
An improved algorithm for the incrementalrecomputation of active relational expressionsTimothy Gri�n, Leonid Libkin, and Howard TrickeyAbstract| In [1] Qian and Wiederhold presented an algo-rithm for the incremental recomputation of relational al-gebra expressions that was claimed to preserve a certainminimality condition. This condition guarantees that the in-cremental change sets do not contain any unnecessary tu-ples and so redundant computations are not performed. Weshow that in fact their algorithm violates this condition. Wepresent an improved algorithm that does preserve this no-tion of minimality.Keywords|Relational algebra, incremental recomputation,change propagation, view maintenance.I. IntroductionLet R, R1, R2, : : : denote names of relations in a databasescheme. Let p range over quanti�er-free predicates, andA range over sets of attribute names. Relational algebraexpressions are generated by the grammarS ::= R base relationj �p(S) selectionj �A(S) projectionj S � S cartesian productj S [ S unionj S \ S intersectionj S � S di�erencej S ./ S natural joinThe symbols S, T and Q will be used to denote arbitraryrelational expressions.If s is a database state, that is, a partial map from re-lation names to �nite sets of tuples, and T is a relationalexpression such that s is de�ned on all relation names men-tioned in T , then s(T ) denotes the set resulting from eval-uating T in the state s. (Note that s is a function, so weconsider evaluating T in s as the result of applying s to T .)The notation T =r S means that for all database states s,if s is de�ned on all relation names mentioned in S and T ,then s(T ) = s(S). The notation T �r S means that forall database states s, if s is de�ned on all relation namesmentioned in S and T , then s(T ) � s(S).Abstract transactions, viewed as functions from statesto states, are assumed to be of the formt = 8<: R1  (R1 �5R1) [4R1;: : :Rn  (Rn �5Rn) [4RnThe expressions 5Ri and 4Ri represent the sets deletedfrom and inserted into base relation Ri. More formally,AT&TBell Laboratories, 600Mountain Avenue, Murray Hill, NJ 07974,USA.

when transaction t is executed in state s, then the value ofRi in state t(s) becomes s((Ri �5Ri) [4Ri).The expression T is a pre-expression of S w.r.t. t iffor every database state s we have s(T ) = t(s)(S). Inother words, we can evaluate the pre-expression T beforewe execute t in order to determine the value that S willhave afterwards. It is easy to see thatpre(t; S) def= S0@ (R1 �5R1) [4R1;� � �(Rn �5Rn) [4Rn 1A (1)is a pre-expression of S w.r.t. t.Example. Let Q def= R1 [ R2 and t def= fR1  R1 �5R1; R2 R2 [4R2:g. Thenpre(t; Q) def= (R1 �5R1) [ (R2 [4R2)can be evaluated before t is committed in order to deter-mine the value that Q will have afterwards.Problem Statement. Suppose S(R1; � � � ; Rn) is a re-lational expression and t is a transaction. We would like todetermine how t's changes to the base relations propagateto changes in the value of S. In particular, we seek to con-struct relational expressions 4S and 5S, called a solutionfor pre(t; S), such thatpre(t; S) =r (S �5S) [4S: (2)Any algorithm for producing such a solution will be calleda change propagation algorithm.Note that the expressions 5S and 4S are to be evalu-ated before t is executed and committed. These solutionscan be used in many applications involving the mainte-nance of derived data. For example, in the case of viewmaintenance, representation (2) allows us to recompute thevalue of S in the new state from its value in the old stateand the values of 5S and 4S. In general, we can expectthis to be computationally less expensive than recomput-ing S in the new state or computing (1) in the pre-commitstate. For integrity maintenance it allows us to check dataintegrity before a transaction is committed, thus allowingfor the transaction to be aborted without the expense of aroll-back operation.There are several properties that we could require of a\good" solution. It is usually required that no unnecessarycomputations be involved in the evaluation of5S and4S.Formally, a solution will be called minimal if(a) 5S �r S : All deleted tuples are in S.1



1 �p(S �5S) =r �p(S) � �p(5S)2 �p(S [4S) =r �p(S) [ �p(4S)3 �A(S �5S) =r �A(S) � (�A(S) � �A(S �5S))4 �A(S [4S) =r �A(S) [ (�A(4S)��A(S))5 (S �5S) � T =r (S � T )� (5S � T )6 (S [4S)� T =r (S � T ) [ (4S � T )7 (S �5S) [ T =r (S [ T )� (5S � T )8 (S [4S) [ T =r (S [ T ) [ (4S � T )9 (S �5S) � T =r (S � T )� (5S � T )10 S � (T �5T ) =r (S � T ) [ (S \5T )11 (S [4S)� T =r (S � T ) [ (4S � T )12 S � (T [4T ) =r (S � T ) � (S \4T )13 (S �5S) \ T =r (S \ T )� (5S \ T )14 (S [4S) \ T =r (S \ T ) [ (4S \ T )15 (S �5S) ./ T =r (S ./ T )� (5S ./ T )16 (S [4S) ./ T =r (S ./ T ) [ (4S ./ T )Fig. 1 Relational equations used in change propagation.(b) S \4S =r � : All inserted tuples are new.Informally, minimality guarantees that no unnecessary tu-ples are generated in the change sets.A violation of minimality could be more serious than amatter of lost e�ciency. The correctness of a given applica-tion of change propagation could very well depend on min-imality. For example, suppose that we want to maintainthe integrity constraint size(S) = size(T ). Assuming thatthe constraint is valid, then using a change propagation al-gorithm we could simply check that size(4S)�size(5S) =size(4T )� size(5T ) before committing a transaction thatchanges some of the relations mentioned in S and T . How-ever, this would be incorrect if our algorithm violated min-imality. II. The Qian-Wiederhold algorithmWe now present a simpli�ed description of the change prop-agation algorithm of [1]. This algorithm is based on theequations listed in �gure 1. Each equation, when read fromleft to right, is interpreted as a rewrite rule that describeshow to propagate upward change expressions (labeled withsymbols 5 and 4). Given the expression pre(t; Q), thealgorithm repeatedly applies the rules to propagate changeexpressions to the top of a relational expression, start-ing with expressions of the form 5Ri or 4Ri. This isdone until all subexpressions of the form5Ri or 4Ri havebeen removed. These propagations are performed in twostages:pre(t; Q) =)� Q� [4Q(�rst propagate all positive changes)=)� (Q�5Q) [4Q(then propagate all negative changes)The precise order of propagations within these two stagesis not speci�ed.Example. Returning to our running example, Q def=R1 [ R2 and t def= fR1  R1 � 5R1; R2  R2 [ 4R2:g,the Qian-Wiederhold algorithm propagates these changes

as follows:pre(t; Q)def= (R1 �5R1) [ (R2 [4R2)8=) ((R1 �5R1) [R2) [ (4R2 � (R1 �5R1))7=) ((R1 [R2)� (5R1 � R2)) [ (4R2 � (R1 �5R1))= (Q�5Q) [4Qwhere 4Q def= 4R2 � (R1 �5R1) and 5Q def= 5R1 �R2.It is claimed on page 340 of [1] (assuming each pair5Ri,4Ri represents a minimal change to base relation Ri) thatThe result of the algorithm is minimal in the sensethat 5E is contained in E while 4E is disjointfrom E .However, this is not the case.Proposition 1: The Qian-Wiederhold algorithm violatesminimality.Proof. The example presented above serves as a counter-example since Q \4Q =r 5R1 \4R2;which is not guaranteed to be empty. To see this, considerthe following example. Let R1 = fa; bg, R2 = fag, 5R1 =fbg, and 4R2 = fb; cg. Then Q = fa; bg, and 4Q =fb; cg � (fa; bg � fbg) = fb; cg, which is not disjoint fromQ. 2III. An Improved Change Propagation AlgorithmIn this section we present a simple recursive algorithm forrelational change propagation that does preserve minimal-ity.Repeated application of the rules of �gure 1 guaranteesa solution, as proved in [1]. However, we have shown thatsuch a solution is not necessarily a minimal one. How canthis be repaired? The following claim tells us that anysolution can be transformed into a minimal one:Proposition 2: Suppose that S =r (Q�51Q) [41Q.Let52Q def= (Q \51Q)�41Q and 42Q def= 41Q�QThen a) S =r (Q �52Q) [42Qb) 52Q �r Qc) Q \42Q =r �.Proof. That b) and c) hold follows immediately fromthe de�nitions, so we only have to prove a):(Q�52Q) [42Q= (Q� ((Q \51Q)�41Q)) [ (41Q�Q)=r (Q� (Q \51Q)) [ (Q \41Q) [ (41Q� Q) by (10)=r (Q� (Q \51Q)) [41Q=r (Q�51Q) [41Q 22



Note that proposition 2 could be applied directly to theresults of the algorithm of [1] to obtain a minimal solu-tion. However, we prefer to present a new algorithm thatpreserves minimality at each step.Two mutually recursive functions, 5(t; Q) and 4(t; Q),are presented in �gure 2. For readability, we use the abbre-viations add(t; S) for S[4(t; S), sub(t; S) for S�5(t; S),and mod(t; S) for (S �5(t; S)) [ 4(t; S). It is importantto emphasize that these expressions are to be evaluated inthe database state before the execution of t.Here is a sketch of the process by which these functionswere derived. Consider the query Q = S [ T . First notethat pre(t; Q) = pre(t; S)[pre(t; T ). Now, assume that weare able to construct minimal solutions for the subexpres-sions S and T so that pre(t; Q) =r ((S �5S) [4S) [((T �5T ) [4T ). Next, we obtain a general solu-tion by repeated applications of the propagation rulesof �gure 1 to obtain pre(t; Q) =r (Q�51Q) [ 41Q,where 51Q = (5S � sub(t; T )) [ (5T � S) and 41Q =(4S �mod(t; T )) [ (4T � sub(t; S)). Finally, by appli-cation of proposition 2, together with simpli�cation thatrelies on minimality, we obtain 5Q = (5S �mod(t; T )) [(5T �mod(t; S)) and 4Q = (4S � T ) [ (4T � S). Thislast step is quite important since the assumptions of min-imality would not be available to a query optimizer at alater stage. When applied to all relational operators, thisprocess naturally gives rise to two mutually recursive func-tions of �gure 2.Q 5(t; Q)R � 5R if R (R�5R) [4R is in t� otherwise�p(S) �p(5(t; S))�A(S) �A(5(t; S)) ��A(mod(t; S))S � T (5(t; S)� T ) [ (S �5(t; T ))S [ T (5(t; S)�mod(t; T )) [ (5(t; T )�mod(t; S))S \ T (5(t; S) \ T ) [ (5(t; T ) \ S)S � T (5(t; S)� T ) [ (4(t; T ) \ S)S ./ T (5(t; S) ./ T ) [ (S ./5(t; T ))Q 4(t; Q)R � 4R if R (R�5R) [4R is in t� otherwise�p(S) �p(4(t; S))�A(S) �A(4S)� �A(S)S � T (mod(t; S) �4(t; T )) [ (4(t; S) �mod(t; T ))S [ T (4(t; S) � T ) [ (4(t; T )� S)S \ T (4(t; S) \mod(t; T )) [ (4(t; T ) \mod(t; S))S � T (4(t; S) �mod(t; T )) [ (5(t; T ) \ sub(t; S))S ./ T (mod(t; S) ./4(t; T )) [ (4(t; S) ./ mod(t; T ))Fig. 2 Mutually Recursive functions 5 and 4.Theorem 1: Let t be a minimal transaction. That is, eachpair 5Ri, 4Ri in t represents a minimal change to baserelation Ri. Let Q be any relational expression. Then

(a) pre(t; Q) =r (Q�5(t; Q)) [4(t; Q)(b) 5(t; Q) �r Q(c) 4(t; Q) \Q =r �Proof. All justi�cations of the form \by (m)" refer to theequations in �gure 1.To reduce the clutter, we introduce the following nota-tion for the proof. First, we �x a transaction t. Then byS� we mean sub(t; S), S+ stands for add(t; S) and Sn ismod(t; S). Similarly for T we use T�; T+ and T n. We alsouse 5S and 4S for 5(t; S) and 4(t; S), omitting t, andsimilarly for T . The proof proceeds by induction on thestructure of Q. In each case we must show that the resultsof 4(t; Q) and 5(t; Q) satisfy conditions (a), (b), and (c).Base case. If Q = R, then pre(t; Q) =pre(t; R) = (R�5R) [ 4R = (R�5(t; R)) [ 4(t; R) =(Q�5(t; Q))[4(t; Q). The theorem follows from the as-sumption that t is a minimal transaction.Induction step. Assume that (a), (b), and (c) hold forany expression smaller than Q. Now proceed by case anal-ysis of the structure of Q. We present two cases for illus-tration; others are similar.Projection. Case Q = �A(S). By propagation we obtain:pre(t; Q)= �A(pre(t; S))=r �A((S �5S) [4S)=r �A(S �5S) [ (�A(4S) ��A(S�))=r (�A(S) � (�A(S) � �A(S�))) [ (�A(4S)� �A(S�))def= (Q �51Q) [41Qwhere 51Q = �A(S) � �A(S�) and 41Q = �A(4S) ��A(S�). The �rst equation is obtained by de�nition, thesecond by induction, using (a), the third by (4) and thefourth by (3). It is clear that 51Q �r Q. Forcing mini-mality (by application of proposition 2) we get52Qdef= (Q \51Q)�41Q=r 51Q�41Q= (�A(S) � �A(S�))� (�A(4S)� �A(S�))=r �A(S) � (�A(S�) [ (�A(4S) ��A(S�)))=r �A(S) � (�A(S�) [�A(4S))=r �A(S� [5S) � (�A(S�) [�A(4S))=r (�A(S�) [�A(5S))� (�A(S�) [�A(4S)) by (4)=r �A(5S) � (�A(S�) [�A(4S))=r �A(5S) ��A(Sn) by (4)= 5Qand 42Qdef= 41Q� Q= (�A(4S)� �A(S�))� �A(S)=r �A(4S)� (�A(S�) [�A(S))=r �A(4S)� �A(S) since �A(S�) �r �A(S)= 4Q3



Di�erence. Case Q = S � T . By propagation we obtain:pre(t; Q)= pre(t; S) � pre(t; T )=r ((S �5S) [4S)� ((T �5T ) [4T )=r ((S �5S)� ((T �5T ) [4T )) [ (4S � T n)=r ((S �5S)� ((T [4T )�5T )) [ (4S � T n)=r ((S �5S)� (T [4T )) [ ((4S � T n) [ (5T \ S�))= ((S �5S)� (T [4T )) [4Q=r ((S � (T [4T )) � (5S � T+)) [4Q=r ((S � T )� ((5S � T+) [ (4T \ S))) [4Qdef= (Q�51Q) [4Qwhere 51Q = (5S � T+) [ (4T \ S) and 4Q =(4S � T n) [ (5T \ S�). The �rst equation is obtainedby the de�nition of pre-expressions, the second by induc-tion, using (a), the third by (11), the fourth by (b) and(c), the �fth by (10), the seventh by (9) and the eighth by(12).By induction, using (b) and (c), it is easy to check that51Q �r Q. and 4Q \ Q =r �. The expression 51Q canbe further simpli�ed as(5S � T+) [ (4T \ S)=r ((5S � T )� (5S \4T )) [ (4T \ S) by (12)=r (5S � T ) [ (4T \ S)= 5QThe last equation is valid since 5S \ 4T �r 4T \ S, by(b). Theorem 1 is proved. 2Algorithm. Our algorithm is simply this: given inputst and Q, use the functions 5(t; Q) and4(t; Q) to computea solution for pre(t; Q). Note that in an actual implemen-tation 5(t; Q) and 4(t; Q) could be combined into onerecursive function. Thus the algorithm requires only onepass over the expression Q.Example. Recall the counter-example presented inproposition 1: Q def= R1 [ R2 and t def= fR1  R1 �5R1; R2 R2 [4R2:g. Our algorithm produces5(t; Q)= 5(t; R1 [R2)= (5(t; R1)�mod(t; R2)) [ (5(t; R2) �mod(t; R1))= (5R1 � (R2 [4R2)) [ (��mod(t; R1))=r 5R1 � (R2 [4R2)and 4(t; Q)= 4(t; R1 [R2)= (4(t; R1) �R2) [ (4(t; R2) �R1)= (� �R2) [ (4R2 �R1)=r 4R2 �R1For the concrete example, R1 = fa; bg, R2 = fag, 5R1 =fbg, and 4R2 = fb; cg, it is easy to see that 5(t; Q) =r �and 4(t; Q) =r fcg. In particular, 4(t; Q) \Q = �.IV. RemarksWe believe that our algorithm has some advantages. Therecursive form of the algorithm lends itself to a correctness

proof that proceeds by a straightforward structural induc-tion, and also allows us to exploit the invariant of mini-mality in the simpli�cation of the results. In addition, it iseasy to see that the change sets produced by the algorithmare of a special form { they are \controlled" in some senseby the changes to base relations. For instance, to computeQ = 5(t; S)�mod(t; T ), we compute 5(t; S);5(t; T ) and4(t; T ). To compute Q, we iterate over 5(t; S), and foreach x 2 5(t; S) check if either x 2 T and x 62 5(t; T ),or x 2 4(t; T ). Note that we do not have to compute andmaterialize mod(t; T ) in order to compute Q. In fact, thecomplexity of incremental recomputation is controlled bythe size of change sets, which are typically smaller than re-lations and views. This point is explored in more detail inthe context of a multiset calculus presented by the authorsin [2]. References[1] X. Qian and G. Wiederhold. Incremental recomputation of ac-tive relational expressions. IEEE Transactions on Knowledgeand Data Engineering, 3(3):337{341, 1991.[2] T. Gri�n and L. Libkin. Incrementalmaintenance of views withduplicates. Proceedings of the 1995 ACM-SIGMOD Interna-tional Conference on Management of Data, ACM Press, 1995,pages 328-339.
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