An improved algorithm for the incremental
recomputation of active relational expressions

Timothy Griffin, Leonid Libkin, and Howard Trickey

Abstract— In [1] Qian and Wiederhold presented an algo-
rithm for the incremental recomputation of relational al-
gebra expressions that was claimed to preserve a certain
minimality condition. This condition guarantees that the in-
cremental change sets do not contain any unnecessary tu-
ples and so redundant computations are not performed. We
show that in fact their algorithm violates this condition. We
present an improved algorithm that does preserve this no-
tion of minimality.

Keywords— Relational algebra, incremental recomputation,
change propagation, view maintenance.

I. INTRODUCTION

Let R, R1, Ry, ... denote names of relations in a database
scheme. Let p range over quantifier-free predicates, and
A range over sets of attribute names. Relational algebra
expressions are generated by the grammar

S = R base relation
| op(S) selection
| TI4(8) projection
| Sx8§ cartesian product
| SuS union
| SNnS intersection
| S-S5 difference
| S8 natural join

The symbols S, T and @ will be used to denote arbitrary
relational expressions.

If s is a database state, that is, a partial map from re-
lation names to finite sets of tuples, and T is a relational
expression such that s is defined on all relation names men-
tioned in T, then s(T') denotes the set resulting from eval-
uating T in the state s. (Note that s is a function, so we
consider evaluating 7' in s as the result of applying s to T'.)
The notation T' =, S means that for all database states s,
if s is defined on all relation names mentioned in S and T,
then s(T) = s(S). The notation T' C, S means that for
all database states s, if s is defined on all relation names
mentioned in § and T, then s(T) C s(S).

Abstract transactions, viewed as functions from states
to states, are assumed to be of the form

Rl — (Rl — le) U ARl,

R, + (R.—VR.,)UAR,

The expressions VR; and AR; represent the sets deleted
from and inserted into base relation R;. More formally,

AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974,
USA.

when transaction ¢ is executed in state s, then the value of
R; in state ¢(s) becomes s((R; — VR;) UAR;).

The expression T is a pre-expression of § w.r.t. ¢ if
for every database state s we have s(T) = i(s)(S). In
other words, we can evaluate the pre-expression T before
we execute ¢ in order to determine the value that S will
have afterwards. It is easy to see that

def

(Rl — le) U ARl,
pre(t,S) = S .

. (1)
(Rn — VRn)UAR,

is a pre-expression of § w.r.t. ¢.
Example. Let @) def Ri{UR, and ¢ def {R; + Ry —

VRi,Ry+ Ry U ARz.}. Then

pre(t, @) & (Ry — VR1) U(R; UARy)

can be evaluated before ¢ is committed in order to deter-
mine the value that @ will have afterwards.

Problem Statement. Suppose S(Ri,---, Ry) is a re-
lational expression and ¢ is a transaction. We would like to
determine how ¢’s changes to the base relations propagate
to changes in the value of S§. In particular, we seek to con-
struct relational expressions AS and /.5, called a solution
for pre(t, S), such that

pre(t,8) = (S —VS)UAS. (2)

Any algorithm for producing such a solution will be called
a change propagation algorithm.

Note that the expressions 7S and AS are to be evalu-
ated before ¢ is executed and committed. These solutions
can be used in many applications involving the mainte-
nance of derived data. For example, in the case of view
maintenance, representation (2) allows us to recompute the
value of S in the new state from its value in the old state
and the values of 7S and AS. In general, we can expect
this to be computationally less expensive than recomput-
ing S in the new state or computing (1) in the pre-commit
state. For integrity maintenance it allows us to check data
integrity before a transaction is committed, thus allowing
for the transaction to be aborted without the expense of a
roll-back operation.

There are several properties that we could require of a
“good” solution. It is usually required that no unnecessary
computations be involved in the evaluation of 7.5 and AS.
Formally, a solution will be called minimal if

(a) vS G, S : All deleted tuples are in S.

1 0p(S = VS) = 0p(S5) — op(VS)
2 0p(SUAS) =, 6,(5) Uop(AS)
3 (S —vS) =r Ha(S) — (I14(S) — HA(S vS))
4 TA(SUAS) = T4(S)UII4(AS) —T14(5))
5 (S-S xT= (SxT)—(vSxT)
6 (SUASYXT =, (SxT)U(ASxT)
7 (8-S UT = (SuT)—(vS-T)
8 (SUASYUT = (SUT)U(AS-T)
9 (8-vS)-T=(8-T)-(vS-T)
100 S—(T-vT) = (S-THu(SnvyT)
11 (SUAS)-T=(S—-T)U(AS-T)
12 S—(TUAT)= (S-T)—-(SNAT)
13 (S—-vSHNT=(SNT)—(vSnT)
14 (SUASINT = (SNTYU(ASNT)
15 (8-S =T = (S~T)—(vS=T)
16 (SUAS)=T =, (SxT)U(AST)
Fig. 1 Relational equations used in change propagation.

(b) SNAS =, ¢ : All inserted tuples are new.

Informally, minimality guarantees that no unnecessary tu-
ples are generated in the change sets.

A violation of minimality could be more serious than a
matter of lost efficiency. The correctness of a given applica-
tion of change propagation could very well depend on min-
imality. For example, suppose that we want to maintain
the integrity constraint size(S) = size(T'). Assuming that
the constraint is valid, then using a change propagation al-
gorithm we could simply check that size(AS) —size(yS) =
size(AT) — size(7T') before committing a transaction that
changes some of the relations mentioned in S and 7'. How-
ever, this would be incorrect if our algorithm violated min-
imality.

II. THE QIAN-WIEDERHOLD ALGORITHM

We now present a simplified description of the change prop-
agation algorithm of [1]. This algorithm is based on the
equations listed in figure 1. Each equation, when read from
left to right, is interpreted as a rewrite rule that describes
how to propagate upward change expressions (labeled with
symbols 7 and A). Given the expression pre(¢, @), the
algorithm repeatedly applies the rules to propagate change
expressions to the top of a relational expression, start-
ing with expressions of the form \yR; or AR;. This is
done until all subexpressions of the form 7 R; or AR; have
been removed. These propagations are performed in two
stages:
pre(t, Q) —=* Q@ UAQ
(first propagate all positive changes)
="' (@ -VvQ)UAQ

(then propagate all negative changes)

The precise order of propagations within these two stages

is not specified.

Example. Returning to our running example, @ def

Rl U Rz and t déf {Rl — Rl — VRl,Rz — Rz U ARz.},
the Qian-Wiederhold algorithm propagates these changes

as follows:

pre(t, Q)
< (R, — VR1)U(Ry UARy)
=25 ((R1— VR1)URs)U(ARz — (Ry — VR1))
=L ((R1URz) — (VR1— R2))U(AR; — (R1 — VR1))
= (@-VQUAQ

where AQ def AR; — (R1 — VR;) and @ def vR1—
It is claimed on page 340 of [1] (assuming each pair /R,
AR, represents a minimal change to base relation R;) that

The result of the algorithm is minimalin the sense
that 7€ is contained in £ while A€ is disjoint
from €.

However, this is not the case.

Proposition 1: The Qian-Wiederhold algorithm violates
minimality.

Proof. The example presented above serves as a counter-
example since

Q N AQ =r le N ARz,

which is not guaranteed to be empty. To see this, consider

the following example. Let Ry = {a, b}, Rz = {a}, VR1 =
{b}, and AR; = {b,c}. Then @ = {a,b}, and AQ =
{b,c} — ({a, b} — {b}) = {b, ¢}, which is not disjoint from
Q. O

III. AN IMPROVED CHANGE PROPAGATION ALGORITHM

In this section we present a simple recursive algorithm for
relational change propagation that does preserve minimal-
ity.

Repeated application of the rules of figure 1 guarantees
a solution, as proved in [1]. However, we have shown that
such a solution is not necessarily a minimal one. How can
this be repaired? The following claim tells us that any
solution can be transformed into a minimal one:

Proposition 2: Suppose that S =, (Q —v1Q)U A1Q.
Let

def

V2@ E(QNviQ)-A1Q and £QE AQ-Q
Then

a) S=(Q—v2Q)UAQ

b) V2Q gr Q

c) QNAQ = ¢.

Proof. That b) and c) hold follows immediately from
the definitions, so we only have to prove a):

(@ —V2Q) U L2Q

= (@-((@NVv1Q) — L:1Q)) U (A1Q - Q)
= (@ —(@NV1Q))U(Q@NA:Q)U(A:1Q — Q) by (10)
= (@ - (@NV1Q))UA1Q
= (@ - v1Q)UA1Q

Note that proposition 2 could be applied directly to the
results of the algorithm of [1] to obtain a minimal solu-
tion. However, we prefer to present a new algorithm that
preserves minimality at each step.

Two mutually recursive functions, (¢, @) and A(¢, @),
are presented in figure 2. For readability, we use the abbre-
viations add(¢, §) for SUA(Z, S), sub(t, S) for S —v(¢, 5),
and mod(t, S) for (S — (¢, S)) UA(¢, S). It is important
to emphasize that these expressions are to be evaluated in
the database state before the execution of ¢.

Here is a sketch of the process by which these functions
were derived. Consider the query @ = S UT. First note
that pre(¢, @) = pre(t, S) Upre(t, T). Now, assume that we
are able to construct minimal solutions for the subexpres-
sions S and T so that pre(t,Q) =, ((S—-vVS)UAS)U
((T—T)UAT). Next, we obtain a general solu-
tion by repeated applications of the propagation rules
of figure 1 to obtain pre(t,Q) =, (@ — vV1Q) U 210,
where 71Q = (VS —sub(¢,T)) U (VT — §) and A1Q =
(AS —mod(¢,T)) U (AT — sub(¢, S)). Finally, by appli-
cation of proposition 2, together with simplification that
relies on minimality, we obtain @ = (/.S — mod(¢, 7)) U
(VT — mod(t, S)) and AQ = (AS — TYU (AT — S). This
last step is quite important since the assumptions of min-
imality would not be available to a query optimizer at a
later stage. When applied to all relational operators, this
process naturally gives rise to two mutually recursive func-
tions of figure 2.

(@ Tv(tQ |
vR if R« (R—vR)UARIisint
R { ¢ otherwige :
op(8) | op(v(t,5))
Ha(5) | Ma(v(% 5)) — Ha(mod(t, 5))
SxT | (v S)xTHu (S x v(t,T))
SUuT | (vt 8)—mod(t, 7)) U(v(t,T) — mod(t, S))
SNT | (vESHNTHYu (v, THNS)
S-T | (vt S)-TYU(AlR,T)NS)
ST | (V) =T)U(S=vy(t,T))
(@ [AtQ) |
R AR ifR«(R—vVR)UARIisint
¢ otherwise
9p(5) | 9(AE,5))
ITA(S) | TA(AS) —T14(S)
SxT | (mod(t,8) x A(t, T)) U(A(t,S) x mod(¢, T))
SUuT | (A@®,S)-T)U(A@E,T)-S)
SNT | (A%, 8) Nmod(t, T)) U (A(¢, T) Nmod(t, S))
S—T | (A%, S) —mod(¢, T)) U(v(t, T) Nsub(z, S))
ST | (mod(t, S) > A(E, T)) U (A(2, S) xmod(¢, T))

Fig. 2 Mutually Recursive functions y7 and A.

Theorem 1: Lett be a minimal transaction. That is, each
pair \JR;, AR; in t represents a minimal change to base
relation R;. Let Q) be any relational expression. Then

- V(t’ Q)) U A(t’ Q)

Proof. All justifications of the form “by (m)” refer to the
equations in figure 1.

To reduce the clutter, we introduce the following nota-
tion for the proof. First, we fix a transaction t. Then by
S~ we mean sub(¢,S), ST stands for add(¢,S) and S™ is
mod(¢, S). Similarly for T' we use T~, Tt and T™. We also
use VS and AS for v/(¢,S) and A(t, S), omitting ¢, and
similarly for T. The proof proceeds by induction on the
structure of). In each case we must show that the results

of A(t, @) and v/(¢, Q) satisfy conditions (a), (b), and (c).

Base case. If @ = R, then pre(t,Q) =
pre(t, R) = (R - VR) UAR = (R - V(ta R)) U A(ta R) =
(@ — v(t, @) UA(L, Q). The theorem follows from the as-

sumption that ¢ is a minimal transaction.

Induction step. Assume that (a), (b), and (c) hold for
any expression smaller than). Now proceed by case anal-
ysis of the structure of (). We present two cases for illus-
tration; others are similar.

Projection. Case @ = IT14(S). By propagation we obtain:

pre(t, Q)

= HA(pre(t 5))

=, TI4(S — vS) (HA(AS) —T4(S7)

=r (IL4(S) — (I4(S) — Aa(S7))) U (ILa(AS) —
(

Q- v1Q) U@

where 71Q = IT4(S) — IT4(S7) and A1Q = TI4(AS) —
IT4(S7). The first equation is obtained by definition, the
second by induction, using (a), the third by (4) and the
fourth by (3). It is clear that v1Q C, Q. Forcing mini-
mality (by application of proposition 2) we get

114(57))

\vo14)

= (QNv1Q) - £:Q

= vi1Q — A1Q

= (I4(S) —I14(S7)) — (IT4(AS) —Ha(57))

= Ha(S) — (a(S7)U(a(AS) —T14(S7)))

= I14(S) — (I1a(S™) UIL4(AS))

= H4(S™UVS) - (TTa(S7)UTI4(AS))

= (Ma(S7)UTIa(VS)) — (I14(S7) UIL4(AS)) by (4)
= II4(VS) — (4(S™)UII4(AS))

= Ha(VS)—T4(S") by (4)
= vQ
and

£oQ

“ 2Q-@Q

= (I4(AS) —T14(57)) — 114(S5)

= H4(AS) - (a(S7)UTla(9))

= II4(AS) —T14(9) since II4(S™) G, T14(S)

AQ

Difference. Case Q = S — T. By propagation we obtain:

pre(t, Q)
= pre(t,S) —pre(t, T)
= (S=VS)UAS)— (T -vT)UAT)
= ((§=v8)—((T-vVT)UAT))U(AS-T")
= ((§=vS)—(TUAT)-vT))U(AS-T")
= ((§—=vS)—(TUAT))U ((AS ™) u(vTnsT))
= ((S—-vS) - (TUAT))UAQ
= ((S (TUAT)) —(VS-T")UAQ
= (§—T)-((VS-TT)U(ATNS)))UAQ
“ (@ v,0)UnQ
where V1@ = (VS—-T%) U (ATNS) and AQ =
(AS —T")U (YT NS). The first equation is obtained

by the definition of pre-expressions, the second by induc-
tion, using (a), the third by (11), the fourth by (b) and
(c), the fifth by (10), the seventh by (9) and the eighth by
(12).

By induction, using (b) and (c), it is easy to check that
V1@ C; Q. and AQ N Q =, ¢. The expression /1@ can
be further simplified as

(vS—THHU(ATNS)
= (¥S-T)-(VSNAT)HU(ATNS) by(12)
= (VS-TYU(ATNS)
= V@
The last equation is valid since 7S NAT C, AT NS, by
(b). Theorem 1 is proved. a

Algorithm. Our algorithm is simply this: given inputs
t and @, use the functions (¢, Q) and A(¢, @) to compute
a solution for pre(¢, @). Note that in an actual implemen-
tation v (¢,Q) and A(¢, Q) could be combined into one
recursive function. Thus the algorithm requires only one
pass over the expression Q.

Example. Recall the counter-example presented in

proposition 1: @ def Ry UR; and ¢ def {R; « Ry —

VRi, Ry + Ry UARy.}. Our algorithm produces

v(t Q)
= V(t, Rl @] Rz)
— (V(t, R1) — mod(t, R)) U(V(t, Rz) — mod(t, Ry))
= (le — (Rz U ARz)) U (d) mod(t Rl))
= le — (Rz U ARz)
and
A, Q)

= A(t, Ry U Rz)

= (A(t, R1) — R2) U(A(t, R2) — R1)

= (¢—R:)U(AR; — Ry)

=r A-R2 -

For the concrete example, Ry = {a,b}, R2 = {a}, VR1 =
{b}, and ARy = {b,c}, it is easy to see that (¢, Q) = ¢
and A(t, Q) = {c}. In particular, A(¢,Q) N Q = ¢.

IV. REMARKS

We believe that our algorithm has some advantages. The
recursive form of the algorithm lends itself to a correctness

proof that proceeds by a straightforward structural induc-
tion, and also allows us to exploit the invariant of mini-
mality in the simplification of the results. In addition, it is
easy to see that the change sets produced by the algorithm
are of a special form — they are “controlled” in some sense
by the changes to base relations. For instance, to compute
Q = v(t,S) —mod(t,T), we compute V/(¢, S), V(¢,T) and
A(t,T). To compute @, we iterate over v/(¢,5), and for
each z € /(t,S) check if either z € T and =z ¢ (¢, T),
or z € A(t,T). Note that we do not have to compute and
materialize mod(¢, T) in order to compute Q. In fact, the
complexity of incremental recomputation is controlled by
the size of change sets, which are typically smaller than re-
lations and views. This point is explored in more detail in
the context of a multiset calculus presented by the authors

in [2].

REFERENCES

[1] X. Qian and G. Wiederhold. Incremental recomputation of ac-
tive relational expressions. IEEE Transactions on Knowledge
and Data Engineering, 3(3):337-341, 1991.

[2] T. Griffin and L. Libkin. Incremental maintenance of views with
duplicates. Proceedings of the 1995 ACM-SIGMOD Interna-
tional Conference on Management of Data, ACM Press, 1995,
pages 328-339.

