
Variable Independen
e for First-Order De�nableConstraintsLEONID LIBKINUniversity of TorontoWhenever we have data represented by 
onstraints (su
h as order, linear, polynomial, et
.),running time for many 
onstraint pro
essing algorithms 
an be 
onsiderably lowered if it is knownthat 
ertain variables in those 
onstraints are independent of ea
h other. For example, whenone deals with spatial and temporal databases given by 
onstraints, the proje
tion operation,whi
h 
orresponds to quanti�er elimination, is usually the 
ostliest. Sin
e the behavior of manyquanti�er elimination algorithms be
omes worse as the dimension in
reases, eliminating 
ertainvariables from 
onsideration helps speed up those algorithms.While these observations have been made in the literature, it remained unknown when theproblem of testing if 
ertain variables are independent is de
idable, and how to 
onstru
t eÆ
ientlya new representation of a 
onstraint-set in whi
h those variables do not appear together in thesame atomi
 
onstraints. Here we answer this question. We �rst 
onsider a general 
onditionthat gives us de
idability of variable independen
e; this 
ondition is stated in terms of model-theoreti
 properties of the stru
tures 
orresponding to 
onstraint 
lasses. We then show that this
ondition 
overs the domains most relevant to spatial and temporal appli
ations. For some ofthese domains, in
luding linear and polynomial 
onstraints over the reals, we provide a uniformde
ision pro
edure whi
h gives us tra
tability as well. For those 
onstraints, we also present apolynomial-time algorithm for produ
ing ni
e 
onstraint representations.Categories and Subje
t Des
riptors: F.2.1 [Analysis of Algorithms and Problem Complex-ity℄: Numeri
al Algorithms and Problems; F.4.1 [Mathemati
al Logi
 and Formal Lan-guages℄: Mathemati
al Logi
; H.2.8 [Database Management℄: Database Appli
ations; I.1.1[Symboli
 and Algebrai
 Manipulation℄: Expressions and Their RepresentationGeneral Terms: Languages, TheoryAdditional Key Words and Phrases: First-order logi
, de�nable sets, variable independen
e, poly-nomial 
onstraints, linear 
onstraints, spatio-temporal databases1. INTRODUCTIONWe start with a simple example. Suppose we have a set S � R2 given by simpleorder-
onstraints '(x; y) = (0 < x < 1) ^ (0 < y < 1). Suppose we want to�nd its proje
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2 � Leonid LibkinhR; <; (r)r2Ri admits quanti�er elimination. But in this parti
ular 
ase it is veryeasy to �nd a quanti�er-free formula equivalent to 9y '(x; y) using just standardrules for equivalen
e of �rst-order formulae:9y '(x; y) $ (0 < x < 1) ^ 9y (0 < y < 1) $ (0 < x < 1) ^ true $ 0 < x < 1:Now noti
e that ' 
an be 
onsidered as a formula in the language of the real �eldhR;+; �; 0; 1; <i whose theory also admits quanti�er elimination. Suppose then thatinstead of ', we are given an equivalent formula  (x; y):�(0 < x < 1) ^ (0 < y < 1) ^ (4x2 � y � 1 � 0)�_ �(0 < x < 1) ^ (0 < y < 1) ^ (4x2 � y � 1 � 0)�: (1)The �rst step of quanti�er elimination for 9y  is easy, as we propagate 9y insidethe disjun
tion. However, trying to �nd a quanti�er-free equivalent for the �rstdisjun
t, that is, a formula equivalent to 9y �(0 < x < 1)^(0 < y < 1)^(4x2�y�1 �0)�, one immediately en
ounters obsta
les. Unlike the earlier example, this onerequires a bit of thought to 
ome up with the answer (0:5 � x < 1). Similarly, somework is needed to 
ompute the answer (0 < x � 1=p2) for the se
ond disjun
t.Why is it that the �rst quanti�er-elimination pro
edure is 
ompletely elementary,and the se
ond is not, even though both ' and  de�ne the same set? The reasonis that in the �rst representation of S, variables x and y are independent, that is,they do not appear in the same atomi
 formulae. This makes quanti�er eliminationeasy. In the se
ond 
ase, x and y do appear together in the same term x2� 4y� 1,and this is what 
auses the problem.This extremely simple observation 
an often make 
onstraint pro
essing easier.While it 
an 
on
eivably be useful in various tasks su
h as more eÆ
ient variableelimination in 
onstraint logi
 programming [Fordan and Yap 1998; Imbert 1994℄,here we 
on
entrate on one appli
ation area, namely 
onstraint databases [Kuperet al. 2000; Kuper et al. 1995℄ where it found its way into a pra
ti
al system forquerying spatio-temporal databases [Grumba
h et al. 1998℄. The main goal of
onstraint databases is to model in�nite database obje
ts, whi
h arise in a varietyof appli
ations, for example, in Geographi
al Information Systems.A parti
ular 
onstraint model is de�ned over a stru
tureM = hU;
i (where U isthe universe and 
 is the vo
abulary) whi
h is typi
ally required to have quanti�erelimination. Those 
onsidered most often in spatial appli
ation are the real �eldR = hR;+; �; 0; 1; <i and the real ordered group Rlin = hR;+;�; 0; 1 <i, whi
hgive rise to polynomial and linear 
onstraint databases, respe
tively. A 
onstraintrelation of arity n is simply a de�nable subset of Un, that is, a set of tuples ~a 2 Unthat satisfy a �rst-order formula. For the above stru
tures, 
onstraint relations aresemi-algebrai
 sets for R, and semi-linear sets for Rlin [Bo
hnak et al. 1998℄. A
onstraint database is a �nite set of 
onstraint relations.A standard 
onstraint query language over M is FO +M, that is, �rst-orderlogi
 in the language of M and symbols for relations in a 
onstraint database.For example, if a database 
ontains a single ternary symbol S, the query '(x) �9u; v 8y; z (S(x; y; z)$ z = u �y+v) �nds all a su
h that the interse
tion of S withthe plane x = a is a line. Note that if S is a semi-algebrai
 set, then so is '(S).One of the standard database operations is proje
tion. In the language of
onstraint pro
essing, it 
orresponds to quanti�er elimination. That is, given aACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



Variable Independen
e � 3quanti�er-free formula '(y; x1; : : : ; xn�1), one wishes to �nd a quanti�er-free for-mula  (~x) equivalent to 9y '(y; ~x). In many 
ases, the 
omplexity of algorithmsto �nd su
h a  is of the form O(Nf(n)), where N is the size of the formula, andf is some fun
tion. For example, if one uses 
ylindri
al algebrai
 de
omposition[Caviness and Johnson 1998℄ for the real �eld, f is O(2n). In general, even if bet-ter algorithms are available, the 
omplexity of 
onstraint pro
essing often in
reaseswith dimension to su
h an extent that it be
omes unmanageable for large datasets(see, e.g., [Grumba
h et al. 1999℄).Assume now that ~x is split into two disjoint tuples ~u and ~v su
h that (y; ~u) and~v are independent, that is, they do not appear in the same atomi
 formulae. Then' is equivalent to a formula of the formk_i=1�i(y; ~u) ^ �i(~v):Therefore, the formula 9y ' is equivalent tok_i=1(9y �i(y; ~u)) ^ �i(~v):For a number of operations this is a signi�
ant improvement, as the exponentbe
omes lower. For example, in addition to quanti�er elimination, data often hasto be represented in a ni
e format (essentially, as union of 
ells [Caviness andJohnson 1998℄), and algorithms for doing this also bene�t from redu
tion in thedimension [Grumba
h et al. 1998; 1999℄.Even though su
h a notion of independen
e may seem to be too mu
h of arestri
tion, from the pra
ti
al point of view it is sometimes ne
essary to insiston it, as the 
ost of general quanti�er elimination and other operations 
ould beprohibitively expensive. For example, the Dedale 
onstraint database system[Grumba
h et al. 1998℄ requires that the proje
tion operation only be applied when~u 
onsists of a single variable. Dealing with spatio-temporal appli
ations, one oftenqueries traje
tories of obje
ts, or 
adastral (land-ownership) information. Theseare typi
ally represented as obje
ts in R3 given by formulae '(x; y; t). To be ableto 
ompute 9y '(x; y; t), one approximates ' by a formula  (x; y; t) whi
h is aBoolean 
ombination of formulae �i(x; y) and �i(t). For traje
tories, this amountsto saying that an obje
t is in a given region during a given interval of time; thus,it is the information about the speed that is lost in order to have eÆ
ient queryevaluation. As was further demonstrated in [Grumba
h et al. 1999℄, the di�eren
ebetween the 
ase when at most 2 variables are dependent, and that of 3 or morevariables being dependent, is quite dramati
, in the 
ase of linear and polynomial
onstraints.What is missing, however, in this pi
ture, is the ability to determine whethera given 
onstraint representation of the data 
an be 
onverted to the one in theright format, just as in our �rst example,  (x; y) is equivalent to '(x; y), in whi
hvariables x and y are independent. It was 
laimed in [Chomi
ki et al. 1996℄ thatsu
h a pro
edure exists for linear 
onstraints, and then [Grumba
h et al. 1999℄ gavea simpler algorithm. However, [Libkin 1999℄ then showed that both 
laims werein
orre
t. It was thus not known if variable independen
e 
an be tested for relevantACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



4 � Leonid Libkin
lasses of 
onstraints.Our main goal here is to show that variable independen
e 
an be tested for many
lasses of 
onstraints, and that algorithms for 
onverting a given formula into onein the right form 
an be obtained. Moreover, those algorithms often work in timepolynomial in the size of the formula (assuming the total number of variables is�xed). Among stru
tures for whi
h we prove su
h results are the real ordered group,the real �eld, as well as hZ;+; 0; 1; <i extended with all the relations x = y(mod k),k > 1 (whi
h is used in temporal appli
ations). Even if those algorithms arerelatively expensive, it is worth putting data in a ni
e format for two reasons.First, su
h an algorithm works only on
e, and then the data is repeatedly queriedby di�erent queries, whi
h 
an be evaluated faster. Se
ond, some queries are knownto preserve variable independen
e; hen
e, this information 
an be used for furtherpro
essing the query output.Organization. In Se
tion 2, we de�ne the notion of variable independen
e, andmore generally, the notion ' � P of a formula ' respe
ting a 
ertain partition P ofits free variables. Then, in Se
tion 3, we dis
uss requirements on the theory of Mthat guarantee de
idability of this notion, as well as the existen
e of an algorithmthat 
onverts a given formula into a one in the right shape. In Se
tion 4, we dis
ussspe
i�
 
lasses of stru
tures and derive some 
omplexity bounds. In parti
ular,we look at o-minimal stru
tures [van den Dries 1998℄ (whi
h in
lude linear andpolynomial 
onstraints over the reals) and give a uniform de
ision pro
edure. Thispro
edure gives us tra
tability, and we also show how to �nd an equivalent formulain the right shape in polynomial time. We also brie
y 
onsider other 
lasses of
onstraints, and spatio-temporal appli
ations.2. NOTATIONSAll the de�nitions 
an be stated for arbitrary �rst-order stru
tures, although forthe algorithmi
 
onsiderations we shall require at least de
idability of the theory,and often quanti�er elimination.Given a stru
tureM = hU;
i (where U is a set always assumed to be in�nite, and
 
an 
ontain predi
ate, fun
tion, and 
onstant symbols, and is always assumed tobe a re
ursive set), we say that the theory of M is de
idable if for every �rst-ordersenten
e � in the language of M it de
idable if M j= �. We say that M admits(e�e
tive) quanti�er elimination if for every formula '(~x) in the language of M,there exists (and 
an be e�e
tively found) a quanti�er-free formula  (~x) su
h thatM j= 8~x '(~x)$  (~x).Given a formula '(~x; ~y) in the language of M, with ~x of length n and ~y oflength m, and ~a 2 Un, we write '(~a;M) for the set f~b 2 Um j M j= '(~a;~b)g.In the absen
e of variables ~x we write '(M) for f~b j M j= '(~b)g. Sets of theform '(M) are 
alled de�nable. A fun
tion f : Un ! Um is de�nable if its graphf(~a;~b) 2 Un+m j ~b = f(~a)g is a de�nable set.Given a tuple of variables ~x = (x1; : : : ; xn) and a partition P = fB1; : : : ; Bmg onf1; : : : ; ng, we let ~xBi stand for the subtuple of ~x 
onsisting of the xjs with j 2 Bi.For a formula '(x1; : : : ; xn), we then say that ' respe
ts the partition P (overM) if' is equivalent to a Boolean 
ombination of formulae ea
h having its free variablesamong ~xBi for some i � k. This will be written as ' �M P , or just ' � P if M isACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



Variable Independen
e � 5
lear from the 
ontext.In other words (by putting a Boolean 
ombination into DNF), ' �M P if thereexists a family of formulae �ij(~xBi ), i = 1; : : : ;m, j = 1; : : : ; k, su
h thatM j= '(~x)$ k_j=1(�1j (~xB1) ^ : : : ^ �mj (~xBm)): (2)When M has quanti�er elimination, all �ijs are quanti�er free. In fa
t, under thequanti�er-elimination assumption, the de�nition of ' �M P 
an be restated as theequivalen
e of ' to a quanti�er-free formula  su
h that every atomi
 subformulaof  uses variables from only one blo
k of P .We now say that in ', two variables xi and xj are independent if there existsa partition P su
h that ' �M P , and xi and xj are in two di�erent blo
ks of P .Equivalently, xi and xj are independent if there exists a partition P = (~y; ~z) of ~xsu
h that ' �M P , xi is in ~y and xj is in ~z. (When 
onvenient notationally, weidentify partitions on the indi
es of variables and variables themselves.)Stru
tures. After presenting a general de
idability result, we shall deal with sev-eral important 
lasses of stru
tures. Two of them were mentioned already: the realordered group Rlin = hR;+;�; 0; 1; <i and the real �eld R = hR;+; �; 0; 1; <i, 
or-responding to linear and polynomial 
onstraints over the reals. Some of the resultsfor these stru
tures extend to a larger 
lass of o-minimal stru
tures: M = hU;
iis 
alled o-minimal [Pillay and Steinhorn 1988; van den Dries 1998℄ if one of thesymbols in 
 is <, interpreted as a linear order on U , and every de�nable subset ofU , fa j M j= '(a)g, is a �nite union of points and open intervals. Both Rlin andR have quanti�er elimination (by Fourier elimination [Ziegler 1994℄, and Tarski'stheorem [Bo
hnak et al. 1998; Caviness and Johnson 1998℄, respe
tively), whi
heasily implies that they are o-minimal. The exponential �eld hR;+; �; exi is an ex-ample of a stru
ture whi
h is o-minimal [Wilkie 1996℄ but does not have quanti�erelimination [van den Dries 1984℄. For other o-minimal stru
tures on the reals, see[van den Dries 1998℄.We shall deal with some stru
tures on the integers. Of most interest to us isZ0 = hZ;+;�; 0; 1; <; (�k)k>1i where n �k m i� n = m(mod k). This stru
ture
orresponds to 
onstraints given by linear repeating points, whi
h are used for mod-eling temporal databases [Kabanza et al. 1995℄. The stru
ture Z0 admits e�e
tivequanti�er elimination, and its theory is de
idable [Enderton 1972℄.3. GENERAL CONDITIONS FOR DECIDING VARIABLE INDEPENDENCEGiven a stru
tureM, we 
onsider two problems. The variable independen
e problemVIM('; xi; xj) is to de
ide, for '(x1; : : : ; xn) in the language ofM, if xi and xj areindependent. The variable partition problem VPM('; P ) is to de
ide, for a givenformula '(x1; : : : ; xn) and a partition P on f1; : : : ; ng, if ' �M P .Note that the variable independen
e problem is a spe
ial 
ase of the variablepartition problem, as to solve the former, one needs to solve the latter for somepartition P = (B1; B2) with i 2 B1 and j 2 B2.The above problems are just de
ision problems, but if the theory of M is de
id-able, and the answer toVPM('; P ) is `yes', one 
an e�e
tively �nd a representationACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



6 � Leonid Libkinin the form (2), simply by enumerating all the formulae h (~x)ii whi
h are Boolean
ombinations of formulae having free variables from at most one blo
k of P , andthen 
he
king if M j= 8~x ('(~x) $  i(~x)). Sin
e ' �M P , for some �nite i, weget a positive answer. In many interesting 
ases, we shall see better algorithms for�nding representation (2) than simple enumeration.The �rst easy result shows that the problems VIM('; xi; xj) and VPM('; P )are equivalent; this allows us to deal then only with two-blo
k partitions.Lemma 1. For any M, the variable independen
e problem is de
idable over Mi� the variable partition problem is de
idable over M.Proof. The dire
tion from variable partition to variable independen
e is easy. Forthe other dire
tion we show that the answer to VPM('; P ) is yes i� the answer toVIM('; xi; xj) is yes for every pair of variables xi; xj from two di�erent blo
ks of P .Again, only the `if' dire
tion needs to be proved. If the answer to VIM('; xi; xj)is yes, there is a partition Pij su
h that xi; xj are in di�erent blo
ks of P , and' �M Pij . Let P 0 = uijPij be the meet, in the partition latti
e, of all su
h Pijs.By [Cosmadakis et al. 2001℄, we have ' �M P 0. Sin
e every blo
k of P is a unionof blo
ks of P 0, the result follows. 2Next, we dis
uss 
onditions for de
idability of the variable independen
e problem.It is 
lear that one needs de
idability of the theory of M. However, de
idabilityalone (and even e�e
tive quanti�er elimination) are not suÆ
ient.Proposition 2. a) If the theory of M is unde
idable, then the variable inde-penden
e problem is unde
idable over M.b) There exists a stru
ture M with a de
idable theory and e�e
tive quanti�er elim-ination su
h that the variable independen
e problem is unde
idable over M.Proof. a) Let � be an arbitrary senten
e, and '(x; y) � (x = y) ^ :�. If M j= �,then ' de�nes the empty set, and x and y are thus independent. If M j= :�, then' de�nes f(a; a) j a 2 Ug, and sin
e U is in�nite, x and y are not independent.Thus, the answer to VIM('; x; y) is yes i� M j= �.b) An example is provided by the theory of tra
es from [Stolboushkin and Tsaitlin1999℄. Let U be a union of three disjoint sets: des
riptions of Turing ma
hines,input words, and tra
es, or partial 
omputations of ma
hines on input words, allappropriately 
oded as strings. Let 
 
ontain a 
onstant symbol for every elementof U , and a single ternary predi
ate P (m;w; t) saying that t is a tra
e of thema
hine m on the input word w. Then [Stolboushkin and Tsaitlin 1999℄ showsthat the theory of M is de
idable, and moreover, M 
an be extended by �nitelymany new predi
ate symbols su
h that the expanded model has e�e
tive quanti�erelimination.Now �x a Turing ma
hine m0 and an input word w0 and 
onsider the formula'(t; t0) � (P (m0; w0; t) ^ t = t0). Suppose m0 halts on w0. Then the set ft jP (m0; w0; t)g is �nite, and thus the output of ' is �nite, and hen
e variables t andt0 are independent, sin
e every element of U is de�nable. If m0 does not halt onw0, then the set U 0 = ft j P (m0; w0; t)g is in�nite, and hen
e the output of ' isf(a; a) j a 2 U 0g; this implies that t and t0 are not independent. This shows thatVIM('; t; t0) outputs yes i� m0 halts on w0, and thus the variable independen
eproblem is unde
idable. 2ACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



Variable Independen
e � 7The proof of Proposition 2, b), shows that it is essential to be able to de
ide�niteness in order to de
ide VI('; xi; xj) (as it is the �niteness of the number oftra
es that turns out to be equivalent to variable independen
e).Re
all that a formula '(x) is algebrai
 if '(M) is �nite. We say that there isan e�e
tive test for algebrai
ity in M if for every '(x) in the language of M, it isde
idable if ' is algebrai
. Note that this somewhat te
hni
al notion will triviallyhold for most relevant 
lasses of 
onstraint.While the notion of variable independen
e is needed in the 
ontext of 
onstraintdatabases, for �nite relational stru
tures it is assumed to be meaningless as everytuple is represented as a 
onjun
tion of 
onstraints of the form xi = 
i, where
is are 
onstants. For example, the graph f(1; 2); (3; 4)g is given by the formula((x = 1)^(y = 2))_((x = 3)^(y = 4)). Clearly, variables x and y are independent.However, over arbitrary stru
tures, not every �nite de�nable set would satisfythe variable independen
e 
ondition. To see this, let M = hN; C; Ei, where C is aunary relation interpreted as f1; 2g and E is a binary relation symbol interpreted asf(1; 2); (2; 1)g. A routine argument shows that this M has quanti�er elimination,de
idable theory, and there is a test for algebrai
ity. The formula '(x; y) � E(x; y)then de�nes a �nite set, but variables x and y are not independent: this is be
ausethe only de�nable proper subsets of N are f1; 2g and N � f1; 2g, and no Boolean
ombination of those gives us E. As another example, 
onsider the �eld of 
omplexnumbers, whose theory is de
idable and has quanti�er elimination [Marker et al.1996℄. Let '(x; y) = (x2 + 1 = 0) ^ (y2 + 1 = 0) ^ (x+ y = 0). It de�nes the �niteset f(i;�i); (�i; i)g but nevertheless x and y are not independent (sin
e i is notde�nable).To avoid similar situations, we impose an extra 
ondition on a stru
ture, again,well known in model theory [Chang and Keisler 1990; Hodges 1993℄. We say thatMhas de�nable Skolem fun
tions if for every formula '(~x; ~y) there exists a de�nablefun
tion f'(~x) with the property that M j= 8~x (9~y '(~x; ~y) ! '(~x; f'(~x))). Inother words, f'(~a) is an element of '(~a;M), assuming '(~a;M) is not empty. Wesay that a Skolem fun
tion f' is invariant [Marker et al. 1996℄, if '(~a1;M) ='(~a2;M) implies f'(~a1) = f'(~a2). If the existen
e of su
h a Skolem fun
tion 
anbe guaranteed for every ', we say thatM has de�nable invariant Skolem fun
tions.Theorem 3. Assume that M has the following properties:(a) its theory is de
idable;(b) M has e�e
tive test for algebrai
ity; and(
) M has de�nable invariant Skolem fun
tions.Then the variable partition and independen
e problems are de
idable over M.Proof. Let M be as in the statement of the theorem. We start by showing 
ertainproperties of M that will be needed in the proof. First noti
e that the de�nabilityof Skolem fun
tions is e�e
tive; that is, for ea
h ', a formula de�ning f' 
an bee�e
tively found. To see this, just enumerate all formulae and test if they de�nea fun
tion, and if this fun
tion is a Skolem fun
tion for '. Sin
e the above is a�rst-order senten
e (invarian
e is tested by 8~x18~x2 ((8~y '(~x1; ~y) $ '(~x2; ~y)) !(f'(~x1) = f'(~x2)))), e�e
tive de�nability follows.ACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



8 � Leonid LibkinA formula '(~x) (with one or more free variables) is algebrai
 if '(M) is �nite.We 
an assume that we have test for algebrai
ity for formulae with more than onefree variable: indeed, a set X � Uk is �nite i� ea
h of its k proje
tions on U is�nite.Next, we show that M has in addition the following property (d): if '(~x) isalgebrai
, then one 
an e�e
tively �nd N = 
ard('(M)), and N formulae 
i(~x),i = 1; : : : ; N , su
h that 
ard(
i(M)) = 1, and '(M) = f
i(M) j i � Ng (thatis, ea
h element of '(M) is de�nable, and formulae de�ning those elements 
an bee�e
tively found).To see this, �rst note that for every N it 
an be stated in �rst-order that N =
ard('(M)), and thus by de
idability we 
an �nd N , assuming ' is algebrai
. Nextwe use e�e
tive de�nability of Skolem fun
tions (without parameters) to 
onstru
ta formula 
1(~x) de�ning an element of '(M). We then 
onsider '(~x)^:
1(~x), andapply Skolemization to it, to obtain 
2(~x), de�ning an element in '(M)� 
1(M).We 
ontinue the pro
ess until 
i(~x); i < N are de�ned; then 
N (~x) = '(~x) ^Vi<N :
i(~x).Having done this preparatory work, we now prove the theorem. Re
all that itsuÆ
es to 
onsider the 
ase of two blo
k partitions; that is, to de
ide, if a formula'(~x; ~y) respe
ts the partition P with blo
ks ~x and ~y. Let ~x have length n and ~yhave length l. De�ne an equivalen
e relation on Un by~a1 � ~a2 i� '(~a1;M) = '(~a2;M):Lemma 4. For ', P and � as above, ' �M P i� � has �nitely many equivalen
e
lasses.Proof of the lemma. The only if part is 
lear: if ' is a Boolean 
ombination of�i(~x), �j(~y), then for every ~a1;~a2 agreeing on all �i, we have '(~a1;M) = '(~a2;M).For the 
onverse, assume that � has �nitely many equivalen
e 
lasses. Note that� is a de�nable subset of U2n (it is de�ned by  (~x1; ~x2) = 8~y ('(~x1; ~y)$ '(~x2; ~y))).Assume that there are N equivalen
e 
lasses, and ea
h is de�nable by a formula�i(~x), i � N . De�ne �i(~y) as 9~z (�i(~z) ^ '(~z; ~y)). ThenM j= 8~x8~y �'(~x; ~y) $ N_i=1�i(~x) ^ �i(~y)�: (3)Indeed, let M j= '(~a;~b), and assume that ~a is in the ith 
lass of �; that is,M j= �i(~a). This implies M j= �i(~b). Conversely, if M j= �i(~a) ^ �i(~b), for some~
 we have �i(~
) ^ '(~
;~b). Sin
e '(~
;M) = '(~a;M), we have ~b 2 '(~a;M) and thusM j= '(~a;~b). This proves (3).It thus remains to show how to de�ne �is. First, we �nd (e�e
tively) the invariantSkolem fun
tion f (~x1) for the formula  (~x1; ~x2) de�ning �. Then the formula�(~x2) = 9~x1 (~x2 = f (~x1)) de�nes the range of f , that is, a set of representativesof the equivalen
e 
lasses of �. By the assumption that the number of 
lasses is�nite, we get that � is algebrai
. Hen
e, by 
ondition (d), we 
an �nd e�e
tivelythe number N of elements satisfying � (that is, the number of 
lasses of �), andformulae 
i(~x), i � N , de�ning representatives of the equivalen
e 
lasses. Theequivalen
e 
lasses themselves 
an now be de�ned as �i(~x) = 9~z (
i(~z) ^  (~x; ~z)).This 
on
ludes the proof of the lemma.ACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



Variable Independen
e � 9To prove the theorem, it remains to show how to test if � has �nitely manyequivalen
e 
lasses. Following the proof of lemma 4, we e�e
tively 
onstru
t aformula �(~x) de�ning representatives of the equivalen
e 
lasses of �. Sin
e � has�nitely many equivalen
e 
lasses i� �(~x) is algebrai
, the former is de
idable, bythe assumptions we made aboutM. This 
on
ludes the proof of de
idability of thevariable partition problem. 2The proof of Theorem 3 gives an expli
it 
onstru
tion for a formula witnessing' �M P , where P has two blo
ks. We now show how it works for the 
ase offormula  (x; y) given by (1) in Se
tion 1.There are two equivalen
e 
lasses with respe
t to relation � given by x1 � x2 , (x1;R) =  (x2;R): one is C1 = (�1; 0℄ [ [1;1) and the other is C2 = (0; 1).Let �1(x); �2(x) be formulae de�ning these 
lasses. Then, from (3) we know that (x; y) is equivalent to��1(x) ^ �1(y)� _ ��2(x) ^ �2(y)�; (4)where �i(y) = 9z ��i(z) ^  (z; y)�; i = 1; 2: (5)By the de
ision pro
edure for R, we obtain that �1 is equivalent to false, and �2to 0 < y < 1. Hen
e, 
ombining (4) and (5), we see that (1) is equivalent to(0 < x < 1) ^ (0 < y < 1);as expe
ted.The previous result was for two-blo
k partitions. We now extend it to arbitrarypartitions. using the spe
ial form of the formulae (3).Let '(x1; : : : ; xn) be given, and let B � f1; : : : ; ng. Let 
ard (B) = k. For~a 2 Uk, by 'B(~a;M) we denote the set of ~b 2 Un�k su
h that '(~
) holds, where~
 is obtained from ~a and ~b by putting their elements in the appropriate position,~a being in the positions spe
i�ed by B. For example, if n = 4, B = f2; 4g, and~a = (a1; a2), ~b = (b1; b2), then ~
 is (b1; a1; b2; a2). Formally, for i 2 [1; n℄, let k1 bethe number of j 2 B with j � i, and k2 be the number of j 62 B with j � i. Then
i is ak1 if i 2 B, and bk2 , if i 62 B.We use the notation~a1 �'Bi ~a2 , 'Bi(~a1;M) = 'Bi(~a2;M):We now obtain the following 
hara
terization of VPM('; P ).Corollary 5. LetM be as in Theorem 3, and let '(x1; : : : ; xn) and a partitionP = (B1; : : : ; Bm) on f1; : : : ; ng be given. Then:(1 ) For ea
h i � m, it is de
idable if the equivalen
e relation �'Bi has �nitely manyequivalen
e 
lasses. Furthermore, ' �M P i� ea
h �'Bi has �nitely many
lasses.(2 ) If ' �M P , then one 
an further e�e
tively �nd integers N1; : : : ; Nm > 0 andformulae �ij(~xBi), i = 1; : : : ;m, j = 1; : : : ; Ni, su
h that �'Bi has Ni equivalen
eACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



10 � Leonid Libkin
lasses, whi
h are de�nable by the formulae �ij(~xBi), j � Ni. Furthermore,M j= 8~x �'(~x)$ _(j1;:::;jm)2K �1j1(~xB1) ^ : : : ^ �mjm(~xBm)�; (6)whereK = f(j1; : : : ; jm) j M j= 9~x ��1j1(~xB1 ) ^ : : : ^ �mjm(~xBm) ^ '(~x)�g:Proof. Let Pi be the partition with two blo
ks: Bi and Ci = Sj 6=i Bj . If' �M P , then ' �M Pi for all i. From the proof of Theorem 3 we know that' �M Pi i� �'Bi has �nitely many equivalen
e 
lasses. Furthermore, there existformulae �ij(~xBi); �ij(~xCi), j � Ni, su
h that ' is equivalent toNi_j=1�ij(~xBi) ^ �ij(~xCi)and M j= 8~x ^j1 6=j2 :(�ij1 (~xBi)$ �ij2(~xBi)) ^ 8~x Ni_j=1�ij(~xBi )(be
ause �ijs de�ne equivalen
e 
lasses that partition U
ard(Bi)).We then 
laim that �ijs are the formulae for the representation in (6). In-deed, suppose '(~a) holds in M. Let ji � Ni be su
h that �iji(~aBi) holds. Then(j1; : : : ; jm) 2 K and Vi �iji(~aBi) holds.Conversely, assume that for some (j1; : : : ; jm) 2 K (that is, M j= Vi �iji(~bBi) ^'(~b) for some ~b) we have Vi �iji(~aBi). We write (~a;~b)Pk for the tuple 
omposed of~aB1 ; : : : ;~aBk ;~bBk+1 ; : : : ;~bBm (all elements appearing in positions spe
i�ed by the in-di
es in Bis), k � 0. We now prove by indu
tion on k thatM j= '((~a;~b)Pk ). For k =0 we know that '(~b) holds. If '((~a;~b)Pk ) holds, then the fa
t that both �k+1jk+1(~aBk+1)and �k+1jk+1(~bBk+1) hold inM implies that 'Bk+1(~aBk+1 ;M) = 'Bk+1(~bBk+1 ;M), andhen
e '((~a;~b)Pk+1) holds. Thus, for k = m, we 
on
lude M j= '(~a).This �nally shows the representation (6), and that �niteness of the number ofequivalen
e 
lasses of all �'Bi implies ' �M P . 24. DECIDABILITY FOR SPECIFIC CLASSES OF CONSTRAINTSThe general de
idability result 
an be applied to a variety of stru
tures, mostnotably, those that we listed earlier as the ones parti
ularly relevant to 
onstraintdatabase appli
ations (espe
ially to spatial and temporal databases). In fa
t, theproblem will be shown to be de
idable for linear 
onstraints over the rationals andthe reals (this 
orresponds to stru
tures hQ;+;�; 0; 1; <i and Rlin), polynomial
onstraints over the reals (R), and linear repeating points [Kabanza et al. 1995℄(Z0).4.1 Constraints on the integersHere the result follows easily form Theorem 3.ACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



Variable Independen
e � 11Proposition 6. Let M be hN; <; : : :i or hZ;<; : : :i, and let its theory be de
id-able. Assume, in the latter 
ase, that there is at least one de�nable 
onstant in M.Then the variable partition and independen
e problems are de
idable over M.Proof. We 
he
k 
onditions of Theorem 3. One 
an test algebrai
ity due to thepresen
e of a dis
rete order: given '(x), the senten
e 9n9m8x ('(x) ! n � x � m)tests if '(M) is �nite. Over hN; <; : : :i one has de�nable invariant Skolem fun
tionssimply by 
hoosing lexi
ographi
ally least ~y satisfying '(~x; ~y), for ea
h ~x. For'(~x; y) over hZ; <; : : :i, let  (~x; y) hold if y is the least element above 
 satisfying'(~x; y), if su
h an element exists, or y is the greatest element not ex
eeding 
satisfying '(~x; y), if no element above 
 satis�es '(~x; �). Here 
 is a de�nable
onstant. Clearly, this de�nes an invariant Skolem fun
tion, and the 
onstru
tioneasily generalizes to tuples of variables ~y. 2Corollary 7. The variable partition problem is de
idable over Z0 =hZ;+;�; 0; 1; <; (�k)k>1i. 24.2 Linear and polynomial 
onstraints over the realsThe linear 
onstraints over the reals (
orresponding toRlin = hR;+;�; 0; 1; <i) andthe polynomial 
onstraints over the reals (
orresponding to R = hR;+; �; 0; 1; <i)are the most useful 
onstraints for spatial and spatio-temporal appli
ations, wherethe problem of variable independen
e originated, and where variable independen
eis used in system prototypes. We thus 
on
entrate on these 
onstraints.In many 
ases, however, we 
an state the results in greater generality using the
on
ept of o-minimality (
f. se
tion 2). This 
on
ept originated in model theoryabout a de
ade ago [Pillay and Steinhorn 1988; van den Dries 1998℄, and foundsome 
omputer s
ien
e appli
ations too, most notably in databases [Benedikt andLibkin 2000℄ and hybrid systems [La�erriere et al. 2000℄.It is known that every o-minimal expansion of the Rlin has de�nable invariantSkolem fun
tions [Marker et al. 1996; van den Dries 1998℄. Sin
e every de�nablesubset of U is a �nite union of points and open intervals, one 
an test algebrai
ity,assuming that the order is dense: given '(x), the senten
e 9u9v8x (u < x < v !'(x) tests if '(M) is in�nite. This showsCorollary 8. Let M = hR;+; 0; 1; <; : : :i be o-minimal, and have a de
idabletheory. Then the variable partition and independen
e problems are de
idable overM. In parti
ular, these problems are de
idable over Rlin and R. 2Sin
e hQ;+;�; 0; 1; <i is elementarily equivalent to Rlin, we 
on
lude that thevariable partition problem is de
idable over it, too.4.3 Uniform de
idability and 
omplexity boundsOur next goal is to present a uniform pro
edure for solving the problem VIM('; P ).More pre
isely, we say that the variable partition problem is uniformly de
idableover M if the theory of M is de
idable, and for every partition P on f1; : : : ; ng,there exists a single senten
e �P in the language of M expanded with an n-aryrelation symbol S su
h that for any formula '(x1; : : : ; xn),' �M P i� (M; '(M)) j= �P :ACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



12 � Leonid LibkinHere (M; '(M)) is the expansion of M where the new symbol S is interpretedas f~a j M j= '(~a)g. Note that the de
idability of the theory of M implies that(M; '(M)) j= �P is de
idable.We also say that the variable independen
e problem is uniformly de
idable, iffor n > 1 and any i; j � n, there exists a senten
e �ni;j in in the language of Mexpanded with an n-ary relation symbol S su
h that for any formula '(x1; : : : ; xn),xi and xj are independent i� (M; '(M)) j= �ni;j . As in Lemma 1, it is easy toshow that the uniform de
idability of the variable partition problem is equivalentto the uniform de
idability of the variable independen
e problem.Proposition 9. Let M = hR;+; 0; 1; <; : : :i be o-minimal and have a de
id-able theory. Then the variable independen
e and partition problems are uniformlyde
idable over M.Proof. It suÆ
es to show, in view of Corollary 5 that for every positive integersn;m there exists a senten
e �n;m in the language of M expanded with one (n +m)-ary symbol S, su
h that for every formula '(x1; : : : ; xn; y1; : : : ; ym) over M,(M; '(M)) j= �n;m i� the equivalen
e relation � on Un given by~a1 � ~a2 , '(~a1;M) = '(~a2;M)has �nitely many equivalen
e 
lasses.Note that the expansion of M by an extra predi
ate symbol to be interpretedas a de�nable predi
ate is o-minimal as well. Now, let �(x; ~y) be a formula in theexpanded stru
ture. We then let endp�(x; ~y) be a formula su
h that endp�(a;~b)holds i� a is an endpoint of one of the intervals that form the set f
 j �(
;~b)g. Thisis 
learly de�nable just with order.Next, for any �(x; ~y), de�ne repx�(x; ~y) by8z�(z; ~y) ^ x = 0_ 9!zendp�(z; ~y) ^ 0� �(z; ~y) ^ x = z_ :�(z; ~y) ^ (8v < z �(v; ~y)) ^ (x+ 1 = z)_ (8v > z �(v; ~y)) ^ (8v � z :�(v; ~y)) ^ (x = z + 1)1A_ 9z1; z2 endp�(z1; ~y) ^ endp�(z2; ~y) ^ (z1 < z2) ^(8v endp�(v; ~y)! (v < z2 ! v = z1)) ^0� �(z1; ~y) ^ x = z1_ :�(z1; ~y) ^ (8v < z1 �(v; ~y)) ^ (x+ 1 = z1)_ (8v � z1 :�(v; ~y)) ^ (2x = z1 + z2) 1AThis formula says that either every real number satis�es �(�; ~y) and x = 0, or thereis a single endpoint z of �(M; ~y), and then x is either z, or z�1, or z+1, dependingon whi
h intervals are in
luded in �(M; ~y), or there are two or more endpoints of�(M; ~y), and, for z1 < z2 being the two smallest one, x equals z1 if �(z1; ~y) holds,or x = z1 � 1 if (�1; z1) is in �(M; ~y), or otherwise x = (z1 + z2)=2. It is easy tosee then that this formula has the property that for o-minimal M, if �(M;~b) = ;,then for any a, repx�(a;~b) does not hold, and if �(M;~b) 6= ;, then repx�(a;~b) holdsfor a single element a 2 �(M;~b).ACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



Variable Independen
e � 13We now prove uniform de
idability. Let  (x1; : : : ; xn; z1; : : : ; zn) de�ne the equiv-alen
e relation �; that is,  = 8~y ('(~x; ~y)$ '(~z; ~y)). De�ne  0 to be  , and let i = repxi i�1(~x; ~z); 1 � i � n:Sin
e for ea
h ~a1 � ~a2 we have  (M;~a1) =  (M;~a2) = the equivalen
e 
lass of~a1, we obtain from the 
onstru
tion of rep that  n(~b;~a1) $  n(~b;~a2), and in fa
tthere is a single ~b for whi
h  n(~b;~a1) holds, and for this ~b we have  (~b;~a1), that is,~b � ~a1 � ~a2. Therefore, the formula
0(~x) = 9~z  n(~x; ~z)(in the language of M expanded with S) de�nes a set of representatives of theequivalen
e 
lasses of �. Therefore, the formula
(x) = n_i=1 9y1; : : : ; yn�1 
0((x; ~y)i);where (x; ~y)i is the tuple in whi
h x is inserted in the ith position, de�nes the setof all 
oordinates of the representatives of � 
hosen by  n. Thus, � has �nitelymany 
lasses i� 
 is algebrai
. Therefore, the senten
e:9x19x2�(x1 < x2) ^ (8x (x1 < x < x2)! 
(x))�in the expanded language tests if the equivalen
e relation � has �nitely many
lasses. This proves the proposition. 2Proposition 9 implies that the variable independen
e problem is uniformly de-
idable over Rlin and R. The main appli
ation of this result is in establishing
omplexity bounds.Sin
e R admits quanti�er elimination, every semi-algebrai
 set is given by aBoolean 
ombination of polynomial inequalities. Thus, a standard way to representa semi-algebrai
 set in Rn [Basu 1999; Caviness and Johnson 1998; Renegar 1992℄ isby spe
ifying a 
olle
tion of polynomials p1; : : : ; pk 2 Z[x1; : : : ; xn℄, and de�ning aset X as a Boolean 
ombination of sets of the form f~a j pi(~a) � 0g, where � is either= or >. Here Z[x1; : : : ; xn℄, as usual, is the set of all polynomials in n variableswith 
oeÆ
ients from Z. One 
an use 
oeÆ
ients from Q as well, but this wouldnot a�e
t the 
lass of de�nable sets.Thus, when we study 
omplexity of VPR('; P ), we assume that ' is given as aBoolean 
ombination of polynomial equalities and inequalities, with all polynomialshaving integer 
oeÆ
ients. The size of the input formula is then de�ned in astandard way, assuming that all integer 
oeÆ
ients are given in binary. All theabove applies to semi-linear sets (that is, sets de�nable over Rlin); we just restri
tour attention to polynomials of degree 1.Corollary 10. Let M be Rlin or R. Let P be a �xed partition on f1; : : : ; ng.Then, for a semi-algebrai
 (semi-linear) set given by a Boolean 
ombination '(~x)of polynomial inequalities (of degree 1), the problem VIM('; P ) is solvable in timepolynomial in the size of '.Proof. Let �P be the senten
e for uniform de
idability of the variable partitionproblem. Assume that �P is in the prenex form. Using the standard bounds forACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



14 � Leonid Libkinquanti�er elimination over R [Basu 1999; Renegar 1992℄, one obtains that thereexist 
onstants 
1 and 
2 that depend on �P only, su
h that for any '(~x), the
omplexity of de
iding �0P , obtained from �P by using ' in pla
e of the extrapredi
ate S, is bounded by (
1N)
2 , where N is the size of '. Indeed, if S o

urss times in the quanti�er-free part of �P , then the size of the quanti�er-free partof �0P is 
0 + s � N , for some 
onstant 
0 depending only on �P . From this, andbounds of [Basu 1999; Renegar 1992℄, the 
omplexity bound follows. As 
1 and 
2depend only on �P , and hen
e only on P (by Proposition 9), the result follows. Forsemi-linear sets, the proof repeats the one above verbatim, as one 
an guaranteethe same bounds for quanti�er elimination. 2Another reason to 
onsider the uniform de
ision pro
edure for variable indepen-den
e is that it gives us a test for variable independen
e under some transforma-tions. For example, linear 
oordinate 
hange in general would destroy variableindependen
e, although it has relatively little e�e
t on shapes on obje
ts in Rn .Consider, for example, the following version of the variable independen
e problemLVI(X; xi; xj): Given a semi-algebrai
 set X � Rn (de�ned by a formula over R),is there a linear 
hange of 
oordinates su
h that in the new 
oordinate system,variables xi and xj are independent?The general de
ision pro
edure of Theorem 3 does not give us a de
ision pro
edurefor LVI. However, using uniformity, we easily obtain:Corollary 11. The problem LVI(X; xi; xj) is de
idable.Proof. Let X be de�ned by a formula '. For ea
h partition P , xi and xj beingin two di�erent blo
ks, 
onsider the senten
e	P = 9a11 : : : 9ann �(A) ^ �P (AS)where A is the matrix given by a11; : : : ; ann, �(A) is a senten
e over R statingthat det(A) 6= 0, and �P (AS) is obtained by repla
ing ea
h o

urren
e of S(~x) by9~y ('(~y) ^ ~x = A~y). The answer to LVI(X; xi; xj) is yes i� R j= 	P for one su
hP . The 
orollary follows from the de
idability of R. 2It turns out that not only the de
ision part of VIM('; P ) and VPM('; P ) 
anbe solved in polynomial time for a �xed P over Rlin and R, but there is also apolynomial time algorithm for �nding a formula equivalent to ' that witnesses' �M P .Theorem 12. a) Given n > 1, and a partition P = (B1; : : : ; Bm) on f1; : : : ; ng,there exists an algorithm that, for every semi-algebrai
 set given by a formula'(x1; : : : ; xn) whi
h is a Boolean 
ombination of polynomial equalities and inequal-ities, tests if ' �M P , and in the 
ase of the positive answer, 
omputes quanti�er-free formulae �ij(~xBi) su
h that ea
h �ij(~xBi) is a Boolean 
ombination of polyno-mial (in)equalities (where polynomials depend only on ~xBi and all 
oeÆ
ients areintegers), and '(~x) is equivalent to Wj Vi �ij(~xBi). Moreover the algorithm worksin time polynomial in the size of '.b) The same statement is true when on repla
es semi-algebrai
 by semi-linear,and all polynomials are of degree 1.Proof. We start with a). We saw (Corollary 10) that ' �M P 
an be de
ided inpolynomial time. Assume thus that ' �M P .ACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



Variable Independen
e � 15We say that a 
olle
tion of formulae �ij(~xBi), i � m; j �Mi, witnesses ' �M P ifea
h �ij(~xBi) de�nes an equivalen
e 
lass of the relation �'Bi , and ea
h equivalen
e
lass of �'Bi is de�nable by some �ij(~xBi) (this means, in parti
ular, that some�ij(~xBi) and �il(~xBi) 
ould be equivalent).The �rst step of the proof is to show that it suÆ
es to 
onstru
t, in polynomialtime, a family of formulae witnessing ' �M P .To prove this, we �rst re
all known bounds on quanti�er elimination over R.Suppose �(~y) is a formula in the prenex form, whose quanti�er-free part is of sizeN , and the degrees of all polynomials used in it do not ex
eed d. Then there existtwo 
onstants 
1 and 
2 that depend only on the quanti�er blo
k of � and the lengthof ~y su
h that N 
1 � d
2 is a bound on both the number of operations needed to
ompute a quanti�er-free �0(~y) equivalent to �(~x), and the size of �0. Moreover,the degrees of polynomials appearing in �0 are bounded by d
2 , and all 
oeÆ
ientsof polynomials used in �0 belong to the minimal subring of R that 
ontains all
oeÆ
ients of polynomials used in � (in our 
ase, Z, sin
e in the input formulawe have polynomials with integer 
oeÆ
ients). This follows from the results of[Basu 1999; Renegar 1992℄; in fa
t, those papers provide more detailed 
omplexityanalysis, but the above will suÆ
e for our purposes.Now suppose that we have 
onstru
ted, in polynomial time, a family f�ij(~xBi)g,witnessing ' �M P . In view of Corollary 5, we have'(~x) $ _(j1;:::;jm)2K �1j1 (~xB1) ^ : : : ^ �mjm(~xBm ); (7)where K = f(j1; : : : ; jm) j R j= 9~x (�1j1(~xB1) ^ : : : ^ �mjm(~xBm ) ^ '(~x))g. (Indeed,the only di�eren
e with Corollary 5 is that for a �xed i, some �ij(~xBi), �ij0(~xBi )may be equivalent, but this only adds a number of equivalent disjun
ts to the righthand side of (7), whi
h does not a�e
t the truth value.)Thus, we must show how to �nd K in polynomial time. Sin
e P (and thus m) is�xed, we enumerate all tuples (j1; : : : ; jm) � (M1; : : : ;Mm) in polynomial time. Forea
h ~| = (j1; : : : ; jm), 
onsider the senten
e 	~| = 9~x (�1j1(~xB1) ^ : : : ^ �mjm(~xBm ) ^'(~x)). The size of ea
h �ij is polynomial in the size of ', by the assumption. Thatis, the size of ea
h �ij does not ex
eed 
 � Np, for some 
onstants 
; p, where N isthe size of '. Thus, the size of the quanti�er-free part of 	~|, N1, is at most O(Np),and the same is a bound on the degrees of polynomials used. By the bound onquanti�er-elimination, M j= 	~| 
an be de
ided in time O(N 
01 ), where 
0 dependsonly on the �xed quanti�er-pre�x 9~x (re
all that the length of ~x is �xed, sin
e thepartition P is �xed). We thus obtain that there is a polynomial p su
h that forea
h ~|, the de
ision pro
edure M j= 	~| takes time p(N). This, and the bound onMis, imply that K 
an be found in polynomial time, if P is �xed. Hen
e, if �ijs arefound in polynomial time, so is the representation (7).Thus, to prove the theorem, it suÆ
es to show how to 
onstru
t a family �ij(~xBi )witnessing ' �M P in polynomial time. Without loss of generality, assume thatwe are given '(~y; ~z), with ~y of length n and ~z of length m. Let ~a1 � ~a2 i�'(~a1;R) = '(~a2;R); this is an equivalen
e relation on Rn . Assume that we knowalready that � has �nitely many 
lasses. To 
omplete the proof, it thus suÆ
es toshow how to produ
e formulae �j(~y) de�ning equivalen
e 
lasses, in time polynomialACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



16 � Leonid Libkinin the size of '.From the proof of Proposition 9, we know that there exists a formula 
(x) inthe language of the real �eld plus an n + m-ary relation S, su
h that 
 dependson n and m only, and (R; '(R)) j= 
(a) i� for some 
anoni
ally 
hosen set ofrepresentatives of �, a is in one of ~a in this set. We now substitute the de�nition of' for S in 
, and perform quanti�er-elimination. Let Æ(x) be the resulting formula.From the bounds on quanti�er-elimination, we obtain that Æ(x) 
an be found intime polynomial in N , where N is the size of '. This is be
ause 
 is determinedby n and m, whi
h are �xed (as n 
orresponds to the size of a blo
k in P , m tothe number of the remaining variables). By putting ' into the de�nition of 
, weobtain a formula whose quanti�er-free part is linear in N , and then the bounds onquanti�er-elimination imply that the parameters in the exponent depend only onn and m, that is, on P . Thus, Æ(x) is obtained in polynomial time.Sin
e Æ(x) is quanti�er-free, it is a Boolean 
ombination of polynomial equalitiesand inequalities involving polynomials from a set P = fp1(x); : : : ; pl(x)g. Further-more, Æ is algebrai
. We now 
laim that every a su
h that R j= Æ(a) is a root ofone of pis. Assume this is not the 
ase: R j= Æ(a) and a is not a root. Then thereis a small neighborhood of a in whi
h signs of all pis are the same as the signs ofpi(a)s. Thus, sin
e Æ(x) is quanti�er-free, we obtain R j= Æ(b) for ea
h b from thisneighborhood of a, whi
h implies that Æ(R) is in�nite.Now suppose pi is of degree di, and suppose we have formulae �ik(x) saying thatx is the kth real root of pi (or 0, if there is no su
h root), k � di. Then we wouldde�ne formulae�(i1 ;k1);:::;(in;kn)(y1; : : : ; yn) = n̂j=1 �ijkj (yj); kj � djprodu
ing n-tuples of real roots of polynomials in P (some entries in those tuples
an be 0 as well). We know for every equivalen
e 
lass of �, there is a tuple in it thatsatis�es one of these formulae. Moreover, the number of formulae �(i1;k1);:::;(in;kn)is at most (l � D)n, where D is the maximum degree of a polynomial in P . Fromea
h formula �(i1;k1);:::;(in;kn), we de�ne the equivalen
e 
lass as�(i1;k1);:::;(in;kn)(~y) = 9~y18~z (�(i1;k1);:::;(in;kn)(~y1) ^ ('(~y; ~z)$ '(~y1; ~z))):Sin
e the quanti�er pre�x 9~y18~z is �xed (as n and m are �xed), we 
on
ludethat a quanti�er-free formula equivalent to �(i1;k1);:::;(in;kn) 
an be found in timeO((N + nN 0)s), where s is determined by P , and N 0 is an upper bound on thesize of �ik(x). This, and the estimate on the number of formulae �(i1;k1);:::;(in;kn),show that the required 
olle
tion of formulae de�ning equivalen
e 
lasses 
an beprodu
ed in time polynomial in the size of ', provided two 
onditions hold:(1) The set P 
an be found in polynomial time (in N , with P �xed);(2) Ea
h formula �ik(x) 
an be 
onstru
ted in time polynomial in N .The �rst item follows from the fa
t that Æ(x) is found in time polynomial in N (seeabove). To show the se
ond item, 
onsider ea
h polynomial pi(x) 2 P . Using analgorithm for root isolation (see, for example, [Caviness and Johnson 1998; Collinsand Loos 1983℄), we �nd a sequen
e a1 < a2 < : : : < ar, where r is at most thedegree of pi plus one, su
h that ea
h interval (ai; ai+1), 1 � i < r, 
ontains exa
tlyACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.
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e � 17one root of pi. This sequen
e 
an be found in time polynomial in the size of therepresentation of pi [Caviness and Johnson 1998; Collins and Loos 1983℄. We nowde�ne �ik(x) = � (pi(x) = 0) ^ (x > ak) ^ (x < ak+1) k < rx = 0 k � rClearly, these formulae de�ne the roots (and perhaps 0), and due to the bounds onroot isolation, they 
an be found in polynomial time. This 
ompletes the proof ofitem 2, and thus the theorem for the 
ase of R.For linear 
onstraints (Rlin), the proof follows along the same lines, but is abit easier. Sin
e there similar bounds on quanti�er elimination over Rlin, wherethe exponent depends only on the number of free variables in the quanti�er-pre�x[Caviness and Johnson 1998℄, we 
an use the same proof as above, ex
ept that wedo not have to deal with the real root isolation, as a linear fun
tion in one variablehas at most one root, whi
h is de�nable. 24.4 Other 
onstraintsIn this se
tion, we 
onsider two examples of ni
ely-behaving stru
tures over whi
hthe variable independen
e problem is de
idable, despite the fa
t that they do notsatisfy all the 
onditions of Theorem 3. Admittedly, this is more of purely theo-reti
al interest, although algebrai
ally 
losed �elds were studied in 
onne
tion withsome expressivity problems inspired by 
onstraint databases [Chapuis and Koiran1999℄.The �rst stru
ture we 
onsider is the �eld of 
omplex numbers C = hC ;+; �i. Ithas a de
idable theory and admits quanti�er-elimination; furthermore, it is stronglyminimal (every de�nable subset of C is either �nite or 
o�nite) [Hodges 1993℄. Thelatter property implies that it does not have de�nable Skolem fun
tions (invariantor not). Indeed, if the equivalen
e relation x2 = y2 had a de�nable set of represen-tatives, this set and its 
omplement would be in�nite. Hen
e, Theorem 3 does notapply to C. Still, we 
an prove a weaker result. We say that variables xi and xj areweakly independent in '(~x) if there exists a �nite set C � C and a �nite 
olle
tionof formulae �k(~x) in the language of C extended with 
onstants for C, su
h that no�k mentions both xi and xj , and ' is equivalent to a Boolean 
ombination of �ks.Proposition 13. Let '(~x) be a formula over C, and xi; xj two distin
t variables.Then it is de
idable if xi and xj are weakly independent in '.Proof. The proof follows 
losely the proof of Theorem 3. Instead of Skolem-ization to �nd representatives of equivalen
e 
lasses, we use a weaker property ofelimination of imaginaries [Hodges 1993; Marker et al. 1996℄, whi
h says that forevery de�nable equivalen
e relation E on C k , there exists a fun
tion f : C k ! Cmsu
h that E(a; b) implies f(a) = f(b). Furthermore, su
h a fun
tion 
an be founde�e
tively (be
ause the theory is de
idable), and it 
an also be tested e�e
tivelyif a formula  (x) is algebrai
: this follows from quanti�er elimination and strongminimality. Thus, we prove an analog of lemma 4 (sin
e we do not have de�n-able Skolem fun
tions, we must use �nitely many new 
onstant symbols to identifyequivalen
e 
lasses), and then use the fun
tion that eliminates imaginaries and testfor algebrai
ity to 
he
k if a given equivalen
e relation is �nite. 2ACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.



18 � Leonid LibkinAnother example is that of the random graph, that is, a 
ountable stru
turethat satis�es every senten
e that is true in almost all �nite graphs (this theory is!-
ategori
al; hen
e we speak of the random graph). Again, its theory is de
idable,and has quanti�er elimination, but does not have de�nable Skolem fun
tions. Still,a simple argument shows:Proposition 14. The variable independen
e problem is de
idable over the ran-dom graph.Proof. There are only �nitely many non-equivalent formulae in n variables, andthey 
an all be e�e
tively listed. We look at all of them in whi
h two given variablesdo not o

ur in the same atomi
 formula, and 
he
k if any of them is equivalent toa given formula '. 24.5 Spatio-temporal appli
ationsEven though we do have polynomial-time algorithms for testing variable indepen-den
e for linear and polynomial 
onstraints, the exponent be
omes quite large asthe dimension in
reases. This kind of situation is not new at all; it is the 
ase, forexample, for some quanti�er-elimination algorithms that, although polynomial fora �xed dimension, be
ome unmanageable for high dimensions.Fortunately, in pra
ti
al appli
ations of variable independen
e en
ountered so far,the dimension is not very high, as typi
ally this 
on
ept is important for spatio-temporal appli
ations [Grumba
h et al. 1998; 1999℄. In this 
ase, one deals withformulae '(x; y; t) over Rlin or R; that is, linear or polynomial 
onstraints in threevariables x; y and t, where x; y des
ribe the spatial 
omponent and t des
ribes thetemporal 
omponent; one is then interested in showing the independen
e of (x; y)and t. A typi
al appli
ation is 
adastral information, that is, information aboutland ownership over time. As ownership does not 
hange 
ontinuously with time,often variables x; y are independent of t.We now show that there is a simpler way of testing variable independen
e in thissetting than in the general setting of Theorem 12.Re
all that a 
ylindri
al algebrai
 de
omposition (CAD) of Rn [Bo
hnak et al.1998; Caviness and Johnson 1998℄ is a partition of Rn into �nitely many sets,
alled 
ells, su
h that ea
h 
ell is homeomorphi
 to Ri , i � n. A CAD of R1 is ade
omposition into points and open intervals. A CAD of Rn is de�ned as follows.Let C1; : : : ; Cp be the 
ells of a CAD of Rn�1 . Suppose that for ea
h Ci we havea 
olle
tion of 
ontinuous fun
tions f i1; : : : ; f imi : Ci ! R, mi � 0, su
h that forea
h ~x 2 Ci, f i1(x) < : : : < f imi(~x). Then the 
ells of a CAD in Rn are f(~x; 
) j~x 2 Ci; 
 < f i1(~x)g, f(~x; 
) j ~x 2 Ci; 
 > f imi(~x)g, f(~x; 
) j ~x 2 Ci; 
 = f ij(~x)g,j = 1; : : : ;mi, and f(~x; 
) j ~x 2 Ci; f ij(~x) < 
 < f ij+1(~x)g, j < mi, i = 1; : : : ; p.A 
lassi
al result on 
ell de
omposition says that given a set p1; : : : ; pk of poly-nomials in Z[x1; : : : ; xn℄, one 
an e�e
tively 
onstru
t a CAD of Rn su
h that allthe fun
tions f ij (for all steps of the indu
tive 
onstru
tion) are de�nable over R,and polynomials pls do not 
hange their sign on any 
ell. In parti
ular, if we have aformula '(~x) whi
h is a Boolean 
ombination of polynomial inequalities involvingpls, then '(R) is a union of some 
ells of this CAD.Now 
onsider a formula '(x; y; t) whi
h is a Boolean 
ombination of equalities andinequalities involving polynomials p1; : : : ; pk 2 Z[x; y; t℄, and let P = ffx; yg; ftgg.ACM Transa
tions on Computational Logi
, Vol. ?, No. ?, ?.
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e � 19First noti
e that if ' � P , then ' is equivalent to a formula of the form Wi �i(x; y)^�i(t), where ea
h �i(t) is either t = 
i, or 
i < t, or t < di, or 
i < t < di, where 
iand di are 
onstants; this follows from o-minimality of the real �eld.Suppose then that we do a CAD using the polynomials pls, and let C1; : : : ; Cpbe the 
ells in the xy-plane, and f ij the fun
tions on Cis whi
h de�ne the 
ells ofa three-dimensional CAD. Ea
h su
h fun
tion f ij on Ci is 
alled '-signi�
ant if forthe 
ell f(x; y; t) j (x; y) 2 Ci; t = f ij (x; y)g and two 
ells in Ci�R adja
ent to it, itis not the 
ase that the three simultaneously belong to '(R) or R3 �'(R). (Sin
e' is a Boolean 
ombination of 
onstraints involving pls, several adja
ent 
ells maybelong to '(R) or its 
omplement.)Then, if f ij is '-signi�
ant, Ci is not a single point, and f ij takes at least twodi�erent (and hen
e in�nitely many) distin
t values, we 
an easily see that there isno representation for ' in whi
h t o

urs only in the subformulae de�ning intervalswith 
onstant endpoints. This implies:Proposition 15. Given a formula '(x; y; t) whi
h is a Boolean 
ombinationof polynomial (in)equalities involving p1; : : : ; pk 2 Z[x; y; t℄, the variables x; y areindependent from t i� in any CAD for the polynomials pls, every '-signi�
antfun
tion f on a non-singleton 
ell in the xy-plane, is a 
onstant. 2Sin
e there exist spe
ialized algorithms for 
onstru
ting CAD in the three-dimensional spa
e that have good enough 
omplexity bounds to be appli
able inpra
ti
e [Arnon et al. 1988℄, this gives us a good method for testing variable inde-penden
e in spatio-temporal appli
ations.5. CONCLUSIONWe looked at the problem of de
iding, for a set represented by a 
olle
tion of 
on-straints, whether some variables in those 
onstraints are independent of ea
h other.Knowing this 
an 
onsiderably improve the running time of several 
onstraint pro-
essing algorithms, in parti
ular, quanti�er elimination. The problem originated inthe �eld of spatio-temporal databases represented by 
onstraints (linear or poly-nomial over the reals, for example); it was demonstrated that on large datasets,reasonable performan
e 
an only be a
hieved if variables 
omprise small indepen-dent groups. It had not been known, however, if su
h independen
e 
onditions arede
idable.Here we showed that these 
onditions are de
idable for a large 
lass of 
onstraints,in
luding those relevant to spatial and temporal appli
ations. Moreover, for linearand polynomial 
onstraints over the reals, we gave a uniform de
ision pro
edurethat implies tra
tability, and we showed that a given 
onstraint set 
an be 
onvertedinto one in a ni
e shape in polynomial time, too. We also 
onsidered spe
ializedalgorithms suitable for spatio-temporal appli
ations.ACKNOWLEDGMENTSI thank Stavros Cosmadakis and Gabi Kuper for bringing the problem to my at-tention, and Mi
hael Benedikt, Lu
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