, in particular, those which are
“almost linear orders.” They are obtained from linear orders by replacing
them by “very thin” preorders on arbitrarily small number of elements.
We show that the technique of the proof (in a precise sense) cannot be
extended to provide the proof of separation of TC® from DLOG. We also
discuss a general impact of having built-in (pre)orders, and give some
expressivity statements in the pure setting that would imply separation
results for the ordered case.

1 Introduction

The development of Descriptive Complexity suggests a very close connection
between proving lower bounds in complexity theory and proving inexpressibility
results in logic. The latter are of the form “a property P cannot be expressed
in logic £ over the class of finite models.” Developing tools for proving such
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