
A Semantics-based Approach to Design ofQuery Languages for Partial InformationLeonid LibkinBell Laboratories600 Mountain Ave., Murray Hill, NJ 07974, USAemail: libkin@bell-labs.comAbstract. Most of work on partial information in databases asks whichoperations of standard languages, like relational algebra, can still beperformed correctly in the presence of nulls. In this paper a di�erentpoint of view is advocated. We believe that the semantics of partialitymust be clearly understood and it should give us new design principlesfor languages for databases with partial information.There are di�erent sources of partial information, such as missing in-formation and con
icts that occur when di�erent databases are merged.In this paper, we develop a common semantic framework for them whichcan be applied in a context more general than the 
at relational model.This ordered semantics, which is based on ideas used in the semantics ofprogramming languages, cleanly intergrates all kinds of partial informa-tion and serves as a tool to establish connections between them.Analyzing properties of semantic domains of types suitable for repre-senting partial information, we come up with operations that are natu-rally associated with those types, and we organize programming syntaxaround these operations. We show how the languages that we obtaincan be used to ask typical queries about incomplete information in re-lational databases, and how they can express some previously proposedlanguages. Finally, we discuss a few related topics such as mixing tradi-tional constraints with partial information and extending semantics andlanguages to accommodate bags and recursive types.1 Partial Information in DatabasesMany aspects of database systems whose importance is evident in a variety ofapplications are yet to be adequately represented in practical database manage-ment systems. In many cases the reason for this is the lack of underlying theory.One of such problems is handling partial information in databases. While no onedoubts that it must be dealt with, simply because in most applications we cannot assume that the information stored in a database is perfect, the �eld has notbeen satisfactorily explored. Most results about partial information in databasesare negative in their nature. They show what can not be done { e�ciently or atall { if standard tools are used in the presence of partial information.



The main goal of this paper is to make a step toward a general theory of partialinformation.Partiality of information can be viewed as giving additionalmeaningto values that can be stored. Alternatively, one can regard it as constraining thosevalues. Note, however, that such constraints are imposed on values that can bestored, and not on the whole database. Our goal is to represent these constraintsin an adequately chosen mathematical framework, so that they can be reasonedabout. Having found such a framework, we must demonstrate its usefulness. Inthis paper we concentrate on developing languages for partial information.The main thesis of this paper is that, rather than showing what can not be donewith standard tools, one should concentrate on designing new tools speci�callyfor handling partial information. This thesis can be subdivided into two.1. In order to understand partial information in databases, we have to knowexactly what it means. That is, we have to have a semantics for partialinformation. We develop a formalism, whose roots can be found in [Bis81,BJO91, Gra91, IL84, JLP92, Lib91, Vas79], and whose main idea is thatpartiality is represented via orderings on objects.2. We are not interested in semantics per se; the semantics that we de�ne willhelp us �nd the right programming constructs for query languages for partialinformation. Our approach is based on [Car88, BBN91, BBW92, BLS+94],and its gist is that operations naturally associated with datatypes shouldbe used as the basis for the language design. The word \naturally" hasa precise mathematical meaning, and it has to do with the properties ofsemantic domains of the datatypes used. Thus, we can formulate our secondmain principle, which says that semantics suggests programming constructs.In the rest of this section we give a brief survey of the �eld of partial informationin databases { to the extent we shall need it to motivate and substantiate ourstudy.1.1 Classical approach { null valuesName Salary Room TelephoneJohn 15K 075 niAnn 17K ni niMary ni 351 x-1595 Name Salary Room TelephoneJohn 15K 075 neAnn 17K un niMary un 351 x-1595Fig. 1. Relations with nullsSoon after Codd introduced his relational model, people realized that in realapplications not all values may be present. For example, in the �rst relation in2



�gure 1 that might be a part of a university or a corporation database, somevalues are missing and the symbol ni (no information) is used. Note that therecould be several di�erent reasons for using ni. This is re
ected in the secondrelation in �gure 1 where three kinds of nulls are used (cf. [LL86, RKS89, Zan84]).ne means nonexistent; that is, John does not have a phone. un means existingunknown; Mary is on payroll but the precise �gure of her salary is unknown.And ni still means no information. For other kinds of nulls see [GZ88, LL93].One of the most important achievements of the early work on partial informationwas an observation made in [Cod79]. Since every null value can be potentiallyreplaced by a non-null value, each relation with nulls is represented by a setof relations without partial information. Moreover, this set could be consideredas the semantics of the given incomplete relation. This idea was central to theseminal study [IL84] in which querying databases with nulls using standard lan-guages like relational algebra was examined. The family of all complete relationsthat a relation R with nulls can represent was called a representation of R; weprefer the term semantics of R and denote it by [[R]]. If q is a relational algebraquery, we can ask q on [[R]], obtaining q([[R]]) = fq(T ) j T 2 [[R]]g. If we could�nd an relation R0 such that [[R0]] = q([[R]]), then we would be able to call R0the answer to q on R, that is, q(R). However, for most classes of queries thisis impossible. In fact, even milder de�nition of q(R) leads to similar negativeresults.Very little is known about null values in complex objects or nested relations,that is, relations whose attributes can be relation-valued themselves. An at-tempt to extend the results of [IL84] was made in [RKS89] (only for a restrictedsubclass of complex objects, those in partitioned normal form, cf. [AB86]), butlater an error was found [LL91]. It was then shown [LL93] that some of theresults can be recovered if equality of representations of incomplete complex ob-jects is replaced by the Hoare equivalence, which will be de�ned later. However,[LL93] used the standard presentation of languages for complex objects, like in[TF86, SS86, Col90], and consequently inherited all of its problems and draw-backs. In particular, the description of the notion of null-extended join operatoris almost one-page long, and many other operations are rather hard to grasp. Thealgebra for complex objects proposed in [Lib91] does not have adequate powerto work with set-valued attributes. Thus, the problem of incorporating partialinformation into data models more complex than the standard (
at) relationalmodel remains open.1.2 Semantics of partialityOrder and partiality The key idea of our approach to semantics of partialinformation is that partiality is represented via orderings on objects. For the �rsttime this idea appeared probably in [Vas79], and two years later it was furtherexplored in [Bis81]. As a simple example, consider values that may occur in a3



database. Then ni is more partial, or less informative, than any total (nonpartial)value v such as 15K or 'Mary'. Therefore, we impose an order according to whichni � v for any total value v.Most databases are obtained from base values by applying record and set con-structors, so we need to extend the orderings respectively. For records themost natural way to do it is componentwise. For records with �elds labeledby l1; : : : ; ln, we de�ne[l1 : v1; : : : ; ln : vn] � [l1 : v01; : : : ; ln : v0n] i� 8i = 1; : : : ; n : vi � v0iFor sets there are various ways to extend a partial order, and typically thefollowing one, perceived as a generalized subset ordering,X v Y i� 8x 2 X 9y 2Y : x � y, was considered.The idea of representing partiality via orders is central to our study. At this point,we would like to note that it can also be viewed as imposing certain constraintson values that can be stored, rather than the whole database, as is the case withmost standard constraints. That is, ni and 123 are not just symbols; there is acertain semantic relationship between them, that is often not taken into accountin the theory of partial information.Constraints on null values Codd [Cod75] proposed to use three-valued logicto query databases with nulls, but serious problems with this approach wereexempli�ed in [Gra77]. Instead, in [Gra77, Bis81] and a number of other papers itwas suggested that one use Skolem variables to represent di�erent occurrences ofnulls. To represent various interconnections between those nulls, it was suggestedto use constraints on the Skolem variables. For example, in the simplest case,called Codd tables, all Skolem variables are distinct. Inequality tables allowconditions like x 6= y or x 6= 4 where x and y are variables. In conditionedtables, in addition to such constrains, a variable may occur more than once, andeach tuple may have a constraint associated only with it.In [AKG91] complexity of querying relational databases with incomplete infor-mation and constraints on nulls is studied thoroughly. A typical problem con-sidered in [AKG91] is the following. Given a query q, a relation R with nulls anda set of constraints C, and a total relation (that is, relation without any occur-rences of nulls) T , is it possible that one can �nd a relation T 0 in [[R]] such thatT 0 satis�es all the constraints in C and q(T 0) = T . It was shown in [AKG91] thatfor many classes of constrained tables problems of this kind are very hard (i.e.NP, coNP or �p2 -complete), but in some restricted cases they are polynomial.1.3 Semantics of collectionsAssume we are given a collection of database objects with partial information.What is the semantics of such collection? It turns out that this question can not4



be answered unless we make certain assumptions about what kinds of collectionscan be supported. In what follows, we discuss three which are of particularimportance for this paper: sets under closed and open world assumptions anddisjunctive sets (or-sets). In section 4 we shall also consider bags.�����CWA3 Name Salary RoomJohn 15K 076Ann ni 076Mary 17K 561 R1R : Name Salary Roomni ni 076Mary 17K ni QQQQQOWAs Name Salary RoomJohn 15K 076Ann 13K 325Mary 17K 561 R2Fig. 2. Illustration to CWA and OWAOpen and closed worlds It was observed in [Rei78] that certain assumptionson the nature of partiality are to be made if we want to provide a notion of cor-rectness of query evaluation algorithms. To explain these assumptions, considerrelation R in �gure 2. Once all or some information about missing values (ni's)is known, we have a relation that represents better knowledge than R. However,there may be di�erent assumptions about the values that are allowed in the newrelation.One possible interpretation, called the closed world assumption or CWA, statesthat we can only improve our knowledge about records that are already storedbut can not invent new ones. For example, it is legal to add any record v1 v2 076which improves upon the �rst record in R. It is also possible to add a recordMary 17K 561 which is better knowledge than that represented by the secondrecord in R. However, it is not possible to add a record Ann ni 561 as it doesnot improve any of the records already in the database. That is, the database isclosed for adding new records.Contrary to that, the open world assumption or OWA allows adding records todatabase as well as improving already existing records. Under the open worldassumption, adding any record considered above to the database is perfectlylegal. That is, the database is open for adding new records.To summarize, Figure 2 shows how to replace missing values according to both5



assumptions. This interpretation of OWA and CWA is similar to the one typicallyused in databases with incomplete informations (cf. [IL84, Var86]) but slightlydi�erent from [Rei78] who used a logical setting. However, later we shall showthat analogs of most of the results from [Rei78] hold in our setting as well.D1: Name SS# AgeJohn 123456789 24Mary 987654321 32D2: Name SS# AgeJohn 123456789 27Ann 564738291 25 merge- Name SS# AgeJohn 123456789 h24; 27iMary 987654321 32Ann 564738291 25Fig. 3. Example of or-sets arising in merging databasesDisjunctive information The idea of using disjunctive information as a meansto express partiality was already present in [Lip79, Lip81]. But it was not un-til almost ten years later that the �rst attempt was made to introduce dis-junctions explicitly into the standard relational model. Consider the followingexample. Suppose we have two databases, D1 and D2 shown in �gure 3. As-sume that we merge D1 and D2. It is clear that records Mary 987654321 32 andAnn 564738291 25 should be in the resulting database. But what is the value ofthe Age �eld for John? Since SS# identi�es people uniquely, we have con
ictinginformation coming from two databases, and this con
ict must be recorded inthe newly created database until one �nds out if John is 24 or 27 years of age.Therefore, both ages { 24 and 27 { are stored in the new database. However,the semantics of the Age attribute (which is now set-valued) is di�erent fromthe usual interpretation of sets in databases. Rather than suggesting that Johnis both 24 and 27 years old, it says that John is 24 or 27.Since such disjunctive sets, also called or-sets, have semantics that di�ers fromthe ordinary sets, we shall use a special notation hi for them. That is, in theresult of merging D1 and D2, the value of the Age attribute for John is h24; 27i,see �gure 3. While structurally just a set, it denotes an integer, which is either 24or 27. That is, there are two di�erent views of or-sets: structural, that concernsrepresentation, and conceptual, that concerns meaning. This idea was presentin the initial papers on or-sets [INV91a, INV91b] and later was formalized andworked out in [LW96]. 6



1.4 Toward a general theoryThere are a number of models for partial information in the database literature.Some of them are quite ad-hoc, based on speci�c needs arising in particular ap-plications. We have seen two sources of partiality: null values and disjunctiveinformation. (There are others; see, for example, [BDW91, Lib95a].) There areno solid theoretical foundations for any of these, nor are there any results thatshow how they are connected. Moreover, most models of partiality are devel-oped only for the 
at relational model, and virtually nothing is known for morecomplicated database models. This situation in the �eld of partial informationwas summarized in a recent survey [Kan90]:\: : : for the representation and querying of incomplete informationdatabases, there are many partial solutions but no satisfactory full an-swer. It seems that the further away we move from the relational datamodel, the fewer analytical and algebraic tools are available."Thus, to address the problem of partial information in databases and to movecloser to satisfactory solutions that work for a large class of data models, onehas to come up with new analytical tools and show their applicability not onlyin the study of the extended data models but also in the development of newquery languages for databases with partial information. Making progress in thisdirection is the major motivation for this work. In this paper we develop a newapproach to partial information that integrates all kinds of partiality withinthe same semantic framework. In addition to giving us necessary analytical andalgebraic tools to study various kinds of partial information, this framework alsonaturally suggests operations that should be included into the language thatworks with partial information. Techniques that are developed for analyzing thestructure of partial information can be applied to the study of the languagesthat deal with it.Organization. In Section 2 we explore the �rst main principle of our approachsaying that partiality is represented via orders on objects. First we brie
y de-scribe the main ideas of the approach of [BJO91, Lib91] that treats databaseobjects as elements of certain partially ordered spaces of descriptions. Then weapply it in a typed setting, obtaining orderings for various kinds of collectiontype constructors. Thus, for the �rst time choosing orderings is tied with se-mantics of collections. Then we explain the di�erence between structural andconceptual representation of disjunctive information from the semantic point ofview, and list some of the properties of semantic domains of collections whichwill be used for the language design.In Section 3 we develop the second idea which says that semantics suggestsprogramming constructs. We start by explaining the approach to the languagedesign based on [Car88, BBN91, BBW92, BLS+94] that suggests building lan-7



guages for data around datatypes involved. Speci�cally, for each datatype con-structor one needs introduction and elimination operations, and those can beobtained if one looks at the operations naturally { in the categorical sense {associated with the semantics of the datatypes. We show how to apply this ap-proach to languages with partial information, and disjunctive information inparticular. As two examples of applicability of obtained languages, we show thatthe algebra of [Zan84] can be viewed as a sublanguage of our language for sets,and we show how this language can be used to query equational tables, in whichequality constraints are imposed on null values.Finally, in Section 4, we discuss topics that should be further explored, but withsome initial results already obtained. These include mixing traditional databaseconstraints with partial information; recursive types and values in the presence ofincompleteness of information; and extending our approach to bags (multisets).All proofs can be found in [Lib94] (which is available by ftp). In those cases whenproofs can also be found in journal or conference proceedings articles, additionalreferences are given.2 Semantics of Partial InformationThe purpose of this section is to study the semantics of partial data. The unify-ing theme for various kinds of partial information is using ordered sets as theirsemantics, where the meaning of the order is \being more informative". Onceorderings on values come into play, there is a need in new basic models for incom-plete databases. We �rst describe an approach suggested in [BJO91] and furtherdeveloped in [JLP92, Lib91, LL90] that, in a very general way, treats databaseobjects as elements of certain ordered sets. Then we adapt this approach to thetyped setting. For that we need to choose orderings on various kinds of collec-tions. To do so, we formalize elementary updates on collections which improveour knowledge about the real world situation represented by that data, that is,add information. Then we characterize transitive closures of those updates, thusobtaining the orderings. We carry out this program for OWA and CWA setsand or-sets. We use the orderings to de�ne the semantics of collections of partialobjects. It will be shown that the semantics and the orderings agree naturally.We study important properties of semantic domains of partial data which willlater be used to organize programming syntax.2.1 Partial information and orderings on objectsIt was discovered in [BJO91] that a representation of the underlying principles ofrelational database theory can be found in the theory of domains which has beendeveloped as the basis of the denotational semantics of programming languages.8



A database is a collection of descriptions, and the meaning [[d]] of a descriptiond is the set of all possible objects described by it. Therefore, we can order de-scriptions by saying that a description d1 is better than a description d2 if itdescribes fewer objects, i.e. if it is a more precise description. For example, letd1 and d2 be the records in a relational database: d1 = [Dept: CIS;O�ce: 176];and d2 = [Name: John;Dept: CIS;O�ce: 176]. If name, department and o�ceare the only attributes, then the meaning of d1 is the set of all possible recordsthat refer to CIS people in o�ce 176, in particular, d2. Therefore, d2 is betterthan d1 because [[d]]2 � [[d]]1.If all descriptions of objects come from the same domain A which is partiallyordered by �, then we de�ne [[d]] def= fd0 2 D j d0 � dg = "d. Then d1 � d2 i�[[d2]] � [[d1]]. Sometimes it is helpful to restrict domainsA to those in which everyelement x 2 A is bounded above by a maximal element xm � x. The collectionof maximal elements is denoted by Amax, and the new semantic function then is[[x]]max = [[x]]\Amax. This semantic function was used in [AKG91, Gra91, IL84].Consistency in posets is another useful notion. Two elements x; y 2 A are calledconsistent if there exists z 2 A such that x; y � z. In the case of records thismeans joinable as in [Zan84] (i.e. they do not contradict each other): for exam-ple, [Name: John;Dept: ni;O�ce: 176] and [Name: John;Dept: CIS;O�ce: ni]are consistent as both of them are below d2.Note that if both d1 and d2 in our example above are stored in a relationaldatabase, then d1 could be removed as it does not add any information. Gen-erally, in the usual set interpretation of databases, if x � y, then x could beremoved. Removing redundant elements leaves us with a collection of incompa-rable elements. Such collections are called antichains. That is, a subset X of anordered set A is an antichain if x 6< y for any x; y 2 A.The main idea of [BJO91] was that database objects are represented as antichainsin domains, which are special kinds of posets used in semantics of programminglanguages. This was later re�ned in [Lib94] by requiring that database objects beantichains of compact elements; we shall return to this distinction later when wediscuss recursive types. The approach has proved very fruitful. The concept ofscheme was introduced in such a generalized setting, relational algebra operatorswere reconstructed, and functional and multivalued dependencies were de�nedand shown to possess the expected properties, see [BJO91, JLP92, Lib91].However, this approach is too general, and we would like to adapt it to a typedsetting. Complex objects. or nested relations, are constructed from values ofbase types (such as integers, strings etc.) by applying the record and the settype constructor. That is, their types are given by the following grammar:t ::= b j [l1 : t; : : : ; ln : t] j ftgwhere b ranges over a collection of base types, [l1 : t1; : : : ; ln : t1] is the recordtype whose instances are records with �elds lis such that the value of the li �eld9



has type ti, and ftg is the set type constructor whose values are (for now) �nitesets of values of type t.Therefore, to obtain orderings for complex objects, we need to order base objects,records and sets. Orderings on base values are determined by null values thata given datatype allows. For example, in the case of three nulls ne, ni andun allowed for the type of naturals, the ordering is shown in �gure 4. As wasmentioned already, records are ordered componentwise. However, there is no\universal" way of ordering sets. The purpose of the next section is to identifysome ways of doing it and associate them with various kinds of collections.@@@ ���@@@ ����������nine un0 1 2 : : : n : : :Fig. 4. Order on null values2.2 Orderings on collectionsOur general problem is the following. Given a poset hA;�i and the family ofall collections (sets, or-sets etc.) over A, how do we order those? As usual, ourinterpretation of the partial order is \being more informative". What does itmean to say that one collection of partial descriptions is more informative thananother? As two examples of families of collections over A that we would like toorder, we consider A fin (A), the family of �nite antichains of A, and Pfin(A), thefamily of �nite subsets of A.A similar problem arises in the semantics of programming languages, most no-tably in the semantics of concurrency, cf. [Gun92]. Three orderings, called theHoare, the Smyth and the Plotkin ordering have been proposed ([Gun92, Smy78,Plo76]):(Hoare) X v[ B , 8x 2 X9y 2 Y : x � y(Smyth) X v] Y , 8y 2 Y 9x 2 Y : x � y(Plotkin) X v\ Y , X v[ Y and X v] YAll of them have been used for databases with partial information: the Hoareordering in [Bis81, IL84, Lib91], the Smyth ordering in [BJO91, Oho90], the10



Plotkin ordering in [PS93]. However, none of these papers addressed the ques-tion whether the chosen ordering is appropriate for the intended semantics ofcollections. Choosing the right orderings is the main purpose of this subsection.Our main claims are summarized in the table below.Kind of collection OrderingSets under CWA Plotkin (v\)Sets under OWA Hoare (v[)Or-sets Smyth (v])The technique we use to justify these claims is the following. We de�ne \ele-mentary updates" that add information. For example, for CWA databases suchupdates should add information to individual records. For OWA we may haveadditional updates that add records to a database. For or-sets, reducing the num-ber of possibilities adds information as an or-sets denotes one of its elements.We formalize those updates and then look at their transitive closure. That is,a collection C1 is more informative than C2 if C1 can be reached from C2 bya sequence of elementary updates that add information. There are two waysto perform updates that add information, because redundancies represented bycomparable elements could be removed. That is, one way is to keep all elements,even those that are comparable, and the other way is to remove redundancies,that is, to make sure that the result of each elementary update is an antichainagain. These two ways lead to some orderings on either antichains of orderedsets or arbitrary subsets thereof. We shall consider both and show that theycoincide.Ordering CWA databases. In a closed world database, it is possible to updateindividual records but it is impossible to add new records. To understand whatthe elementary updates are, recall the example in �gure 2. We view R1 as moreinformative than R under the CWA. There could be more than one person in 076.That is, an incomplete record can be updated in various ways that give rise to anumber of new records, and this is consistent with the closed world assumption,and this is how the �rst two records in R1 are obtained. The third record in R1is obtained from the second record in R by adding the salary value. Thus, wesee that the way the closed world databases are made more informative is bygetting more information about individual records. The �rst picture in �gure 5illustrates those updates. We simply remove an element (record) from a databaseand replace it by a number of more informative elements (records).There are two ways to formalize those updates, depending on whether arbitrarysets or only antichains are allowed. Let X � A be a �nite subset of the poset A.Let x 2 X and X 0 � A be a �nite nonempty subset of A such that x � x0 forall x0 2 X 0. Then we allow the following update:X CWA7�! (X � x) [X 011



�� ���� ��BBBBBBB �������� � �� �� ���� ���� ��BBBBBBB �������� � � ���Fig. 5. Updates for CWA and OWAFor antichains, we need to impose two additional restrictions. First, X 0 must bean antichain, and second, the result must be an antichain. To ensure the secondrequirement is satis�ed, we keep only maximal elements. That is, in the case ofantichains the legitimate updates areX CWA7�!a max((X � x) [X 0)We now say that X vCWA Y if X;Y � A and Y can be obtained from X by asequence of updates CWA7�!, that is, vCWA is the transitive closure of CWA7�! on Pfin(A).Similarly, X vCWAa Y if X;Y are �nite antichains of A and Y can be obtainedfrom X by a sequence of updates CWA7�!a, that is, vCWAa is the transitive closure ofCWA7�!a on A fin (A). To justify the claim that the closed world databases must beordered by the Plotkin ordering, we prove the following.Theorem1. a) Let X;Y 2 Pfin(A). Then X vCWA Y i� X v\ Y .b) Let X;Y 2 A fin(A). Then X vCWAa Y i� X v\ Y . 2Corollary 2. Let X and Y be �nite antichains in A such that X v\ Y . Then itis possible to �nd a sequence of antichains X1; : : : ; Xn such that X1; : : : ; Xn �X [ Y and X CWA7�!a X1 CWA7�!a : : : CWA7�!a Xn CWA7�!a Y . 2Ordering OWA databases. In an open world database, it is possible to updateindividual records and add new records. As in the case of the CWA databases,consider a simple example of relations R and R2 in �gure 2. Some of the recordsin R2, that we view as a more informative one, are obtained by modifying recordsof R. However, one record, Ann ? 325 can not be obtained by modifying anyrecord in R. The reason it was put there is that the database is open for newrecords. Under this interpretation, we view adding records as an update that addsinformation. In the above example, adding that record improves our knowledgeabout what can be a university or a company database of employees. This is12



illustrated by the second picture in �gure 5. Not only do we allow replacing arecord by a number of more informative records, but we also allow adding newrecords.Similarly to the CWA case, there are two ways to formalize these updates, de-pending on whether arbitrary sets or only antichains are allowed. Let X � Abe a �nite nonempty subset of the poset A. Let x 2 X and X 0 � A be a �nitesubset of A such that x � x0 for all x0 2 X 0. Let X 00 be an arbitrary �nite subsetof A. Then we allow the following updates:X OWA7�! (X � x) [X 0 and X OWA7�! X [X 00For antichains, we impose an additional restriction that the result always be anantichain. We do it by keeping only maximal elements in the results. Therefore,in the case of antichains the legitimate updates areX OWA7�!a max((X � x) [X 0) and X OWA7�! max(X [X 00)We say thatX vOWA Y ifX;Y � A and Y can be obtained fromX by a sequenceof updates OWA7�!, that is,vOWA is the transitive closure of OWA7�! onPfin(A). Similarly,X vOWAa Y if X;Y are �nite antichains of A and Y can be obtained from X bya sequence of updates OWA7�!a, that is, vOWAa is the transitive closure of OWA7�!a onA fin (A). To justify the claim that the OWA databases must be ordered by theHoare ordering, we proveTheorem3. a) Let X;Y 2 Pfin(A). Then X vOWA Y i� X v[ Y .b) Let X;Y 2 A fin(A). Then X vOWAa Y i� X v[ Y . 2Corollary4. Let X and Y be �nite antichains in A such that X v[ Y . Then itis possible to �nd a sequence of antichains X1; : : : ; Xn such that X1; : : : ; Xn �X [ Y and X OWA7�!a X1 OWA7�!a : : : OWA7�!a Xn OWA7�!a Y . 2Ordering or-sets. We now de�ne update rules for or-sets. We start with a simpleexample.X1 : *Name Salary RoomJohn ? 076Ann ? ?Mary 17K ? + or� set�! X2 : *Name Salary RoomJohn ? 076Ann 13K ? +There are two reasons why we view X2 as a more informative or-set than X1.First, additional information about Ann was obtained. It is now known that hersalary is 13K. Second, one of the records was removed. Note that removing anelement from an or-set makes it more informative. Indeed, while h1; 2; 3i is an13



integer which is either 1 or 2 or 3, h1; 2i is an integer which is 1 or 2, so we haveadditional information that it can not be 3.Therefore, we consider two types of updates on or-sets: improving informationabout individual records and removing elements:X or7�! (X � x) [X 0 if x 2 X and x � x0 for all x0 2 X 0 and X 0 6= ;X or7�! X � x if x 2 X and X � x 6= ;To rede�ne these updates for antichains, we must decide how redundancies in or-sets are removed. We suggest that only minimal elements be kept in the results.To see why, consider the following or-set with two comparable records:*Name RoomJohn 076John un +This or-set denotes a person whose name is John and who is either in room 076or in an unknown room. The semantics of this is exactly as having one recordfor John in an unknown room. (This will be made precise in the next section.)Hence, we retain the minimal elements. Then the updates for antichains becomeX or7�! min((X � x) [X 0) if x 2 X and x � x0 for all x0 2 X 0 and X 0 6= ;X or7�! X � x if x 2 X and X � x 6= ;De�ne vor and vora as the transitive closure of or7�! and or7�!a respectively. Tojustify the last claim that the or-sets must be ordered by the Smyth ordering,we prove the following.Theorem5. a) Let X;Y 2 Pfin(A), X;Y 6= ;. Then X vor Y i� X v] Y .b) Let X;Y 2 A fin(A), X;Y 6= ;. Then X vora Y i� X v] Y . 2Corollary 6. Let X and Y be �nite antichains in A such that X v] Y . Then itis possible to �nd a sequence of antichains X1; : : : ; Xn such that X1; : : : ; Xn �X [ Y and X or7�!a X1 or7�!a : : : or7�!a Xn or7�!a Y . 22.3 Semantics of collectionsWe will need some notation. Recall that the family of �nite antichains of aposet A is denoted by A fin (A). By P[(A) we mean the poset hA fin(A);v[i, and14



by P](A) we denote hA fin (A);v]i. These two constructions are the bases forthe Hoare and the Smyth powerdomains used in semantics of concurrency, see[Gun92]. Note that P[(A) is a join-semilattice, where the join operation is givenby X t[ Y = max(X [ Y ), and P](A) is a meet-semilattice, where the meetoperation is given by X u] Y = min(X [ Y ).Recall that the semantics of a database object d, which is an element of anordered set A, is de�ned as the set of all elements of A that it can possiblydenote, that is, [[d]] = "d = fd0 2 A j d0 � dg. Following this de�nition and theresults of the previous section, we can de�ne the semantics of sets under OWAand CWA. Assume that elements of sets are taken from a partially ordered set A.Then we de�ne the semantic functions [[�]]OWAset ; [[�]]OWA; [[�]]CWAset ; [[�]]CWA where index\set" stands for the set semantics (as opposed to the antichain semantics forwhich we do not use an index), as follows:[[X]]OWAset = fY 2 Pfin(A) j X v[ Y g [[X]]OWA = fY 2 A fin (A) j X v[ Y g[[X]]CWAset = fY 2 Pfin(A) j X v\ Y g [[X]]CWA = fY 2 A fin (A) j X v\ Y gIn what follows, we shall mostly consider the open world assumption. Hence,if no superscript is used, it is assumed that we deal with the OWA. That is,[[X]] = [[X]]OWA and [[X]]set = [[X]]OWAset .A number of useful properties of these functions are summarized in the followingproposition.Proposition7. 1. If X;Y ��n A, then [[Y ]]OWAset � [[X]]OWAset i� X vOWA Y i�X v[ Y .2. If X;Y 2 A fin (A), then [[Y ]] � [[X]] i� X vOWAa Y i� X v[ Y .3. If X ��n A, then [[X]] = [[maxX]] and [[X]]OWAset = [[maxX]]OWAset .4. If X;Y ��n A, then [[Y ]]CWAset � [[X]]CWAset i� X vCWA Y i� X v\ Y .5. If X ��n A, then [[X]]CWAset = [[maxX [minX]]CWAset and [[X]]CWA =[[maxX [minX]]CWA. 2Closed world databases were initially de�ned in the logical setting. In particular,[Rei78] de�ned a CWA answer to a query as a certain set of tuples without in-complete information. In our terminology, this corresponds to �nding an answerto a query with respect to the [[]]CWAmax semantic function. It was proved in [Rei78]that the CWA query evaluation distributes over union and intersection, and thatwhenever a database is consistent with the negations of the facts stored in it,the OWA and the CWA query evaluation algorithms produce the same result.It was also proved that the minimal CWA answers contain exactly one tuple.The following proposition shows that analogs of these results hold in our setting.Note that to say that a database X is consistent with negation of any fact stored15



in it, is the same as to say that any y 62 X is consistent with some x 2 X. Inother words, if every z 2 A lies under some zm 2 Amax, then X v] Amax. Finally,a domain of n-ary relations with one kind of nulls is the product of n copies of anin�nite 
at domain. In view of this, the proposition below says that the resultsof [Rei78] are preserved, at least in the spirit.Proposition8. Let A be a poset such that each element is under an element ofAmax. Then1) If A is a product of n copies of in�nite 
at domains and Y 2 [[X1 \X2]]CWAmax ,then Y = Y1 \ Y2 where Y1 2 [[X1]]CWAmax and Y2 2 [[X2]]CWAmax .2) For any poset A, [[X1 [X2]]CWAmax = fY1 [ Y2 j Y1 2 [[X1]]CWAmax ; Y2 2 [[X2]]CWAmaxg.3) If X v] Amax, then [[X]]CWAmax = [[X]]OWAmax .4) If X is bounded above in A, then a minimal nonempty Y 2 [[X]]CWAmax is asingleton. 2Or-sets can be treated at both structural and conceptual levels. At the structurallevel we just de�ne [[X]]or = fY 2 Pfin(A) j X v] Y g (or using A fin(A) if weneed an antichain semantics.) The following proposition is the counterpart ofproposition 7 for or-sets.Proposition9. 1. If X;Y ��n A, then [[Y ]]or � [[X]]or i� X vor Y i� X v] Y .2. If X;Y 2 A fin(A), then [[Y ]]or � [[X]]or i� X vora Y i� X v] Y .3. If X ��n A, then [[X]]or = [[minX]]or. 2Note that propositions 7 and 9 justify using maximal elements to remove redun-dancies from sets under OWA and using minimal elements to remove redundan-cies from or-sets. For sets under CWA, it is necessary to retain both minimal andmaximal elements; the elements which are strictly in between can be removedas the �fth item in proposition 7 suggests.Semantics of types and typed objects. The semantic functions above could alsobe used to de�ne the semantic domains of types. For simplicity, assume that wehave the following type system:t ::= b j t� t j ftg j htiand that we are dealing with the open world assumption. Notice that we use pairsinstead of records. Pairs are su�cient to simulate records and are easier to workwith as notation does not become too complicated. We now de�ne the structuralsemantics [[]]s that corresponds to the structural interpretation of or-sets.Suppose that for each base type b its semantic domain [[b]]s is given. We de�nethe semantic domains of all types inductively. Suppose we want to deal withantichains. Then 16



{ [[t� s]]s = [[t]]s� [[s]]s.{ [[ftg]]s = hA fin([[t]]s);v[i = P[([[t]]s).{ [[hti]]s = hA fin ([[t]]s);v]i = P]([[t]]s).The structural semantics of objects is de�ned inductively.{ For each base type b and an element x of this type, [[x]]s = "x = fx0 2 [[b]]s jx0 � xg.{ If x = (x1; x2), then [[x]]s = [[x1]]s � [[x2]]s.{ If X is of type ftg, then [[X]]s = [[X]]OWA.{ If X is of type hti, then [[X]]s = [[X]]or.Note that the last clauses in the de�nitions of type and object semantics say thatwe have de�ned the structural semantics of or-sets. That is, we viewed or-setsas collections and not as single elements they could represent. Our next goal isto de�ne the conceptual semantics [[]]c of or-sets.First, for base types both semantics coincide, i.e. [[b]]c = [[b]]s. For other typeconstructors [[]]c is de�ned as follows. Note that there are two possibilities forthe semantics of the set type constructor, but the de�nition of the semantics ofobjects will work with both of them.{ [[t� s]]c = [[t]]c� [[s]]c.{ [[ftg]]c = hA fin([[t]]);v[i = P[([[t]]c) or [[ftg]]c = hPfin([[t]]c);v[i.{ [[hti]]c = [[t]]c.The last clause corresponds to the fact that conceptually an or-set is just oneof its elements. Semantics of each object is now going to be a �nitely generated�lter F = "ff1; : : : ; fng = "f1 [ : : :[ "fn. Again, we de�ne it inductively.{ For each base type b and an element x of this type, [[x]]c = "x = fx0 2 [[b]]c jx0 � xg.{ If x = (x1; x2), then [[x]]c = [[x1]]c � [[x2]]c.{ Let X = fx1; : : : ; xng be a set of type ftg. Then [[X]]c = fY j 8i = 1; : : : ; n :Y \ [[xi]]c 6= ;g. Here Y is taken fromPfin([[t]]c) or A fin ([[t]]c) depending on thede�nition of the semantics of types.{ Let X = hx1; : : : ; xni be an or-set of type hti. Then [[X]]c = [[x1]]c[: : :[[[xn]]c.Before we prove that this semantic function possesses the desired properties,let us make a few observations. First, the de�nition of the semantics of or-setscoincides with the intended semantics of or-sets: an or-set denotes one of itselements. Second, to understand the semantics of pairs and sets, consider twosimple examples. Let x1 = h1; 2i, x2 = h3; 4i. Assume that there is no orderinginvolved. The semantics of x1 is then a set f1; 2g and the semantics of x2 is f3; 4g.17



Therefore, [[(x1; x2)]]c = f(1; 3); (1; 4); (2; 3); (2; 4)g. Now consider (x1; x2). It isa pair whose �rst component is 1 or 2 and whose second component is 3 or4. Hence, it is one of the following pairs: (1; 3); (1; 4); (2; 3); (2;4). And this isexactly what the semantic function [[]]c tells us. For semantics of sets, considerX = fx1; x2g = fh1; 2i; h3; 4ig. It is is a set that has at least two elements: oneis 1 or 2, and the other is 3 or 4. Hence, it must contain one of the following sets(since we believe in OWA): f1; 3g; f1; 4g; f2; 3g; f2; 4g. Now look at [[X]]c. A set Ybelongs to [[X]]c if Y \ [[h1; 2i]]c = Y \f1; 2g 6= ; and Y \ [[h3; 4i]]c = Y \f3; 4g 6= ;which happens if and only if Y contains one of the four sets above. This justi�esour de�nition of the conceptual semantics of sets.Now we can prove the following.Theorem10. For every object x of type t, [[x]]c is a �nitely generated �lter in[[t]]c. Furthermore, if x and y are of type t and x � y in [[t]]s, then [[y]]c � [[x]]c.2Corollary 11. If x and y are objects of the same type, then [[x]]s = [[y]]s implies[[x]]c = [[y]]c. 2The converse is not true: hh1; 2i; h3ii and hh1i; h2i; h3ii are structurally di�erentobjects of type hhintii, but [[hh1; 2i; h3ii]]c = [[hh1i; h2i; h3ii]]c = f1; 2; 3g.Relationship between CWA sets, OWA sets and or-sets. There is a naturallyarising question: do we really need all three kinds of collections { OWA sets,CWA sets and or-sets? Can not we just represent some of them using the others?The answer to this question is that we do need all three kinds of collections andno such representations exist. First, let us see what could be a representationof, say, OWA sets with or-sets. It could be a procedure that, given a poset Aand X 2 A fin (A), calculates Y 2 A fin (A) such that Z 2 [[X]] i� Z 2 [[Y ]]or. Thefollowing proposition tells us that it is impossible to do so.Proposition12. For every poset A which is not a chain and has at least twoelements, there exists X 2 A fin (A) such that for no Y 2 A fin (A) the followingholds: 1) [[X]] = [[Y ]]or; 2) [[X]]or = [[Y ]]; 3) [[X]] = [[Y ]]CWAset ; 4) [[X]]CWAset = [[Y ]]; 5)[[X]]or = [[Y ]]CWAset ; 6) [[X]]CWAset = [[Y ]]or. 22.4 Properties of semantic domains of typesWe did not de�ne the semantics of types and objects for nothing. Our goal is touse the semantics as a guideline for the language design. In this subsection weestablish a number of useful properties of semantic domains of types which beused extensively in the next section. 18



Recall that the structural semantics of types ftg and hti was de�ned as P[([[t]])and P]([[t]]) respectively. Let � : A! P[(A) or P](A) be the singleton function:�(x) = fxg. Then both P[(�) and P](�) have nice characterizations as follows.Proposition13. Let A be a poset. Then hP[(A);t[; ;i (hP](A);u]; ;i) is thefree join-semilattice with bottom (free meet-semilattice with top) generated byA. That is, for every join-semilattice with bottom hS;_;?i (meet-semilatticewith top hS;^;>i) and every monotone map f : A ! S, there exists a uniquesemilattice homomorphism f+ : P[(A) ! S (f+ : P](A) ! S) that makes the�rst (second) diagram below commute.A �- hP[(A);t[; ;i@@@@@f RhS;_;?i?9!f+ A �- hP](A);u]; ;i@@@@@f RhS;^;>i?9!f+So far the only semantic distinction between or-sets and sets showed up in di�er-ent orderings for those and in di�erent interpretations for conceptual semantics.We have not yet seen any results suggesting how these may interact. This isimportant for a language design, so that we would be able to distinguish be-tween sets and or-sets. A natural way to study the connection between sets andor-sets is to look at the semantic domains of iterated types, that is, fhtig andhftgi, and see how they are related. In other words, one has to �nd out what therelationship between P[(P](A)) and P](P[(A)) is. Here we have the followinguseful fact.Theorem14. (see also [Lib92, LW96]) Given a �nite set of �nite sets X =fX1; : : : ; Xng where Xi = fxi1; : : : ; xikig, let FX be the set of functions f :f1; :::; ng ! N such that for any i: 1 � f(i) � ki. If all Xi's are subsets ofA, de�ne two maps �a and �a as follows:�a(X ) = minf2FXv[ (maxfxif(i) j i = 1; : : : ; ng)�a(X ) = maxf2FXv](minfxif(i) j i = 1; : : : ; ng)Then for any poset A, �a restricted to P[(P](A)) and �a restricted to P](P[(A))are mutually inverse isomorphisms between P[(P](A)) and P](P[(A)). 2Now, let us see what �a does if there is no order involved. In this case an inputto �a can be considered as a set of or-sets:X = fhx11; : : : ; x1k1i; : : : ; hxn1 ; : : : ; xnknig19



Assume all xijs are distinct. Then �a(X ) is the or-set of setshfx1f(1); : : : ; xnf(n)g j f 2 FX iThat is, all possible choices encoded by or-sets are explicitly listed. We shall use�a as a programming primitive extensively in the next section.The iterated construction P[](A) = P[(P](A)) �= P](P[(A)) possesses the fol-lowing important property. Both join and meet operations can be de�ned onP[(P](A)) and supply it with the lattice structure: X t[ Y = max](X [ Y)where max] is taking maximal elements with respect to v], and X u[ Y =max]fX u] Y j X 2 X ; Y 2 Yg. Moreover, it can be described via a well-knownmathematical construction. This description will prove useful later, when wediscuss programming primitives for or-sets.Theorem15. For an arbitrary poset A, P[](A) is the free distributive latticewith top and bottom generated by A. 2This result is quite robust and holds when some changes are made in the de�-nitions of P[(�) and P](�). In particular, if P[6=;(A) and P]6=; are de�ned as P[and P] except that the empty antichain is not allowed and P[]6=; and P][6=; arerespective compositions of P[6=; and P]6=;, then the following holds.Corollary 16. For an arbitrary poset A, P[]6=;(A) and P][6=;(A) are isomorphic.Moreover, P[]6=;(A) is the free distributive lattice generated by A. 2This fact is the key of the normalization process suggested in [LW96] as a meansof incorporating conceptual semantics into the language. We shall come to itagain later.3 Languages for partial information3.1 The Tannen-Cardelli thesisIn this subsection we give an overview of two principles of language design,which, when combined, provide a uniformway of organizing programming syntaxaround datatypes involved.Suppose we want to design a language that works with objects given by some typesystem, like the one we had for complex objects. How do we choose primitives20



of such a language? The idea of Cardelli (see [Car88]) is that one should useintroduction and elimination operations associated with type constructors asprimitives of a programming language. The introduction operations are needed toconstruct objects of a given type whereas the elimination operations are used fordoing computations over them. For example, record formation is the introductionoperation for records, and projections are the elimination operations.How does one �nd those introductions and elimination operations? Databaseswork with various kinds of collections. One approach (due to Tannen [BBW92,BTS91]) to �nding the introduction and elimination operations for those collec-tions is to look for operations naturally associated with them. To do so, one oftencharacterizes the semantic domains of collection types via universality properties,which tell us what the introduction and the elimination operations are.[[t]] �- h[[C(t)]]; 
i@@@@@f RhX;
i?f+ [[t]] �- h[[C(t)]]; 
i@@@@@f Rh[[C(s)]]; 
i?ext(f)Fig. 6. Operations naturally associated with collection typesAssume that we have a collection type constructor (like sets, bags, lists etc.)that we denote by C(�). Then, for any type t, C(t) is the type of collections ofelements of type t (e.g. sets or bags of type t). By universality property we meanthat the following is true about [[C(t)]], the semantic domain of type C(t). It ispossible to �nd a set 
 of operations on [[C(t)]] and a map � : [[t]]! [[C(t)]] suchthat for any other 
-algebra hX;
i and a map f : [[t]]! X there exists a unique
-homomorphism f+ such that the �rst diagram in �gure 6 commutes. If weare successful in identifying � and 
, then we can make them the introductionoperations. The reason is that now any object of type C(t) can be constructedfrom objects of type t by �rst embedding them into type C(t) by means of �,and then constructing more complex objects using the operations from 
. Theelimination operation is given by the universality property. That is, the generalelimination operation is a higher-order operation that takes f as an input andreturns f+.Combining these two ideas by Cardelli and Tannen gives us languages for manykinds of collections. Consider sets, assuming that the semantic domain of ftg isthe �nite powerset of elements of t, that is, Pfin([[t]]). For any set X, its �nitepowerset Pfin(X) is the free semilattice generated by X. That is, the operationsof 
 are ; and [ and � is the singleton formation: �(x) = fxg. Moreover, these21



operations can be applied for arbitrary types. That is, � is the polymorphicsingleton; its type is t! ftg for any t. Similarly, [ is the polymorphic union oftype ftg � ftg ! ftg. Any set of type ftg can be constructed from elements oftype t using ;;[ and �: fx1; : : : ; xng = �(x1) [ : : :[ �(xn).The operation that takes f into f+ is the followingfun f+[e; u](;) = ej f+[e; u](fxg) = f(x)j f+[e; u](A[B) = u(f+ [e; u](A); f+[e; u](B))This operation f+, often called structural recursion [BBN91, BBW92], dependson e and u which are interpretations of the operations of 
 on its range. Noticethat if e and u do not supply the range of f+ with the structure of a semilattice,then f+ may not be well-de�ned. For example, if e is 0, f is the constant functionthat always returns 1, and u is +, then retaining duplicates may easily lead toa wrong cardinality function: 1 = f+ [0;+](f1g) = f+[0;+](f1; 1g) = 2. Toovercome this problem, one should require that e be interpreted as ; and u as [.Generally, the simplest way to ensure well-de�nedness is to require that hX;
ibe h[[C(s)]]; 
i for some type s. Thus, we obtain the second diagram in �gure 6.The unique completing homomorphism is called ext(f), the extension of f . Itssemantics in the case of sets is ext(f)fx1; : : : ; xng = f(x1) [ : : : [ f(xn). Thisjusti�es the name because ext (f) \extends" f to sets. It is a polymorphic higher-order operation that takes f of type t ! fsg and returns ext(f) : ftg ! fsg.This function is well-de�ned. Using ext together with �, ;, [, projections andrecord formation, conditional and the equality test gives us precisely the nestedrelational algebra [BBW92] but the presentation is nicer than the standard ones,such as in [SS86, TF86]. Instead of ext one can use two functions: map(f) :ftg ! fsg provided f is of type t ! s (this function maps f over its input:map(f)(fx1; : : : ; xng) = ff(x1); : : : ; f(xn)g) and � : fftgg ! ftg that 
attens aset of sets: �(fX1; : : : ; Xng) = X1 [ : : :[Xn. Diagrams in �gure in 6 representa well-known mathematical construction, which is going from an adjunction tothe Kleisli category of its monad, and the fact that ext and map and � areinterchangeable follows from the general properties of the categorical notion ofa monad, see [BW90].This approach to the language design was shown to be extremely useful in thepast few years, see [LW94a, LW94b, Suc94]. Here we apply it to partial informa-tion; the reader has probably already noticed the similarity between diagramsin �gure 6 and proposition 13, which will give us the operations of the language.3.2 Language for sets and its sublanguages22



General operators and pairsg : u! s f : s! tf � g : u! t c : bool f : s! t g : s! tif c then f else g : s! t f : u! s g : u! t(f; g) : u! s� t�s;t1 : s� t! s �s;t2 : s� t! t !t : t! unitKc : unit! Type(c) idt : t! t �s: s� s! boolSet operators for partial information (given by P[)�s;t2 : s� ftg ! fs� tg �t : t! ftg t[t : ftg � ftg ! ftg�ta : fftgg ! ftg emptyt : unit! ftg f : s! tmapa(f) : fsg ! ftgSet operators without partial information (given by Pfin)�s;t2 : s� ftg ! fs� tg �t : t! ftg [t : ftg � ftg ! ftg�t : fftgg ! ftg emptyt : unit! ftg f : s! tmap(f) : fsg ! ftgFig. 7. Expressions of NRL and NRLaConsider sets under the OWA. Since the semantic domain of type ftg is P[([[t]]),proposition 13 gives us the universality property and consequently introductionand eliminationoperations. Introduction operations are �(x) = fxg andXt[Y =max(X [ Y ), while the restricted form of elimination operation exta is givenby exta(f)(fx1; : : : ; xng) = f(x1) t[ : : : t[ f(xn) = max(f(x1) [ : : : [ f(xn)).We prefer using the map-� presentation. The semantics of those operations isgiven by �a(fX1; : : : ; Xng) = max(X1 [ : : :[Xn) and mapa(f)(fx1; : : : ; xng) =max(ff(x1); : : : ; f(xn)g). The index \a" stands for antichains.If no order (partiality) is involved, then the semantics of ftg is Pfin([[t]]) whichis the free join-semilattice with bottom generated by [[t]]. Hence, the operationsgiven by this universality property are the same as those for the language forOWA sets, except that max is not taken. For instance, [ is used instead of t[.23



The resulting language, NRL is precisely the nested relational algebra as hasbeen mentioned (see [BBW92]).Figure 7 contains expressions of two languages:NRL (nested relational language)of [BBW92] and NRLa (NRL on antichains). Both languages share the generaloperators (the only exception isNRL's equality test instead of comparability testof NRLa). In the �gure, we annotate expressions with their most general types.Since those types can be inferred, in what followswe shall omit them.NRL has alloperations from the group of operations not dealing with partial information, andNRLa has operations from the \set operations for partial information" group.Let us brie
y recall the semantics of the operators that have not been explainedalready. �s is the comparability test at type s; that is, �s (x; y) evaluates totrue if x; y are of type s and x � y in [[s]]s. In other words,{ (x; y) �s�t (x0; y)0 , x �s x0 and y �t y0.{ x �fsg y , x �[s y (i.e. 8o 2 x 9o0 2 y : o �s o0).�2 is the pair-with operation: �2(x; fx1; : : : ; xng) = f(x; x1); : : : ; (x; xn)g. unit isa special base type that has only one element. Its presence here is dictated bythe fact that NRL is an algebra of functions. That is, to make a constant like; into a function, we make it a function of type unit ! ftg that always returns;. Composition of functions is denoted by �, pairing of functions is denoted by(f; g) and �1 and �2 are �rst and second projections.Note that the languages are parameterized by an unspeci�ed family of base types.That is, we view NRL and NRLa as analog of relational algebra or calculus,which is the starting point for most languages for 
at relations. Should one needadditional types and operations on them (like real numbers and real arithmetic),they can be added easily. But the most important step in language design is tochoose the operations that manipulate data, and this is what the operations ofNRL and NRLa are.Now we are going to establish some properties of the languages. First, we do notneed �s as a primitive at all types because it can be de�ned.Proposition17. Assume that �b is given for any base type b. Then �s is de-�nable in NRLa without using �s as a primitive. Furthermore, under the as-sumption that �b can be tested in O(1) time, the time complexity of verifyingx �s y is O(n2), where n is the total size of x and y. 2Using this, we can show that NRL is su�cient to simulate NRLa.Theorem18. NRLa is a sublanguage of NRL augmented with �b for all basetypes. 224



However, there is one subtle point. Assume that we have two sets X1 and X2of type ftg such that maxX1 = maxX2. That is, X1 and X2 represent thesame object in [[ftg]]s. Let f : ftg ! t0 be a function de�nable in NRL. Isit true that f(X1) and f(X2) represent the same object in [[t0]]s? Unfortu-nately, the answer to this question is negative. To see why, consider x andy of type t such that x �t y and x 6= y. Assume that g : t ! t0 is suchthat g(x) and g(y) are not comparable by �t0 . Then map(g)(fyg) = fg(y)gand map(g)(fx; yg) = fg(x); g(y)g. Even though maxfyg = maxfx; yg, we havemax(map(g)(fyg)) 6= max(map(g)(fx; yg)). The reason why this happens is thatg is not a monotone function. Requiring monotonicity is su�cient to repair thisproblem. De�ne the following translation function (�)� on objects that forces ob-jects in the set-theoretic semantics into the objects in the antichain semantics:{ For x of base type b, x� = x.{ For x = (x1; x2), x� = (x�1; x�2).{ For X = fx1; : : : ; xng, X� = maxfx�1; : : : ; x�ng.We say that a function f : s ! t de�nable in NRL agrees with the antichainsemantics if x� = y� implies f(x)� = f(y)� . We say that it ismonotone i� x �s yimplies f(x) �t f(y).Proposition19. A monotone function f de�nable in NRL agrees with the an-tichain semantics. If f is not monotone, then map(f) does not agree with theantichain semantics. 2Therefore, we would like to identify the subclass of monotone functions de�nablein NRL. Unfortunately, it is not possible to do it algorithmically. Not being ableto decide monotonicity is another reason why we prefer to view NRLa as asublanguage of NRL in which the antichain semantics can be modeled, ratherthan a separate language.Theorem20. It is undecidable whether a function f de�nable in NRL is mono-tone. 2There are some intersting anomalies of the antichain semantics. The most sur-prising of all is that [[�]]s = [[powerset]]s or, in other words, NRLa(powerset) =NRLa. Indeed, since for any Y 2 Pfin(X) we have Y � X and hence Y v[ X, thenunder the antichain semantics [[Pfin(X)]]s = [[maxPfin(X)]]s = [[fXg]]s = [[�(X)]]s.There are two lessons we learn from this interesting collapse. First, as we havesaid already, it is better to view NRLa as a sublanguage of NRL rather than aseparate language. Second, powerset is not a good candidate to enrich expres-siveness of the language. (Of course, the result of [SP94] which states that evenvery simple algorithms expressed with powerset need at least exponential spaceto be evaluated is a much stronger argument against powerset).25



The next question we are going to address is that of conservativity of NRL overNRLa. Given a family of primitives p interpreted for both set theoretic andantichain semantics, we say that NRL(�b;p)1 is conservative over NRLa(p) iffor any function f de�nable in NRL(�b;p) and satisfying the condition thatf(x) = f(x)� for any x = x�, such f is de�nable in NRLa(p). We do notknow if NRL(�b) is conservative over NRLa. However, we can show that it isconservative when augmented with aggregate functions. Instead of choosing arestricted set of aggregates, we use a general template suggested by [LW94a,LW94b]. This is the higher-order functionP(f) that takes a function f : t! Nand returns P(f) : ftg ! N given byP(f)(fx1; : : : ; xng) = f(x1)+ : : :+f(xn).Other operations on the type of naturals include multiplication and modi�edsubtraction (monus) : . The key idea in the proof of the proposition below isthat using these additional functions we can encode objects using only naturalnumbers, cf. [LW94c].Proposition21. NRL(N;P; �; : ;�b) is conservative over NRLa(N;P; �; : ). 2Example: Zaniolo's language In one of the �rst languages for partial infor-mation [Zan84] there is only one kind of nulls { ni. The ordering on records isde�ned component-wise and it is lifted to relations by using the Hoare order-ing. Zaniolo's language was initially designed for 
at relations only but here weshow how to extend it to the nested relations. We shall use the notation #x forfy j y � xg.The main notion in the language is that of x-relation which is an equivalence classwith respect to the Hoare ordering. That is,R1 and R2 are equivalent ifR1 v[ R2and R2 v[ R1. In our terminology this means that #R1 = #R2. Therefore,we can pick a canonical representative of each equivalence class: the canonicalrepresentative of the equivalence class of R is maxR. Clearly, #R1 = #R2 impliesmaxR1 = maxR2.The next notion used for de�ning the operations in the language is that ofgeneralized membership: r2̂R i� r � r0 for some r0 2 R. In other words, r2̂Ri� r 2 #R or frg v[ R. Using this notion, Zaniolo de�ned the following mainoperations: R1[̂R2 = maxfr j r2̂R1 or r2̂R2gR1\̂R2 = maxfr j r2̂R1 and r2̂R2gR1�̂R2 = maxfr j r2̂R1 and :(r2̂R2)gNow we can see how operations are translated into the standard order-theoreticlanguage we advocate in this paper:R1[̂R2 = maxft j t 2 #R1 or t 2 #R2g = max#R1 [ #R2 = R1 t[ R21 We use parenthesis to list types and operations added to the language.26



R1\̂R2 = max#R1 \ #R2 = maxfr1 ^ r2 j r1 2 R1; r2 2 R2g = R1 u[ R2R1�̂R2 = maxft j t 2 #R1 and :(t 2 #R2)g = R1 � #R2Thus, Zaniolo's union, intersection and di�erence are order-theoretic analogs ofthe usual set-theoretic union, intersection and di�erence. Next we notice thatthese operations are de�nable in NRLa and hence in NRL augmented withorderings at base types. We have seen already that max is de�nable, so we onlyneed the following lemma which is proved by an easy induction and de�nitionsof t[ and u[.Lemma22. If the least upper bound _b : b � b ! b and the greatest lowerbound ^b : b � b ! b are given for any base type b, then the least upper bound_s : s� s! s and the greatest lower bound ^s : s� s! s are de�nable in NRLafor every type s. 2The last operation of Zaniolo's language is the join (we omit projection andselection as these are standard and of course de�nable in NRLa). The join withrespect to a set X of attributes was de�ned asR1 1X R2 := maxft1 _ t2 j t12̂R1; t22̂R2; t1 and t2 are total on XgWithout the condition that t1 and t2 must be total on X that translates intomaxft1 _ t2 j t1 2 R1; t2 2 R2g and hence is de�nable in NRLa by takingcartesian product of R1 and R2 and mapping _ over it. In the case of 
atrelations, it is also possible to check if the value of a projection is ni since ni isavailable as a constant of base types now. Hence, the totality condition can bechecked, and since selection is de�nable, so is 1X . Summing up, we haveTheorem23. The language of Zaniolo is a sublanguage of NRLa, and henceNRL. 2Notice that in the case of model with one null ni we do not have to requireorderings on base types as these are de�nable using just equality test.3.3 Language for sets and or-setsProposition 13 gives us the properties of semantic domains of or-set types whichare necessary to �nd the programming primitives. Notice that if no orderingis involved, then structurally or-sets and sets are indistinguishable. Hence, inthis case all or-set operations are the same as in the case of sets, and weonly add pre�x or and change types ftg to hti. In the case of ordered se-mantics, it is only the ordering and removal of redundancies that are di�er-ent. Hence, we shall have analogs of all operations of the set language but27



the semantics is di�erent: or mapa(f)(hx1; : : : ; xni) = min(hf(x1); : : : ; f(xn)i),or �a(hX1; : : : ; Xni) = min(X1 [ : : :[Xn) and X u] Y = min(X [ Y ).So far there is no interaction of sets and or-sets present in the language. Since anyoperator providing such interaction must have source and target types involvingboth sets and or-sets, theorem 14 suggests what this operator could be. Its typeis fhtig ! hftgi. For the ordered case, it is �a of theorem 14. For unorderedcase, it is the following operator �:�(fhxij j 1 � j � kig j i = 1; : : : ; ni)= hfxif(i) j i = 1; : : : ; ng j f : f1; : : : ; ng ! N; 8i : 1 � f(i) � kii(or, compactly, �(X ) = hfxif(i) j i = 1; : : : ; ng j f 2 FX i using the notation oftheorem 14).Since or-sets are ordered by the Smyth ordering and redundancies are removedby taking minimal elements, we augment the de�nitions of orderings on complexobjects and forcing sets into antichains from the previous section as follows:{ x �hsi y , x �]s y (i.e. 8o0 2 y 9o 2 x : o �s o0){ hx1; : : : ; xni� = minhx�1; : : : ; x�niDe�nition. The language or-NRL is de�ned as NRL augmented by the or-set constructs without ordering from �gure 8 and �, see [LW96]. The languageor-NRLa is de�ned as NRLa augmented by the or-set constructs for ordereddomains from �gure 8 and �a.Some useful properties of or-NRL and or-NRLa are summarized in the theorembelow.Theorem24. 1. If �b is given at any base type b, then �s is de�nable inor-NRLa without using �s as a primitive.2. Under the assumption that �b can be tested in O(1) time, the time complexityof verifying x �s y is O(n2), where n is the total size of x and y.3. or-NRLa is a sublanguage of or-NRL(�b).4. For any two objects x; y of type s, x �s y i� x� �s y�.5. For any operator ga of or-NRLa and the corresponding operator g of or-NRLthe following holds: ga(x) = g(x)� whenever x is a legitimate input to ga (thatis, x = x�).6. Any monotone function f de�nable in or-NRL agrees with the antichainsemantics. If f is not monotone, then map(f) and or map(f) do not agreewith the antichain semantics.7. It is undecidable whether a function f de�nable in or-NRL is monotone. 228



Or-Set operartions without orderingor �2s;t : s � hti ! hs � ti or �t : t! hti or [t : hti � hti ! htior �t : hhtii ! hti or empty t : unit! hti f : s! tor map f : hsi ! htiOr-Set operations for ordered domains (given by P])or �2s;t : s� hti ! hs� ti or �t : t! hti u]t : hti � hti ! htior �ta : hhtii ! hti or empty t : unit! hti f : s! tor mapa f : hsi ! htiInteraction of sets and or-sets without ordering�t : fhtig ! hftgiInteraction of sets and or-sets for ordered domains�ta : fhtig ! hftgiFig. 8. Expressions of or-NRL and or-NRLaNot let us look at the conceptual semantics [[]]c of the or-set operators of or-NRLand or-NRLa.Theorem25. The following equations hold:1. [[or �a(x)]]c = [[x]]c.2. [[�a(x)]]c = [[x]]c.3. [[or �2(x)]]c = [[x]]c. 29



4. [[xu] y]]c = [[x]]c [ [[y]]c.5. [[or mapa(f)(fx1; : : : ; xng)]]c = [[f(x1)]]c [ : : :[ [[f(xn)]]c.Moreover, for or-NRL the same equations hold if �nite powerset is used insteadof P[(�) to give semantics of ftg. 2The intuition behind the �rst three equations is that or �, or �2 and � do notchange the meaning. Indeed, consider x = hh1; 2i; h2; 3ii. The meaning of x isan or-set which is either h1; 2i or h2; 3i. Hence, x is an integer which is either1 or 2 or 3. But this is the same as the meaning of h1; 2; 3i = or �(x). For �,the meaning of y = fh1; 2i; h3ig is a set whose �rst element is 1 or 2 and whosesecond element is 3. That is, y is either f1; 2g or f2; 3g, and its meaning is thesame as that of hf1; 2g; f2; 3gi= �(y).It was shown in [LW96] that if or �, � and or �2 are repeatedly applied tosubobjects of an object x while possible, then a) the process will eventuallyterminate and b) the result of this process does not depend on the sequence inwhich those operations were applied to subobjects of x. (As explained in moredetail in [Lib95b], it is important that duplicates obtained during this processbe retained until the very last application.) The result uniquely determined bysuch a process is called a normal form and denoted by normalize(x). It can beseen that if x has or-sets in it, then the type of normalize(x) is hti where t doesnot have any or-set brackets. The intuitive meaning of normalize(x) is listing allpossibilities encoded by x. Of course this should not change the meaning. Now,with the help of theorem 25 we can formulate this precisely.Corollary 26. [[normalize(x)]]c = [[x]]c. 2This corollary is formulated for the set theoretic semantics, because existence andwell-de�nedness of normalize was proved only for the set semantics in [LW96].Extending this result in various ways, including antichain semantics, is the sub-ject of a separate paper [Lib95b].Concluding this section, we give a simple example of applicability of or-NRL toclassical problems of incomplete information in relational databases by showinghow to use it to solve the membership problem for equational tables.Example: Membership problem for equational tables in or-NRL Recallthat equational tables are relations where variables can be used as well as totalvalues, and each variable may occur more than once. The membership problemis to determine, given an equational table and a relation without variables, if therelation is a possible world for the table. That is, if it is possible to instantiatevariables to values such that the table will be instantiated into the given relation.30



It is known that this problem is NP-complete [AKG91], so we can not hope togive a solution that does not use the expensive �.For simplicity of exposition, assume that we have a base type b having bothvariables x1; : : : and values v1; : : : and that it is possible to distinguish betweenvariables and values. A relationR is an object of type fb�bg such that no variableoccurs in it. A table T is also an object of type fb� bg but now variables mayoccur. It is possible to �nd the set of all variables that occur in T using the factthat select is de�able in NRL (cf. [BBW92]):VarT := select(is variable)�map(�1)(T ) [ select(is variable)�map(�2)(T )All values that occur in R can be found asValR := map(�1)(R) [ map(�2)(R)In or-NRL it is possible to de�ne powersetor : ftg ! hftgi which lists all subsetsof a given set. This is done by �rst taking a set fx1; : : : ; xng and producing a newobject fhfx1g; fgi; : : : ; hfxng; fgig and then applying � to it and mapping � overthe result. So, the next step is to compute powersetor(cartprod(VarT �ValR))and select those sets in it in which every variable from VarT occurs exactlyonce. We denote this resulting object of type hfb� bgi by Assign. Each elementof Assign can be viewed as an assignment of values to variables, so it can beapplied to T in the following sense. For every x in Assign (which is a set of pairsvariable-value), we can write a function that substitutes each variable in T bythe corresponding value, and then map this function over Assign. The reader isinvited to see how such a function can be written in or-NRL.The resulting object is now X of type hfb� bgi which is the or-set of all possiblerelations that can be obtained from T by using valuation maps whose values arein ValR. Therefore, R is a possible world for T if and only if R is a member ofX. To verify this, we write or map(�x:eq(x;R))(X) and then check if true is inthe result. This gives us the membership test.It is interesting to note that the membership problem for Codd tables, whilebeing of polynomial time complexity, requires solving the bipartite matchingproblem which can be reformulated as a problem of �nding a system of distinctrepresentatives, see [AKG91]. Therefore, the power ofNRL is too limited to solvethe membership problem even for Codd tables, because the bipartite matchingproblem can not be solved in it [Lib94]. However, with the power of �, thelanguage can solve a much more complicated membership for equational tables.4 New directions4.1 Traditional constraints and partial informationIn this paper we developed type systems and languages for databases with par-tial information. The next important step will be to accommodate traditional31



database constraints into the model. Relatively little is known about constraintsin relational databases with nulls (see [AM86, Gra91, PDGV89, Tha91, Tha89])and virtually nothing is known about constraints for other kinds of partial infor-mation. To the best of our knowledge, no work has been done on understandinghow the ordering interacts with constraints.There are several possible approaches to the study of interaction of traditionalconstraints with partial information. Since we advocate the order-theoretic mod-els of databases and consider rather complicated type systems, we believe oneshould try to apply the approach that formalizes constraints independentlyof the particular kind of data structures involved. For example, one may usethe lattice theoretic approach to dependencies and normalization developed in[DLM92, Day92] or de�ne dependencies as certain classes of �rst order formulaeas in [Fag82].Another useful idea is to introduce analogs of some constrains for databaseswith partial information in a \disjunctive" manner [AM86, Tha89]. Following[Tha89], we consider keys. In a usual relational database, a set K of attributesis a key if �K(t1) 6= �K(t2) for any two distinct tuples t1 and t2. Suppose wehave a relational database in which only one kind of nulls, ni, is allowed, andthe order is given by ni � v for any v. Then a family K = fK1; : : : ;Kng of setsof attributes is called a key set [Tha89] if for any two distinct tuples t1 and t2,there exists a Ki 2 K such that t1 and t2 are de�ned on Ki (that is, none of theKi-values is ni) and �Ki(t1) 6= �Ki(t2). For relations without null values thissimply means that SK is a key. A key set if minimal if all Kis are singletons.The disjunctive nature of such constraints matches the usual key constrains inthe closed world semantics.Proposition27. For any relation R with ni null values and a set K of at-tributes, K = ffkg j k 2 Kg is a minimal key set i� �K\def(t;t0)(t) =�K\def(t;t0)(t0) implies t = t0, where def(t; t0) is the set of attributes on whichboth t and t0 are de�ned. Furthermore, this implies that for any T 2 [[R]]CWAmaxwith card T � card R, K is a key of T . 2The converse to the last statement is not true. Consider R = f(ni; 1); (2; 1)g.Then for any T as in the statement of the proposition, the �rst attribute is akey, but it is not a key set for R.We believe that this idea of making one constraint into a family while maintain-ing a close connection with the intended semantics can be quite productive. Theconcept of a key set can be reformulated as 8t; t0 8K 2 K : (K � def(t; t0) )�K(t) = �K(t0)) ) t = t0. This in turn implies that SK is a key for anyT 2 [[R]]CWAmax and shows that keys can be further generalized to functional de-pendencies and probably a to greater class of dependencies given in a �rst orderlanguage with equality. 32



4.2 Recursive types and valuesThe discussion in this subsection assumes some knowledge of the formal seman-tics of programming languages. The complex object data model, which was themain object of study in this paper, usually serves as the underlying model forobject-oriented databases. But object-oriented databases include more than that.In particular, they often deal with recursive values. In many models recursivevalues are represented by oids; in practice, these are implemented as pointers.However, the formal semantics of recursive types and values, and in particularrecursive types and values in the presence of partial information,must be workedout.Since semantics of recursive types is usually obtained as a limit construction,this suggests using domains instead of arbitrary posets. Assume that we add arecursive type constructor to the type system:t := x j b j unit j t� t j ftg j �x:twhere x ranges over type variables, and �x:t is the recursive type constructor(x must be free in t). Since semantics of recursive types is usually obtained as asolution to an equation, which in turn is a (co)limit in some category, we have toswitch to categories of domains from categories of posets. A domain is a poset inwhich every directed set has a least upper bound and compact elements form abasis. A compact element is characterized by the property that c � FX impliesc � x for some x 2 X. Compact elements form a basis of D if for every x 2 D,Kx = fc j c � x; c compactg is directed and x = FKx.It was suggested in [Gun85] that one formulate a number of requirements onthe category of domains in which the semantics of types is to be found. In[Gun85] such requirements were formulated for type systems suitable for tra-ditional functional languages, but those do not use the set type constructor.Following [Gun85], let us try to formulate a number of requirements on the cate-gory of domainsC in which a semantics of recursive complex object types can befound. First of all, its objects must be closed under � (product type) and }[(�)which is Idl(P[(K�)), the ideal completion of P[(K�). Second, it must containthe domains of base types (which are usually 
at domains or those similar toposets in �gure 4). Third, equations of form D = F(D), where F is a functorcomposed from the constant base type functors, products and }[(�), must havea solution in C. This guarantees that the semantics of recursive types can stillbe found in C.Of course a number of categories satisfy these requirements, but most of themcontain too many domains that never arise as domains of types. If we interpretcompact elements as objects that can actually be stored in a database, thenhaving an object x that can be stored and an object y that is less informativethan x, we should be able to store y as well, provided or-sets are not used. Thatis, there is one additional condition saying that the compact elements must form33



an ideal, i.e. #KD = KD. Now we call a category of domains that satisfy allthese conditions a database category.Proposition28. The following are examples of database categories:1) C1, the category of domains in which there is no in�nite chain under anycompact element.2) C2, the category of domains in which the number of elements under anycompact element is �nite.3) Subcategories of C1 and C2 in which all ideals are distributive lattices and/ormaps are required to preserve compactness.4) The category of dI-domains and stable maps (see [Gun92] for the de�nition).2So, we have a number of categories in which semantics of recursive complex ob-ject types can be found. But this is not the end of the story, because there aretwo major issues that must be addressed. First, these conditions are no longersatis�ed if we add the or-set type constructor. Second, all recursive databaseobjects have �nite representation and could be stored in a database. But wecan easily see that they are not necessarily compact elements in the domainsof their types. For example, consider �x:string � x. Its elements are in�nite se-quences of strings, and compact elements are those in which almost all entries are?string. We can think of this type as, for example, type person = [Name:string,spouse:person]. Its elements certainly have �nite representation, but are not com-pact elements of the domain of person. Therefore, we need to identify elementsof the domains which have a �nite representation. This identi�cation must bedone order-theoretically. Therefore, a proper de�nition of elements having a �-nite representation and identi�cation of elements of solutions of recursive domainequations having �nite representations remain open problems. We believe thatprogress towards solving these problems will suggests the right operations to beused for programming with recursive complex objects.4.3 Bags and partial informationSo far we have tacitly assumed that we deal with sets and duplicates are al-ways removed. However, most practical database management systems use bagsas the underlying data model. There has been some interest in languages forbags recently [GM93, LW94a, LW94b]. A standard bag language, called BQL orBALG, was obtained. It is supposed to play the same role for bags as (nested)relational algebra plays for set (or complex objects). One can also transfer theresults on orderings from sets to bags. To de�ne elementary updates, we shouldkeep in mind that having a bag rather than a set means that each element ofa bag represents an object and if there are many occurrences of some element,then at the moment certain objects are indistinguishable.34



In view of this, we de�ne updates on bags as follows. First, if b is an elementof bag B, and b � b0, then B CWA (and OWA )(B � fjbjg) ] fjb0jg. Here � is bagdi�erence, ] is additive union and fjjg are bag brackets. In the case of OWA wealso add B OWA B ] fjbjg. Transitive closures of these relations are denoted byECWA and EOWA. It was shown by the author how to describe ECWA and EOWAalgorithmically. For a �nite bag B and an injective map � : B ! N, also calledlabeling, by �(B) we denote the set f(b; �(b)) j b 2 Bg. In other words, � assignsa unique label to each element of a bag. If B is a �nite bag of elements of aposet, then the ordering on pairs (b; n) where b 2 B and n 2 N is the following:(b; n) � (b0; n0) i� b � b0 and n = n0.Proposition29. (see also [LW95]) The binary relations ECWA and EOWA onbags are partial orders. Given two bags B1 and B2, B1 ECWA B2 (B1 EOWA B2) i�there exist labelings � and  on B1 and B2 respectively such that �(B1) v\  (B2)(respectively �(B1) v[  (B2)). 2That is, the correspondence between OWA and the Hoare ordering and CWAand the Plotkin ordering continues to hold.We saw that that v] and v[ are de�nable in our basic set language NRL. How-ever, for bags the situation is di�erent. It was shown in [LW95] that neitherECWA nor EOWA is de�nable in the basic bag language BQL. Hence, any imple-mentation of a bag language that supports incomplete information must provideorderings at all types, as these can not be lifted from base types if powerfulprimitives like �xpoints are not used.4.4 Language implementationThe core language for sets and or-sets has been implemented as a library ofmodules in Standard ML, see [GL94]. It was useful in several application suchas querying incomplete design databases, or querying independent databases toobtain approximate answers. We believe that in the future implementations sev-eral changes must be made. For example, an algebraic syntax of or-NRL, whichis re
ected by the syntax of OR-SML, should be changed to a more user friendlysyntax, such as comprehensions [BLS+94]. This poses a few problems, such asincorporating normalization of disjunctive objects into the comprehension syn-tax. It is also important that a user be able to add any collection of null valuesto any preexisting type and de�ne orderings on them. Currently this is possibleonly with user-de�ned new types. Finally, it would be interesting to see if usingpartial information leads to any new optimizations.Acknowledgements.This paper is based on the results from my handwrit-ten notes from 1992-1994 and a few results from two conference papers35
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