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1 IntroductionThe development of Descriptive Complexity suggests a very close connectionbetween proving lower bounds in complexity theory and proving inexpress-ibility results in logic. The latter are of the form \a property P cannot beexpressed in a logic L over a class of �nite models." Developing tools for prov-ing such expressivity bounds is one of the central problems in Finite-ModelTheory. In this paper we show how tools based on locality of logics can beapplied to the complexity class TC0 and how they allow us to derive new ex-pressivity bounds of counting extensions of �rst-order logic in the presence ofcomplex auxiliary relations.The class TC0 is an important complexity class. Problems such as integermultiplication and division, and sorting belong to TC0. This class has alsobeen studied in connection with neural nets [29]. Despite serious e�orts and anumber of proved lower bounds [1], it is still not known if TC0 $ NP. In fact,the results of [30] show that traditional approaches to circuit lower boundsare unlikely to succeed in proving this separation.A starting point for our study is a result by Barrington, Immerman andStraubing [2] stating that:FO(C) + < = uniform TC0Here, TC0 is the class of problems solvable by polynomial-size, constant-depththreshold circuits; and uniform means DLOGTIME-uniform; see [2] for moredetails. From now on, we write TC0 whenever we mean the uniform class.FO(C) is the extension of �rst-order logic with counting quanti�ers 9i, where9ix:'(x) means that there are at least i elements x that satisfy '. FO(C)+ <is FO(C) in the presence of a built-in order relation. We give full de�nitionslater. At this point, we o�er an example: 9i; j((j + j = i) ^ 9!ix:'(x)), where9!i is a shorthand for \exists exactly i". This formula states that the number ofx satisfying ' is even; this property is known to be inexpressible in �rst-orderlogic alone.The problem of separation of uniform TC0 from classes such asDLOGSPACE;NLOGSPACE, P, etc., is thus reduced to proving that theircomplete problems are inexpressible in FO(C)+ <. However, it appears thatthe presence of an order relation is a major obstacle to proving such expres-sivity bounds for FO(C). Several partial results [8,21] show that there areproblems complete for DLOGSPACE that cannot be de�ned by FO(C) in thepresence of auxiliary relations whose degrees are bounded by a �xed constantk. If we talk about directed graphs, by degrees we mean in- and out-degreesof nodes. For example, in the graph of a successor relation, every node has in-2



and out-degree either 0 or 1. In contrast, in a linear order on an n-elementset, all n di�erent (in- and out-) degrees from 0 to n � 1 are realized. Thus,in order to move closer to proving expressivity bounds in the presence of anorder relation, one has to at least be able to lift the results from constantdegrees to those that depend on the size of the input.A result in this direction was proved in [21] using a de�nition of moderatedegree by Fagin, Stockmeyer and Vardi [9]. We say that a class C of graphs(more generally, relational structures) is of moderate degree, if degmax C(n),the maximal in- or out-degree of an n-element graph from C, is at mostlogo(1) n. That is, for some function �(n) such that limn!1 �(n) = 0, wehave degmax C(n) � log�(n) n. Then [21] proved that there is a DLOGSPACE-complete problem which is not de�nable in FO(C) in the presence of auxiliaryrelations of moderate degree.In [9], auxiliary relations of moderate degree were shown to be of no help forexpressing connectivity of graphs in monadic �11. Starting from their result,Schwentick extended it to degrees no(1) [31] and to a linear order [32]. So onemay wonder if a similar program can be carried out for FO(C).The intuition behind the introduction of a linear order is that it allows usto simulate encodings of structures on the tape of a Turing machine (or theorder of inputs of a circuit). While for order-invariant properties it does notmatter in which order elements appear on the tape (indeed, properties likeconnectivity of graphs do not depend on how graphs are represented), theydo appear in some order, and one must be able to use this order in logicalformulae. Even though the particular ordering does not change the truth valueof an order-invariant formula, the mere presence of an order gives many logicsextra power. For example, while FO+LFP and FO+PFP capture PTIMEand PSPACE over ordered structures [15,33], they possess the 0-1 law overunordered structures [19], meaning that such a simple PTIME property asparity cannot be expressed. The lower bound of Cai, F�urer and Immerman [4]shows that there are PTIME properties of unordered structures not de�nableeven in FO+LFP extended with counting quanti�ers. A similar phenomenonis observed for other logics, e.g., FO and FO(C) [3,28].Our main goal is to study the impact of auxiliary relations, such as orderings,on the expressive power of logics with counting. Our results apply to a varietyof logics, starting with FO and FO(C), and ending with a logic L�1!(C) pro-posed in [22]. This logic subsumes FO(C) and all other known pure countingextensions of FO. Note that when we speak of counting extensions of FO, wemean extensions that only add a counting mechanism, as opposed to thoseextensively studied in the literature [27] that add both counting and �xpoint.We consider a class of relations which are extremely close to linear orderings.3



These are preorders, with equivalence classes of size at most 2, that coincidewith linear orders almost everywhere. See Section 2 for precise de�nition, andFigure 1 for a picture. We �rst prove, by a simple direct argument, that thereare DLOGSPACE and NLOGSPACE-complete problems not de�nable in allthe counting logics above, in the presence of such relations. This immediatelyleads to a question whether the expressivity of, say, FO(C) in the presenceof such relations is the same as that of FO(C)+ <. In the second part ofthe paper, we prove a more involved result showing that this is not the case.In particular, logics such as FO(C) and L�1!(C), in the presence of preordersthat are almost everywhere linear orders, exhibit very tame behavior, normallyassociated with �rst-order de�nable properties. To prove the main result, weexploit the locality techniques in Finite-Model Theory.The idea of locality in Finite-Model Theory was �rst introduced by Gaifman[10]. Informally, a logic is local if the result of any query or property de�nable init can be determined by examining a \small neighborhoods" of its arguments.An interesting consequence of locality is the \bounded number of degreesproperty." Informally, a logic has the bounded number of degrees property ifany graph de�nable in it in terms of a second graph has a small number ofdistinct in- and out-degrees that depends only on the de�ning formula and themaximum in- and out-degree of the second graph. These properties make itstraightforward to infer many inexpressibility results. For example, if a logicis known to be local and thus has the bounded number of degrees property,then we can immediately conclude that it cannot de�ne the transitive closureof a chain graph, as the number of distinct degrees in the transitive closureobviously depends on the length of the chain.Organization In Section 2, we give formal de�nitions of various countingextensions of FO, notions of locality, and de�nability with auxiliary relations.We also give an example that shows how the presence of auxiliary relationsa�ects expressiveness.In Section 3, we give a direct proof that the transitive closure query is not ex-pressible in FO(C) in the presence of almost-everywhere linear orders. We alsoexplain that the technique of the proof does not straightforwardly generalizeto proving separation results in the ordered case.In Section 4, we address the question of whether it is possible to use the almost-everywhere linear orders to prove separation results in the ordered case. Wegive a negative answer. Indeed, for all counting logics we consider here, addinga linear order is strictly more expressive than adding a preorder, however closeto a linear order that preorder might be. We state the result and some of itscorollaries. In Section 5, we give the proof, where we �rst describe notionsof weak locality and then combine them with bijective Ehrenfeucht-Fra��ss�e4



games.Two extended abstracts with the results of this paper appeared in the Proceed-ings of 15th Symposium on Theoretical Aspects of Computer Science [25], andthe Proceedings of the 14th IEEE Symposium on Logic in Computer Science[23].2 NotationsFinite Structures and Logics All structures are assumed to be �nite. Arelational signature � is a set of relation symbols fR1, ..., Rlg, with associ-ated arities pi > 0. For directed graphs, the signature consists of one binarypredicate. A �-structure is A = hA;RA1 ; : : : ; RAl i, where A is a �nite set, andRAi � Api interpretsRi. We also allow some constants into a �-structure whereneeded. The class of �nite �-structures is denoted by STRUCT[�]. When thereis no confusion, we write Ri in place of RAi . Isomorphism is denoted by �=.The carrier of a structure A is always denoted by A.We abbreviate �rst-order logic by FO and omit the standard de�nitions. FOwith counting, denoted by FO(C), is a two-sorted logic with second sort beinginterpreted as an initial segment of natural numbers. Here, a structure A is ofthe form hfv1; : : : ; vng; f1; : : : ; ng; <;BIT; 1;max; RA1 ; : : : ; RAl iThe relations RAi are de�ned on the domain fv1; : : : ; vng. The constants 1 andmax are de�ned on the numerical domain f1; : : : ; ng and are interpreted as 1and n respectively. On the numerical domain the logic also has a linear order< and the BIT predicate available, where BIT(i; j) i� the ith bit in the binaryrepresentation of j is one. This logic also has counting quanti�ers 9ix:'(x),meaning that there are at least i elements x that satisfy '(x); here i refersto the numerical domain and x to the domain fv1; : : : ; vng. These quanti�ersbind x but not i. Ternary predicates + and � are de�nable on the numericaldomain [8]. The quanti�er 9!ix meaning the existence of exactly i elementssatisfying a formula is also de�nable. For example, 9i9j [(j+j) = i^9!ix:'(x)]tests if the number of x satisfying ' is even. Note that this example propertyis not de�nable in FO alone. We separate �rst-sort variables from second-sortvariables by semicolon: '(~x;~|).There are several counting extensions of FO that are more powerful thanFO(C). Amongst them is FO(Qu). This logic is FO extended with all unaryquanti�ers. We refer the reader to [12,18] for the de�nition of FO(Qu) and5



its properties. Here, we mostly work with an even more powerful logic that isde�ned below.We denote the in�nitary logic by L1!. It extends FO by allowing in�niteconjunctions V and disjunctions W. Then L1!(C) is a two-sorted logic thatextends the in�nitary logic L1!. Its structures are of the form (A;N), whereAis a �nite relational structure and N is a copy of natural numbers. Assume thatevery constant n 2 N is a second-sort term. To L1!, add counting quanti�ers9ix for every i 2 N, and counting terms: If ' is a formula and ~x is a tuple offree �rst-sort variables in ', then #~x:' is a term of the second sort, and itsfree variables are those in ' except ~x. Its interpretation is the number of tuples~a over the �nite �rst-sort universe that satisfy '. That is, given a structure A,a formula '(~x; ~y;~|), ~b � A, and ~|0 � N, the value of the term #~x:'(~x;~b;~|0)is the cardinality of the �nite set f~a � A j A j= '(~a;~b;~|0)g. For example, theinterpretation of #x:E(x; y) is the in-degree of node y in a graph with theedge-relation E.As this logic expresses every property of �nite structures, it is too powerful.We restrict it by means of the rank of formulae and terms, denoted by rk. Itis de�ned as quanti�er rank. That is, it is 0 for atomic formulae; rk(Wi 'i) =maxi rk('i); rk(:') = rk('); and rk(9x') = rk(9ix') = rk(') + 1 as usual.But it does not take into account quanti�cation over N: rk(9i') = rk(').Furthermore, rk(#~x: ) = rk( ) + j~xj.De�nition 1 (see [22]) The logic L�1!(C) is de�ned to be the restriction ofL1!(C) to terms and formulae of �nite rank.It is known [22] that L�1!(C) formulae are closed under Boolean connectivesand all quanti�cation, and that every predicate on N� : : :�N is de�nable by aL�1!(C) formula of rank 0. Thus, we assume that +; �;�;�, and in fact everypredicate on natural numbers is available. Known counting expansions of FOare contained in L�1!(C). That is, for every FO, FO(C), or FO(Qu) formula,there exists an equivalent L�1!(C) formula of the same rank. A counting logicof [3] can also be embedded into L�1!(C).De�nability with auxiliary relations An m-ary query on �-structures,Q, is a mapping that associates to each A 2 STRUCT[�] a structure hA;Si,where S � Am. We write ~a 2 Q(A) if ~a 2 S, where hA;Si = Q(A). A queryQ is de�nable in a logic L if there exists an L formula '(x1; : : : ; xm) such thatQ(A) = '[A] def= hA; f~a j A j= '(~a)gi.Let �0 be a relational signature disjoint from �. If A is a �-structure on auniverse A, and A0 is a �0-structure on A, we use the notation (A;A0) for the�[�0-structure on A which inherits the interpretation of � relational symbols6



from A, and the interpretation of �0 symbols from A0.Let C be a class of �0-structures, with � and �0 being disjoint. Let A 2STRUCT[�]. A formula '(~x) in the language of �[�0 is called C-invariant onA if for any two C structures A0 and A00 on A we have '[(A;A0)] = '[(A;A00)].Associated with such a formula is the following m-ary query (where m =j~x j):Qw'(A) = 8><>:'[(A;A0)]; ' is C-invariant on A;; otherwise.where A0 is any structure from C on A. We use the notation (L+C)w to denoteall queries de�ned in such a way when ' ranges over formulae of L.A formula ' is C-invariant if it is C-invariant on every structure. With sucha ', we associate a query Q' given by Q'(A) = '[(A;A0)] where A0 is astructure from C on A. The class of all such queries is denoted by L + C.Clearly, L+ C � (L+ C)wWe thus shall aim to establish expressivity bounds for (L + C)w.When C is the class of order relations, we shall write < instead of C. Thecapture results for complexity classes deal with the classes of queries of theform L+ <. For example, uniform TC0 equals FO(C)+ < [2]. While queries inL+ < are independent of any particular order relation used, the mere presenceof such a relation can have an impact on the expressivity of a logic.We give an example for FO(C). Assume that � has one binary and one unaryrelation, i.e. its structures are graphs with a selected subset of nodes. Let Q0be the following Boolean query [3]: given a structure hA;E;Xi, where A 6= ;,E � A2 and X � A, return true i� E is an equivalence relation, and thenumber of distinct sizes of E-classes equals jXj. It is known that Q0 is notexpressible in FO(C) [3]. However, it is expressible in FO(C)+ <. Indeed,the equivalence relation x�y i� the E-equivalence classes of x and y have thesame cardinality is de�nable in FO(C). Thus, in FO(C) one de�nes the set ofsmallest (wrt <) elements of each such class, and then compares, in FO(C),the size of this set to X. The two are the same i� the value of Q0 is true. Notethat any linear order su�ces to express this query.Thus, FO(C) $ FO(C)+ <. Since the latter captures uniform TC0, thismeans that there are problems in TC0 not de�nable in FO(C) over unorderedstructures. It is also known that FO $ FO+ <. We shall see later that thiscontinues to be true for other counting logics.7



Bounded number of degrees property (BNDP) If A 2 STRUCT[�]and Ri is of arity pi, then degreej(RAi ; a), for 1 � j � pi, is the number of tuples~a in RAi having a in the jth position. In the case of directed graphs, this givesus the usual notions of in- and out-degree. By deg set (A) we mean the set ofall degreej(RAi ; a) realized in A, and deg count(A) stands for the cardinalityof deg set (A). We use the notation STRUCTk[�] for fA 2 STRUCT[�] jdeg set(A) � f0; 1; : : : ; kgg.De�nition 2 (see [24,5,21]) An m-ary query Q, m � 1, is said to have thebounded number of degrees property 2 , or BNDP, if there exists a functionfQ : N! N such that deg count(Q(A)) � fQ(k) for every A 2 STRUCTk[�].QEDThe BNDP is very easy to use for proving expressivity bounds [24]. For ex-ample, it is very easy to verify that (deterministic) transitive closure violatesthe BNDP.Locality All existing proofs of the BNDP establish �rst that a logic is local.We now de�ne this concept. Given a structure A, its Gaifman graph [7,10,9]G(A) is de�ned as hA;Ei where (a; b) is in E i� there is a tuple ~c 2 RAi forsome i such that both a and b are in ~c. The distance d(a; b) is de�ned as thelength of the shortest path from a to b in G(A); we assume d(a; a) = 0. If~a = (a1; : : : ; an) and ~b = (b1; : : : ; bm), then d(~a;~b) = minij d(ai; bj). Given ~aover A, its r-sphere SAr (~a) is fb 2 A j d(~a; b) � rg. Its r-neighborhood NAr (~a)is de�ned as a structure NAr (~a)hSAr (~a); RA1 \ SAr (~a)p1; : : : ; RAk \ SAr (~a)pl; a1; : : : ; aniin the signature that extends � with n constant symbols. That is, the carrierof NAr (~a) is SAr (~a), the interpretation of the �-relations is inherited from A,and the n extra constants are the elements of ~a. If A is understood, we writeSr(~a) and Nr(~a).If A;B 2 STRUCT[�] and there is an isomorphism NAr (~a) ! NBr (~b) thatsends ~a to ~b, we write ~a �A;Br ~b. If A = B, we write ~a �Ar ~b.Given tuples ~a = (a1; : : : ; an) and ~b = (b1; : : : ; bm) and an element c, we write~a~b for the tuple (a1; : : : ; an; b1; : : : ; bm), and ~ac for (a1; : : : ; an; c).2 This property was formerly known as the bounded degree property, or the BDP,see [5,13,22,24,25, etc.] However, many found the name confusing, as the propertyrefers to the number of degrees in the output being bounded, rather than the degreesthemselves. Following a suggestion by Neil Immerman, we decided to change thename from BDP to BNDP. 8



De�nition 3 (cf. [21]) An m-ary query Q is called local if there exists anumber r � 0 such that, for any structure A and any ~a;~b 2 Am~a �Ar ~b implies ~a 2 Q(A) i� ~b 2 Q(A):The minimum such r is called the locality rank of Q, and is denoted by lr(Q).QEDIt follows from Gaifman's theorem [10] that every FO-de�nable query is local.Moreover, if Q is de�nable by a formula '(~x), then lr(Q) � (7qr(') � 1)=2. Itwas shown in [21,22] that every FO(Qu), FO(C), and L�1!(C)-de�nable queryis local. Furthermore, lr(Q) � 2rk(') [22].Fact 1 (see [5]) Every local query has the bounded number of degrees property.QEDThus, without auxiliary relations, queries such as transitive closure cannot beexpressed in FO(C) and even in L�1!(C).Proviso:When we deal with queries in L+C and (L+C)w, which are de�nedon structures (A;A0), A0 2 C, all locality concepts (neighborhoods, degrees,etc) refer only to the �-structureA, and not to the auxiliary structureA0 fromC.Almost-linear-orders We next de�ne the class of relations that we view as\almost linear orders." First, let-k stand for the class of preorders R (reexivetransitive relations) in which every equivalence class of R\R�1 (that is, x � yi� xRy and yRx) has size at most k. Note that -1 is the class of linear orders.Let g : N! R be a nondecreasing function 3 . De�ne <�g as the class of binaryrelations (A;R) such that there exists a partition A = B[C with the followingproperties:(1) The cardinality of B is at least n� g(n).(2) R restricted to B is a linear order.(3) R restricted to C is a relation from -2, that is, a preorder where everyequivalence class has at most two elements.(4) For any b 2 B and c 2 C, (b; c) 2 R, and (c; b) 62 R.See Figure 1 for a preorder from <�g . Actually, we show the associated succes-sor relation in the �gure. A relation from <�g is really the transitive closure ofthe one shown in Figure 1. Intuitively, if g is very small (e.g., log log : : : log n),3 One can deal with functions g : N! N as well; however, as in many examples weuse log2, we prefer to have R as the range.9



- - - - ?6 - ?6 -- ?6� � � � � � : : : : : :| {z } | {z }��� �� �� n� g(n) elements � g(n) elementsFig. 1. A relation from <�gthen this can be viewed as the least possible \damage" that can be done to alinear ordering: We make a small subset at the end into a preorder, with itsclasses having no more than 2 elements.3 Expressivity bounds for FO(C) and FO(Qu) in the presence ofrelations of large degreeWe start by giving a general technique for proving expressivity bounds for locallogics. Then we apply it to FO(C) to prove our main result that DLOGSPACE-complete problems, such as deterministic transitive closure, cannot be ex-pressed in it in the presence of relations that are very close to linear orderings.In particular, it will follow that DLOGSPACE 6� FO(C)+ -k for any k > 1.Proving expressivity bounds in local logics Let Q be a query that takesstructures from STRUCT[�] as inputs and returns m-ary relations; eg., tran-sitive closure takes graphs from STRUCT[�gr] as inputs and returns graphs.Let R be a class of relations, and L a logic. Suppose we want to prove thatQ 62 (L+R)w. For that purpose, we introduce two conditions.DefL[�][R; C] Assume C � STRUCT[�]. Then there exists a number n and anL formula ' in the vocabulary � such that '[A] 2 R for every A 2 C withjAj > n.That is, relations fromR are de�nable by �-formulae of L on large enoughstructures from C.SepL[�][Q; C] For any two numbers r; n > 0, there exists A 2 C with jAj > nand two m-ary vectors ~a, ~b of elements of A such that ~a �Ar ~b, ~a 2 Q(A)and ~b 62 Q(A).That is, Q separates similarly looking (in a local neighborhood) tuples onarbitrarily large structures from C.Theorem 1 Assume that L is FO, FO(C), FO(Qu), or L�1!(C). Suppose fora given query Q on �-structures, one can �nd C � STRUCT[�] such that both10



DefL[�][R; C] and SepL[�][Q; C] hold. Then Q 62 (L+R)w.Proof: Assume that Q is in (L + R)w. Since SepL[�][Q; C] holds, Q returnsnonempty results for arbitrarily large structures. Thus, we assume that it isde�nable by a formula  in the vocabulary that includes � and a symbol R forthe relation from R. Let  0 be obtained from  by replacing each occurrenceof R(� � �) by '(� � �), where ' is given by DefL[�][R; C]. Note that  0 is a L-formula in the vocabulary �. By [21,22],  0 is local. Let r = lr( 0). For anarbitrary N > n, we �nd a structure A of cardinality at least N and ~a �Ar ~bsuch that ~a 2 Q(A) and ~b 62 Q(A). Since Q 2 (L +R)w, we know that  isinvariant on A. Thus, Q(A) =  [(A; R)] where R is any interpretation of arelation from R on A. >From the invariance we obtain  0[A] = Q(A). Thus,for ~a;~b, we have A j= :( 0(~a) $  0(~b)), which contradicts the locality of  0.This proves the theorem. QEDNote that this theorem can be straightforwardly extended to the case of severalbuilt-in relations of possibly di�erent arities by considering ~R instead of R,where ~R is a tuple of classes of auxiliary relations. Then DefL[�][ ~R; C] saysthat relations from each component of ~R can be de�ned by a �-formula of Lon su�ciently large structures from C.Lower bounds for transitive closure Recall [16] that deterministic tran-sitive closure of a graph is obtained by closing its deterministic paths. That is,if G = hV;Ei is a directed graph, then dtc(G) = hV;E 0i where (a; b) 2 E 0 i� ei-ther (a; b) 2 E or there exists a path (a; a1); (a1; a2); : : : ; (an�1; an); (an; b) 2 Esuch that a and each ai, i = 1; : : : ; n have outdegree 1. That is, the edge (a; a1)is the only outgoing edge from a, etc.We shall use tc to denote the transitive closure of a graph. According to [16],FO+dtc+ < captures DLOGSPACE and FO+tc+ < captures NLOGSPACE.Note that < can be replaced by a successor relation, since its (deterministic)transitive closure is a linear order.Theorem 2 Let g : N ! R be a nondecreasing function that is not boundedby a constant. Then (deterministic) transitive closure is not in (L+ <�g)w,where L is FO(C), FO(Qu), or L�1!(C). In particular, DLOGSPACE 6�FO(C)+ <�g. QEDThis can be compared with the results of [4] where it was shown that �rst-order logic with �xpoint and counting fails to express some polynomial-timeproblems even in the presence of relations from -4. Of course, �rst-order logicwith �xpoint captures polynomial time in the presence of an order relation,cf. [7]. 11



���� @@���� AAAA@@@@������ ���������� k levels���� AAAA ... ... ............Fig. 2. Canonical k-bushy treeIn view of Theorem 1, to establish Theorem 2, it is enough to prove thefollowing:Proposition 1 Let q be (deterministic) transitive closure, and L be FO(C)or FO(Qu). Assume that g : N ! R is a nondecreasing function that is notbounded by a constant. Then there exists a class C of graphs such that bothDefL[�gr](<�g ; C) and SepL[�gr](q; C) hold.Bushy trees In what follows, trees are directed graphs with edges orientedfrom the root to the leaves.A tree is called bushy if, for any two non-leaf nodes x 6= y, out-deg(x) 6=out-deg(y). A k-bushy tree is a bushy tree in which every path from the rootto a leaf has the same length k. A canonical k-bushy tree is obtained as follows.We start with the root of outdegree 2. Its �rst child has 3 children, the secondchild has 4 children. This completes level 2, and we now have 7 elements atlevel 3. They will have 5, 6, 7, 8, 9, 10 and 11 children respectively. This givesus 56 nodes at level 4, which will have 12(=11+1), 13, ..., 67(=11+56) childrenrespectively. We continue until we fully �lled all k levels. See the picture inFigure 2. We use Bk to denote the canonical k-bushy tree.Proof of Proposition 1: We start by de�ning a family of graphs G0d;k, d; k 2 N+,d > k + 1. Let sk be the total number of nodes in the canonical k-bushy tree.The root of G0d;k has sk + 1 children. Two of them are roots of two copiesof a canonical k-bushy tree, denoted here by B1k and B2k . The other sk � 1nodes at the second level, we give sk + 2; sk + 3; : : : ; sk + sk = 2sk childrenrespectively. Now, to those nodes at the second level that do not belong to thetwo canonical k-bushy trees, we give 2sk + 1, 2sk + 2; : : : children, as before,increasing the number by one. We continue this process until we fully �ll thek + 1st level.Now that the k + 1st level is �lled (i.e. we have a graph with all paths fromroot to leaves being of length k + 1), we look at the node at the level k with12



most children, say M of them, and start giving nodes at the k + 1st levelM + 1;M + 2;M + 3; : : : children. We stop the process when we completely�ll the dth level.This is the graph G0d;k. Note that every two non-leaf nodes x 6= y have di�erentoutdegrees, unless one of them is in B1k and the other is in B2k. We now de�neGd;k by adding an arbitrary linear ordering on the leaves. That is, if Z is theset of leaves of G0d;k, and LZ is a linear order on Z, then the set of edges of Gd;kis that of G0d;k plus LZ . When we speak of \leaf nodes" of Gd;k, we actuallymean the leaf nodes of G0d;k.Let B�1 and B�2 be the sets of non-leaf nodes in B1k and B2k . Then, for any twodistinct nodes x; y 62 B�1 [ B�2, it is the case that (in-deg (x); out-deg(x)) 6=(in-deg(y); out-deg(y)). Indeed, outdegrees are di�erent for non-leaf nodes ofG0d;k, except for those in B�1[B�2); all in-degrees are di�erent for the leaf nodes;and all in-degrees for the leaf nodes, except one, are di�erent from those ofthe non-leaf nodes. The exceptional leaf node is the one with in-degree one;it is thus the smallest one in the linear order, and thus has an outdegree thatexceeds that of all the internal nodes.De�ne two binary relations on the set of nodes: x �0 y i� in-deg (x) < in-deg(y)or in-deg(x) = in-deg (y) and out-deg (x) < out-deg(y). Let B� be B�1 [ B�2.De�ne: x � y i� 8>>>>><>>>>>:x 62 B�; y 2 B�; orx; y 2 B� and x �0 y; orx; y 62 B� and x �0 yFrom this description, it is clear that � is de�nable in FO(C) and thus inFO(Qu) and L�1!(C), because these logics can de�ne the set B� as the set ofnodes for which there exists another node with the same in- and out-degree).Let �� denote a formula de�ning �.Now, given k, let dk be the smallest number d > k + 1 such that 2sk < g(n)for all n � Nd;k, where Nd;k is the total number of nodes in Gd;k. Since forevery �xed k, Nd;k grows with d, and g is nondecreasing, dk is well-de�nedand indeed depends only on k. Let Cg = fGd;k j d; k 2 N+; d > dkg. Fromthe construction above, it follows that, for a nondecreasing g, �� de�nes anelement of <�g on every Gd;k 2 Cg. Thus, DefL[�gr][<�g ; Cg] holds.We now show that SepL[�gr][tc; Cg] holds. Fix two numbers r; n > 0. We mustshow that there exist a graph Gd;k 2 Cg such that, for two pairs of nodes (a; b)and (a0; b0) with (a; b) �r (a0; b0), there is a path from a to b, but there is nopath from a0 to b0.Let k = 2r + 2, and let d > 4r + 6 be such that Gd;k 2 Cg. Let a be a node13



at the middle ((r + 1)th) level of B1k, and a0 a node in B2k with the same out-degree as a. Then a �r a0. We now consider a path from a to a leaf, say l, andchoose a node b on this path such that d(b; a) > 2r + 1 and d(b; l) > r; thisis possible since d > 4r + 6. It is clear that d(b; a0) > 2r + 1; hence we have(a; b) �r (a0; b). Furthermore, (a; b) 2 tc(Gd;k), but (a0; b) 62 tc(Gd;k), sinceG0d;k is a tree. This proves SepL[�gr][tc; Cg].To complete the proof for deterministic transitive closure, we just reverse allthe edges of Gd;k. Since all paths not involving leaves now become determin-istic, the above proof works for the deterministic case. QEDCorollary 1 (Deterministic) transitive closure is not de�nable in FO(C) orFO(Qu) in the presence of relations from -k (preorders of width at most k)for any k > 1. In particular, DLOGSPACE 6� FO(C)+ -k. QEDLimitations of the technique To summarize what has been achieved sofar, we know that FO(C)+ < = TC0, and the above results show that forany k > 1, DLOGSPACE 6� FO(C)+ -k. Furthermore, DLOGSPACE 6�FO(C)+ <�g for any nondecreasing function g that is not bounded by a con-stant. Thus, one may ask if the techniques can be pushed further to proveexpressivity bounds for FO(C)+ <. A possible avenue for attacking the prob-lem of expressivity with linear order seems to be the following: try to �nda class of structures C so that both DefL[<; C] and SepL[Q; C] would hold,where Q is tc, or dtc, or any other query we want to show to be outsideof FO(C)+ <. If we were able to �nd such a class C, it would show thatQ 62 FO(C)+ <. Unfortunately, as the following proposition shows, no suchclass exists.Proposition 2 Let Q be a query invariant under isomorphisms. Let L beFO(C), FO(Qu), or L�1!(C). Then there does not exist a class C of structuressuch that both DefL[<; C] and SepL[Q; C] hold.Proof: Assume that a class C of structures satisfying both DefL[<; C] andSepL[Q; C] exists. That is, a linear order is de�nable by an L formula �(x; y)on large enough structures (cardinality > n) in C. Since every query de�nablein FO(C), FO(Qu), or L�1!(C) are local, we know that � is local. Let r = lr(�),and let d = 3r + 1. Now apply SepL[Q; C] to d and n to �nd a structure Aof cardinality at least n such that for some ~a;~b, we have ~a �d ~b. Let a0 bethe �rst component of ~a and b0 be the �rst component of ~b. We then havea0 �d b0.Assume without loss of generality that a0 � b0 but b0 6� a0 in the linear order� de�ned by � on A. It follows from [5,21] that there is a permutation � onS2r+1(a0; b0) such that Nr(a0; x) �= Nr(b0; �(x)) for every x 2 S2r+1(a0; b0).14



From the locality of � and r = lr(�), we get that for every x 2 S2r+1(a0; b0),a0 � x i� b0 � �(x). That is, � maps fx 2 S2r+1(a0; b0) j a0 � xg intofx 2 S2r+1(a0; b0) j b0 � xg. But we know that the latter has fewer elementsthan the former (since a0 � b0 but b0 6� a0), so we have an injective mapfrom a bigger �nite set to a smaller �nite set. This contradiction completesthe proof. QED4 Expressive power with preordersWhile we showed that the technique of Theorem 2 cannot be straightforwardlyextended to deal with linear orders, we have not answered the following ques-tion: Is FO(C)+ <�g properly contained in FO(C)+ <? If the two were shownto be equal, the bounds of Theorem 2 would apply to prove that the transitiveclosure is not in TC0. However, we will show that there is an enormous gapbetween L+ <�g and L+ <, where L is one of the counting logics we considerhere, and g is very small. Namely, our main result is the following.Theorem 3 Let g : N ! R be a nondecreasing function that is not boundedby a constant. Then every query in (L�1!(C)+ <�g)w has the bounded numberof degrees property.That is, with auxiliary structures arbitrarily close to linear orders, the mostpowerful of counting logics, L�1!(C), still exhibits the very tame behaviortypical for FO queries over unordered structures.The proof of this result is somewhat involved, and will be given in the nextsection. Here we state some corollaries.Corollaries With g as above, the (deterministic) transitive closure, and,more generally, problems complete for classes DLOGSPACE and above it un-der �rst-order reductions, are not de�nable in any of the counting logics weconsider, even in the presence of relations from <�g . That is,Corollary 2 Let g : N ! R be a nondecreasing function that is not boundedby a constant. Then every query in (FO(Qu)+ <�g)w, (FO(C)+ <�g)w,L�1!(C)+ <�g , FOQU+ <�g , or FO(C)+ <�g has the BNDP.The following corollaries demonstrate the enormous gain in expressiveness bygoing from \almost orders" to orders. By a colored graph we mean a structureof the signature (E;U1; : : : ; Um) where E is binary, and Uis are unary. Thatis, it is a graph with a few selected subsets of nodes. A colored graph query isa binary query Q on colored graphs; that is, it returns graphs. The hardness15



of such a query is de�ned as the function HQ : N ! N where HQ(n) ismaxfdeg count(Q(A))g with A ranging over structures with jAj = n and Ebeing a successor relation.Recall that deg count(�) is the cardinality of the set of all degrees realized ina structure. That is, the hardness shows how complex the output might looklike if the input is a successor relation with a few colored subsets. Note that0 � HQ(n) � n+ 1. Since every property of ordered structures is de�nable inL�1!(C) [22], we obtain the following dichotomy result:Corollary 3 � Let g : N ! R be any nondecreasing function that is notbounded by a constant. Let Q be a colored graph query in L�1!(C)+ <�g .Then there exists a constant C such that HQ(n) < C for all n.� For any function f : N ! N such that 0 � f(n) � n + 1, there exists acolored graph query Q in L�1!(C)+ < such that HQ = f .Thus, dropping a tiny portion of linear order (e.g., log log : : : log n elements)accounts for the increase in hardness from constant to arbitrary one!FO(C) also admits this kind of dichotomy, as there exists a colored graph queryQ de�nable in FO(C)+ < such that HQ(n) � log n [13]. We thus obtain:Corollary 4 There are problems in uniform TC0 that cannot be expressed inFO(C)+ <�g. QEDMoreover, it is known that there are uniform AC0 (equivalently, �rst orderlogic with the BIT predict and a linear order, FO(BIT)+ <) queries thatviolate the BNDP [6,11]. Hence, we obtain:Corollary 5 AC0 6� (L�1!(C)+ <�g)w. QEDWe thus can �nally compare the expressive power of counting logics with linearorders vs. their expressiveness with preorders:Corollary 6 Let g : N! R be as in Theorem 3, and L be FO(C), or FO(Qu),or L�1!(C). Then L+ <�g 6= L+ <. Furthermore, FO(C) $ FO(C)+ <�g .Note that the presence of some form of counting is essential in these results. Itwas shown recently [11] that every invariant query in FO+ < has the BNDP.That is, HQ is bounded by a constant for colored graph queries in FO+ <.16



5 Proof of the Main Theorem: Failure of Locality, Weak Locality,and Bijective Games5.1 Failure of localityAll proofs of the BNDP that are currently known derive it from locality ofqueries. Unfortunately, we cannot use this method as queries in (L�1!(C)+ <�g)w need not be local.Proposition 3 Let g(n) < lognlog logn be nondecreasing, and not bounded by aconstant. Then there exist nonlocal queries in (L�1!(C)+ <�g)w.Proof: We construct a query Q de�nable by a formula '(x) and a sequenceof structures An, n 2 N, with an n-element universe, so that for each n largeenough and for any P 2<�g , there are two points a; b in An with isomorphicr-neighborhoods, and (An; P ) j= '(a) ^ :'(b), where r = O(log log n). Thiswill prove that (L�1!(C)+ <�g)w is not local. By log n we mean blog2(n+1)c.The signature � consists of three unary relations U1; U2 and C, and one bi-nary relation E. We use P for the auxiliary relation from <�g . Let l(n) =b log(n�logn)g(n)+1 c. This function is not bounded by a constant as n grows. In An,whose universe is denoted by A, U1 has cardinality Mn = l(n)(g(n) + 1) �log(n � log n), and U2 is interpreted as A � UAn1 . The unary relation C isinterpreted as a two-element subset of U2. Let E 0 be de�ned on U1 to be adisjoint union of g(n)+1 successor relations of length l(n) each. For each suchsuccessor relation E 0i, i = 1; : : : ; g(n) + 1, let ci be the node at the distancebl(n)=3c from the start node, and di be the node at the distance b2 � l(n)=3cfrom the start node. Let CAn = fa; bg. We then de�neEAn = E 0 [ g(n)+1[i=1 f(a; ci); (b; di)g:Next, de�ne �(x) � 8y:(P (x; y) ^ P (y; x) ! y = x) saying that x is in thelinear order part of P , which we shall denote by P�. From the above, we obtainMn � log(jP�j). We now show that there exists a formula �(x; y) in FO(C)such that �(x; y) implies x; y 2 C and (An; P ) j= �(a; b) and (An; P ) j=:�(b; a) for any interpretation of P as a relation from <�g on A. This willclearly su�ce to conclude the proof, since one then de�nes '(x) � C(x) ^9y:(C(y) ^ �(x; y) ^ :(x = y)) and notices (An; P ) j= '(a) ^ :'(b) while aand b have isomorphic neighborhoods of radius O(l(n)).The formula �(x; y) is de�ned as C(x)^C(y)^9u; v:(E(x;u)^E(y; v)^(u; v))where (u; v) holds i� there is an E-path from u to v all of whose nodes are17



in P�. Since the number of successor relations in E is g(n) + 1, at least oneof them is totally contained in P�, which shows that (An; P ) j= �(a; b). Sincethere is no path between di and ci for every i, we have (An; P ) j= :�(a; b).Thus, we must show how to express  in L�1!(C) (in fact, one can express itin FO(C)).To express , we follow the proof of the failure of the BNDP for FO(C)+ <given in [13]. Let P 1� = U1 \ P�. Since jP 1�j � jU1j = Mn � log(jP�j), subsetsof P 1� can be coded by the elements of P�: a set S � P 1� is coded by cS 2 P�such thatfx j BIT(m1;m2); where m1 = jfy j y < xgj ; m2 = jfy j y < cSgj g = SWith this coding, we can simulate monadic second-order on P 1� in FO(C),which su�ces to express . This concludes the proof. QEDProposition 3 provides the �rst nontrivial example that separates the notionof locality from the BNDP. Now one needs a di�erent technique to proveTheorem 3. We introduce this technique in two steps. In the next subsection,we consider two ways of weakening the notion of locality, and we show thatone of them, weak semi-locality, implies the BNDP. In subsection 5.3, weshow how the bijective games [12] can be used to prove weak semi-locality of(L�1!(C)+ <�g)w queries.5.2 Weak localityTo de�ne locality of a query, we considered the equivalence relation ~a �Ar ~bi� NAr (~a) �= NAr (~b). We now consider two re�nements that lead to weakernotions of locality. For the �rst re�nement, we write ~a!!Ar ~b if ~a �Ar ~b andSAr (~a) \ SAr (~b) = ;.For the other re�nement, consider a partition I = (I1; I2) of the set f1; : : : ; ng.Given ~x = (x1; : : : ; xn), we denote by ~xI1 and ~xI2 the subtuples of ~x thatconsist of those components whose indices belong to I1 or I2, respectively. Forexample, if n = 4 and I = (f1; 3g; f2; 4g), then ~xI1 = (x1; x3) and ~xI2 = (x2; x4).We then write ~a!Ar ~b, for ~a;~b 2 An, if there exists a partition I = (I1; I2) off1; : : : ; ng such that� ~aI1 �Ar ~bI1 ;� ~aI2 = ~bI2 ;� SAr (~aI1), SAr (~aI2), SAr (~bI1 ) are disjoint.18



Clearly, ~a!!Ar ~b implies ~a!Ar ~b (by taking I2 to be empty), and ~a!Ar+1 ~bimplies ~a �Ar ~b.De�nition 4 An m-ary query Q on �-structures is called weakly local if thereexists a number r 2 N such that for any A 2 STRUCT[�] and any ~a;~b 2 Am,~a!!Ar ~b implies ~a 2 Q(A) i� ~b 2 Q(A).A query Q is said to be weakly semi-local if there exists a number r 2 N suchthat for any A 2 STRUCT[�] and any ~a;~b 2 Am, ~a!Ar ~b implies ~a 2 Q(A)i� ~b 2 Q(A).Proposition 4 Every local query is weakly semi-local, and every weakly semi-local query is weakly local. There exist queries that are weakly local but notweakly semi-local, and there exist queries that are weakly semi-local but notlocal. That is,Local $ Weakly Semi-Local $ Weakly Local:Proof. The chain of implications local ) weakly semi-local) weakly local isobvious. Next, consider the following queryQ0 on graphs. If for the input graphhV;Ei, with vertices V and edges E, E = f(x1; x2); (x2; x3); : : : ; (xn�1; xn)g [f(xi; xi); (xj; xj)g with i < j, where V = fx1; : : : ; xng, then the output of Q0 isa graph hV; f(xi; xj)gi. Otherwise, the output has no edges. Clearly, this queryis not local: For any r, we consider a graph as above with i > r, j < n� r andj � i > 2r + 1; then Nr(xi; xj) �= Nr(xj; xi), showing that lr(Q0) cannot equalr. At the same time, Q0 is weakly semi-local, with r = 1 witnessing weaksemi-locality. Indeed, assume that in a graph G as above (xk; xl)!G1 (xi; xj),with (xk; xl) 6= (xi; xj). Since there are only two nodes xi and xj with loops,we get that k = j and l = i, but this contradicts (xk; xl)!G1 (xi; xj). Thus,whenever we have (xk; xl) !G1 (xs; xt) with (xk; xl) 6= (xs; xt), none of thepairs is (xi; xj) and hence (xk; xl) 62 Q0(G) and (xs; xt) 62 Q0(G), provingweak semi-locality.To separate weak locality from weak semi-locality, consider anothergraph query Q1. If its input G = hV;Ei is of the form E =f(x1; x2); (x2; x3); : : : ; (xn�1; xn)g [ f(xi; xi); (xj; xj); (xk; xk)g with i < j < k,where V = fx1; : : : ; xng, then the output of Q1 is the graph hV; f(xi; xj)gi.Otherwise, the output has no edges. To show that it is not weakly semi-local,let G be as above, r > 0, and let i; j; k be such that i > r; j > i+ 2r + 1; k >j + 2r + 1; n � k > 2r + 1. Then (xi; xj)!Gr (xi; xk) but (xi; xj) 2 Q1(G)while (xi; xk) 62 Q1(G), and r cannot witness weak semi-locality. To show thatQ1 is weakly local, consider again G as above, and let (xi; xj)!!G1 (xs; xt).Since xs and xt must then be distinct and have loops, it is impossible thatSG1 (xi; xj)\SG1 (xs; xt) = ;. Thus, whenever we have (xs; xt)!!G1 (xp; xq), none19



of the pairs is (xi; xj) and hence (xs; xt) 62 Q1(G) and (xp; xq) 62 Q1(G). There-fore, Q1 is weakly local. QEDWe study these notions because they are easier to prove than the BNDP, andwe will see that the BNDP can be derived from them. The notion of weaklocality is particularly simple: the only di�erence between it and locality isthe disjointness of neighborhoods. However, it only gives us a partial result:Proposition 5 a) Let Q be a binary weakly local query (i.e., the output is agraph). Then Q has the bounded number of degrees property.b) For every m > 2, there exists an m-ary weakly local query that does nothave the bounded number of degrees property.Proof. We �rst prove a). Fix the relational signature �, and let F0(d; k) be anupper bound on the size of a d-neighborhood of a point inA where degrees arebounded by k, and F1(d; k) be an upper bound on the number of isomorphismtypes of d-neighborhoods of points in such structures; such bounds do existand depend on �; d and k only [21].Let Q be a binary weakly local query, with d witnessing weak locality. Wenow calculate the number of di�erent outdegrees in the graph Q(A), whereall degrees in the structure A are at most k. Whenever we say out-deg (x), wemean out-degree in Q(A).Claim 2 There is a number Md;k that depends on d and k only, such thatjout-deg (a)� out-deg(b)j � Md;kwhenever a!!2d+1 b.Proof of the claim: We call an isomorphism type � of a d-neighborhood of apoint (a; b)-good if there exist three points, c1; c2; c3 2 A�S2d+1(a; b) such thatc1; c2; c3 realize � and d(ci; cj) > 4d; i; j = 1; 2; 3; i 6= j. We call � (a; b)-badotherwise.Let c be a point of a (a; b)-good type � . Let c1; c2; c3 witness the goodness ofthe � . Then at most one of them can belong to S2d(c) (otherwise the distancewould be below 4d). Thus, there are two points c0; c00 of type � such thatd(c; c0); d(c; c00); d(c0; c00) > 2d; that is, their d-neighborhoods are disjoint. Wenow obtain (a; c) 2 Q(A), (b; c0) 2 Q(A), (a; c00) 2 Q(A), (b; c) 2 Q(A)20



by weak locality.Now, letting M0 be the number of points realizing (a; b)-bad types, we seethat the di�erence between out-deg(a) and out-deg(b) cannot exceed the sizeof S2d+1(a; b) +M0; that is,jout-deg(a)� out-deg(b)j � M0 + 2 � F0(2d + 1; k)It thus remains to show that M0 is determined by d and k.Fix an (a; b)-bad type � , and let x 62 S2d+1(a; b) realize � . Suppose y 62S2d+1(a; b) [ S4d(x) realizes � . Then every other point z realizing � mustbe either in S2d+1(a; b) or in S4d(x; y), for otherwise x; y; z would witness(a; b)-goodness of � . Thus, the number of points realizing � is at most2 � F0(2d+ 1; k) + 2 � F0(4d; k), and hence M0 is bounded above byF1(d; k) � (2 � F0(2d + 1; k) + 2 � F0(4d; k))�nishing the proof of the claim. QEDUsing this, we show the following.Claim 3 Let m0 = F0(8d+4; k)+1. Suppose a �2d+1 b, and suppose that thereare at least m0 realizers of the isomorphism type of the 2d+1-neighborhood ofa. Then jout-deg(a)� out-deg(b)j � 2 �Md;kProof of the claim: If S2d+1(a) \ S2d+1(b) = ;, this follows from the pre-vious claim. Assume then S2d+1(a) \ S2d+1(b) 6= ;. We have S2d+1(a; b) �S6d+3(a) = C, and from the assumptions, we obtain there exists an elementc 62 S2d+1(C) such that a �2d+1 c. In particular, in this case S2d+1(a) \S2d+1(c) = ; and S2d+1(b) \ S2d+1(c) = ;. Then by the previous claim wehave jout-deg (a)� out-deg(c)j � Md;k and jout-deg(b)� out-deg(c)j � Md;k,which proves the claim. QEDLet now m0 be as in Claim 3. Suppose � is an isomorphism type of a 2d + 1-neighborhood that has fewer than m0 realizers. The total number of points ofsuch types is at most M1 = F1(2d + 1; k) � m0, and thus they give rise to atmost M1 di�erent outdegrees in the output. For any point a of a type � (of2d+1-neighborhood) that is realized at leastm0 times, the possible outdegreesbelong to a 2(2Mdk ) + 1 element interval, by Claim 3. Thus, the total numberof outdegrees in Q(A) is at mostM1 + F1(2d + 1; k) � (4Md;k + 1)and thus depends on the signature, d and k only. The proof for a bound onthe number of indegrees is identical. This completes the proof of the BNDP21



for weakly local graph queries.To show b), we consider graphs as inputs, and let m = 3; extension to m >3 is straightforward. For a graph G = hV;Ei, with vertices V and edgesE, (a; b; c) 2 Q(G) i� the following two conditions hold. First, the graphG is of the special form: there is an element v 2 V such that (v; v) 2 E,(v; v0); (v0; v) 62 E for any v0 6= v, and G restricted to V � fvg is a chain (i.e.,the graph of a successor relation). Second, c = v, a; b 6= v, and (a; b) is in thetransitive closure of G.Clearly, Q violates the BNDP: for every a 2 V � fvg, there are ka tuples(a; b; c) in Q(G), where ka is the number of nodes reachable from a. Thus,deg count (Q(G)) = O(jV j). On the other hand, Q is weakly local (in fact,r = 1). Indeed, suppose (a; b; c) 2 Q(G) and (a0; b0; c0) 62 Q(G). Then c = v,and since there is only one loop in G, for (a; b; c) �1 (a0; b0; c0) to hold we musthave c = c0 = v. However, in this case Sr(a; b; c)\Sr(a0; b0; c0) 6= ;, which showsthat (a; b; c)!!1(a0; b0; c0) does not hold, and thus proves the weak locality ofQ. This completes the proof. QEDCombined with the results of Section 5.3, that would be su�cient to deriveTheorem 3 for queries that return graphs. However, for arbitrary queries, weneed the more involved notion of weak semi-locality:Theorem 4 Every weakly semi-local query has the bounded number of degreesproperty.Proof: Let ~x = (x1; : : : ; xn) and let I = fI1; I2; I3g be a partition of f1; : : : ; ng.Then by ~xIj , j = 1; 2; 3, we denote the subtuple of ~x which consists of thecomponents of ~x whose indices are in Ij, appearing in the same order as in ~x.Given a �-structure A, two positive integers d; r > 0 and a!!Ad b, we de�nea binary relation��(A;a;b)r;l on Al as follows. Given ~x; ~y 2 Al, a~x��(A;a;b)r;l b~y i�there exists an isomorphism h : NAd (a)! NAd (b) and a partition I of f1; : : : ; lgsuch that� SAr (~xI1) � SAd (a) and ~yI1 = h(~xI1);� SAr (~xI2) � SAd (b) and ~yI2 = h�1(~xI2);� ~xI3 = ~yI3 and SAr (~xI3) \ (SAr (a; b) [ SAr (~xI1~xI2~yI1~yI2 )) = ;.Note that these conditions imply SAr (~yI1 ) � SAd (b) and SAr (~yI2 ) � SAd (a).We now need the following lemma.Lemma 1 For any positive integers r and l, there exists a positive integerd such that for any relational vocabulary �, any �-structure A and a!!Ad b,22



there exists a permutation � : Al ! Al such thata~x ��(A;a;b)(r;l) b�(~x)for every ~x 2 Al.Proof of the lemma: Let d0 = r; d1 = 3d0+1; : : : ; dl = 3dl�1+1. We claim thatd = dl. The proof is by induction on l. Below h stands for the isomorphismgiven by a!!Ad b. If l = 1, we de�ne � : A! A as follows:�(x) = 8><>:h(x); if x 2 SA2r+1(a);h�1(x); if x 2 SA2r+1(b);x; otherwise.The partition of the set f1g containing the unique index is determined asfollows: I = 8><>: (f1g; ;; ;); if x 2 SA2r+1(a);(;; f1g; ;); if x 2 SA2r+1(b);(;; ;; f1g); otherwise.It is routine to verify that � is a permutation and x��(A;a;b)(r;1) �(x).Now assume a!!Ad b, where d = dl, l > 1. By the hypothesis for l�1, we �nda permutation � : Al�1 ! Al�1 such that for any ~x 2 Al�1, a~x��(A;a;b)(d1;l�1)b�(~x);that is, a~x��(A;a;b)(3r+1;l�1)b�(~x):We now show that for every ~x 2 Al�1, there exists a permutation �~x : A! Asuch that a~xz��(A;a;b)(r;l) b�(~x)�~x(z); this will su�ce to conclude the proof asthe function given by (x1; : : : ; xl�1; xl) 7! �((x1; : : : ; xl�1))�(x1;:::;xl�1)(xl) is apermutation.Fix an isomorphism h : NAd (a) ! NAd (b) and a partition I = (I1; I2; I3) wit-nessing a~x��(A;a;b)(3r+1;l�1)b�(~x). That is, SA3r+1(~xI1 ) � SAd (a), SA3r+1(~xI2) � SAd (b),�(~x)I1 = h(~xI1 ), �(~x)I1 = h�1(~xI1), and SA3r+1(~xI3) does not intersect the 3r + 1-spheres of a; b; ~xI1; ~xI2 ; �(~x)I1 , and �(~x)I2 . Below we show how to de�ne �~x and anew partition I 0 that will witness a~xz��(A;a;b)(r;l) b�(~x)�~x(z); I 0 is obtained fromI by adding the last index l to one of its blocks. The isomorphism h remainsthe same.�~x(z) = 8>>>>><>>>>>:h(z); if z 2 SA2r+1(a) [ S2r+1(~xI1 ) [ SA2r+1(�(~x)I2); (I 01:=I1 [ flg);h�1(z); if z 2 SA2r+1(b) [ S2r+1(�(~x)I1 ) [ SA2r+1(~xI2 ); (I 02:=I2 [ flg);z; otherwise; (I 03:=I3 [ flg):23



Consider the �rst case. Let z0 = �~x(z). Since C = SA2r+1(a) [ S2r+1(~xI1) [SA2r+1(�(~x)I2) has the property that SAr (C) � SAd (a), we have SAr (~xI01 ) � SAd (a),and since z0 = h(z), we obtain SAr (�(~x)I01 ) � SAd (b). Furthermore, fromSAr (z) � SA3r+1(a)[S3r+1(~xI1)[SA3r+1(�(~x)I2 ), we obtain SAr (z)\SA3r+1(~xI3) = ;and thus SAr (z)\SAr (~xI3 ) = ;. Similarly,SAr (z0)\SAr (~xI3 ) = ;. The proof of cor-rectness in the second case is identical. For the third case, as z 62 SA2r+1(a; b)[SA2r+1(~xI1~xI2�(~x)I1�(~x)I2 ), we obtain SAr (z)\(SAr (a; b)[SAr (~xI1~xI2�(~x)I1�(~x)I2 )) =;, completing the proof that a~xz��(A;a;b)(r;l) b�(~x)�~x(z). The lemma is proved.QEDWe now prove the theorem using the lemma. Let Q be an m-ary weakly semi-local query, m > 1. Let r witness weak semi-locality; ie., ~a !Ar ~b implies~a 2 Q(A) i� ~b 2 Q(A). Let d be the positive integer given by Lemma 1for r and l = m � 1. We now �x k > 0 and let A 2 STRUCTk[�]. Asbefore, let F0(d; k) be the maximum size of a d-neighborhood around a pointin a �-structure whose degrees do not exceed k; such a bound exists andis determined by d, k and � [21,13]. Let � be an isomorphism type of a d-neighborhood of a point in a �-structure. We call it A-good if there are morethan (m + 1)F0(2d + 1; k) realizers of � in A, and A-bad if there are at most(m+ 1)F0(2d + 1; k) realizers.In what follows, the structure A 2 STRUCTk[�] is �xed, and degree refers tothe degree in the output Q(A).Claim 4 Let a!!d b, and assume that the isomorphism type of the d-neighborhood of a is A-good. Then degree1(a) = degree1(b).Proof of the claim: Assume that a~x��(A;a;b)(r;m�1)b~y. Let I = (I1; I2; I3) be a par-tition of f1; : : : ;m � 1g and h : Nd(a) ! Nd(b) an isomorphism witnessingthat. Assume that a~x 2 Q(A). Let C = S2d+1(a; b) [ S2d+1(~xI3 ). Since ~xI3has at most m � 1 elements, jCj � (m + 1)F0(2d + 1; k), and thus thereexists c 62 C such that c �d a �d b, since the type of a is A-good. Notethat a!! d c, b!!d c and Sd(c) \ Sd(~xI3 ) = ;. Let ha : Nd(a) ! Nd(c)be an isomorphism. Let ~z1 = ha(~xI1 ). Note that Sr(c~z1) � Sd(c). Wethen obtain a~xI1~xI2~xI3 !r c~z1~x2~xI3 . By weak semi-locality of Q, we obtainc~z1~xI2~xI3 2 Q(A). Since Sr(~xI2 ) \ Sr(~yI2 ) = ;, we obtain c~z1~xI2~xI3 !r c~z1~yI2~yI3 ,and thus c~z1~yI2~yI3 2 Q(A). Next, notice that h � h�1a maps Nr(c~z1) isomor-phically onto Nr(b~yI1 ), which is disjoint from Sr(~yI2~yI3 ); we thus conclude thatc~z1~yI2~yI3 !r b~yI1~yI2~yI3 = b~y, and b~y 2 Q(A) by weak semi-locality of Q.An identical proof shows that b~y 2 Q(A) implies a~x 2 Q(A). Thus, by Lemma1, we have a permutation � on Am�1 such that a~x 2 Q(A) i� b�(~x) 2 Q(A),which proves degree1(a) = degree1(b). QEDUsing this claim, we show that if a �Ad b, and the isomorphism type � of NAd (b)24



is A-good, then degree1(a) = degree1(b). Indeed, if SAd (a) \ SAd (b) = ;, thena!!Ad b, and we are done by Claim 4. If SAd (a)\SAd (b) 6= ;, then, as the cardi-nality of SA2d+1(a; b) is at most 2F0(2d+1; k), there is a point c 62 SA2d+1(a; b) re-alizing � . We have now a!!Ad c and b!!Ad c, and thus degree1(a) = degree1(c),and degree1(b) = degree1(c); hence degree1(a) = degree1(b).We now calculate the number of di�erent values of degree1(�). The cardinal-ity of fdegree1(a) j type of NAd (a) is A � goodg is at most F1(d; k), themaximum possible number of di�erent isomorphism types of d-neighborhoodsin a structure from STRUCTk[�]. This number depends on d; k and � only.The cardinality of fdegree1(a) j type of NAd (a) is A � badg is at most thenumber of points realizing A-bad types. As each A-bad type has at most(m + 1)F0(2d + 1; k) realizers, the number of realizers of A-bad types is atmost (m+ 1) � F0(2d + 1; k) � F1(d; k). We thus obtain thatjfdegree1(a) j a 2 Agj � F1(d; k) + (m+ 1) � F0(2d+ 1; k) � F1(d; k)and thus depends only on d; k and �. As analogous proofs work for all degreei,we get deg count(Q(A)) � m � F1(d; k) � ((m + 1)F0(2d + 1; k) + 1), which�nishes the proof of the BNDP. QEDTo incorporate the information about the function g, we modify the de�nitionas follows: ~a!Ag;r ~b if ~a!Ar ~b and ���SAr (~a) [ Sr(~b)��� � g(jAj). Then a queryQ is g-weakly semi-local if there exists an r 2 N such that ~a!Ag;r ~b implies~a 2 Q(A) i� ~b 2 Q(A). The following is easily derived from Theorem 4.Corollary 7 Let g : N! R be nondecreasing and not bounded by a constant.Then every g-weakly semi-local query has the BNDP.Proof. Let Q be g-weakly local m-ary query, with d witnessing weak locality.Let Nd;k be the smallest number such that g(N) > 2m � F0(d; k) for anyN > Nd;k. Then, if A 2 STRUCTk[�] and jAj > Nd;k, for ~a;~b 2 Am, ~a!Ag;r ~bimplies ~a!r ~b, since Sd(~a) [ Sr(~b) has fewer than g(jAj) elements. Then theproof of Theorem 4 applies verbatim to show that for some function f0 : N!N, deg count (Q(A)) � f0(k). Since deg count(Q(A)) � Nd;k + 1 if jAj � Nd;k,we obtain that deg count(Q(A)) � maxfNm�1d;k + 1; f0(k)g, thus proving theBNDP. QED5.3 Games and weak semi-localityThe goal of this section is to prove the g-weak semi-locality of queries in(L�1!(C)+ <�g)w. We do this by using bijective games of [12].The game is played by two players, called the spoiler and the duplicator, on25



two structures A;B 2 STRUCT[�]. For the n-round game, in each roundi = 1; : : : ; n, the duplicator selects a bijection fi : A ! B, where B is thecarrier of B, and the spoiler selects a point ai 2 A. If jAj 6= jBj, then thespoiler immediately wins. The duplicator wins after n rounds if the relationf(ai; fi(ai)) j 1 � i � ng is an isomorphism from A \ (S1�i�n ai) ! B \(S1�i�n fi(ai)). Otherwise the spoiler wins. If the duplicator has a winningstrategy in the n-move bijective game on A and B, we write A �bijn B. Wewrite (A;~a) �bijn (B;~b) if the duplicator has a winning strategy in the n-movebijective game that starts with the position (~a;~b); ie., each fi sends ~a to ~b.This condition implies that for a FO (or FO(Qu)) formula '(~x) of quanti�errank n, A j= '(~a) i� B j= '(~b) [12]. We extend this to L�1!(C). Note that thelemma below follows from a slightly more general result of [14].Lemma 2 Let '(x1; : : : ; xm) be a L�1!(C) formula in the language of �, withall free variables of the �rst sort. Let (A;~a) �bijrk(') (B;~b), where ~a 2 Am;~b 2Bm. Then A j= '(~a) i� B j= '(~b). QEDThe following is the key lemma, which is proved by a technique reminiscentof that in [32], extended to deal with bijective games.Lemma 3 Let g : N ! R be nondecreasing and not bounded by a constant.For any A, m > 0, ~a;~b 2 Am, and n > 0, if ~a!Ag;2n ~b, then there exists apreorder P on A such that P 2<�g and(A; P;~a) �bijn (A; P;~b)Proof: Let r = 2n and ~a !Ag;r ~b. Let I = (I1; I2) be a partition wit-nessing that. We assume without loss of generality that I1 is nonemptyand equals f1; : : : ; lg, l � m. Let ~a0 = (a1; : : : ; al), ~b0 = (b1; : : : ; bl), and~c = (al+1; : : : ; am) = (bl+1; : : : ; bm). Then ~a0!!Ar ~b0, SAr (~a0~b0)\SAr (~c) = ;, and���SAr (~a0~b0~c)��� � g(jAj).We now construct P . Let A0 be SAr (~a0) � fa1; : : : ; alg. Pick any ordering �1on SAr (~a0) such that a1 �1 a2 �1 : : : �1 al and further, for any a 2 A0 we haveai �1 a, for each i = 1; : : : ; l, and for any a0; a00 2 A0,d(a0;~a0) < d(a00;~a0) ) a0 �1 a00Let h be an isomorphism of NAr (~a) onto NAr (~b). De�ne on SAr (~b0) an ordering�2 by letting b0 �2 b00 i� h�1(b0) �1 h�1(b00). Clearly, the initial fragment of�2 is (b1; : : : ; bl), and it respects the distance to ~b0: d(b0;~b0) < d(b00;~b0) impliesb0 �2 b00.Let P0 be an arbitrary linear ordering on A � SAr (~a0~b0). Intuitively, P is P026



followed by a preorder obtained by putting together �1 and �2, and tyingthem by h. Formally,(x; y) 2 P i� 8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:x; y 62 SAr (~a0~b0) and (x; y) 2 P0; orx 62 SAr (~a0~b0) and y 2 SAr (~a0~b0); orx 2 SAr (~a0); y 2 SAr (~a0) and x �1 y; orx 2 SAr (~b0); y 2 SAr (~b0) and x �2 y; orx 2 SAr (~a0); y 2 SAr (~b0) and h(x) �2 y; orx 2 SAr (~b0); y 2 SAr (~a0) and x �2 h(y)It easily follows from ~a0!!Ag;r~b0 that P 2<�g .Our next claims give a winning strategy for the duplicator in the bijectivegame on A~a = (A; P;~a) and A~b = (A; P;~b). Note that the universe of bothstructures is the same, A, and in the game the spoiler selects points in A, andthe duplicator select bijections f : A! A.De�ne a binary relation H on SAr (~a0~b0) by letting (x; y) 2 H i� x = h(y)or y = h(x). We will show that the duplicator can play in such a way that,if ~x = (x1; : : : ; xn) and ~y = (y1; : : : ; yn) are points played on A~a and A~brespectively after n rounds, then there exists a set J � f1; : : : ; ng with thefollowing properties. (1) If j 2 J , then (xj; yj) 2 H. (2) If j 62 J , then xj = yj.(3) ~a0~xJ �A0 ~b0~yJ , where ~xJ is the subtuple of ~x that consists of the componentof ~x whose indices are in J , and likewise for ~yJ . (4) dA(~a0~xJ ; ~xJ) > 1, anddA(~b0~yJ ; ~xJ) > 1, where dA is the distance in G(A), the Gaifman graph of A,and ~xJ consists of the components of ~x whose indices are not in J .We �rst prove that this su�ces to show that the duplicator wins. For thiswe need to establish ~a0~c~x �A0 ~b0~c~y, and furthermore, show that the mappingF induced by these two tuples preserves P . The latter is clear though as forany v = F (u), either u = v or (u; v) 2 H, by construction, and thus P ispreserved. To see that ~a0~c~x �A0 ~b0~c~y, notice that ~a0~xJ �0 ~b0~yJ by (3), and by(4) and the de�nition of ~c, dA(~a0~xJ ;~c~xJ) > 1, and dA(~b0~yJ ;~c~xJ ) > 1. Thus no�-relation can have a tuple containing an element of ~a0~xJ and an element of~c~xJ , or an element of ~b0~yJ and an element of ~c~xJ . This su�ces to concludethat ~a0~c~x �A0 ~b0~c~y, and thus the duplicator wins the n-round game, provided(1)-(4) hold.To prove that the duplicator can play as required, we show, by induction on thenumber of moves, that the duplicator can maintain these four conditions. Theplay is somewhat similar to the one used in [32] for ordinary (not bijective)games. We shall classify all moves into two types, type 1 moves and type 227



moves. We use the following notation. Let ~x = (x1; : : : ; xi) and ~y = (y1; : : : ; yi)be points played on A~a and A~b after i rounds. That is, in the jth round, j � i,xj is played in A~a, and yj = fj(xj) is the duplicator's response, where fj isthe bijection chosen by the duplicator for this round. By ~x1 and ~y1 we denotesubtuples consisting of points played in type 1 moves, and by ~x2 and ~y2 wedenote subtuples of points played in type 2 moves.Let di = 2m�i. The �rst two conditions are as follows.(1) If jth move is a type 2 move, then xj = yj; that is, ~x2 = ~y2.(2) if jth move is a type 1 move, then SAdi(xj; yj) � SAr (~a0~b0), and (xj; yj) 2 H.Suppose that these conditions hold, and j is a type 1 move. Since SAr (~a) \SAr (~b) = ;, if xj 2 SAr (~a0), then yj 2 SAr (~b0), and vice versa. We use thenotation ~x1a for the subtuple of ~x1 whose components are in SAr (~a0), and ~x1bfor the remaining components, that is, those in SAr (~b0). We similarly de�ne ~y1aand ~y1b . Notice that ~y1b = h(~x1a) and ~x1b = h(~y1a).We can now formulate the next two requirements:3. h : NAdi (~a0~x1a~y1a) �= NAdi (~b0~y1b ~x1b ) (that is, h is an isomorphism between theseneighborhoods).4. dA(~a0~x1a~y1a ; ~x2) > di and dA(~b0~x1b~y1b ; ~x2) > di.Proving these 4 conditions indeed su�ces to conclude that the duplicator winsafter n rounds, as then the conditions (1)-(4) are easily veri�ed: we take J tobe the set of type 1 moves. Note that permuting indices of moves has no e�ecton whether the resulting map is a partial isomorphism; thus we normally putsubtuples of ~x and ~y in an order that keeps notation simple.We prove, by induction on i, that the duplicator can maintain conditions 1{4.For the �rst move, the duplicator's bijection f is taken to be f(x) = h(x) ifx 2 SAd1(~a), f(x) = h�1(x) if x 2 SAd1(~b), and f(x) = x in other cases. If thespoiler's move is in SAd1(~a;~b), then it is a type 1 move, otherwise it is a type 2move. It is routine to verify that conditions 1-4 are satis�ed.For the inductive step, assume that i rounds have been played, and conditions1{4 are satis�ed. As di = 2di+1, we de�ne fi+1, duplicator's bijection for theround i+ 1, as follows:fi+1(x) = 8>>>>><>>>>>: h(x) if x 2 SAdi+1(~a0~x1a~y1a)h�1(x) if x 2 SAdi+1(~b0~y1b ~x1b )x otherwise.28



If a move is made according to the �rst or the second clause (that is, if thespoiler plays in SAdi+1(~a0~b0~x1~y1)), then the move is a type 1 move; otherwiseit is a type 2 move. Let xi+1; yi+1 be the i + 1st move. It remains to verifyconditions 1{4.Condition 1 is obvious, and so is the second part of condition 2 ((xi+1; yi+1) 2H). If xi+1 2 SAdi+1(~a0~x1a~y1a), then SAdi+1(xi+1) � SAdi(~a0~x1a~y1a), as di = 2di+1.Hence SAdi+1(xi+1) � SAr (~a0), and SAdi+1(yi+1) � SAr (~b0), proving the second partof condition 2. The proof for the case xi+1 2 SAdi+1(~b0~y1b ~x1b ) is similar.For a type 2 move, conditions 3 and 4 follow immediately from the de�ni-tion of fi+1 and the hypothesis. Assume that xi+1 2 SAdi+1(~a0~x1a~y1a) (the caseof xi+1 2 SAdi+1(~b0~y1b ~x1b ) is symmetric). As h : NA2di+1(~a0~x1a~y1a) ! NA2di+1(~b0~y1b ~x1b )is an isomorphism, we obtain that h maps NAdi+1(~a0~x1a~y1axi+1) isomorphicallyonto NA2di+1(~b0~y1b ~x1byi+1), and thus condition 3 holds. Furthermore, any com-ponent of ~x2 is outside of SA2di+1(~a0~x1a~y1a) by the hypothesis, and hence outsideSAdi+1(xi+1). Thus, dA(xi+1; ~x2) > di+1. As yi+1 = h(xi+1) 2 SAdi+1(~b0~y1b ~x1b ), andevery element of ~x2 is at a distance exceeding 2di+1 from ~b0~y1b ~x1b , we obtaindA(yi+1; ~x2) > di+1, thus proving condition 4. This completes the proof thatthe duplicator can play to maintain conditions 1{4. The lemma is proved.QEDWe now put these two lemmas together to showTheorem 5 Let g be nondecreasing and not bounded by a constant, and letQ be an m-ary query in (L�1!(C)+ <�g)w. Then Q is g-weakly semi-local.Proof: Let Q be de�nable by '(x1; : : : ; xm), where ' is a L�1!(C) formula inthe language of � and an extra symbol S for the auxiliary preorder. Let Abe a �-structure, with ~a;~b 2 Am and ~a!Ag;2n ~b, where n = rk('). Assumethat ' is <�g -invariant on A. Let P0 be a preorder on A, such that P0 2<�g .Let ~a 2 Q(A) = '[(A; P0)]. Choose P to be the preorder given by Lemma3. Due to the invariance of ', ~a 2 '[(A; P )]; that is, (A; P ) j= '(~a). ByLemmas 3 and 2, (A; P ) j= '(~b), and again by invariance (A; P0) j= '(~b).Thus, ~b 2 '[(A; P0)] = Q(A). This proves g-weak semi-locality of Q. QEDIf g = id , we obtainCorollary 8 Let -2 be the class of preorders in which every equivalence classhas size at most 2. Then every query de�nable in L�1!(C)+ -2 is weaklysemi-local, and has the BNDP. QEDProof of Theorem 3 Let Q be in (L�1!(C)+ <�g)w. By Theorem 5, it isg-weakly semi-local. By Corollary 7, it has the BNDP. QED29



6 ConclusionWe have shown that queries de�nable in counting logics FO(C), FO(Qu) andL�1!(C), in the presence of relations from the class <�g have the boundednumber of degrees property. In other words, even extremely powerful countinglogics in the presence of relations which are almost-everywhere linear ordershave a very tame behavior. The situation changes drastically when <�g isreplaced by a linear order. For example, L�1!(C)+ < expresses every queryon ordered structures. A similar phenomenon is observed for other logics, mostnotably, FO(C) which captures uniform TC0 on ordered structures.The techniques of this paper cannot be straightforwardly extended to proveseparation results in the ordered case. The logic L�1!(C) is very powerful, asit expresses every property of natural numbers, and all other known countingextensions of FO can be embedded into it. We also relied on bijective gamesto prove the main result. However, bijective games characterize expressivenessof a logic which de�nes all queries on ordered �nite structures. Thus, in theordered case one cannot use the generic techniques from [12,21,22,26] thatapply to a variety of counting logics.It was shown in [8] that if there is a proof of inexpressibility of some propertyin FO(C)+ <, then there must be a proof of that based on the counting gamesof [17]. The counting game is weaker than the bijective game; on the otherhand, it does not have the inherent limitations of the latter in the orderedcase. Thus, a possible way of proving a separation result may be to modifythe locality techniques to work with the counting, rather than bijective, games.Another approach would be to modify the ordered conjecture of [20] to in-clude counting. Namely, such a modi�ed conjecture would say that there is nounbounded class of ordered structures on which FO(C) captures polynomialtime. One reason to consider this is that there are strong indications that forFO the conjecture holds [20]. With counting, however, one has to be careful: byconsidering the class of linear orders and adding unary quanti�ers which testfor polynomial time properties of cardinalities, one obtains a counting logicfor which the conjecture fails. However, FO(C) has rather limited arithmetic,and perhaps an attempt to understand why it fails to capture polynomialtime on various classes of structures may lead to a better understanding of itsstructural properties which are not shared by other counting logics.AcknowledgementsWe thank Martin Grohe, Lauri Hella, Moshe Vardi, andMihalis Yannakakis for their comments on earlier drafts of this paper.30
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