
Variable Independene for First-Order De�nableConstraintsLEONID LIBKINUniversity of TorontoWhenever we have data represented by onstraints (suh as order, linear, polynomial, et.),running time for many onstraint proessing algorithms an be onsiderably lowered if it is knownthat ertain variables in those onstraints are independent of eah other. For example, whenone deals with spatial and temporal databases given by onstraints, the projetion operation,whih orresponds to quanti�er elimination, is usually the ostliest. Sine the behavior of manyquanti�er elimination algorithms beomes worse as the dimension inreases, eliminating ertainvariables from onsideration helps speed up those algorithms.While these observations have been made in the literature, it remained unknown when theproblem of testing if ertain variables are independent is deidable, and how to onstrut eÆientlya new representation of a onstraint-set in whih those variables do not appear together in thesame atomi onstraints. Here we answer this question. We �rst onsider a general onditionthat gives us deidability of variable independene; this ondition is stated in terms of model-theoreti properties of the strutures orresponding to onstraint lasses. We then show that thisondition overs the domains most relevant to spatial and temporal appliations. For some ofthese domains, inluding linear and polynomial onstraints over the reals, we provide a uniformdeision proedure whih gives us tratability as well. For those onstraints, we also present apolynomial-time algorithm for produing nie onstraint representations.Categories and Subjet Desriptors: F.2.1 [Analysis of Algorithms and Problem Complex-ity℄: Numerial Algorithms and Problems; F.4.1 [Mathematial Logi and Formal Lan-guages℄: Mathematial Logi; H.2.8 [Database Management℄: Database Appliations; I.1.1[Symboli and Algebrai Manipulation℄: Expressions and Their RepresentationGeneral Terms: Languages, TheoryAdditional Key Words and Phrases: First-order logi, de�nable sets, variable independene, poly-nomial onstraints, linear onstraints, spatio-temporal databases1. INTRODUCTIONWe start with a simple example. Suppose we have a set S � R2 given by simpleorder-onstraints '(x; y) = (0 < x < 1) ^ (0 < y < 1). Suppose we want to�nd its projetion on the x axis. This means writing the formula 9y '(x; y) asa quanti�er-free formula. This an be done, in general, beause the theory ofPreliminary version of this paper appeared in the 27th International Colloquium on Automata,Languages and Programming (ICALP'2000). Address: Department of Computer Siene, 6 King'sCollege Road, University of Toronto, Ontario M5S 3H5, Canada, email: libkin�s.toronto.edu.Researh aÆliation: Bell Laboratories.Permission to make digital/hard opy of all or part of this material without fee for personalor lassroom use provided that the opies are not made or distributed for pro�t or ommerialadvantage, the ACM opyright/server notie, the title of the publiation, and its date appear, andnotie is given that opying is by permission of the ACM, In. To opy otherwise, to republish,to post on servers, or to redistribute to lists requires prior spei� permission and/or a fee. 2001 ACM 1529-3785/01/0100-TBD $5.00ACM Transations on Computational Logi, Vol. ?, No. ?, ?, Pages 1{21.



2 � Leonid LibkinhR; <; (r)r2Ri admits quanti�er elimination. But in this partiular ase it is veryeasy to �nd a quanti�er-free formula equivalent to 9y '(x; y) using just standardrules for equivalene of �rst-order formulae:9y '(x; y) $ (0 < x < 1) ^ 9y (0 < y < 1) $ (0 < x < 1) ^ true $ 0 < x < 1:Now notie that ' an be onsidered as a formula in the language of the real �eldhR;+; �; 0; 1; <i whose theory also admits quanti�er elimination. Suppose then thatinstead of ', we are given an equivalent formula  (x; y):�(0 < x < 1) ^ (0 < y < 1) ^ (4x2 � y � 1 � 0)�_ �(0 < x < 1) ^ (0 < y < 1) ^ (4x2 � y � 1 � 0)�: (1)The �rst step of quanti�er elimination for 9y  is easy, as we propagate 9y insidethe disjuntion. However, trying to �nd a quanti�er-free equivalent for the �rstdisjunt, that is, a formula equivalent to 9y �(0 < x < 1)^(0 < y < 1)^(4x2�y�1 �0)�, one immediately enounters obstales. Unlike the earlier example, this onerequires a bit of thought to ome up with the answer (0:5 � x < 1). Similarly, somework is needed to ompute the answer (0 < x � 1=p2) for the seond disjunt.Why is it that the �rst quanti�er-elimination proedure is ompletely elementary,and the seond is not, even though both ' and  de�ne the same set? The reasonis that in the �rst representation of S, variables x and y are independent, that is,they do not appear in the same atomi formulae. This makes quanti�er eliminationeasy. In the seond ase, x and y do appear together in the same term x2� 4y� 1,and this is what auses the problem.This extremely simple observation an often make onstraint proessing easier.While it an oneivably be useful in various tasks suh as more eÆient variableelimination in onstraint logi programming [Fordan and Yap 1998; Imbert 1994℄,here we onentrate on one appliation area, namely onstraint databases [Kuperet al. 2000; Kuper et al. 1995℄ where it found its way into a pratial system forquerying spatio-temporal databases [Grumbah et al. 1998℄. The main goal ofonstraint databases is to model in�nite database objets, whih arise in a varietyof appliations, for example, in Geographial Information Systems.A partiular onstraint model is de�ned over a strutureM = hU;
i (where U isthe universe and 
 is the voabulary) whih is typially required to have quanti�erelimination. Those onsidered most often in spatial appliation are the real �eldR = hR;+; �; 0; 1; <i and the real ordered group Rlin = hR;+;�; 0; 1 <i, whihgive rise to polynomial and linear onstraint databases, respetively. A onstraintrelation of arity n is simply a de�nable subset of Un, that is, a set of tuples ~a 2 Unthat satisfy a �rst-order formula. For the above strutures, onstraint relations aresemi-algebrai sets for R, and semi-linear sets for Rlin [Bohnak et al. 1998℄. Aonstraint database is a �nite set of onstraint relations.A standard onstraint query language over M is FO +M, that is, �rst-orderlogi in the language of M and symbols for relations in a onstraint database.For example, if a database ontains a single ternary symbol S, the query '(x) �9u; v 8y; z (S(x; y; z)$ z = u �y+v) �nds all a suh that the intersetion of S withthe plane x = a is a line. Note that if S is a semi-algebrai set, then so is '(S).One of the standard database operations is projetion. In the language ofonstraint proessing, it orresponds to quanti�er elimination. That is, given aACM Transations on Computational Logi, Vol. ?, No. ?, ?.



Variable Independene � 3quanti�er-free formula '(y; x1; : : : ; xn�1), one wishes to �nd a quanti�er-free for-mula  (~x) equivalent to 9y '(y; ~x). In many ases, the omplexity of algorithmsto �nd suh a  is of the form O(Nf(n)), where N is the size of the formula, andf is some funtion. For example, if one uses ylindrial algebrai deomposition[Caviness and Johnson 1998℄ for the real �eld, f is O(2n). In general, even if bet-ter algorithms are available, the omplexity of onstraint proessing often inreaseswith dimension to suh an extent that it beomes unmanageable for large datasets(see, e.g., [Grumbah et al. 1999℄).Assume now that ~x is split into two disjoint tuples ~u and ~v suh that (y; ~u) and~v are independent, that is, they do not appear in the same atomi formulae. Then' is equivalent to a formula of the formk_i=1�i(y; ~u) ^ �i(~v):Therefore, the formula 9y ' is equivalent tok_i=1(9y �i(y; ~u)) ^ �i(~v):For a number of operations this is a signi�ant improvement, as the exponentbeomes lower. For example, in addition to quanti�er elimination, data often hasto be represented in a nie format (essentially, as union of ells [Caviness andJohnson 1998℄), and algorithms for doing this also bene�t from redution in thedimension [Grumbah et al. 1998; 1999℄.Even though suh a notion of independene may seem to be too muh of arestrition, from the pratial point of view it is sometimes neessary to insiston it, as the ost of general quanti�er elimination and other operations ould beprohibitively expensive. For example, the Dedale onstraint database system[Grumbah et al. 1998℄ requires that the projetion operation only be applied when~u onsists of a single variable. Dealing with spatio-temporal appliations, one oftenqueries trajetories of objets, or adastral (land-ownership) information. Theseare typially represented as objets in R3 given by formulae '(x; y; t). To be ableto ompute 9y '(x; y; t), one approximates ' by a formula  (x; y; t) whih is aBoolean ombination of formulae �i(x; y) and �i(t). For trajetories, this amountsto saying that an objet is in a given region during a given interval of time; thus,it is the information about the speed that is lost in order to have eÆient queryevaluation. As was further demonstrated in [Grumbah et al. 1999℄, the di�erenebetween the ase when at most 2 variables are dependent, and that of 3 or morevariables being dependent, is quite dramati, in the ase of linear and polynomialonstraints.What is missing, however, in this piture, is the ability to determine whethera given onstraint representation of the data an be onverted to the one in theright format, just as in our �rst example,  (x; y) is equivalent to '(x; y), in whihvariables x and y are independent. It was laimed in [Chomiki et al. 1996℄ thatsuh a proedure exists for linear onstraints, and then [Grumbah et al. 1999℄ gavea simpler algorithm. However, [Libkin 1999℄ then showed that both laims wereinorret. It was thus not known if variable independene an be tested for relevantACM Transations on Computational Logi, Vol. ?, No. ?, ?.



4 � Leonid Libkinlasses of onstraints.Our main goal here is to show that variable independene an be tested for manylasses of onstraints, and that algorithms for onverting a given formula into onein the right form an be obtained. Moreover, those algorithms often work in timepolynomial in the size of the formula (assuming the total number of variables is�xed). Among strutures for whih we prove suh results are the real ordered group,the real �eld, as well as hZ;+; 0; 1; <i extended with all the relations x = y(mod k),k > 1 (whih is used in temporal appliations). Even if those algorithms arerelatively expensive, it is worth putting data in a nie format for two reasons.First, suh an algorithm works only one, and then the data is repeatedly queriedby di�erent queries, whih an be evaluated faster. Seond, some queries are knownto preserve variable independene; hene, this information an be used for furtherproessing the query output.Organization. In Setion 2, we de�ne the notion of variable independene, andmore generally, the notion ' � P of a formula ' respeting a ertain partition P ofits free variables. Then, in Setion 3, we disuss requirements on the theory of Mthat guarantee deidability of this notion, as well as the existene of an algorithmthat onverts a given formula into a one in the right shape. In Setion 4, we disussspei� lasses of strutures and derive some omplexity bounds. In partiular,we look at o-minimal strutures [van den Dries 1998℄ (whih inlude linear andpolynomial onstraints over the reals) and give a uniform deision proedure. Thisproedure gives us tratability, and we also show how to �nd an equivalent formulain the right shape in polynomial time. We also briey onsider other lasses ofonstraints, and spatio-temporal appliations.2. NOTATIONSAll the de�nitions an be stated for arbitrary �rst-order strutures, although forthe algorithmi onsiderations we shall require at least deidability of the theory,and often quanti�er elimination.Given a strutureM = hU;
i (where U is a set always assumed to be in�nite, and
 an ontain prediate, funtion, and onstant symbols, and is always assumed tobe a reursive set), we say that the theory of M is deidable if for every �rst-ordersentene � in the language of M it deidable if M j= �. We say that M admits(e�etive) quanti�er elimination if for every formula '(~x) in the language of M,there exists (and an be e�etively found) a quanti�er-free formula  (~x) suh thatM j= 8~x '(~x)$  (~x).Given a formula '(~x; ~y) in the language of M, with ~x of length n and ~y oflength m, and ~a 2 Un, we write '(~a;M) for the set f~b 2 Um j M j= '(~a;~b)g.In the absene of variables ~x we write '(M) for f~b j M j= '(~b)g. Sets of theform '(M) are alled de�nable. A funtion f : Un ! Um is de�nable if its graphf(~a;~b) 2 Un+m j ~b = f(~a)g is a de�nable set.Given a tuple of variables ~x = (x1; : : : ; xn) and a partition P = fB1; : : : ; Bmg onf1; : : : ; ng, we let ~xBi stand for the subtuple of ~x onsisting of the xjs with j 2 Bi.For a formula '(x1; : : : ; xn), we then say that ' respets the partition P (overM) if' is equivalent to a Boolean ombination of formulae eah having its free variablesamong ~xBi for some i � k. This will be written as ' �M P , or just ' � P if M isACM Transations on Computational Logi, Vol. ?, No. ?, ?.



Variable Independene � 5lear from the ontext.In other words (by putting a Boolean ombination into DNF), ' �M P if thereexists a family of formulae �ij(~xBi ), i = 1; : : : ;m, j = 1; : : : ; k, suh thatM j= '(~x)$ k_j=1(�1j (~xB1) ^ : : : ^ �mj (~xBm)): (2)When M has quanti�er elimination, all �ijs are quanti�er free. In fat, under thequanti�er-elimination assumption, the de�nition of ' �M P an be restated as theequivalene of ' to a quanti�er-free formula  suh that every atomi subformulaof  uses variables from only one blok of P .We now say that in ', two variables xi and xj are independent if there existsa partition P suh that ' �M P , and xi and xj are in two di�erent bloks of P .Equivalently, xi and xj are independent if there exists a partition P = (~y; ~z) of ~xsuh that ' �M P , xi is in ~y and xj is in ~z. (When onvenient notationally, weidentify partitions on the indies of variables and variables themselves.)Strutures. After presenting a general deidability result, we shall deal with sev-eral important lasses of strutures. Two of them were mentioned already: the realordered group Rlin = hR;+;�; 0; 1; <i and the real �eld R = hR;+; �; 0; 1; <i, or-responding to linear and polynomial onstraints over the reals. Some of the resultsfor these strutures extend to a larger lass of o-minimal strutures: M = hU;
iis alled o-minimal [Pillay and Steinhorn 1988; van den Dries 1998℄ if one of thesymbols in 
 is <, interpreted as a linear order on U , and every de�nable subset ofU , fa j M j= '(a)g, is a �nite union of points and open intervals. Both Rlin andR have quanti�er elimination (by Fourier elimination [Ziegler 1994℄, and Tarski'stheorem [Bohnak et al. 1998; Caviness and Johnson 1998℄, respetively), whiheasily implies that they are o-minimal. The exponential �eld hR;+; �; exi is an ex-ample of a struture whih is o-minimal [Wilkie 1996℄ but does not have quanti�erelimination [van den Dries 1984℄. For other o-minimal strutures on the reals, see[van den Dries 1998℄.We shall deal with some strutures on the integers. Of most interest to us isZ0 = hZ;+;�; 0; 1; <; (�k)k>1i where n �k m i� n = m(mod k). This strutureorresponds to onstraints given by linear repeating points, whih are used for mod-eling temporal databases [Kabanza et al. 1995℄. The struture Z0 admits e�etivequanti�er elimination, and its theory is deidable [Enderton 1972℄.3. GENERAL CONDITIONS FOR DECIDING VARIABLE INDEPENDENCEGiven a strutureM, we onsider two problems. The variable independene problemVIM('; xi; xj) is to deide, for '(x1; : : : ; xn) in the language ofM, if xi and xj areindependent. The variable partition problem VPM('; P ) is to deide, for a givenformula '(x1; : : : ; xn) and a partition P on f1; : : : ; ng, if ' �M P .Note that the variable independene problem is a speial ase of the variablepartition problem, as to solve the former, one needs to solve the latter for somepartition P = (B1; B2) with i 2 B1 and j 2 B2.The above problems are just deision problems, but if the theory of M is deid-able, and the answer toVPM('; P ) is `yes', one an e�etively �nd a representationACM Transations on Computational Logi, Vol. ?, No. ?, ?.



6 � Leonid Libkinin the form (2), simply by enumerating all the formulae h (~x)ii whih are Booleanombinations of formulae having free variables from at most one blok of P , andthen heking if M j= 8~x ('(~x) $  i(~x)). Sine ' �M P , for some �nite i, weget a positive answer. In many interesting ases, we shall see better algorithms for�nding representation (2) than simple enumeration.The �rst easy result shows that the problems VIM('; xi; xj) and VPM('; P )are equivalent; this allows us to deal then only with two-blok partitions.Lemma 1. For any M, the variable independene problem is deidable over Mi� the variable partition problem is deidable over M.Proof. The diretion from variable partition to variable independene is easy. Forthe other diretion we show that the answer to VPM('; P ) is yes i� the answer toVIM('; xi; xj) is yes for every pair of variables xi; xj from two di�erent bloks of P .Again, only the `if' diretion needs to be proved. If the answer to VIM('; xi; xj)is yes, there is a partition Pij suh that xi; xj are in di�erent bloks of P , and' �M Pij . Let P 0 = uijPij be the meet, in the partition lattie, of all suh Pijs.By [Cosmadakis et al. 2001℄, we have ' �M P 0. Sine every blok of P is a unionof bloks of P 0, the result follows. 2Next, we disuss onditions for deidability of the variable independene problem.It is lear that one needs deidability of the theory of M. However, deidabilityalone (and even e�etive quanti�er elimination) are not suÆient.Proposition 2. a) If the theory of M is undeidable, then the variable inde-pendene problem is undeidable over M.b) There exists a struture M with a deidable theory and e�etive quanti�er elim-ination suh that the variable independene problem is undeidable over M.Proof. a) Let � be an arbitrary sentene, and '(x; y) � (x = y) ^ :�. If M j= �,then ' de�nes the empty set, and x and y are thus independent. If M j= :�, then' de�nes f(a; a) j a 2 Ug, and sine U is in�nite, x and y are not independent.Thus, the answer to VIM('; x; y) is yes i� M j= �.b) An example is provided by the theory of traes from [Stolboushkin and Tsaitlin1999℄. Let U be a union of three disjoint sets: desriptions of Turing mahines,input words, and traes, or partial omputations of mahines on input words, allappropriately oded as strings. Let 
 ontain a onstant symbol for every elementof U , and a single ternary prediate P (m;w; t) saying that t is a trae of themahine m on the input word w. Then [Stolboushkin and Tsaitlin 1999℄ showsthat the theory of M is deidable, and moreover, M an be extended by �nitelymany new prediate symbols suh that the expanded model has e�etive quanti�erelimination.Now �x a Turing mahine m0 and an input word w0 and onsider the formula'(t; t0) � (P (m0; w0; t) ^ t = t0). Suppose m0 halts on w0. Then the set ft jP (m0; w0; t)g is �nite, and thus the output of ' is �nite, and hene variables t andt0 are independent, sine every element of U is de�nable. If m0 does not halt onw0, then the set U 0 = ft j P (m0; w0; t)g is in�nite, and hene the output of ' isf(a; a) j a 2 U 0g; this implies that t and t0 are not independent. This shows thatVIM('; t; t0) outputs yes i� m0 halts on w0, and thus the variable independeneproblem is undeidable. 2ACM Transations on Computational Logi, Vol. ?, No. ?, ?.



Variable Independene � 7The proof of Proposition 2, b), shows that it is essential to be able to deide�niteness in order to deide VI('; xi; xj) (as it is the �niteness of the number oftraes that turns out to be equivalent to variable independene).Reall that a formula '(x) is algebrai if '(M) is �nite. We say that there isan e�etive test for algebraiity in M if for every '(x) in the language of M, it isdeidable if ' is algebrai. Note that this somewhat tehnial notion will triviallyhold for most relevant lasses of onstraint.While the notion of variable independene is needed in the ontext of onstraintdatabases, for �nite relational strutures it is assumed to be meaningless as everytuple is represented as a onjuntion of onstraints of the form xi = i, whereis are onstants. For example, the graph f(1; 2); (3; 4)g is given by the formula((x = 1)^(y = 2))_((x = 3)^(y = 4)). Clearly, variables x and y are independent.However, over arbitrary strutures, not every �nite de�nable set would satisfythe variable independene ondition. To see this, let M = hN; C; Ei, where C is aunary relation interpreted as f1; 2g and E is a binary relation symbol interpreted asf(1; 2); (2; 1)g. A routine argument shows that this M has quanti�er elimination,deidable theory, and there is a test for algebraiity. The formula '(x; y) � E(x; y)then de�nes a �nite set, but variables x and y are not independent: this is beausethe only de�nable proper subsets of N are f1; 2g and N � f1; 2g, and no Booleanombination of those gives us E. As another example, onsider the �eld of omplexnumbers, whose theory is deidable and has quanti�er elimination [Marker et al.1996℄. Let '(x; y) = (x2 + 1 = 0) ^ (y2 + 1 = 0) ^ (x+ y = 0). It de�nes the �niteset f(i;�i); (�i; i)g but nevertheless x and y are not independent (sine i is notde�nable).To avoid similar situations, we impose an extra ondition on a struture, again,well known in model theory [Chang and Keisler 1990; Hodges 1993℄. We say thatMhas de�nable Skolem funtions if for every formula '(~x; ~y) there exists a de�nablefuntion f'(~x) with the property that M j= 8~x (9~y '(~x; ~y) ! '(~x; f'(~x))). Inother words, f'(~a) is an element of '(~a;M), assuming '(~a;M) is not empty. Wesay that a Skolem funtion f' is invariant [Marker et al. 1996℄, if '(~a1;M) ='(~a2;M) implies f'(~a1) = f'(~a2). If the existene of suh a Skolem funtion anbe guaranteed for every ', we say thatM has de�nable invariant Skolem funtions.Theorem 3. Assume that M has the following properties:(a) its theory is deidable;(b) M has e�etive test for algebraiity; and() M has de�nable invariant Skolem funtions.Then the variable partition and independene problems are deidable over M.Proof. Let M be as in the statement of the theorem. We start by showing ertainproperties of M that will be needed in the proof. First notie that the de�nabilityof Skolem funtions is e�etive; that is, for eah ', a formula de�ning f' an bee�etively found. To see this, just enumerate all formulae and test if they de�nea funtion, and if this funtion is a Skolem funtion for '. Sine the above is a�rst-order sentene (invariane is tested by 8~x18~x2 ((8~y '(~x1; ~y) $ '(~x2; ~y)) !(f'(~x1) = f'(~x2)))), e�etive de�nability follows.ACM Transations on Computational Logi, Vol. ?, No. ?, ?.



8 � Leonid LibkinA formula '(~x) (with one or more free variables) is algebrai if '(M) is �nite.We an assume that we have test for algebraiity for formulae with more than onefree variable: indeed, a set X � Uk is �nite i� eah of its k projetions on U is�nite.Next, we show that M has in addition the following property (d): if '(~x) isalgebrai, then one an e�etively �nd N = ard('(M)), and N formulae i(~x),i = 1; : : : ; N , suh that ard(i(M)) = 1, and '(M) = fi(M) j i � Ng (thatis, eah element of '(M) is de�nable, and formulae de�ning those elements an bee�etively found).To see this, �rst note that for every N it an be stated in �rst-order that N =ard('(M)), and thus by deidability we an �nd N , assuming ' is algebrai. Nextwe use e�etive de�nability of Skolem funtions (without parameters) to onstruta formula 1(~x) de�ning an element of '(M). We then onsider '(~x)^:1(~x), andapply Skolemization to it, to obtain 2(~x), de�ning an element in '(M)� 1(M).We ontinue the proess until i(~x); i < N are de�ned; then N (~x) = '(~x) ^Vi<N :i(~x).Having done this preparatory work, we now prove the theorem. Reall that itsuÆes to onsider the ase of two blok partitions; that is, to deide, if a formula'(~x; ~y) respets the partition P with bloks ~x and ~y. Let ~x have length n and ~yhave length l. De�ne an equivalene relation on Un by~a1 � ~a2 i� '(~a1;M) = '(~a2;M):Lemma 4. For ', P and � as above, ' �M P i� � has �nitely many equivalenelasses.Proof of the lemma. The only if part is lear: if ' is a Boolean ombination of�i(~x), �j(~y), then for every ~a1;~a2 agreeing on all �i, we have '(~a1;M) = '(~a2;M).For the onverse, assume that � has �nitely many equivalene lasses. Note that� is a de�nable subset of U2n (it is de�ned by  (~x1; ~x2) = 8~y ('(~x1; ~y)$ '(~x2; ~y))).Assume that there are N equivalene lasses, and eah is de�nable by a formula�i(~x), i � N . De�ne �i(~y) as 9~z (�i(~z) ^ '(~z; ~y)). ThenM j= 8~x8~y �'(~x; ~y) $ N_i=1�i(~x) ^ �i(~y)�: (3)Indeed, let M j= '(~a;~b), and assume that ~a is in the ith lass of �; that is,M j= �i(~a). This implies M j= �i(~b). Conversely, if M j= �i(~a) ^ �i(~b), for some~ we have �i(~) ^ '(~;~b). Sine '(~;M) = '(~a;M), we have ~b 2 '(~a;M) and thusM j= '(~a;~b). This proves (3).It thus remains to show how to de�ne �is. First, we �nd (e�etively) the invariantSkolem funtion f (~x1) for the formula  (~x1; ~x2) de�ning �. Then the formula�(~x2) = 9~x1 (~x2 = f (~x1)) de�nes the range of f , that is, a set of representativesof the equivalene lasses of �. By the assumption that the number of lasses is�nite, we get that � is algebrai. Hene, by ondition (d), we an �nd e�etivelythe number N of elements satisfying � (that is, the number of lasses of �), andformulae i(~x), i � N , de�ning representatives of the equivalene lasses. Theequivalene lasses themselves an now be de�ned as �i(~x) = 9~z (i(~z) ^  (~x; ~z)).This onludes the proof of the lemma.ACM Transations on Computational Logi, Vol. ?, No. ?, ?.



Variable Independene � 9To prove the theorem, it remains to show how to test if � has �nitely manyequivalene lasses. Following the proof of lemma 4, we e�etively onstrut aformula �(~x) de�ning representatives of the equivalene lasses of �. Sine � has�nitely many equivalene lasses i� �(~x) is algebrai, the former is deidable, bythe assumptions we made aboutM. This onludes the proof of deidability of thevariable partition problem. 2The proof of Theorem 3 gives an expliit onstrution for a formula witnessing' �M P , where P has two bloks. We now show how it works for the ase offormula  (x; y) given by (1) in Setion 1.There are two equivalene lasses with respet to relation � given by x1 � x2 , (x1;R) =  (x2;R): one is C1 = (�1; 0℄ [ [1;1) and the other is C2 = (0; 1).Let �1(x); �2(x) be formulae de�ning these lasses. Then, from (3) we know that (x; y) is equivalent to��1(x) ^ �1(y)� _ ��2(x) ^ �2(y)�; (4)where �i(y) = 9z ��i(z) ^  (z; y)�; i = 1; 2: (5)By the deision proedure for R, we obtain that �1 is equivalent to false, and �2to 0 < y < 1. Hene, ombining (4) and (5), we see that (1) is equivalent to(0 < x < 1) ^ (0 < y < 1);as expeted.The previous result was for two-blok partitions. We now extend it to arbitrarypartitions. using the speial form of the formulae (3).Let '(x1; : : : ; xn) be given, and let B � f1; : : : ; ng. Let ard (B) = k. For~a 2 Uk, by 'B(~a;M) we denote the set of ~b 2 Un�k suh that '(~) holds, where~ is obtained from ~a and ~b by putting their elements in the appropriate position,~a being in the positions spei�ed by B. For example, if n = 4, B = f2; 4g, and~a = (a1; a2), ~b = (b1; b2), then ~ is (b1; a1; b2; a2). Formally, for i 2 [1; n℄, let k1 bethe number of j 2 B with j � i, and k2 be the number of j 62 B with j � i. Theni is ak1 if i 2 B, and bk2 , if i 62 B.We use the notation~a1 �'Bi ~a2 , 'Bi(~a1;M) = 'Bi(~a2;M):We now obtain the following haraterization of VPM('; P ).Corollary 5. LetM be as in Theorem 3, and let '(x1; : : : ; xn) and a partitionP = (B1; : : : ; Bm) on f1; : : : ; ng be given. Then:(1 ) For eah i � m, it is deidable if the equivalene relation �'Bi has �nitely manyequivalene lasses. Furthermore, ' �M P i� eah �'Bi has �nitely manylasses.(2 ) If ' �M P , then one an further e�etively �nd integers N1; : : : ; Nm > 0 andformulae �ij(~xBi), i = 1; : : : ;m, j = 1; : : : ; Ni, suh that �'Bi has Ni equivaleneACM Transations on Computational Logi, Vol. ?, No. ?, ?.



10 � Leonid Libkinlasses, whih are de�nable by the formulae �ij(~xBi), j � Ni. Furthermore,M j= 8~x �'(~x)$ _(j1;:::;jm)2K �1j1(~xB1) ^ : : : ^ �mjm(~xBm)�; (6)whereK = f(j1; : : : ; jm) j M j= 9~x ��1j1(~xB1 ) ^ : : : ^ �mjm(~xBm) ^ '(~x)�g:Proof. Let Pi be the partition with two bloks: Bi and Ci = Sj 6=i Bj . If' �M P , then ' �M Pi for all i. From the proof of Theorem 3 we know that' �M Pi i� �'Bi has �nitely many equivalene lasses. Furthermore, there existformulae �ij(~xBi); �ij(~xCi), j � Ni, suh that ' is equivalent toNi_j=1�ij(~xBi) ^ �ij(~xCi)and M j= 8~x ^j1 6=j2 :(�ij1 (~xBi)$ �ij2(~xBi)) ^ 8~x Ni_j=1�ij(~xBi )(beause �ijs de�ne equivalene lasses that partition Uard(Bi)).We then laim that �ijs are the formulae for the representation in (6). In-deed, suppose '(~a) holds in M. Let ji � Ni be suh that �iji(~aBi) holds. Then(j1; : : : ; jm) 2 K and Vi �iji(~aBi) holds.Conversely, assume that for some (j1; : : : ; jm) 2 K (that is, M j= Vi �iji(~bBi) ^'(~b) for some ~b) we have Vi �iji(~aBi). We write (~a;~b)Pk for the tuple omposed of~aB1 ; : : : ;~aBk ;~bBk+1 ; : : : ;~bBm (all elements appearing in positions spei�ed by the in-dies in Bis), k � 0. We now prove by indution on k thatM j= '((~a;~b)Pk ). For k =0 we know that '(~b) holds. If '((~a;~b)Pk ) holds, then the fat that both �k+1jk+1(~aBk+1)and �k+1jk+1(~bBk+1) hold inM implies that 'Bk+1(~aBk+1 ;M) = 'Bk+1(~bBk+1 ;M), andhene '((~a;~b)Pk+1) holds. Thus, for k = m, we onlude M j= '(~a).This �nally shows the representation (6), and that �niteness of the number ofequivalene lasses of all �'Bi implies ' �M P . 24. DECIDABILITY FOR SPECIFIC CLASSES OF CONSTRAINTSThe general deidability result an be applied to a variety of strutures, mostnotably, those that we listed earlier as the ones partiularly relevant to onstraintdatabase appliations (espeially to spatial and temporal databases). In fat, theproblem will be shown to be deidable for linear onstraints over the rationals andthe reals (this orresponds to strutures hQ;+;�; 0; 1; <i and Rlin), polynomialonstraints over the reals (R), and linear repeating points [Kabanza et al. 1995℄(Z0).4.1 Constraints on the integersHere the result follows easily form Theorem 3.ACM Transations on Computational Logi, Vol. ?, No. ?, ?.



Variable Independene � 11Proposition 6. Let M be hN; <; : : :i or hZ;<; : : :i, and let its theory be deid-able. Assume, in the latter ase, that there is at least one de�nable onstant in M.Then the variable partition and independene problems are deidable over M.Proof. We hek onditions of Theorem 3. One an test algebraiity due to thepresene of a disrete order: given '(x), the sentene 9n9m8x ('(x) ! n � x � m)tests if '(M) is �nite. Over hN; <; : : :i one has de�nable invariant Skolem funtionssimply by hoosing lexiographially least ~y satisfying '(~x; ~y), for eah ~x. For'(~x; y) over hZ; <; : : :i, let  (~x; y) hold if y is the least element above  satisfying'(~x; y), if suh an element exists, or y is the greatest element not exeeding satisfying '(~x; y), if no element above  satis�es '(~x; �). Here  is a de�nableonstant. Clearly, this de�nes an invariant Skolem funtion, and the onstrutioneasily generalizes to tuples of variables ~y. 2Corollary 7. The variable partition problem is deidable over Z0 =hZ;+;�; 0; 1; <; (�k)k>1i. 24.2 Linear and polynomial onstraints over the realsThe linear onstraints over the reals (orresponding toRlin = hR;+;�; 0; 1; <i) andthe polynomial onstraints over the reals (orresponding to R = hR;+; �; 0; 1; <i)are the most useful onstraints for spatial and spatio-temporal appliations, wherethe problem of variable independene originated, and where variable independeneis used in system prototypes. We thus onentrate on these onstraints.In many ases, however, we an state the results in greater generality using theonept of o-minimality (f. setion 2). This onept originated in model theoryabout a deade ago [Pillay and Steinhorn 1988; van den Dries 1998℄, and foundsome omputer siene appliations too, most notably in databases [Benedikt andLibkin 2000℄ and hybrid systems [La�erriere et al. 2000℄.It is known that every o-minimal expansion of the Rlin has de�nable invariantSkolem funtions [Marker et al. 1996; van den Dries 1998℄. Sine every de�nablesubset of U is a �nite union of points and open intervals, one an test algebraiity,assuming that the order is dense: given '(x), the sentene 9u9v8x (u < x < v !'(x) tests if '(M) is in�nite. This showsCorollary 8. Let M = hR;+; 0; 1; <; : : :i be o-minimal, and have a deidabletheory. Then the variable partition and independene problems are deidable overM. In partiular, these problems are deidable over Rlin and R. 2Sine hQ;+;�; 0; 1; <i is elementarily equivalent to Rlin, we onlude that thevariable partition problem is deidable over it, too.4.3 Uniform deidability and omplexity boundsOur next goal is to present a uniform proedure for solving the problem VIM('; P ).More preisely, we say that the variable partition problem is uniformly deidableover M if the theory of M is deidable, and for every partition P on f1; : : : ; ng,there exists a single sentene �P in the language of M expanded with an n-aryrelation symbol S suh that for any formula '(x1; : : : ; xn),' �M P i� (M; '(M)) j= �P :ACM Transations on Computational Logi, Vol. ?, No. ?, ?.



12 � Leonid LibkinHere (M; '(M)) is the expansion of M where the new symbol S is interpretedas f~a j M j= '(~a)g. Note that the deidability of the theory of M implies that(M; '(M)) j= �P is deidable.We also say that the variable independene problem is uniformly deidable, iffor n > 1 and any i; j � n, there exists a sentene �ni;j in in the language of Mexpanded with an n-ary relation symbol S suh that for any formula '(x1; : : : ; xn),xi and xj are independent i� (M; '(M)) j= �ni;j . As in Lemma 1, it is easy toshow that the uniform deidability of the variable partition problem is equivalentto the uniform deidability of the variable independene problem.Proposition 9. Let M = hR;+; 0; 1; <; : : :i be o-minimal and have a deid-able theory. Then the variable independene and partition problems are uniformlydeidable over M.Proof. It suÆes to show, in view of Corollary 5 that for every positive integersn;m there exists a sentene �n;m in the language of M expanded with one (n +m)-ary symbol S, suh that for every formula '(x1; : : : ; xn; y1; : : : ; ym) over M,(M; '(M)) j= �n;m i� the equivalene relation � on Un given by~a1 � ~a2 , '(~a1;M) = '(~a2;M)has �nitely many equivalene lasses.Note that the expansion of M by an extra prediate symbol to be interpretedas a de�nable prediate is o-minimal as well. Now, let �(x; ~y) be a formula in theexpanded struture. We then let endp�(x; ~y) be a formula suh that endp�(a;~b)holds i� a is an endpoint of one of the intervals that form the set f j �(;~b)g. Thisis learly de�nable just with order.Next, for any �(x; ~y), de�ne repx�(x; ~y) by8z�(z; ~y) ^ x = 0_ 9!zendp�(z; ~y) ^ 0� �(z; ~y) ^ x = z_ :�(z; ~y) ^ (8v < z �(v; ~y)) ^ (x+ 1 = z)_ (8v > z �(v; ~y)) ^ (8v � z :�(v; ~y)) ^ (x = z + 1)1A_ 9z1; z2 endp�(z1; ~y) ^ endp�(z2; ~y) ^ (z1 < z2) ^(8v endp�(v; ~y)! (v < z2 ! v = z1)) ^0� �(z1; ~y) ^ x = z1_ :�(z1; ~y) ^ (8v < z1 �(v; ~y)) ^ (x+ 1 = z1)_ (8v � z1 :�(v; ~y)) ^ (2x = z1 + z2) 1AThis formula says that either every real number satis�es �(�; ~y) and x = 0, or thereis a single endpoint z of �(M; ~y), and then x is either z, or z�1, or z+1, dependingon whih intervals are inluded in �(M; ~y), or there are two or more endpoints of�(M; ~y), and, for z1 < z2 being the two smallest one, x equals z1 if �(z1; ~y) holds,or x = z1 � 1 if (�1; z1) is in �(M; ~y), or otherwise x = (z1 + z2)=2. It is easy tosee then that this formula has the property that for o-minimal M, if �(M;~b) = ;,then for any a, repx�(a;~b) does not hold, and if �(M;~b) 6= ;, then repx�(a;~b) holdsfor a single element a 2 �(M;~b).ACM Transations on Computational Logi, Vol. ?, No. ?, ?.



Variable Independene � 13We now prove uniform deidability. Let  (x1; : : : ; xn; z1; : : : ; zn) de�ne the equiv-alene relation �; that is,  = 8~y ('(~x; ~y)$ '(~z; ~y)). De�ne  0 to be  , and let i = repxi i�1(~x; ~z); 1 � i � n:Sine for eah ~a1 � ~a2 we have  (M;~a1) =  (M;~a2) = the equivalene lass of~a1, we obtain from the onstrution of rep that  n(~b;~a1) $  n(~b;~a2), and in fatthere is a single ~b for whih  n(~b;~a1) holds, and for this ~b we have  (~b;~a1), that is,~b � ~a1 � ~a2. Therefore, the formula0(~x) = 9~z  n(~x; ~z)(in the language of M expanded with S) de�nes a set of representatives of theequivalene lasses of �. Therefore, the formula(x) = n_i=1 9y1; : : : ; yn�1 0((x; ~y)i);where (x; ~y)i is the tuple in whih x is inserted in the ith position, de�nes the setof all oordinates of the representatives of � hosen by  n. Thus, � has �nitelymany lasses i�  is algebrai. Therefore, the sentene:9x19x2�(x1 < x2) ^ (8x (x1 < x < x2)! (x))�in the expanded language tests if the equivalene relation � has �nitely manylasses. This proves the proposition. 2Proposition 9 implies that the variable independene problem is uniformly de-idable over Rlin and R. The main appliation of this result is in establishingomplexity bounds.Sine R admits quanti�er elimination, every semi-algebrai set is given by aBoolean ombination of polynomial inequalities. Thus, a standard way to representa semi-algebrai set in Rn [Basu 1999; Caviness and Johnson 1998; Renegar 1992℄ isby speifying a olletion of polynomials p1; : : : ; pk 2 Z[x1; : : : ; xn℄, and de�ning aset X as a Boolean ombination of sets of the form f~a j pi(~a) � 0g, where � is either= or >. Here Z[x1; : : : ; xn℄, as usual, is the set of all polynomials in n variableswith oeÆients from Z. One an use oeÆients from Q as well, but this wouldnot a�et the lass of de�nable sets.Thus, when we study omplexity of VPR('; P ), we assume that ' is given as aBoolean ombination of polynomial equalities and inequalities, with all polynomialshaving integer oeÆients. The size of the input formula is then de�ned in astandard way, assuming that all integer oeÆients are given in binary. All theabove applies to semi-linear sets (that is, sets de�nable over Rlin); we just restritour attention to polynomials of degree 1.Corollary 10. Let M be Rlin or R. Let P be a �xed partition on f1; : : : ; ng.Then, for a semi-algebrai (semi-linear) set given by a Boolean ombination '(~x)of polynomial inequalities (of degree 1), the problem VIM('; P ) is solvable in timepolynomial in the size of '.Proof. Let �P be the sentene for uniform deidability of the variable partitionproblem. Assume that �P is in the prenex form. Using the standard bounds forACM Transations on Computational Logi, Vol. ?, No. ?, ?.



14 � Leonid Libkinquanti�er elimination over R [Basu 1999; Renegar 1992℄, one obtains that thereexist onstants 1 and 2 that depend on �P only, suh that for any '(~x), theomplexity of deiding �0P , obtained from �P by using ' in plae of the extraprediate S, is bounded by (1N)2 , where N is the size of '. Indeed, if S ourss times in the quanti�er-free part of �P , then the size of the quanti�er-free partof �0P is 0 + s � N , for some onstant 0 depending only on �P . From this, andbounds of [Basu 1999; Renegar 1992℄, the omplexity bound follows. As 1 and 2depend only on �P , and hene only on P (by Proposition 9), the result follows. Forsemi-linear sets, the proof repeats the one above verbatim, as one an guaranteethe same bounds for quanti�er elimination. 2Another reason to onsider the uniform deision proedure for variable indepen-dene is that it gives us a test for variable independene under some transforma-tions. For example, linear oordinate hange in general would destroy variableindependene, although it has relatively little e�et on shapes on objets in Rn .Consider, for example, the following version of the variable independene problemLVI(X; xi; xj): Given a semi-algebrai set X � Rn (de�ned by a formula over R),is there a linear hange of oordinates suh that in the new oordinate system,variables xi and xj are independent?The general deision proedure of Theorem 3 does not give us a deision proedurefor LVI. However, using uniformity, we easily obtain:Corollary 11. The problem LVI(X; xi; xj) is deidable.Proof. Let X be de�ned by a formula '. For eah partition P , xi and xj beingin two di�erent bloks, onsider the sentene	P = 9a11 : : : 9ann �(A) ^ �P (AS)where A is the matrix given by a11; : : : ; ann, �(A) is a sentene over R statingthat det(A) 6= 0, and �P (AS) is obtained by replaing eah ourrene of S(~x) by9~y ('(~y) ^ ~x = A~y). The answer to LVI(X; xi; xj) is yes i� R j= 	P for one suhP . The orollary follows from the deidability of R. 2It turns out that not only the deision part of VIM('; P ) and VPM('; P ) anbe solved in polynomial time for a �xed P over Rlin and R, but there is also apolynomial time algorithm for �nding a formula equivalent to ' that witnesses' �M P .Theorem 12. a) Given n > 1, and a partition P = (B1; : : : ; Bm) on f1; : : : ; ng,there exists an algorithm that, for every semi-algebrai set given by a formula'(x1; : : : ; xn) whih is a Boolean ombination of polynomial equalities and inequal-ities, tests if ' �M P , and in the ase of the positive answer, omputes quanti�er-free formulae �ij(~xBi) suh that eah �ij(~xBi) is a Boolean ombination of polyno-mial (in)equalities (where polynomials depend only on ~xBi and all oeÆients areintegers), and '(~x) is equivalent to Wj Vi �ij(~xBi). Moreover the algorithm worksin time polynomial in the size of '.b) The same statement is true when on replaes semi-algebrai by semi-linear,and all polynomials are of degree 1.Proof. We start with a). We saw (Corollary 10) that ' �M P an be deided inpolynomial time. Assume thus that ' �M P .ACM Transations on Computational Logi, Vol. ?, No. ?, ?.



Variable Independene � 15We say that a olletion of formulae �ij(~xBi), i � m; j �Mi, witnesses ' �M P ifeah �ij(~xBi) de�nes an equivalene lass of the relation �'Bi , and eah equivalenelass of �'Bi is de�nable by some �ij(~xBi) (this means, in partiular, that some�ij(~xBi) and �il(~xBi) ould be equivalent).The �rst step of the proof is to show that it suÆes to onstrut, in polynomialtime, a family of formulae witnessing ' �M P .To prove this, we �rst reall known bounds on quanti�er elimination over R.Suppose �(~y) is a formula in the prenex form, whose quanti�er-free part is of sizeN , and the degrees of all polynomials used in it do not exeed d. Then there existtwo onstants 1 and 2 that depend only on the quanti�er blok of � and the lengthof ~y suh that N 1 � d2 is a bound on both the number of operations needed toompute a quanti�er-free �0(~y) equivalent to �(~x), and the size of �0. Moreover,the degrees of polynomials appearing in �0 are bounded by d2 , and all oeÆientsof polynomials used in �0 belong to the minimal subring of R that ontains alloeÆients of polynomials used in � (in our ase, Z, sine in the input formulawe have polynomials with integer oeÆients). This follows from the results of[Basu 1999; Renegar 1992℄; in fat, those papers provide more detailed omplexityanalysis, but the above will suÆe for our purposes.Now suppose that we have onstruted, in polynomial time, a family f�ij(~xBi)g,witnessing ' �M P . In view of Corollary 5, we have'(~x) $ _(j1;:::;jm)2K �1j1 (~xB1) ^ : : : ^ �mjm(~xBm ); (7)where K = f(j1; : : : ; jm) j R j= 9~x (�1j1(~xB1) ^ : : : ^ �mjm(~xBm ) ^ '(~x))g. (Indeed,the only di�erene with Corollary 5 is that for a �xed i, some �ij(~xBi), �ij0(~xBi )may be equivalent, but this only adds a number of equivalent disjunts to the righthand side of (7), whih does not a�et the truth value.)Thus, we must show how to �nd K in polynomial time. Sine P (and thus m) is�xed, we enumerate all tuples (j1; : : : ; jm) � (M1; : : : ;Mm) in polynomial time. Foreah ~| = (j1; : : : ; jm), onsider the sentene 	~| = 9~x (�1j1(~xB1) ^ : : : ^ �mjm(~xBm ) ^'(~x)). The size of eah �ij is polynomial in the size of ', by the assumption. Thatis, the size of eah �ij does not exeed  � Np, for some onstants ; p, where N isthe size of '. Thus, the size of the quanti�er-free part of 	~|, N1, is at most O(Np),and the same is a bound on the degrees of polynomials used. By the bound onquanti�er-elimination, M j= 	~| an be deided in time O(N 01 ), where 0 dependsonly on the �xed quanti�er-pre�x 9~x (reall that the length of ~x is �xed, sine thepartition P is �xed). We thus obtain that there is a polynomial p suh that foreah ~|, the deision proedure M j= 	~| takes time p(N). This, and the bound onMis, imply that K an be found in polynomial time, if P is �xed. Hene, if �ijs arefound in polynomial time, so is the representation (7).Thus, to prove the theorem, it suÆes to show how to onstrut a family �ij(~xBi )witnessing ' �M P in polynomial time. Without loss of generality, assume thatwe are given '(~y; ~z), with ~y of length n and ~z of length m. Let ~a1 � ~a2 i�'(~a1;R) = '(~a2;R); this is an equivalene relation on Rn . Assume that we knowalready that � has �nitely many lasses. To omplete the proof, it thus suÆes toshow how to produe formulae �j(~y) de�ning equivalene lasses, in time polynomialACM Transations on Computational Logi, Vol. ?, No. ?, ?.



16 � Leonid Libkinin the size of '.From the proof of Proposition 9, we know that there exists a formula (x) inthe language of the real �eld plus an n + m-ary relation S, suh that  dependson n and m only, and (R; '(R)) j= (a) i� for some anonially hosen set ofrepresentatives of �, a is in one of ~a in this set. We now substitute the de�nition of' for S in , and perform quanti�er-elimination. Let Æ(x) be the resulting formula.From the bounds on quanti�er-elimination, we obtain that Æ(x) an be found intime polynomial in N , where N is the size of '. This is beause  is determinedby n and m, whih are �xed (as n orresponds to the size of a blok in P , m tothe number of the remaining variables). By putting ' into the de�nition of , weobtain a formula whose quanti�er-free part is linear in N , and then the bounds onquanti�er-elimination imply that the parameters in the exponent depend only onn and m, that is, on P . Thus, Æ(x) is obtained in polynomial time.Sine Æ(x) is quanti�er-free, it is a Boolean ombination of polynomial equalitiesand inequalities involving polynomials from a set P = fp1(x); : : : ; pl(x)g. Further-more, Æ is algebrai. We now laim that every a suh that R j= Æ(a) is a root ofone of pis. Assume this is not the ase: R j= Æ(a) and a is not a root. Then thereis a small neighborhood of a in whih signs of all pis are the same as the signs ofpi(a)s. Thus, sine Æ(x) is quanti�er-free, we obtain R j= Æ(b) for eah b from thisneighborhood of a, whih implies that Æ(R) is in�nite.Now suppose pi is of degree di, and suppose we have formulae �ik(x) saying thatx is the kth real root of pi (or 0, if there is no suh root), k � di. Then we wouldde�ne formulae�(i1 ;k1);:::;(in;kn)(y1; : : : ; yn) = n̂j=1 �ijkj (yj); kj � djproduing n-tuples of real roots of polynomials in P (some entries in those tuplesan be 0 as well). We know for every equivalene lass of �, there is a tuple in it thatsatis�es one of these formulae. Moreover, the number of formulae �(i1;k1);:::;(in;kn)is at most (l � D)n, where D is the maximum degree of a polynomial in P . Fromeah formula �(i1;k1);:::;(in;kn), we de�ne the equivalene lass as�(i1;k1);:::;(in;kn)(~y) = 9~y18~z (�(i1;k1);:::;(in;kn)(~y1) ^ ('(~y; ~z)$ '(~y1; ~z))):Sine the quanti�er pre�x 9~y18~z is �xed (as n and m are �xed), we onludethat a quanti�er-free formula equivalent to �(i1;k1);:::;(in;kn) an be found in timeO((N + nN 0)s), where s is determined by P , and N 0 is an upper bound on thesize of �ik(x). This, and the estimate on the number of formulae �(i1;k1);:::;(in;kn),show that the required olletion of formulae de�ning equivalene lasses an beprodued in time polynomial in the size of ', provided two onditions hold:(1) The set P an be found in polynomial time (in N , with P �xed);(2) Eah formula �ik(x) an be onstruted in time polynomial in N .The �rst item follows from the fat that Æ(x) is found in time polynomial in N (seeabove). To show the seond item, onsider eah polynomial pi(x) 2 P . Using analgorithm for root isolation (see, for example, [Caviness and Johnson 1998; Collinsand Loos 1983℄), we �nd a sequene a1 < a2 < : : : < ar, where r is at most thedegree of pi plus one, suh that eah interval (ai; ai+1), 1 � i < r, ontains exatlyACM Transations on Computational Logi, Vol. ?, No. ?, ?.



Variable Independene � 17one root of pi. This sequene an be found in time polynomial in the size of therepresentation of pi [Caviness and Johnson 1998; Collins and Loos 1983℄. We nowde�ne �ik(x) = � (pi(x) = 0) ^ (x > ak) ^ (x < ak+1) k < rx = 0 k � rClearly, these formulae de�ne the roots (and perhaps 0), and due to the bounds onroot isolation, they an be found in polynomial time. This ompletes the proof ofitem 2, and thus the theorem for the ase of R.For linear onstraints (Rlin), the proof follows along the same lines, but is abit easier. Sine there similar bounds on quanti�er elimination over Rlin, wherethe exponent depends only on the number of free variables in the quanti�er-pre�x[Caviness and Johnson 1998℄, we an use the same proof as above, exept that wedo not have to deal with the real root isolation, as a linear funtion in one variablehas at most one root, whih is de�nable. 24.4 Other onstraintsIn this setion, we onsider two examples of niely-behaving strutures over whihthe variable independene problem is deidable, despite the fat that they do notsatisfy all the onditions of Theorem 3. Admittedly, this is more of purely theo-retial interest, although algebraially losed �elds were studied in onnetion withsome expressivity problems inspired by onstraint databases [Chapuis and Koiran1999℄.The �rst struture we onsider is the �eld of omplex numbers C = hC ;+; �i. Ithas a deidable theory and admits quanti�er-elimination; furthermore, it is stronglyminimal (every de�nable subset of C is either �nite or o�nite) [Hodges 1993℄. Thelatter property implies that it does not have de�nable Skolem funtions (invariantor not). Indeed, if the equivalene relation x2 = y2 had a de�nable set of represen-tatives, this set and its omplement would be in�nite. Hene, Theorem 3 does notapply to C. Still, we an prove a weaker result. We say that variables xi and xj areweakly independent in '(~x) if there exists a �nite set C � C and a �nite olletionof formulae �k(~x) in the language of C extended with onstants for C, suh that no�k mentions both xi and xj , and ' is equivalent to a Boolean ombination of �ks.Proposition 13. Let '(~x) be a formula over C, and xi; xj two distint variables.Then it is deidable if xi and xj are weakly independent in '.Proof. The proof follows losely the proof of Theorem 3. Instead of Skolem-ization to �nd representatives of equivalene lasses, we use a weaker property ofelimination of imaginaries [Hodges 1993; Marker et al. 1996℄, whih says that forevery de�nable equivalene relation E on C k , there exists a funtion f : C k ! Cmsuh that E(a; b) implies f(a) = f(b). Furthermore, suh a funtion an be founde�etively (beause the theory is deidable), and it an also be tested e�etivelyif a formula  (x) is algebrai: this follows from quanti�er elimination and strongminimality. Thus, we prove an analog of lemma 4 (sine we do not have de�n-able Skolem funtions, we must use �nitely many new onstant symbols to identifyequivalene lasses), and then use the funtion that eliminates imaginaries and testfor algebraiity to hek if a given equivalene relation is �nite. 2ACM Transations on Computational Logi, Vol. ?, No. ?, ?.



18 � Leonid LibkinAnother example is that of the random graph, that is, a ountable struturethat satis�es every sentene that is true in almost all �nite graphs (this theory is!-ategorial; hene we speak of the random graph). Again, its theory is deidable,and has quanti�er elimination, but does not have de�nable Skolem funtions. Still,a simple argument shows:Proposition 14. The variable independene problem is deidable over the ran-dom graph.Proof. There are only �nitely many non-equivalent formulae in n variables, andthey an all be e�etively listed. We look at all of them in whih two given variablesdo not our in the same atomi formula, and hek if any of them is equivalent toa given formula '. 24.5 Spatio-temporal appliationsEven though we do have polynomial-time algorithms for testing variable indepen-dene for linear and polynomial onstraints, the exponent beomes quite large asthe dimension inreases. This kind of situation is not new at all; it is the ase, forexample, for some quanti�er-elimination algorithms that, although polynomial fora �xed dimension, beome unmanageable for high dimensions.Fortunately, in pratial appliations of variable independene enountered so far,the dimension is not very high, as typially this onept is important for spatio-temporal appliations [Grumbah et al. 1998; 1999℄. In this ase, one deals withformulae '(x; y; t) over Rlin or R; that is, linear or polynomial onstraints in threevariables x; y and t, where x; y desribe the spatial omponent and t desribes thetemporal omponent; one is then interested in showing the independene of (x; y)and t. A typial appliation is adastral information, that is, information aboutland ownership over time. As ownership does not hange ontinuously with time,often variables x; y are independent of t.We now show that there is a simpler way of testing variable independene in thissetting than in the general setting of Theorem 12.Reall that a ylindrial algebrai deomposition (CAD) of Rn [Bohnak et al.1998; Caviness and Johnson 1998℄ is a partition of Rn into �nitely many sets,alled ells, suh that eah ell is homeomorphi to Ri , i � n. A CAD of R1 is adeomposition into points and open intervals. A CAD of Rn is de�ned as follows.Let C1; : : : ; Cp be the ells of a CAD of Rn�1 . Suppose that for eah Ci we havea olletion of ontinuous funtions f i1; : : : ; f imi : Ci ! R, mi � 0, suh that foreah ~x 2 Ci, f i1(x) < : : : < f imi(~x). Then the ells of a CAD in Rn are f(~x; ) j~x 2 Ci;  < f i1(~x)g, f(~x; ) j ~x 2 Ci;  > f imi(~x)g, f(~x; ) j ~x 2 Ci;  = f ij(~x)g,j = 1; : : : ;mi, and f(~x; ) j ~x 2 Ci; f ij(~x) <  < f ij+1(~x)g, j < mi, i = 1; : : : ; p.A lassial result on ell deomposition says that given a set p1; : : : ; pk of poly-nomials in Z[x1; : : : ; xn℄, one an e�etively onstrut a CAD of Rn suh that allthe funtions f ij (for all steps of the indutive onstrution) are de�nable over R,and polynomials pls do not hange their sign on any ell. In partiular, if we have aformula '(~x) whih is a Boolean ombination of polynomial inequalities involvingpls, then '(R) is a union of some ells of this CAD.Now onsider a formula '(x; y; t) whih is a Boolean ombination of equalities andinequalities involving polynomials p1; : : : ; pk 2 Z[x; y; t℄, and let P = ffx; yg; ftgg.ACM Transations on Computational Logi, Vol. ?, No. ?, ?.



Variable Independene � 19First notie that if ' � P , then ' is equivalent to a formula of the form Wi �i(x; y)^�i(t), where eah �i(t) is either t = i, or i < t, or t < di, or i < t < di, where iand di are onstants; this follows from o-minimality of the real �eld.Suppose then that we do a CAD using the polynomials pls, and let C1; : : : ; Cpbe the ells in the xy-plane, and f ij the funtions on Cis whih de�ne the ells ofa three-dimensional CAD. Eah suh funtion f ij on Ci is alled '-signi�ant if forthe ell f(x; y; t) j (x; y) 2 Ci; t = f ij (x; y)g and two ells in Ci�R adjaent to it, itis not the ase that the three simultaneously belong to '(R) or R3 �'(R). (Sine' is a Boolean ombination of onstraints involving pls, several adjaent ells maybelong to '(R) or its omplement.)Then, if f ij is '-signi�ant, Ci is not a single point, and f ij takes at least twodi�erent (and hene in�nitely many) distint values, we an easily see that there isno representation for ' in whih t ours only in the subformulae de�ning intervalswith onstant endpoints. This implies:Proposition 15. Given a formula '(x; y; t) whih is a Boolean ombinationof polynomial (in)equalities involving p1; : : : ; pk 2 Z[x; y; t℄, the variables x; y areindependent from t i� in any CAD for the polynomials pls, every '-signi�antfuntion f on a non-singleton ell in the xy-plane, is a onstant. 2Sine there exist speialized algorithms for onstruting CAD in the three-dimensional spae that have good enough omplexity bounds to be appliable inpratie [Arnon et al. 1988℄, this gives us a good method for testing variable inde-pendene in spatio-temporal appliations.5. CONCLUSIONWe looked at the problem of deiding, for a set represented by a olletion of on-straints, whether some variables in those onstraints are independent of eah other.Knowing this an onsiderably improve the running time of several onstraint pro-essing algorithms, in partiular, quanti�er elimination. The problem originated inthe �eld of spatio-temporal databases represented by onstraints (linear or poly-nomial over the reals, for example); it was demonstrated that on large datasets,reasonable performane an only be ahieved if variables omprise small indepen-dent groups. It had not been known, however, if suh independene onditions aredeidable.Here we showed that these onditions are deidable for a large lass of onstraints,inluding those relevant to spatial and temporal appliations. Moreover, for linearand polynomial onstraints over the reals, we gave a uniform deision proedurethat implies tratability, and we showed that a given onstraint set an be onvertedinto one in a nie shape in polynomial time, too. We also onsidered speializedalgorithms suitable for spatio-temporal appliations.ACKNOWLEDGMENTSI thank Stavros Cosmadakis and Gabi Kuper for bringing the problem to my at-tention, and Mihael Benedikt, Lu Segou�n, and anonymous referees for theiromments. ACM Transations on Computational Logi, Vol. ?, No. ?, ?.
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