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AbstractIt is common knowledge that relational calculus and even SQL are not expressiveenough to express recursive queries such as the transitive closure. In a real databasesystem, one can overcome this problem by storing a graph together with its transitiveclosure and maintaining the latter whenever updates to the former occur. This leads tothe concept of an incremental evaluation system, or IES.Much is already known about the theory of IES but very little has been translated intopractice. The purpose of this paper is to �ll in this gap by providing a gentle introductionto and an overview of some recent theoretical results on IES.The introduction is through the translation into SQL of three interesting positivemaintenance results that have practical importance { the maintenance of the transitiveclosure of acyclic graphs, of undirected graphs, and of arbitrary directed graphs. Inter-estingly, these examples also allow us to show the relationship between power and cost inthe incremental maintenance of database queries.1 IntroductionIt is common knowledge that the expressiveness of relational calculus and even SQL is limited.For example, recursive queries such as the transitive closure cannot be de�ned [2, 23] in theselanguages. However, in a real database system, one can try to overcome this problem by storinga graph together with its transitive closure and maintaining the latter whenever updates (i.e. theinsertion or deletion of edges) to the former occur. In other words, the recursive queries areevaluated and maintained incrementally. The result of such a recursive query can be thoughtof as a view of the database and the incremental evaluation of the query as view maintenance.The above leads to the concept of an incremental evaluation system, or IES.Incremental evaluation is often seen as merely a means to avoid expensive re-computation.However, from what we have said above of the transitive closure query, one can see that there�Department of Computer Science and Engineering, Wright State University, Dayton, Ohio 45435. Email:gdong@cs.wright.edu.yBell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA. Email: libkin@bell-labs.com.zDepartment of Computer Science, University of California, Santa Barbara, CA 93106, USA. Email:su@cs.ucsb.edu.xKent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613. Email: limsoon@krdl.org.sg.1



is much more to the idea of incremental evaluation than just a simple view of avoiding re-computation. In particular, we see incremental evaluation also as a way to do things thatcould not have been done otherwise. Coming back to transitive closure, it cannot be expressedin relational databases using SQL without incremental evaluation but can be expressed inrelational databases using SQL in the setting of an incremental evaluation system. In otherwords, avoidance of the cost of recomputation is not even the issue here, for the query is noteven do-able in SQL without incremental evaluation in the �rst place!A salient ingredient in an IES is its ambient language. All maintenance in an IES must beexpressible in the ambient language of the IES. For example, if the IES is a commercial relationaldatabase system, then its ambient language is SQL: it is allowed to use SQL but not C norother languages to express the maintenance. This restriction on the ambient language arisesfrom the modeling of the practical constraints imposed by real systems, mostly for reasons ofe�ciency, optimizability, security, and control. At the same time, the use of restricted ambientlanguage also gives rise to an opportunity to investigate its theoretical limits.Much is already known about the theory of IES [9, 19, 11, 12, 17, 14, 13, 16, 8, 22, 27, 26, etc.]However, very little has been translated into practice, perhaps for the reason that work on thetheory of IES is cast in an abstract mathematical form and the translation to SQL databasesystems is not always obvious.1 The objectives of this paper are two folds: Firstly, we selectthree interesting positive results that have practical importance and show how to realize themin commercial SQL database systems. Secondly, we aim to provide a gentle overview of somerecent theoretical results on IES.The three results that we translate into SQL concern the maintenance of the transitive closureof various kinds of graphs. The computation of transitive closure is the determination of theexistence of a path between nodes in a graph. Our choice is motivated from two perspectives.Firstly, transitive closure is the canonical representative of recursive queries. It is known to beinexpressible in relational calculus and SQL [2, 23]. Secondly, transitive closure has so muchpractical importance to the extent that several non-standard versions of SQL included specialoperators for implementing it.2 Thus a technique for maintaining transitive closure in standardcommercial SQL database systems would be very interesting. We should also emphasize that theapproach illustrated in (Section 4 of) this paper can be generalized; in fact, it leads to a uniformway to implement all queries in the polynomial hierarchy [21] using standard commercial SQLdatabase systems.OrganizationWe consider maintaining the transitive closure of three kinds of graphs in commercial SQLdatabase systems: acyclic directed graphs, undirected graphs, and arbitrary directed graphs.Acyclic graphs are the focus of Section 2. The transitive closure of these graphs are very easy to1We are only aware of one system, called ADEPT [29], that implements incremental maintenance of transitiveclosure of some classes of graphs.2We also note that the SQL3 proposal does include a recursive construct that enables it to express thetransitive closure. However, majority of systems are still only SQL92 compliant.2



maintain in commercial SQL database systems, requiring no more than the equivalent of purerelational calculus [13]. This example is also a good illustration of the power of the IES model,because it is well known [2, 23] that pure relational calculus and even SQL cannot computefrom scratch the transitive closure of such graphs.Undirected graphs are the focus of Section 3. The �rst known technique for maintainingthe transitive closure of undirected graphs using relational calculus (or equivalently, �rst-orderlogic) as the ambient language was that of [27]. A more space-e�cient technique using relationalcalculus was reported later in [14, 15]. The maintenance of the transitive closure of undirectedgraphs using SQL is more involved and more expensive than acyclic graphs. In particular, themaintenance of the transitive closure of acyclic graphs is very economical on space because allwe need to store are the transitive closure and the graph itself, whereas some additional binaryrelations must be maintained for the maintenance of the transitive closure of undirected graphs.Such additional relations are called \auxiliary" relations. These auxiliary relations should notbe confused with temporary intermediate relations: The former are used to store informationbetween updates whereas the latter are only used to simplify the expression of the SQL queries.Arbitrary directed graphs are the focus of Section 4. In contrast to the other two classes ofgraphs, the maintenance of the transitive closure of arbitrary directed graphs is much morecomplicated and costly. In fact, at the time of writing, it is still open whether the transitiveclosure of such graphs can be maintained using pure relational calculus [9] after edge deletions.However, a technique for maintaining the transitive closure of arbitrary directed graphs usingSQL was recently discovered [22]. The technique is quite expensive in terms of space: We needto maintain an auxiliary relation which makes use of up to an exponential number of integersnot appearing in the input graph. In contrast, the maintenance for undirected and acyclicgraphs does not make use of constants not in the input graph.In Section 5, we discuss the complexity of our three example implementations. We demonstratethat for acyclic and undirected graphs only a small constant number of joins are required to carryout the maintenance, giving them considerable performance advantage over typical transitiveclosure implementations based on iterated joins.Finally, Section 6 concludes the paper with an account of the more theoretical aspects of IES. Inparticular, we contrast results on IES that use pure relational calculus as their ambient languageto those that use SQL as their ambient language.2 Transitive Closure of Acyclic GraphsIt is appropriate to introduce the practical aspect of IES using a simple interesting example.So we show how to maintain the transitive closure of acyclic graphs in SQL database systemshere. It is a good illustration of the power of the IES model, because it is well known [2, 23]that pure relational calculus and even SQL cannot compute from scratch the transitive closureof such graphs.We base this section on the theoretical work reported in [13, 10]. In particular, the SQL queriesgiven below are derived from [13, 10]. We assume the following schemas: G(Start; End) for3



the input graph and TC(Start; End) for the transitive closure. The interpretation of these twotables is as follow. A tuple (x; y) is in the table G if and only if there is a directed edge fromthe node x to the node y in the input graph. A tuple (x; y) is in the table TC if and only ifthere is a directed path from the node x to the node y in the input graph. Our problem isto use SQL queries to maintain the relationship between G and TC described above when anedge is added to or deleted from the table G.Maintenance Under InsertionsSuppose an edge (a; b) is inserted. We maintain TC as follows. First all new tuples and possiblysome old ones are constructed and stored in a temporary relation, TC-NEW. Then the trulynew tuples in TC-NEW are merged into TC.SELECT *(1) FROM (SELECT Start = TC.Start, End = bFROM TCWHERE TC.End = aUNION(2) SELECT Start = a, End = TC.EndFROM TCWHERE b = TC.StartUNION(3) SELECT Start = TC1.Start, End = TC2.EndFROM TC AS TC1, TC AS TC2WHERE TC1.End = a AND TC2.Start = b) AS TINTO TEMP TC-NEWINSERT INTO TC-NEW (Start, End)(4) VALUES (a, b)SELECT *FROM TC-NEW AS TWHERE NOT EXISTS (SELECT *FROM TCWHERE TC.Start=T.Start AND TC.End=T.End)INTO TEMP DELTAINSERT INTO TCSELECT *FROM DELTAEssentially, the new transitive closure is obtained by adding to the old transitive closure thefollowing (Figure 1): (1) all new paths constructed by adding the new edge (a; b) to the back4
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Figure 1: Transitive closure of graph when new edge is insertedof an existing path ending at a, (2) all new paths constructed by adding the new edge (a; b) tothe front of an existing path starting at b, (3) all new paths constructed by inserting the newedge (a; b) between an existing path ending at a and an existing path starting at b, and (4) thenew edge itself.Maintenance Under DeletionsSuppose an existing edge (a; b) is deleted. The maintenance of TC is a slightly more complicatedproblem and some theoretical insight is required in order to see why it can be done using nothingmore than SQL or even pure relational calculus [13].Step 1: Finding the suspectsWe derive and store in a temporary table SUSPECT (Start ;End) all those pairs (x; y) such thatthere is a path in the old graph (the one before the deletion) from x to y that goes through theedge (a; b).SELECT *FROM (SELECT Start = X.Start, End = Y.EndFROM TC AS X, TC AS YWHERE X.End = a AND Y.Start = bUNIONSELECT Start = X.Start, End = bFrom TC AS XWHERE X.End = aUNIONSELECT Start = a, End = X.EndFROM TC AS XWHERE X.Start = bUNIONSELECT Start = a, End = bFROM TC AS XWHERE X.Start = a AND X.End = b)5



INTO TEMP SUSPECTStep 2: Finding the trusty guysWe derive and store in a temporary table TRUSTY (Start ;End) those paths in TC that areclearly una�ected by the deletion of the edge (a; b). Obviously, these can be obtained by (1)deleting SUSPECT from TC and (2) including the other edges of G.SELECT *(1) FROM (SELECT *FROM TCWHERE NOT EXISTS (SELECT *FROM SUSPECTWHERE SUSPECT.Start = TC.Start ANDSUSPECT.End = TC.End)UNION(2) SELECT *FROM GWHERE G.Start <> a AND G.End <> b)INTO TEMP TRUSTYStep 3: Deleting the bad guysThe new transitive closure contains (1) all TRUSTY paths, (2) all paths constructed by con-catenating two consecutive TRUSTY paths, and (3) all paths constructed by concatenatingthree consecutive TRUSTY paths. From the result of [13, 10], these constitute all paths thatshould be in the new transitive closure. To see this, consider a path in the desired transitiveclosure going through exactly the nodes x1; x2; :::; xk in the given order. Suppose there is i < jsuch that (xi; xj) is in SUSPECT but not in TRUSTY . Then there is a tightest pair of u andv such that i � u < v � j, and (xu; xv) is in SUSPECT . If v = u + 1, (u; v) is an edge andthus is in TRUSTY and both (x1; xu) (provided u 6= 1) and (xv; xk) (provided v 6= k) are inTRUSTY . Thus this path can be obtained by concatenating up to three TRUSTY paths. Ifv > u+1, then both (x1; xu+1) and (xu+1; xk) are in TRUSTY . Thus this path can be obtainedby concatenating two TRUSTY paths. All other paths are already captured by TRUSTY . Sowe can simply delete from TC all other paths.SELECT *(1) FROM (SELECT *FROM TRUSTYUNION(2) SELECT T1.Start, T2.EndFROM TRUSTY T1, TRUSTY T2WHERE T1.End = T2.Start 6



���� ���� ��������- - -���������3 c?ZZZZZZ~0 1a bFigure 2: An acyclic graphUNION(3) SELECT T1.Start, T3.EndFROM TRUSTY T1, TRUSTY T2, TRUSTY T3WHERE T1.End = T2.Start AND T2.End = T3.Start)INTO TEMP TC-NEWDELETE FROM TCWHERE NOT EXISTS (SELECT *FROM TC-NEW TWHERE T.Start = TC.Start AND T.End = TC.End)An Example for the Deletion CaseWe illustrate the maintenance by considering deleting the edge (a; b) from the acyclic graphgiven in Figure 2.Step 1 The contents of SUSPECT are as follows:SUSPECTStart End0 b0 1a ba 1c bc 1
TRUSTYStart End0 a0 cc ac bb 1Step 2 The contents of TRUSTY are given above.Step 3 All the good paths are now derived from TRUSTY through zero, e.g. for the case of(0; c), one, e.g. (0; b), or two joins, e.g. (0; 1), followed by projections. TC is updated bydeleting those paths that are not good. It is more instructive to visualize all the edgesother than (a; b) as a sequence of edges. 7



3 Transitive Closure of Undirected GraphsIn this section we show how to maintain the transitive closure of undirected graphs in SQL.An undirected graph contains the edge from a node y to a node x whenever it contains theedge from x to y. In contrast to the acyclic graphs case of the previous section, the transitiveclosure of these graphs can only be maintained if we store additional relations which are calledauxiliary relations. The auxiliary relations are used to maintain information between updatesto the graph.The �rst IES that maintains the transitive closure of undirected graph using nothing morethan pure relational calculus was given in [27] and an improved (space-wise optimal) IES wassubsequently developed in [14]. The SQL queries sketched below are mainly derived from theformer, except for the explicit maintenance and use of the total order.We again assume the following schemas: G(Start;End) for the input undirected graph andTC(Start;End) for the transitive closure. Since values in a tuple have explicit positions, weassume that G and TC stored are symmetric. Although each update on G speci�es an (ordered)pair (a; b), the actual changes to G are always made in terms of both (a; b) and (b; a). TheSQL queries given in this section assume that the updates are given in ordered pairs. Withoutthis assumption the maintenance is much more involved; see [14] for the solution without thisassumption.To maintain TC, we need to use some auxiliary relations that we must also maintain usingSQL: LESSTHAN(Small;Large) for a total order on all nodes in the graph, FOREST(A;B) fora spanning forest of the graph (FOREST is also symmetric), THROUGH(A; V;B) indicatingthat V is on the unique path from A to B in FOREST if the nodes A and B are connected.The contents of the auxiliary relations are dependent on the order of the updates to the graph,i.e. the update history leading to the current graph.The order relation LESSTHAN is used for choosing an edge from a set of edges satisfying thesame condition. This ordering is needed because a graph can have several distinct spanningforests and our incremental evaluation system has to select only one of them. It does notmatter which one we select, but we do have to select one. If an ordering on the nodes areavailable from the underlying relational database system, then we do not need LESSTHAN.For example, if the nodes are strings then we can use the string comparison operator of SQLinstead of LESSTHAN.Deriving Transitive Closure From THROUGHRecall that the table THROUGH is set up to contain a tuple (a;m; b) if and only if a and b areconnected and m is on the unique path from a to b in the spanning forest in FOREST. We canderive the transitive closure of our undirected graph as a view of THROUGH straightforwardly.CREATE VIEW TC (Start, End) ASSELECT DISTINCT Start=A, End=BFROM THROUGH 8



We need to demonstrate how to maintain the auxiliary tables LESSTHAN, FOREST, andTHROUGH in SQL. First, we de�ne the following view, GNODES, to hold all nodes in G.CREATE VIEW GNODES (Node) ASSELECT Node=StartFROM GUNIONSELECT Node=EndFROM GNote that UNION in SQL removes all duplicates by default.Maintenance of the Total Order LESSTHANThe �rst auxiliary relation we maintain after an update to G is LESSTHAN. Recall thatLESSTHAN is a total ordering on the nodes to help us later in choosing an edge from a set ofedges satisfying the same condition. Note that if an ordering on the nodes are available fromthe underlying relational database system, then we do not need LESSTHAN. For example,if the nodes are strings then we can use the string comparison operator of SQL instead ofLESSTHAN.Suppose an edge (a; b) is inserted. We update LESSTHAN by executing Expand(a), Expand(b),Initial(a; b), where Expand(x) is the following update that makes x larger than all other nodesin the total order, provided that x is new.INSERT INTO LESSTHAN (Small, Large)SELECT Small=Node, Large=xFROM GNODESWHERE x NOT IN (SELECT * FROM GNODES)and Initial(x; y) is the following update which simply inserts (a; b) to LESSTHAN whenLESSTHAN is empty.INSERT INTO LESSTHAN (Small, Large)SELECT DISTINCT Small=x, Large=yFROM GWHERE NOT EXISTS (SELECT * FROM LESSTHAN)Suppose an edge (a; b) is deleted from G. We update LESSTHAN by executing Shrink(a),Shrink(b), where Shrink(x) is the following update that removes x from the total order, providedthe node x no longer exists.DELETE FROM LESSTHANWHERE x NOT IN (SELECT * FROM GNODES)AND (Small=x OR Large=x) 9



Maintenance of FOREST AND THROUGH under InsertionsSuppose a new edge (a; b) is inserted. We �rst update LESSTHAN as described above. Thereis a need to change FOREST only if the inserted edge connects two previously disconnectedtrees (or equivalently a and b were not previously connected). Therefore we maintain FORESTas follows:INSERT INTO FORESTSELECT A=Start, B=EndFROM GWHERE NOT EXISTS (SELECT *FROM THROUGHWHERE A=a AND B=b)AND (Start=a AND End=b OR Start=b AND End=a)The queries for adjusting THROUGH resembles in a way the maintenance of TC of directedgraphs after the insertion of edges. However, THROUGH is symmetric, i.e. if (x; v; y) is inTHROUGH then so is (y; v; x); this complicates the expression. To make it simple, we �rstcreate the following temporary relation.SELECT *FROM (SELECT A=N.Node, V=N.Node, B=N.NodeFROM GNodes NUNIONSELECT *FROM THROUGH)INTO TEMP T-STARUsing T-STAR we apply the following updates.INSERT INTO THROUGH(1) SELECT A=T1.A, V=N.Node, B=T2.BFROM GNODES AS N, T-STAR AS T1, T-STAR AS T2WHERE T1.B=a AND T2.A=b AND N.Node=T1.VUNION(2) SELECT A=T1.A, V=N.Node, B=T2.BFROM GNODES AS N, T-STAR AS T1, T-STAR AS T2WHERE T1.B=a AND T2.A=b AND N.Node=T1.V AND N.Node=T2.VUNION(3) SELECT A=T1.B, V=N.Node, B=T2.AFROM GNODES AS N, T-STAR AS T1, T-STAR AS T2WHERE T1.B=a AND T2.A=b AND N.Node=T1.VUNION(4) SELECT A=T1.B, V=N.Node, B=T2.A10



�������
���

@@@@@@@
@@@

w w w w w wT1.A T2.BT1.V T2.Va b
Figure 3: \Connecting" two paths using the new edgeFROM GNODES AS N, T-STAR AS T1, T-STAR AS T2WHERE T1.B=a AND T2.A=b AND N.Node=T1.V AND N.Node=T2.VParts (1) and (2) above \connect" paths using the new edge (a; b) (see Figure 3), while Parts(3) and (4) make THROUGH symmetric.Maintenance of FOREST AND THROUGH under DeletionsSuppose an existing edge (a; b) is deleted. We proceed by �rst updating LESSTHAN. If (a; b)is in FOREST, we remove it. Deleting (a; b) from FOREST may cause one tree to split intotwo. When this happens, there can be none or several edges in G which connect these twotrees. For the former, we only need to eliminate relevant tuples in THROUGH to complete themaintenance. For the latter, we �rst delete relevant tuples (to (a; b)) from THROUGH; then wepick a replacement edge and insert it into FOREST; �nally we insert tuples that are relevantto the replacement edge. The procedure of inserting the replacement edge is identical to themaintenance of FOREST and THROUGH upon an insertion and thus the details are omitted.We describe the deletion and replacement edge selection steps in the following.Step 1: Identify a replacement edgeIn the case when the deleted edge (a; b) is in FOREST, we select a replacement edge and put itinto a temporary relation REP. This is done in two steps. First we �nd all possible replacementedges.SELECT *FROM GWHERE EXISTS (SELECT DUMMY = 1FROM THROUGH AS T1, THROUGH AS T2WHERE T1.A=Start AND T1.V=a AND T1.B=b ANDT2.A=a AND T2.V=b AND T2.B=End)AND EXISTS (SELECT * 11



FROM FORESTWHERE A=a AND B=b)INTO TEMP REP-ALLWe then pick the smallest edge in REP-ALL according to the total order LESSTHAN andstore it in REP. Note that REP has exactly one edge. Note that if the underlying relationaldatabase provides an ordering on the nodes, then this piece of SQL codes can be replaced byusing the appropriate comparison operation in SQL.SELECT DISTINCT Start, EndFROM REP-ALL AS R, LESSTHANWHERE NOT EXISTS (SELECT *FROM REP-ALL AS R1, LESSTHAN AS LTWHERE R1.Start=LT.Small AND R.Start=LT.LargeOR (R1.Start=R.Start ANDR1.End=LT.Small AND R.End=LT.Large)AND Small=Start AND Large=EndINTO TEMP REPStep 2: Delete relevant edges in THROUGHIntuitively, if a tuple (x; v; y) in THROUGH such that the edge (a; b) is on the unique pathbetween x; y, the tuple must be deleted. This happens exactly when THROUGH contains both(x; a; b) and (a; b; y).SELECT *(1) FROM (SELECT T.*FROM THROUGH AS T, THROUGH AS T1, THROUGH AS T2WHERE T1.V=a AND T1.B=b AND T2.A=a AND T2.V=bAND T1.A=T.A AND T2.B=T.BAND EXISTS (SELECT * FROM FOREST WHERE A=a AND B=b)UNION(2) SELECT T.*FROM THROUGH AS T, THROUGH AS T1, THROUGH AS T2WHERE T1.V=a AND T1.B=b AND T2.A=a AND T2.V=bAND T1.A=T.B AND T2.B=T.AAND EXISTS (SELECT * FROM FOREST WHERE A=a AND B=b))INTO TEMP DELTADELETE FROM THROUGHSELECT *FROM DELTAAgain, Part (2) above is to delete tuples that are symmetric to those deleted in Part (1).12



Step 3: Insert the replacement edgeThe step to insert the edge in REP into FOREST and maintain THROUGH is almost identicalto the insertion case.Step 4: Delete (a; b) from FORESTThe �nal step is to delete (a; b) from FOREST.DELETE FROM FORESTWHERE A=a AND B=b OR A=b AND B=aAn ExampleIt should be pointed out that G, FOREST, and the �rst and last columns of THROUGH aresymmetric and we only show half of the edges for clarity; furthermore, LESSTHAN is notsymmetric and only the chain part is shown.Suppose our graph G is as follows.GStart Enda bc dc ed e
LESSTHANSmall Largea bb cc dd e...

FORESTA Ba bc ed e
THROUGHA V Ba a/b bc c/e ed d/e ec c/d/e dThen the corresponding LESSTHAN, FOREST, and THROUGH relations can be as above.We use the notation (a; a=b; b) as a shorthand for the two tuples of (a; a; b) and (a; b; b).Suppose we now insert the edge (b; c). Since both nodes are already in G, LESSTHAN is notmodi�ed. Our maintenance algorithm will add the following tuples into the remaining tworelations: +FORESTA Bb c +THROUGHA V Ba a/b/c ca a/b/c/e ea a/b/c/e/d db b/c cb b/c/e/ eb b/c/e/d d13



The edge (b; c) is inserted into the FOREST relation because it connects two previously dis-connected trees.The contents of LESSTHAN, FOREST, and THROUGH will remain the same when (a; c) and(a; e) are subsequently inserted to G. The new graph G is shown below.GStart Enda ba ca eb cc dc ed eNow suppose (a; b) is deleted from the current G (shown above). There is no need to changeLESSTHAN. For FOREST and THROUGH, the algorithm will perform the following steps.Step 1: REP-ALL will contain (a; c) and (a; e), and REP has the smaller edge of the two, (a; c).Step 2: The following tuples and their symmetries are deleted from THROUGH:�THROUGHA V Ba a/b ba a/b/c ca a/b/c/e ea a/b/c/e/d dSteps 3 and 4: The replacement edge is inserted into FOREST and THROUGH is updated ac-cordingly using the insertion algorithm. The deletion edge (a; b) is deleted from FOREST.The resulting relations are as follows.GStart Enda ca eb cc dc ed e
LESSTHANSmall Largea bb cc dd e...

FORESTStart Enda cb cc ed e
THROUGHA V Ba a/c ca a/c/b ba a/c/e ea a/c/e/d db b/c cb b/c/e/ eb b/c/e/d dc c/e ec c/d/e dd d/e e14



4 Transitive Closure of Arbitrary Directed GraphsArbitrary directed graphs are the most complicated graphs considered in this paper. In thissection we present SQL queries for maintaining the transitive closure of these graphs. Incontrast to acyclic graphs, it is not possible to use SQL queries to maintain the transitiveclosure of arbitrary directed graphs without using auxiliary relations [8]. Also, in contrast toundirected graphs, it is not known whether it is possible to maintain the transitive closureof arbitrary directed graphs using pure relational calculus. So we have to consider using morepowerful features of SQL that we have managed to avoid in the two previous sections|aggregatefunctions and GROUPBY operator. These are features that makes SQL strictly more powerfulthan pure relational calculus [23, 25].We use the technique from [22] to maintain the transitive closure of arbitrary directed graphsby SQL queries. The idea is to maintain complete information of all possible paths betweenthe nodes of the graph. A path can basically be represented by its start node, its end node,and the set of all its intermediate nodes. To keep all the paths, it may appear that we need tostore a nested relation, which of course cannot be done directly in a �rst-normal form relationaldatabase.The trick around this little problem is to generate some unique numbers to identify each path.Then a path that is identi�ed by the number i and starts at x, ends at y, and going throughintermediate nodes n1, ..., nk can be represented by the set of tuples (i; x; y; n1), ..., (i; x; y; nk).Since the numbers identifying di�erent paths are di�erent, all these sets of tuples can be storedin the same table. As to how to generate these unique numbers, we just use the standardarithmetics and aggregate functions available in a typical commercial SQL database system!In the rest of this section, we present the SQL queries for realizing the above solution to theproblem of maintaining the transitive closure of arbitrary graphs. These queries are translatedfrom theoretical results in [22].We again use the schemas G(Start; End) and TC(Start; End) to represent the input graph andits transitive closure. In addition, we use two auxiliary relations R(Pnum; St; End; IntS; IntD)and DUMMY (Pnum; St; End; IntS; IntD). In both R and DUMMY , the attributes areinterpreted as follow: Pnum is the number assigned to uniquely identify a path; St is the �rstnode of the path; End is the last node of the path; IntS and IntD are two consecutive nodeson the path (IntS is source, IntD is destination.)The auxiliary relation R is maintained in such a way that it contains a tuple (k; x; y; a; b) if andonly if the path whose number is k starts from x, ends in y, and goes through the edge froma to b. The relation DUMMY contains exactly one tuple (0; NULL;NULL;NULL;NULL)that is needed to handle computation of MAX aggregate function when R is empty.In what follows, pairing(x; y) is the pairing function on natural numbers:pairing(x; y) = (x+ y)(x+ y + 1)2 + y
15



Deriving Transitive Closure From RGiven the property of R, the transitive closure of G can be easily derived from R.CREATE VIEW TC ASSELECT DISTINCT Start= St, End = EndFROM RIt remains to explain how we maintain the auxiliary table R in SQL.Maintenance Under DeletionsSuppose an existing edge (a; b) is deleted. Then R is reconstructed trivially by deleting everypath that goes through (a; b).SELECT PnumFROM RWHERE IntS = a AND IntD = bINTO TEMP DEADPATHDELETE FROM RWHERE Pnum IN DEADPATHMaintenance Under InsertionsInsertion is more complicated, mostly because SQL is not well designed [5, 4]. Suppose a newedge (a; b) is inserted into G. The reconstruction of R requires the following 8 steps.Step 1Create a temporary table V1(Pair;Comp1;Comp2; St; End). The attributes of this view areinterpreted as follow: Pair is a number identifying a new path that is being created by con-catenating paths whose numbers in R are Comp1 and Comp2, via the new edge (a; b); St isthe �rst node of the path; and End is the last node of the path. The purpose of this view isto generate new numbers to identify new paths formed by the linking of two old paths by thenew edge (a; b).SELECT DISTINCTPair = pairing (R1.Pnum, R2.Pnum),Comp1 = R1.Pnum,Comp2 = R2.Pnum, 16



St = R1.St,End = R2.EndFROM R R1, R R2WHERE R1.End = a AND R2.St = bINTO V1Step 2Create the �rst set to be inserted into R, given by paths formed by connecting two existingpaths using the edge (a; b). The numbers that uniquely identify these new paths have alreadybeen created in V1 of the previous step. All we need to do now is for each such new path, (1)add all intermediate edges of the its two component paths and (2) add (a; b) as an intermediateedge linking the two components. This step is accomplished by the SQL query below.SELECT *FROM ((1) SELECT DISTINCTPnum = V1.Pair,St = V1.St,End = V1.End,IntS = R.IntS,IntD = R.IntDFROM V1, RWHERE (R.Pnum = V1.Comp1 AND R.St = V1.St AND R.End = a)OR (R.Pnum = V1.Comp2 AND R.St = b AND R.End = V1.End)UNION(2) SELECT DISTINCTPnum = V1.Pair,St = V1.St,End = V1.End,IntS = a,IntD = bFROM V1)INTO TEMP VINS1Step 3Create a temporary table TEMP1 to give us all the paths we have found so far. This is apreparatory step for generating new numbers to identify the remaining new paths. The use ofthe DUMMY table is necessary to ensure that this view is nonempty.SELECT *FROM ( 17



SELECT * FROM VINS1UNIONSELECT * FROM RUNIONSELECT * FROM DUMMY)INTO TEMP TEMP1Step 4Find the maximum path number in TEMP1 and calculate a safe lower bound NewId for newpath numbers. This lower bound is needed before we can generate new numbers to identify theremaining new paths.SELECT DISTINCT Id = pairing (1+Pnum, Pnum)FROM TEMP1WHERE Pnum = (SELECT MAX(Pnum) FROM TEMP1)INTO TEMP NewIdStep 5Create the temporary table VINS2 to account for the edge (a; b) considered by itself as a path.SELECT Pnum = NewId.Id,St = a,End = b,IntS = a,IntD = b,FROM NewIdINTO TEMP VINS2Step 6Create new paths that are constructed by adding the new edge (a; b) in front of an existingpath. Every such new path contains exactly (1) all nodes from the existing path and (2) thenew edge (a; b).SELECT *FROM ((1) SELECT DISTINCTPnum = pairing(R.Pnum, NewId.Id),St = a,End = R.End, 18



IntS = R.IntS,IntD = R.IntDFROM R, NewIdWHERE R.St = bUNION(2) SELECT DISTINCTPnum = pairing(R.Pnum, NewId.Id),St = a,End = R.End,IntS = a,IntD = bFROM R, NewIdWHERE R.St = b)INTO TEMP VINS3Step 7Create a new view VINS4 to account for path which are formed by appending the new edge(a; b) to the tail of an existing path. Every such new path contains exactly (1) the nodes fromthe exiting path and (2) the new edge (a; b).SELECT *FROM ((1) SELECT DISTINCTPnum = pairing(R.Pnum, NewId.Id),St = R.St,End = b,IntS = R.IntS,IntD = R.IntDFROM R, NewIdWHERE R.End = aUNION(2) SELECT DISTINCTPnum = pairing(R.Pnum, NewId.Id),St = R.St,End = b,IntS = a,IntD = bFROM R, NewIdWHERE R.End = a)INTO TEMP VINS4
19



Step 8All new paths are now accounted for. We simply insert all of them into R to �nish o� theupdate.INSERT INTO RSELECT * FROM VINS1UNIONSELECT * FROM VINS2UNIONSELECT * FROM VINS3UNIONSELECT * FROM VINS4An Example for the Insert CaseAssume that the graph in G contains two edges (x; a) and (b; y). Then the table R is:Pnum St End IntS IntD1 x a x a2 b y b ySuppose we want to insert the new edge (a; b). Here is the step-by-step account of the process.Step 1 Create V1 which contains one tuple (6; 1; 2; x; y), here 6 = pairing(1; 2).Step 2 Create VINS1. The �rst select statement produces (6; x; y; x; a) and (6; x; y; b; y). Thesecond select produces (6; x; y; a; b). So we getPnum St End IntS IntD6 x y x a6 x y b y6 x y a bStep 3 Create TEMP1 as the union of R, VINS1, and DUMMY .Step 4 NewId contains pairing(7; 6) = 97.Step 5 Create VINS2, which contains one tuple (97; a; b; a; b).Step 6 Create VINS3 corresponding to paths that start with (a; b). The identi�er of the onlysuch path is pairing(2; 97) = 5047. So we get VINS3 as20



Pnum St End IntS IntD5047 a y b y5047 a y a bStep 7 Create VINS4 corresponding to paths that end with (a; b). The identi�er of the only suchpath is pairing(1; 97) = 4948. So we get V INS4 asPnum St End IntS IntD4948 x b x a4948 x b a bStep 8 Insert all of them into R. The updated value of R isPnum St End IntS IntD1 x a x a2 b y b y6 x y x a6 x y b y6 x y a b97 a b a b5047 a y b y5047 a y a b4948 x b x a4948 x b a bAfter that, the transitive closure TC can be extracted as the projection of the new value of Ronto the St and End attributes: Start Endx ab yx ya ba yx bRemarkOne may notice that path identi�ers grow very fast. One can introduce some extra steps torenumber the paths. This can be done as follows.First we create a mapping NM3 from the old Pnum's to new consecutive numerical identi�ers.This can be accomplished in three extra steps using GROUPBY and the standard aggregatefunction COUNT of SQL. 21



CREATE VIEW NM1(Pnum) ASSELECT DISTINCT PnumFROM RCREATE VIEW NM2(Pnum) ASSELECT First = s.Pnum, Second = r.PnumFROM NM1 s, NM1 rWHERE s.Pnum <= r.PnumSELECT First = NM2.First, Second = COUNT(NM2.Second)FROM NM2GROUPBY FirstINTO TEMP NM3NM1 is a copy of all the Pnum's currently in used. NM2 pairs each Pnum to those Pnum'sthat are less than it. Then we can simply do a GROUPBY and COUNT on NM2 to generate the tableNM3 which maps each old Pnum to its \rank" (ie. the number of existing Pnum's less thanthat old Pnum.) These ranks can then be used as our new consecutive numerical identi�ers.Continuing with our example, this yields:First Second1 12 26 397 44948 55047 6Finally, we use a join to apply this mapping to renumber the Pnum's.UPDATE RSET Pnum = NM3.SecondFROM R, NM3WHERE R.Pnum = NM3.FirstThis update results in the following value of R, where Pnum now takes on small consecutivevalues.
22



Pnum St End IntS IntD1 x a x a2 b y b y3 x y x a3 x y b y3 x y a b4 a b a b6 a y b y6 a y a b5 x b x a5 x b a b5 ComplexityWe re-iterate the main point of this paper: There is much more to the idea of incrementalevaluation than the view that it is merely a means to avoid expensive re-computation. Forexample, transitive closure cannot be expressed in relational databases using SQL withoutincremental evaluation but can be expressed in relational databases using SQL, in the settingof an incremental evaluation system. In other words, avoidance of the cost of recomputation isnot even the issue here, for the query is not even do-able in SQL without incremental evaluationin the �rst place!Nevertheless, it is still useful to consider the complexity of our incremental evaluation systems.For this purpose it is useful to make comparisons with some typical algorithms that computetransitive closure of graphs from scratch. A fairly standard database-style algorithm is based oniterated joins, which essentially repeats the query SELECT Start=G.Start, End=TC.End FROMG, TC WHERE G.End = TC.Start INTO TC as many times as there are edges in G. Note that whilethis query is in SQL, the process that iterates it must be programmed in an external languagesuch as C. The time complexity of this algorithm is O(n3) for a dense graph having n edges. Inthe presence of appropriate indices, the complexity can be reduced to O(n2 logn). A standardnondatabase-style algorithm is the Warshall algorithm [28]. Note that this is a main-memoryalgorithm and thus extra work is required if the graph resides in a database. The cost of thisalgorithm is O(v3) for a graph having v vertices, which is approximately n3=2 for a dense graphhaving n edges.Let us begin with acyclic graphs. The cost of inserting a new edge can be estimated in termsof the number of joins as follows (we can ignore the cost of other operations, as the cost ofjoins dominates the overall cost.) 1 join is required to calculate TC-NEW, 1 join is required tocalculate DELTA (since the existence test has the cost of a join), giving us two joins in total.The cost of deleting an existing edge can also be estimated in terms of the number of joins.1 join is required to calculate SUSPECT, 1 join is required to calculate TRUSTY, 3 joins arerequired to calculate TC-NEW (actually, this one can be easily optimized to 2 joins), 1 join isrequired to carry out the �nal deletions, giving us 6 joins in total. Assuming that the graphis dense so that the number of edges in G and TC are both approximately n, then the cost of23



maintaining the transitive closure of acyclic graphs under our setting is at worst approximately6n2, as all relations involved in our 6 joins would also be approximately n edges in size. This isconsiderably better than the cost of the standard database-style transitive closure algorithm.However, it is slightly poorer than the Warshall algorithm. In the presence of suitable indices(which we can easily create), the cost of a join over a pair of relations of size n is O(n logn).Then the cost of our incremental evaluation system is reduced to approximately 6n logn, whichis better than the standard database algorithm with indices as well as the Warshall algorithm.Let us now consider the undirected graphs. We ignore the cost of maintaining LESSTHAN,since in real life, nodes in the graphs are atomic objects like strings and numbers, for which anorder can be obtained from the underlying relational database system. The cost of inserting anew edge is estimated as follows. No join is required to calculate FOREST, no join is requiredto calculate T-STAR, 8 joins are required to update THROUGH, giving us 8 joins in total.The cost of deleting an existing edge is estimated as follows. 1 join is required to calculateREP-ALL, 1 join is required to calculate REP (assuming the use of LESSTHAN is replaced bythe appropriate comparison operation of the underlying database system), 4 joins are used tocompute DELTA, no join is needed to update FOREST, 8 joins to update THROUGH (this partwas not shown), giving a total of 14 joins. Assuming that the graph is dense so that the numberof edges in G and TC are both approximately n. Then the number of edges in THROUGHis approximately n3=2. Even though the joins involve THROUGH, a careful inspection showsthat only about n of these n3=2 in THROUGH are involved in these joins, since these joinsare always preceded by selections. Thus the cost of maintaining undirected transitive closureunder our incremental setting is about 14n2, as all the relations involved in our 14 joins wouldalso be about n edges in size. Even for moderate n, this is still better than the cost of thestandard database-style transitive closure algorithm. However, it is not as good as the Warshallalgorithm. In the presence of suitable indices, the cost of our incremental evaluation can bereduced to approximately 14n logn, which is better than the standard database-style transitiveclosure algorithm as well as the Warshall algorithm.So we see that our incremental evaluation systems for acyclic and undirected transitive closurehave two advantages: They are expressible using nothing more than SQL and they are alsorelatively more e�cient than typical transitive closure algorithms based on re-computation. Forthe case of arbitrary directed graphs, the complexity of our incremental evaluation system isnot so good. In a dense graph, the number of paths is exponential with respect to the numberof edges in the graph. So for dense graphs, the size of R, which stores all possible paths, wouldalso be exponential. As a consequence, the worst-case cost in terms of time is also exponential.The point of our incremental evaluation system for the transitive closure of arbitrary graphs isthus a theoretical one: It is possible to compute the transitive closure of arbitrary graphs inSQL in an incremental setting.6 Theory of Incremental Evaluation SystemsHaving discussed the SQL queries of IES for transitive closures, let us give a brief overview ofthe theory of IES. We �rst recall the concept of IES. Suppose we have a query Q. An IES(L)24



for maintaining the query Q is a system consisting of an input database I, an answer databaseA, an optional auxiliary database, and a �nite set of maintenance functions that correspond tothe di�erent kinds of permissible updates to the input database. These maintenance functionstake as input, the corresponding update, the input database, the answer database, and theauxiliary database; and they collectively produce as output the updated answer database andthe updated auxiliary database. There are only two requirements: the condition A = Q(I)must be maintained, and the maintenance functions must be expressible in the language L. (Lis called the ambient language of the IES.) We only consider queries from at relations to atrelations; and in this paper permissible updates are restricted to the insertion and deletion ofa single tuple. A further restriction is also imposed so that the constants that appear in theauxiliary database must also appear in the database or in the answer or in some �xed set.The earliest formulation of IES is [18]; successive re�nements were given in [11, 17, 15]. Thesepapers considered the �rst-order incremental evaluation system, IES(FO), which uses �rst-orderlogic to express maintenance functions. It is thus equivalent to IES where pure relational calculusis used as the ambient language. A closely related formalism is dynamic �rst-order, DynFO, of[27]. While DynFO is similar to IES(FO) in many aspects, there are some important di�erencesbetween the two, see [27, 15] for comparison. Here, we will use IES(FO) for illustration.For each relation symbol R, we use Ro to refer to the instance of R before an update, andRn the instance of R after the update (here `o' stands for old and `n' for new). Consider theview even that is de�ned to be f1g if the relation R has even cardinality and fg if R has oddcardinality. While even is well known to be inexpressible in relational calculus [1], it can beexpressed in IES(FO). The update function for even when a tuple t is deleted from R is givenby evenn(1) i� (Ro(t) ^ :eveno(1)) _ (:Ro(t) ^ eveno(1)):The update function when a tuple t is inserted into R is given byevenn(1) i� (Ro(t) ^ eveno(1)) _ (:Ro(t) ^ :eveno(1)):The IES(FO) that we used to maintain even as above is also called a space-free IES(FO),because it does not make use of any auxiliary relations. It is sometimes necessary to use auxiliaryrelations. We write IES(FO)k to mean the subclass of IES(FO) where auxiliary relations ofarities up to k can be used. That is, each auxiliary relation has at most k attributes. In general,we write IES(L)k to mean the subclass of IES(L) where at auxiliary relations of arities up tok can be used.Much is already known about IES(FO). The transitive closure of acyclic graphs can be main-tained in space-free IES(FO) [13]. The transitive closure of undirected graphs can be maintainedin IES(FO)3 [27] and even in IES(FO)2 [14]. In a failed attempt to prove the strictness of theIES(FO)k hierarchy, Dong and Wong proved that equi-cardinality of relations of arbitrary ari-ties can be maintained in IES(FO)2 [19]. Dong and Su [14] showed that the IES(FO)k hierarchyis strict for k � 2.More recently, using a result of Cai [3], Dong and Su showed in [15] that the IES(FO)k hierarchyis strict for every k. That is, for every k > 0 there is a query Q that can be maintained with thehelp of auxiliary relations of arity up to k, but cannot be maintained with the help of auxiliary25



relations of arity up to k � 1, when the ambient language is the relational calculus. However,their example query that proved the strict inclusion of IES(FO)k in IES(FO)k+1 had input arity6k. Even more recently, Dong and Zhang [20] separated IES(FO)k from IES(FO)k+1 using anexample query of arity 3k+1. However, it is open if there is an IES(FO) for transitive closureof arbitrary directed graphs. It is also open whether the IES(FO)k hierarchy remains strict ifwe restrict to queries having �xed input arity. For example, it is not known if the IES(FO)khierarchy is strict when restricted to graph queries.Besides these unresolved problems, IES(FO) has the further problem of not properly reectingthe power of practical relational systems. This is because IES(FO) uses relational calculusas its ambient language, while practical relational systems use SQL, which is more powerfulthan relational calculus. This motivated Libkin and Wong to study incremental evaluationsystems where the ambient language is NRCaggr, a theoretical reconstruction of SQL based ona nested relational calculus [23]. We use the notation IES(NRCaggr) to denote the incrementalevaluation system where both the input database and the answer are at relations, but theauxiliary database may involve nested relations. We use the notation IES(SQL) when theauxiliary database is also restricted to at relations. The rationale for the IES(SQL) is thatit approximates more closely what could be done in a relational database, which can storeonly at tables. With features such as nesting of intermediate data (as in GROUPBY) andaggregates, the ambient language has essentially the power of SQL, hence the notation.Many questions about the power of IES(SQL) have been answered recently. Dong, Libkin, andWong showed that space-free IES(SQL) is unable to maintain transitive closure of arbitrarygraphs [8]. In a later paper, they also proved that transitive closure of arbitrary graphs remainsunmaintainable in IES(SQL) even in the presence of auxiliary data whose degrees are boundedby a constant, or are extremely small compared to the size of the input database [9]. Onthe positive side, Libkin and Wong recently showed that if the bounded degree constrainton auxiliary data is removed, transitive closure of arbitrary graphs becomes maintainable inIES(SQL) [22]. In fact, this query (and even the alternating path query which is complete forpolynomial-time) can be maintained in IES(SQL)2, because the IES(SQL)k hierarchy collapsesto IES(SQL)2, that is, IES(SQL)k = IES(SQL)2 for k � 2 [22].Another result of Libkin and Wong [22] states that IES(NRCaggr) and IES(SQL) are equivalent.That means the restriction to at tables does not incur a loss in power. Since many problemshave a clearer and simpler implementation in IES(NRCaggr), this equivalence gives us a wayto \port" such theoretical implementations to the more realistic platform of commercial SQLdatabase systems.One can also ask what exactly is the limit of the power of IES(SQL)? Results aimed at answer-ing this question have recently become available [24]. On the positive side, all relational queriesexpressible in second-order logic, and hence having the polynomial-hierarchy data complexity[21], are maintainable in IES(SQL) in a uniform manner. On the negative side, this is veryclose to the upper bound on the power of IES(SQL). From these results and the practicalexamples from earlier sections, we conclude that practical relational databases, as well as moreadvanced systems like Kleisli [6], possess remarkable power (through maintenance) in a waythat was little suspected before. 26
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