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Whenever we have data represented by constraints (such as order, linear, polynomial, etc.),
running time for many constraint processing algorithms can be considerably lowered if it is known
that certain variables in those constraints are independent of each other. For example, when
one deals with spatial and temporal databases given by constraints, the projection operation,
which corresponds to quantifier elimination, is usually the costliest. Since the behavior of many
quantifier elimination algorithms becomes worse as the dimension increases, eliminating certain
variables from consideration helps speed up those algorithms.

While these observations have been made in the literature, it remained unknown when the
problem of testing if certain variables are independent is decidable, and how to construct efficiently
a new representation of a constraint-set in which those variables do not appear together in the
same atomic constraints. Here we answer this question. We first consider a general condition
that gives us decidability of variable independence; this condition is stated in terms of model-
theoretic properties of the structures corresponding to constraint classes. We then show that this
condition covers the domains most relevant to spatial and temporal applications. For some of
these domains, including linear and polynomial constraints over the reals, we provide a uniform
decision procedure which gives us tractability as well. For those constraints, we also present a
polynomial-time algorithm for producing nice constraint representations.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems; F.4.1 [Mathematical Logic and Formal Lan-
guages|: Mathematical Logic; H.2.8 [Database Management]: Database Applications; I1.1.1
[Symbolic and Algebraic Manipulation|: Expressions and Their Representation

General Terms: Languages, Theory
Additional Key Words and Phrases: First-order logic, definable sets, variable independence, poly-
nomial constraints, linear constraints, spatio-temporal databases

1. INTRODUCTION

We start with a simple example. Suppose we have a set S C R? given by simple
order-constraints ¢(z,y) = (0 < z < 1) A (0 < y < 1). Suppose we want to
find its projection on the z axis. This means writing the formula Jy ¢(z,y) as
a quantifier-free formula. This can be done, in general, because the theory of
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2 . Leonid Libkin

(R, <, (r)rer) admits quantifier elimination. But in this particular case it is very
easy to find a quantifier-free formula equivalent to 3y ¢(z,y) using just standard
rules for equivalence of first-order formulae:

Jy p(z,y) & O<2<)ATY 0<y<l) & O<z<l)Atrue & 0<z <1

Now notice that ¢ can be considered as a formula in the language of the real field
(R, +,-,0,1, <) whose theory also admits quantifier elimination. Suppose then that
instead of ¢, we are given an equivalent formula v (z, y):

(0<z<A(O0<y<1)A(da?-—y—1>0)) .
V{0<z<)A(O<y<1)Ade®—y—1<0). (1)

The first step of quantifier elimination for Jy 1 is easy, as we propagate Jy inside
the disjunction. However, trying to find a quantifier-free equivalent for the first
disjunct, that is, a formula equivalent to Iy ((0 < z < 1)A(0 < y < 1)A(da?—y—1 >
0)), one immediately encounters obstacles. Unlike the earlier example, this one
requires a bit of thought to come up with the answer (0.5 < z < 1). Similarly, some
work is needed to compute the answer (0 < z < 1/+/2) for the second disjunct.

Why is it that the first quantifier-elimination procedure is completely elementary,
and the second is not, even though both ¢ and 1 define the same set? The reason
is that in the first representation of S, variables z and y are independent, that is,
they do not appear in the same atomic formulae. This makes quantifier elimination
easy. In the second case, z and y do appear together in the same term z2 — 4y — 1,
and this is what causes the problem.

This extremely simple observation can often make constraint processing easier.
While it can conceivably be useful in various tasks such as more efficient variable
elimination in constraint logic programming [Fordan and Yap 1998; Imbert 1994],
here we concentrate on one application area, namely constraint databases [Kuper
et al. 2000; Kuper et al. 1995] where it found its way into a practical system for
querying spatio-temporal databases [Grumbach et al. 1998]. The main goal of
constraint databases is to model infinite database objects, which arise in a variety
of applications, for example, in Geographical Information Systems.

A particular constraint model is defined over a structure M = (U, Q) (where U is
the universe and € is the vocabulary) which is typically required to have quantifier
elimination. Those considered most often in spatial application are the real field
R = (R +,-,0,1,<) and the real ordered group Ry, = (R, +,—,0,1 <), which
give rise to polynomial and linear constraint databases, respectively. A constraint
relation of arity n is simply a definable subset of U™, that is, a set of tuples @ € U™
that satisfy a first-order formula. For the above structures, constraint relations are
semi-algebraic sets for R, and semi-linear sets for Ry, [Bochnak et al. 1998]. A
constraint database is a finite set of constraint relations.

A standard constraint query language over M is FO + M, that is, first-order
logic in the language of M and symbols for relations in a constraint database.
For example, if a database contains a single ternary symbol S, the query ¢(z) =
Ju,v Vy,z (S(x,y,2) <> 2 = u-y+v) finds all a such that the intersection of S with
the plane z = a is a line. Note that if S is a semi-algebraic set, then so is ¢(5).

One of the standard database operations is projection. In the language of
constraint processing, it corresponds to quantifier elimination. That is, given a
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quantifier-free formula ¢(y,z;1,...,2,_1), one wishes to find a quantifier-free for-
mula (&) equivalent to Jy p(y,#). In many cases, the complexity of algorithms
to find such a v is of the form O(N/(™), where N is the size of the formula, and
f is some function. For example, if one uses cylindrical algebraic decomposition
[Caviness and Johnson 1998] for the real field, f is O(2™). In general, even if bet-
ter algorithms are available, the complexity of constraint processing often increases
with dimension to such an extent that it becomes unmanageable for large datasets
(see, e.g., [Grumbach et al. 1999]).

Assume now that Z is split into two disjoint tuples @ and ¥ such that (y, @) and
¥ are independent, that is, they do not appear in the same atomic formulae. Then
@ is equivalent to a formula of the form

ai(y, @) A Bi(7).

<=

1

-
Il

Therefore, the formula Jy ¢ is equivalent to

k

\/(Eiy a;(y, @) A Bi(0).

i=1
For a number of operations this is a significant improvement, as the exponent
becomes lower. For example, in addition to quantifier elimination, data often has
to be represented in a nice format (essentially, as union of cells [Caviness and
Johnson 1998]), and algorithms for doing this also benefit from reduction in the
dimension [Grumbach et al. 1998; 1999].

Even though such a notion of independence may seem to be too much of a
restriction, from the practical point of view it is sometimes necessary to insist
on it, as the cost of general quantifier elimination and other operations could be
prohibitively expensive. For example, the DEDALE constraint database system
[Grumbach et al. 1998] requires that the projection operation only be applied when
i consists of a single variable. Dealing with spatio-temporal applications, one often
queries trajectories of objects, or cadastral (land-ownership) information. These
are typically represented as objects in R? given by formulae o(x,y,t). To be able
to compute Jy ¢(x,y,t), one approximates ¢ by a formula ¢ (x,y,t) which is a
Boolean combination of formulae «;(z,y) and S;(t). For trajectories, this amounts
to saying that an object is in a given region during a given interval of time; thus,
it is the information about the speed that is lost in order to have efficient query
evaluation. As was further demonstrated in [Grumbach et al. 1999], the difference
between the case when at most 2 variables are dependent, and that of 3 or more
variables being dependent, is quite dramatic, in the case of linear and polynomial
constraints.

What is missing, however, in this picture, is the ability to determine whether
a given constraint representation of the data can be converted to the one in the
right format, just as in our first example, ¥ (z,y) is equivalent to ¢(z,y), in which
variables z and y are independent. It was claimed in [Chomicki et al. 1996] that
such a procedure exists for linear constraints, and then [Grumbach et al. 1999] gave
a simpler algorithm. However, [Libkin 1999] then showed that both claims were
incorrect. It was thus not known if variable independence can be tested for relevant

ACM Transactions on Computational Logic, Vol. 7, No. 7, 7.



4 . Leonid Libkin

classes of constraints.

Our main goal here is to show that variable independence can be tested for many
classes of constraints, and that algorithms for converting a given formula into one
in the right form can be obtained. Moreover, those algorithms often work in time
polynomial in the size of the formula (assuming the total number of variables is
fixed). Among structures for which we prove such results are the real ordered group,
the real field, as well as (Z, +,0, 1, <) extended with all the relations z = y(mod k),
k > 1 (which is used in temporal applications). Even if those algorithms are
relatively expensive, it is worth putting data in a nice format for two reasons.
First, such an algorithm works only once, and then the data is repeatedly queried
by different queries, which can be evaluated faster. Second, some queries are known
to preserve variable independence; hence, this information can be used for further
processing the query output.

Organization. In Section 2, we define the notion of variable independence, and
more generally, the notion ¢ ~ P of a formula ¢ respecting a certain partition P of
its free variables. Then, in Section 3, we discuss requirements on the theory of M
that guarantee decidability of this notion, as well as the existence of an algorithm
that converts a given formula into a one in the right shape. In Section 4, we discuss
specific classes of structures and derive some complexity bounds. In particular,
we look at o-minimal structures [van den Dries 1998] (which include linear and
polynomial constraints over the reals) and give a uniform decision procedure. This
procedure gives us tractability, and we also show how to find an equivalent formula
in the right shape in polynomial time. We also briefly consider other classes of
constraints, and spatio-temporal applications.

2. NOTATIONS

All the definitions can be stated for arbitrary first-order structures, although for
the algorithmic considerations we shall require at least decidability of the theory,
and often quantifier elimination.

Given a structure M = (U, Q) (where U is a set always assumed to be infinite, and
) can contain predicate, function, and constant symbols, and is always assumed to
be a recursive set), we say that the theory of M is decidable if for every first-order
sentence ® in the language of M it decidable if M |= &. We say that M admits
(effective) quantifier elimination if for every formula ¢(%) in the language of M,
there exists (and can be effectively found) a quantifier-free formula () such that
M= V7 (F) (7).

Given a formula ¢(Z,7) in the language of M, with # of length n and 7 of
length m, and @ € U™, we write (@, M) for the set {b € U™ | M |= ¢(a@,b)}.
In the absence of variables Z we write (M) for {b | M = @(B)}. Sets of the
form p(M) are called definable. A function f : U™ — U™ is definable if its graph
{(@.b) e U™ | b = f(@)} is a definable set.

Given a tuple of variables & = (x1,...,z,) and a partition P = {By,..., By} on
{1,...,n}, we let &g, stand for the subtuple of & consisting of the z;s with j € B;.
For a formula p(x1, .. .,z,), we then say that ¢ respects the partition P (over M) if
 is equivalent to a Boolean combination of formulae each having its free variables
among #p, for some i < k. This will be written as ¢ ~xq P, or just ¢ ~ P if M is
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clear from the context.
In other words (by putting a Boolean combination into DNF), ¢ ~ P if there

exists a family of formulae aj-(fBl.), i=1,...,m,j=1,...,k, such that
k
M = @) o \/(aj(@s,)A... A (TB,)). (2)
j=1

When M has quantifier elimination, all ag-s are quantifier free. In fact, under the
quantifier-elimination assumption, the definition of ¢ ~x P can be restated as the
equivalence of ¢ to a quantifier-free formula ) such that every atomic subformula
of v uses variables from only one block of P.

We now say that in ¢, two variables z; and z; are independent if there exists
a partition P such that ¢ ~a¢ P, and z; and z; are in two different blocks of P.
Equivalently, z; and z; are independent if there exists a partition P = (¥, 2) of &
such that ¢ ~x¢ P, x; is in § and z; is in 2. (When convenient notationally, we
identify partitions on the indices of variables and variables themselves.)

Structures. After presenting a general decidability result, we shall deal with sev-
eral important classes of structures. Two of them were mentioned already: the real
ordered group Ry, = (R, +,—,0,1, <) and the real field R = (R, +,-,0, 1, <), cor-
responding to linear and polynomial constraints over the reals. Some of the results
for these structures extend to a larger class of o-minimal structures: M = (U, )
is called o-minimal [Pillay and Steinhorn 1988; van den Dries 1998] if one of the
symbols in  is <, interpreted as a linear order on U, and every definable subset of
U, {a | M = ¢(a)}, is a finite union of points and open intervals. Both Ry, and
R have quantifier elimination (by Fourier elimination [Ziegler 1994], and Tarski’s
theorem [Bochnak et al. 1998; Caviness and Johnson 1998], respectively), which
easily implies that they are o-minimal. The exponential field (R, +,-,e®) is an ex-
ample of a structure which is o-minimal [Wilkie 1996] but does not have quantifier
elimination [van den Dries 1984]. For other o-minimal structures on the reals, see
[van den Dries 1998].

We shall deal with some structures on the integers. Of most interest to us is
Z0 ={Z,+,—,0,1,<,(=)k>1) where n = m iff n = m(mod k). This structure
corresponds to constraints given by linear repeating points, which are used for mod-
eling temporal databases [Kabanza et al. 1995]. The structure Z; admits effective
quantifier elimination, and its theory is decidable [Enderton 1972].

3. GENERAL CONDITIONS FOR DECIDING VARIABLE INDEPENDENCE

Given a structure M, we consider two problems. The variable independence problem
VIm(p, zi, x;) is to decide, for ¢(z1,...,2,) in the language of M, if z; and z; are
independent. The wvariable partition problem VP r(p, P) is to decide, for a given
formula ¢(x1,...,z,) and a partition P on {1,...,n}, if o ~aq P.

Note that the variable independence problem is a special case of the variable
partition problem, as to solve the former, one needs to solve the latter for some
partition P = (B;, Bs) with i € By and j € Bs.

The above problems are just decision problems, but if the theory of M is decid-
able, and the answer to VP (¢, P) is ‘yes’, one can effectively find a representation
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in the form (2), simply by enumerating all the formulae (¢/(Z)); which are Boolean
combinations of formulae having free variables from at most one block of P, and
then checking if M |= VZ (¢(%) < 9;(Z)). Since ¢ ~pq P, for some finite i, we
get a positive answer. In many interesting cases, we shall see better algorithms for
finding representation (2) than simple enumeration.

The first easy result shows that the problems VI (g, z;,z;) and VP (g, P)
are equivalent; this allows us to deal then only with two-block partitions.

LEMMA 1. For any M, the variable independence problem is decidable over M
iff the variable partition problem is decidable over M.

Proof. The direction from variable partition to variable independence is easy. For
the other direction we show that the answer to VP r¢(p, P) is yes iff the answer to
VIm(p,zi, x;) is yes for every pair of variables z;, z; from two different blocks of P.
Again, only the ‘if’ direction needs to be proved. If the answer to VIrq(p, 25, 2;)
is yes, there is a partition P;; such that z;,z; are in different blocks of P, and
¢ ~am Pij. Let P! = M;;P;; be the meet, in the partition lattice, of all such P;;s.
By [Cosmadakis et al. 2001], we have ¢ ~ ¢ P'. Since every block of P is a union

of blocks of P’', the result follows. O

Next, we discuss conditions for decidability of the variable independence problem.
It is clear that one needs decidability of the theory of M. However, decidability
alone (and even effective quantifier elimination) are not sufficient.

PROPOSITION 2. a) If the theory of M is undecidable, then the variable inde-
pendence problem is undecidable over M.
b) There exists a structure M with a decidable theory and effective quantifier elim-
ination such that the variable independence problem is undecidable over M.

Proof. a) Let ® be an arbitrary sentence, and ¢(z,y) = (z = y) A ~P. If M |= @,
then ¢ defines the empty set, and x and y are thus independent. If M |= =®, then
¢ defines {(a,a) | a € U}, and since U is infinite, £ and y are not independent.
Thus, the answer to VIx(p, z,y) is yes iff M = &.

b) An example is provided by the theory of traces from [Stolboushkin and Tsaitlin
1999]. Let U be a union of three disjoint sets: descriptions of Turing machines,
input words, and traces, or partial computations of machines on input words, all
appropriately coded as strings. Let {2 contain a constant symbol for every element
of U, and a single ternary predicate P(m,w,t) saying that ¢ is a trace of the
machine m on the input word w. Then [Stolboushkin and Tsaitlin 1999] shows
that the theory of M is decidable, and moreover, M can be extended by finitely
many new predicate symbols such that the expanded model has effective quantifier
elimination.

Now fix a Turing machine mg and an input word wg and consider the formula
o(t,t') = (P(mo,wo,t) At = t'). Suppose mg halts on wg. Then the set {¢ |
P(mg,wo,t)} is finite, and thus the output of ¢ is finite, and hence variables ¢ and
t' are independent, since every element of U is definable. If mg does not halt on
wp, then the set U' = {t | P(mo,wq,t)} is infinite, and hence the output of ¢ is
{(a,a) | a € U'}; this implies that ¢ and ¢' are not independent. This shows that
VIrm(p,t,t') outputs yes iff mq halts on wp, and thus the variable independence
problem is undecidable. O
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The proof of Proposition 2, b), shows that it is essential to be able to decide
finiteness in order to decide VI(yp,z;, ;) (as it is the finiteness of the number of
traces that turns out to be equivalent to variable independence).

Recall that a formula ¢(z) is algebraic if (M) is finite. We say that there is
an effective test for algebraicity in M if for every ¢(z) in the language of M, it is
decidable if ¢ is algebraic. Note that this somewhat technical notion will trivially
hold for most relevant classes of constraint.

While the notion of variable independence is needed in the context of constraint
databases, for finite relational structures it is assumed to be meaningless as every
tuple is represented as a conjunction of constraints of the form z; = ¢;, where
¢is are constants. For example, the graph {(1,2),(3,4)} is given by the formula
((z=1DA(y=2)V((x =3)A(y =4)). Clearly, variables z and y are independent.

However, over arbitrary structures, not every finite definable set would satisfy
the variable independence condition. To see this, let M = (N, C, E), where C is a
unary relation interpreted as {1,2} and F is a binary relation symbol interpreted as
{(1,2),(2,1)}. A routine argument shows that this M has quantifier elimination,
decidable theory, and there is a test for algebraicity. The formula ¢(z,y) = E(zx,y)
then defines a finite set, but variables z and y are not independent: this is because
the only definable proper subsets of N are {1,2} and N — {1,2}, and no Boolean
combination of those gives us E. As another example, consider the field of complex
numbers, whose theory is decidable and has quantifier elimination [Marker et al.
1996]. Let p(x,y) = (z2+1=0)A (> + 1 = 0) A (z +y = 0). It defines the finite
set {(i, —i), (—4,4)} but nevertheless z and y are not independent (since i is not
definable).

To avoid similar situations, we impose an extra condition on a structure, again,
well known in model theory [Chang and Keisler 1990; Hodges 1993]. We say that M
has definable Skolem functions if for every formula ¢(Z, ) there exists a definable
function f, (%) with the property that M |= V& (37 ¢(Z,9) = ¢(&, f,(Z))). In
other words, f,(d@) is an element of ¢(d@, M), assuming ¢(d@, M) is not empty. We
say that a Skolem function f, is invariant [Marker et al. 1996], if ¢(di, M) =
@(dy, M) implies f,(d1) = fy(d2). If the existence of such a Skolem function can
be guaranteed for every ¢, we say that M has definable invariant Skolem functions.

THEOREM 3. Assume that M has the following properties:

(a) its theory is decidable;
(b) M has effective test for algebraicity; and
(¢) M has definable invariant Skolem functions.

Then the variable partition and independence problems are decidable over M.

Proof. Let M be as in the statement of the theorem. We start by showing certain
properties of M that will be needed in the proof. First notice that the definability
of Skolem functions is effective; that is, for each ¢, a formula defining f, can be
effectively found. To see this, just enumerate all formulae and test if they define
a function, and if this function is a Skolem function for . Since the above is a

first-order sentence (invariance is tested by Vi VZ2 (V¥ ¢(%1,7) ¢ ©(Z2,9)) —
(fo(Z1) = fs(Z2)))), effective definability follows.
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A formula ¢(#) (with one or more free variables) is algebraic if (M) is finite.
We can assume that we have test for algebraicity for formulae with more than one
free variable: indeed, a set X C U* is finite iff each of its k projections on U is
finite.

Next, we show that M has in addition the following property (d): if ¢(&) is
algebraic, then one can effectively find N = card(¢(M)), and N formulae v;(Z),
i =1,...,N, such that card(y;(M)) = 1, and (M) = {vi(M) | i < N} (that
is, each element of ¢ (M) is definable, and formulae defining those elements can be
effectively found).

To see this, first note that for every N it can be stated in first-order that N =
card(p(M)), and thus by decidability we can find NV, assuming ¢ is algebraic. Next
we use effective definability of Skolem functions (without parameters) to construct
a formula 7; (%) defining an element of ¢(M). We then consider ¢(Z) A =y, (%), and
apply Skolemization to it, to obtain 2 (Z), defining an element in (M) — v, (M).
We continue the process until v;(%),i < N are defined; then yn(Z) = (Z) A
Nicn —7i().

Having done this preparatory work, we now prove the theorem. Recall that it
suffices to consider the case of two block partitions; that is, to decide, if a formula
©(Z,¥) respects the partition P with blocks # and §. Let & have length n and ¥
have length [. Define an equivalence relation on U™ by

61 = 62 iff @(61,/\/1) = (p(ﬁg,M).

LEMMA 4. For g, P and = as above, ¢ ~q P iff = has finitely many equivalence
classes.

Proof of the lemma. The only if part is clear: if ¢ is a Boolean combination of
a; (%), B;(7), then for every a1, d> agreeing on all a;, we have ¢(di, M) = ¢(a2, M).

For the converse, assume that = has finitely many equivalence classes. Note that
= is a definable subset of U?" (it is defined by ¢(#1, %) = V7 (p(F1,7) < ¢(F2,7))).
Assume that there are N equivalence classes, and each is definable by a formula
a;(%), 1 < N. Define §;(¢) as 32 (a;(2) A ¢(Z,%)). Then

N
MEVEG (@5 \ @ rB(@). 3)

-

Indeed, let M |= ¢(d,b), and assume that @ is in the ith class of =; that is,
M = o;(@). This implies M |= 8;(b). Conversely, if M = a;(@) A B;(b), for some
& we have o;(€) A (@, b). Since (¢ M) = (@, M), we have b € (@, M) and thus
M |= (@, b). This proves (3).

It thus remains to show how to define a;s. First, we find (effectively) the invariant
Skolem function fy(#1) for the formula (%, #>) defining =. Then the formula
X(Z2) = 3% (@2 = fy(&1)) defines the range of fy, that is, a set of representatives
of the equivalence classes of =. By the assumption that the number of classes is
finite, we get that x is algebraic. Hence, by condition (d), we can find effectively
the number N of elements satisfying y (that is, the number of classes of =), and
formulae ~;(#), ¢ < N, defining representatives of the equivalence classes. The
equivalence classes themselves can now be defined as a; (%) = 37 (:(2) A ¢(&, 2)).
This concludes the proof of the lemma.

ACM Transactions on Computational Logic, Vol. 7, No. 7, 7.
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To prove the theorem, it remains to show how to test if = has finitely many
equivalence classes. Following the proof of lemma 4, we effectively construct a
formula x(#) defining representatives of the equivalence classes of =. Since = has
finitely many equivalence classes iff x () is algebraic, the former is decidable, by
the assumptions we made about M. This concludes the proof of decidability of the
variable partition problem. |

The proof of Theorem 3 gives an explicit construction for a formula witnessing
¢ ~m P, where P has two blocks. We now show how it works for the case of
formula ¢ (z,y) given by (1) in Section 1.

There are two equivalence classes with respect to relation = given by 1 =z, &
Y(z1,R) = ¢(22,R): one is C; = (—00,0] U [1,00) and the other is Cy = (0,1).
Let aq(z), az(z) be formulae defining these classes. Then, from (3) we know that
Y(x,y) is equivalent to

(1@ AB) Vv (az(2) A L)), ()
where

By the decision procedure for R, we obtain that 8, is equivalent to false, and (3
to 0 < y < 1. Hence, combining (4) and (5), we see that (1) is equivalent to

0<z<l) A (0<y <],

as expected.

The previous result was for two-block partitions. We now extend it to arbitrary
partitions. using the special form of the formulae (3).
Let ¢(z1,...,2,) be given, and let B C {1,...,n}. Let card(B) = k. For
€ U*, by ¢p(d@, M) we denote the set of b € U"* such that ¢(&) holds, where

¢ is obtained from @ and gby putting their elements in the appropriate position,
d being in the positions specified by B. For example, if n = 4, B = {2,4}, and
@ = (a1,as), b= (b1,by), then &is (b1, ay, b, a). Formally, for i € [1,n], let ky be
the number of j € B with j < i, and ky be the number of j € B with j < i. Then
ci is ar, if i € B, and by,, if i € B.

We use the notation

RS

i Elgi as < ¢B; (@1, M) = pp, (G2, M).
We now obtain the following characterization of VP xq (¢, P).

COROLLARY 5. Let M be as in Theorem 3, and let p(z1,...,2,) and a partition
P=(By,...,By) on{1,...,n} be given. Then:

1) For eachi < m, it is decidable if the equivalence relation =% has finitely many
B;

equivalence classes. Furthermore, ¢ ~ar P iff each Ewi has finitely many

classes.
(2) If ¢ ~ar P, then one can further effectively find integers Ny,..., Ny > 0 and
formulae aj- (Zg,),i=1,...,m,j=1,..., N;, such that E‘pi has N; equivalence

ACM Transactions on Computational Logic, Vol. 7, No. ?, 7.



10 . Leonid Libkin

classes, which are definable by the formulae aj-(i"Bl.), j < N;. Furthermore,

= V7 (cp(i")(—) \/ ol (Fs,) A ... /\agjn(me)), (6)

(J15-sdm)EK

M

where

K={(U1,.--vjm) | ME EI:U( ]1(:631) A o Nafl (EB,,) A w(f))}

Proof. Let P; be the partition with two blocks: B; and C; = U#i B;. If
@ ~am P, then ¢ ~p P; for all i. From the proof of Theorem 3 we know that
@ ~pm P iff E%i has finitely many equivalence classes. Furthermore, there exist
formulae of(Zp,),£i(Zc,), j < Ni, such that ¢ is equivalent to

\/ D AE(Te,)

j=1
and
N;
MEVE N = (Ts,) ¢ ol (@) A VE \/ a(@s,)
J1#3j2 j=1

(because s define equivalence classes that partition Ueard(Bi)y,

We then claim that a]s are the formulae for the representation in (6). In-
deed, suppose ¢(d@) holds in M. Let j; < N; be such that aj,(d@p,;) holds. Then
(Jis+++sdm) € K and \; o}, (d@p;) holds.

Conversely, assume that for some (ji,...,jm) € K (that is, M |= A, a;'-i(gBi) A

©(b) for some b) we have \; a! (@p,). We write (@, g)kp for the tuple composed of
AByy---, 0B, ka+1, ceey me (all elements appearing in positions specified by the in-
dices in B;s), k > 0. We now prove by induction on k that M [ ¢((d, E) ). For k =
0 we know that ¢(b) holds. If o((a@, g)k ) holds, then the fact that both a**! (@Byy1)

Jk+1
and ak+11 (ka“) hold in M implies that ¢, ,, (@B, ,,, M) = ¥B,, (bB,chl ,M), and
hence ¢((d, g)ka) holds. Thus, for £ = m, we conclude M = ¢(d).
This finally shows the representation (6), and that finiteness of the number of
equivalence classes of all Egi implies ¢ ~xq P. O

4. DECIDABILITY FOR SPECIFIC CLASSES OF CONSTRAINTS

The general decidability result can be applied to a variety of structures, most
notably, those that we listed earlier as the ones particularly relevant to constraint
database applications (especially to spatial and temporal databases). In fact, the
problem will be shown to be decidable for linear constraints over the rationals and
the reals (this corresponds to structures (Q,+,—,0,1,<) and Ryn), polynomial
constraints over the reals (R), and linear repeating points [Kabanza et al. 1995]
(Z0).

4.1 Constraints on the integers

Here the result follows easily form Theorem 3.

ACM Transactions on Computational Logic, Vol. 7, No. ?, 7.



Variable Independence . 11

PROPOSITION 6. Let M be (N, <,...) or (Z,<,...), and let its theory be decid-
able. Assume, in the latter case, that there is at least one definable constant in M.
Then the variable partition and independence problems are decidable over M.

Proof. We check conditions of Theorem 3. One can test algebraicity due to the
presence of a discrete order: given (z), the sentence InImVz (p(z) - n <z < m)
tests if p(M) is finite. Over (N, <,...) one has definable invariant Skolem functions
simply by choosing lexicographically least i satisfying ¢(Z,7), for each Z. For
o(Z,y) over (Z,<,...), let ¢¥(F,y) hold if y is the least element above ¢ satisfying
o(Z,y), if such an element exists, or y is the greatest element not exceeding ¢
satisfying ¢(Z,y), if no element above c satisfies ¢(Z,-). Here ¢ is a definable
constant. Clearly, this defines an invariant Skolem function, and the construction

easily generalizes to tuples of variables 4. |

COROLLARY 7. The wariable partition problem is decidable over 2o =
<Z:+7 _707 17 < (Ek)k>1>- o

4.2 Linear and polynomial constraints over the reals

The linear constraints over the reals (corresponding to Ry, = (R, 4+, —,0,1, <)) and
the polynomial constraints over the reals (corresponding to R = (R, +,-,0,1, <))
are the most useful constraints for spatial and spatio-temporal applications, where
the problem of variable independence originated, and where variable independence
is used in system prototypes. We thus concentrate on these constraints.

In many cases, however, we can state the results in greater generality using the
concept of o-minimality (cf. section 2). This concept originated in model theory
about a decade ago [Pillay and Steinhorn 1988; van den Dries 1998], and found
some computer science applications too, most notably in databases [Benedikt and
Libkin 2000] and hybrid systems [Lafferriere et al. 2000].

It is known that every o-minimal expansion of the Ry, has definable invariant
Skolem functions [Marker et al. 1996; van den Dries 1998]. Since every definable
subset of U is a finite union of points and open intervals, one can test algebraicity,
assuming that the order is dense: given ¢(z), the sentence JuTvVze (u < z < v —
() tests if (M) is infinite. This shows

COROLLARY 8. Let M = (R, +,0,1,<,...) be o-minimal, and have a decidable
theory. Then the variable partition and independence problems are decidable over
M. In particular, these problems are decidable over Ry, and R. O

Since (Q,+,—,0,1,<) is elementarily equivalent to Ry, we conclude that the
variable partition problem is decidable over it, too.

4.3 Uniform decidability and complexity bounds

Our next goal is to present a uniform procedure for solving the problem VI (¢, P).
More precisely, we say that the variable partition problem is uniformly decidable
over M if the theory of M is decidable, and for every partition P on {1,...,n},
there exists a single sentence ®p in the language of M expanded with an n-ary
relation symbol S such that for any formula ¢(z1,...,z,),

p~m P it (M pM)) E 2p.

ACM Transactions on Computational Logic, Vol. 7, No. 7, 7.



12 . Leonid Libkin

Here (M, ¢(M)) is the expansion of M where the new symbol S is interpreted
as {@ | M = ¢(@)}. Note that the decidability of the theory of M implies that
(M, p(M)) |= ®p is decidable.

We also say that the variable independence problem is uniformly decidable, if
for n > 1 and any i,j < n, there exists a sentence @7, in in the language of M
expanded with an n-ary relation symbol S such that for any formula ¢(x1, ..., z,),
z; and z; are independent iff (M,p(M)) [ @7;. As in Lemma 1, it is easy to
show that the uniform decidability of the variable partition problem is equivalent
to the uniform decidability of the variable independence problem.

PrROPOSITION 9. Let M = (R, +,0,1,<,...) be o-minimal and have a decid-
able theory. Then the variable independence and partition problems are uniformly
decidable over M.

Proof. 1t suffices to show, in view of Corollary 5 that for every positive integers
n,m there exists a sentence ®, ,, in the language of M expanded with one (n +
m)-ary symbol S, such that for every formula ¢(x;,...,Zn,¥1,...,Ym) over M,
(M, p(M)) = @, 1, iff the equivalence relation = on U™ given by

G =d < pld,M)=qp(d,M)

has finitely many equivalence classes.
Note that the expansion of M by an extra predicate symbol to be interpreted
as a definable predicate is o-minimal as well. Now, let x(z, 7) be a formula in the

—

expanded structure. We then let endp, (z,%) be a formula such that endp, (a,b)

-

holds iff a is an endpoint of one of the intervals that form the set {c | x (¢, b)}. This
is clearly definable just with order.
Next, for any x(z, ), define rep? (z,) by

Vax(z, ) Nz =0

x(z ) ANe =z
vV lzendp, (2,9) A | V x(z,9) A (Vo <z x(v,§)A(z+1=2)
V (P> 2 x(0,0) A (V0 < 2 ~x(0, ) A (2 = 2+ 1)

V dz1, 29 endpx(zl,gj') A endpx(zg,gj') A(z1 < 2z9) A
(VYo endp, (v,9) = (v < z2 = v =121)) A
X(Zlag) N =2z
Vo ax(z, ) A (Yo <z x(0,9) A (z+1=2)
V (Vo < z1 ~x(0,9) A2z = 21 + 22)

This formula says that either every real number satisfies x(-,%) and = 0, or there
is a single endpoint z of x (M, 7), and then z is either z, or z—1, or 2+ 1, depending
on which intervals are included in x(M, ), or there are two or more endpoints of
X(M, ), and, for z; < 29 being the two smallest one, z equals z; if x(z1, %) holds,
orz =z —1if (—o00,21) is in x(M, ), or otherwise & = (21 + 22)/2. It is easy to
see then that this formula has the property that for o-minimal M, if x(M, l_;) =,
then for any a, repf (a, l_;) does not hold, and if (M, E) # 0, then rep? (a, l_;) holds
for a single element a € x(M, b).

ACM Transactions on Computational Logic, Vol. 7, No. ?, 7.



Variable Independence . 13

We now prove uniform decidability. Let ¢(zy,...,Zn, 21,...,2,) define the equiv-
alence relation =; that is, ¥ = V7 (@(Z,9) ¢ ¢(Z,7)). Define ¢y to be 1, and let
b = repl (&2, 1<i<n

Since for each @; = d» we have ¥(M,d;) = (M, d2) = the equivalence class of
d1, we obtain from the construction of rep that wn(l_;, ) < d)n(l_;, d»), and in fact
there is a single b for which @[;n(l}: d1) holds, and for this b we have @ZJ(I_;, d1), that is,
b= d1 = dz. Therefore, the formula

V(E) = 3Fn(d,2)

(in the language of M expanded with S) defines a set of representatives of the
equivalence classes of =. Therefore, the formula

’)/(213) = \/ Elylayn—l ’}/((mgj)l)a

where (z,¥); is the tuple in which z is inserted in the ith position, defines the set
of all coordinates of the representatives of = chosen by . Thus, = has finitely
many classes iff v is algebraic. Therefore, the sentence

=3z, 3z, ((271 <) ANV (21 <2 < 29) = 7(37)))

in the expanded language tests if the equivalence relation = has finitely many
classes. This proves the proposition. |

Proposition 9 implies that the variable independence problem is uniformly de-
cidable over Ry;, and R. The main application of this result is in establishing
complexity bounds.

Since R admits quantifier elimination, every semi-algebraic set is given by a
Boolean combination of polynomial inequalities. Thus, a standard way to represent
a semi-algebraic set in R" [Basu 1999; Caviness and Johnson 1998; Renegar 1992] is
by specifying a collection of polynomials pi,...,px € Z[z1,...,x,], and defining a
set X as a Boolean combination of sets of the form {@ | p;(@) 6 0}, where 6 is either
= or >. Here Z[zy,...,z,], as usual, is the set of all polynomials in n variables
with coefficients from Z. One can use coefficients from Q as well, but this would
not affect the class of definable sets.

Thus, when we study complexity of VPgr(p, P), we assume that o is given as a
Boolean combination of polynomial equalities and inequalities, with all polynomials
having integer coefficients. The size of the input formula is then defined in a
standard way, assuming that all integer coefficients are given in binary. All the
above applies to semi-linear sets (that is, sets definable over Ryin); we just restrict
our attention to polynomials of degree 1.

COROLLARY 10. Let M be Ry;, or R. Let P be a fized partition on {1,...,n}.
Then, for a semi-algebraic (semi-linear) set given by a Boolean combination p(&)
of polynomial inequalities (of degree 1), the problem VI (g, P) is solvable in time
polynomial in the size of .

Proof. Let ®p be the sentence for uniform decidability of the variable partition
problem. Assume that ®p is in the prenex form. Using the standard bounds for
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14 . Leonid Libkin

quantifier elimination over R [Basu 1999; Renegar 1992], one obtains that there
exist constants ¢; and co that depend on ®p only, such that for any ¢(Z), the
complexity of deciding ®'5, obtained from ®p by using ¢ in place of the extra
predicate S, is bounded by (¢1 N)¢2, where N is the size of . Indeed, if S occurs
s times in the quantifier-free part of ®p, then the size of the quantifier-free part
of &% is ¢y + s - N, for some constant ¢y depending only on ®p. From this, and
bounds of [Basu 1999; Renegar 1992], the complexity bound follows. As ¢; and co
depend only on ®p, and hence only on P (by Proposition 9), the result follows. For
semi-linear sets, the proof repeats the one above verbatim, as one can guarantee
the same bounds for quantifier elimination. O

Another reason to consider the uniform decision procedure for variable indepen-
dence is that it gives us a test for variable independence under some transforma-
tions. For example, linear coordinate change in general would destroy variable
independence, although it has relatively little effect on shapes on objects in R™.
Consider, for example, the following version of the variable independence problem
LVI(X,z;,z;): Given a semi-algebraic set X C R" (defined by a formula over R),
is there a linear change of coordinates such that in the new coordinate system,
variables z; and z; are independent?

The general decision procedure of Theorem 3 does not give us a decision procedure
for LVI. However, using uniformity, we easily obtain:

COROLLARY 11. The problem LVI(X, z;, ;) is decidable.

Proof. Let X be defined by a formula ¢. For each partition P, z; and z; being
in two different blocks, consider the sentence

Up = 3Fai...3an, x(A)APp(AS)

where A is the matrix given by a11,...,ann, X(A) is a sentence over R stating
that det(A) # 0, and ®p(AS) is obtained by replacing each occurrence of S(Z) by
37 (o(@) N & = Ay). The answer to LVI(X, z;,2;) is yes iff R |= ¥p for one such
P. The corollary follows from the decidability of R. a

It turns out that not only the decision part of VI (g, P) and VP (¢, P) can
be solved in polynomial time for a fixed P over Ry, and R, but there is also a
polynomial time algorithm for finding a formula equivalent to ¢ that witnesses
o ~mP.

THEOREM 12. a) Givenn > 1, and a partition P = (By,...,B,,) on{1,...,n},
there ezists an algorithm that, for every semi-algebraic set given by a formula
o(x1,...,xn) which is a Boolean combination of polynomial equalities and inequal-
ities, tests if ¢ ~aq P, and in the case of the positive answer, computes quantifier-
free formulae oz;-(a':'Bl.) such that each a§ (ZB,) is a Boolean combination of polyno-
mial (in)equalities (where polynomials depend only on Tp, and all coefficients are
integers), and ¢(T) is equivalent to \/; N; @ (Zp,). Moreover the algorithm works
in time polynomial in the size of ¢.

b) The same statement is true when on replaces semi-algebraic by semi-linear,
and all polynomials are of degree 1.

Proof. We start with a). We saw (Corollary 10) that ¢ ~x¢ P can be decided in
polynomial time. Assume thus that ¢ ~q P.
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Variable Independence . 15

We say that a collection of formulae aé-(a‘:’Bl.), i <m,j < M;, witnesses p ~pq P if
each a;- (Zp,) defines an equivalence class of the relation Egi’ and each equivalence
class of =% is definable by some a;- (Zp,) (this means, in particular, that some
a'(fp,) and aj(Zp,) could be equivalent).

The first step of the proof is to show that it suffices to construct, in polynomial
time, a family of formulae witnessing ¢ ~aq P.

To prove this, we first recall known bounds on quantifier elimination over R.
Suppose x(¥7) is a formula in the prenex form, whose quantifier-free part is of size
N, and the degrees of all polynomials used in it do not exceed d. Then there exist
two constants ¢; and ¢y that depend only on the quantifier block of x and the length
of § such that N¢ - d° is a bound on both the number of operations needed to
compute a quantifier-free xo(¢) equivalent to x (%), and the size of xo. Moreover,
the degrees of polynomials appearing in xq are bounded by d°2, and all coefficients
of polynomials used in yo belong to the minimal subring of R that contains all
coefficients of polynomials used in x (in our case, Z, since in the input formula
we have polynomials with integer coefficients). This follows from the results of
[Basu 1999; Renegar 1992]; in fact, those papers provide more detailed complexity
analysis, but the above will suffice for our purposes.

Now suppose that we have constructed, in polynomial time, a family {a;'.(i:'Bl.)}
witnessing ¢ ~a¢ P. In view of Corollary 5, we have

p(F) © \/  a},(@B)A... A" (FB,), (7)
(jl;---7jm)€K

where K = {(j1,...,jm) | R = 3% (o}, (Z,) A ... Aa] (Zp,,) N p(Z))}. (Indeed,
the only difference with Corollary 5 is that for a fixed i, some a!(#p,), ag-, (ZB;)
may be equivalent, but this only adds a number of equivalent disjuncts to the right
hand side of (7), which does not affect the truth value.)

Thus, we must show how to find K in polynomial time. Since P (and thus m) is
fixed, we enumerate all tuples (j1,...,Jm) < (M1, ..., M;,) in polynomial time. For

each 7= (j1,...,jm), consider the sentence ¥y = 3% (] (&B,) A... Ao} (ZB,, ) A
©(Z)). The size of each ag- is polynomial in the size of ¢, by the assumption. That
is, the size of each aé- does not exceed ¢ - NP, for some constants ¢, p, where N is
the size of ¢. Thus, the size of the quantifier-free part of ¥ Ny, is at most O(N?),
and the same is a bound on the degrees of polynomials used. By the bound on
quantifier-elimination, M = ¥; can be decided in time O(Nf’), where ¢’ depends
only on the fixed quantifier-prefix 37 (recall that the length of Z is fixed, since the
partition P is fixed). We thus obtain that there is a polynomial p such that for
each J, the decision procedure M = ¥; takes time p(N). This, and the bound on
M;s, imply that K can be found in polynomial time, if P is fixed. Hence, if a;'.s are
found in polynomial time, so is the representation (7).

Thus, to prove the theorem, it suffices to show how to construct a family aé(fBl.)
witnessing ¢ ~a¢ P in polynomial time. Without loss of generality, assume that
we are given ¢(if,7), with ¢ of length n and 2 of length m. Let @ = d» iff
p(d1, R) = p(d2, R); this is an equivalence relation on R". Assume that we know
already that = has finitely many classes. To complete the proof, it thus suffices to
show how to produce formulae o () defining equivalence classes, in time polynomial
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in the size of .

From the proof of Proposition 9, we know that there exists a formula v(z) in
the language of the real field plus an n + m-ary relation S, such that + depends
on n and m only, and (R,¢(R)) = ~v(a) iff for some canonically chosen set of
representatives of =, a is in one of @ in this set. We now substitute the definition of
@ for S in v, and perform quantifier-elimination. Let §(z) be the resulting formula.
From the bounds on quantifier-elimination, we obtain that d(z) can be found in
time polynomial in N, where N is the size of ¢. This is because 7 is determined
by n and m, which are fixed (as n corresponds to the size of a block in P, m to
the number of the remaining variables). By putting ¢ into the definition of ~y, we
obtain a formula whose quantifier-free part is linear in NV, and then the bounds on
quantifier-elimination imply that the parameters in the exponent depend only on
n and m, that is, on P. Thus, §(z) is obtained in polynomial time.

Since 0(z) is quantifier-free, it is a Boolean combination of polynomial equalities
and inequalities involving polynomials from a set P = {pi(z),...,pi(z)}. Further-
more, ¢ is algebraic. We now claim that every a such that R |= 6(a) is a root of
one of p;s. Assume this is not the case: R |= d§(a) and a is not a root. Then there
is a small neighborhood of a in which signs of all p;s are the same as the signs of
pi(a)s. Thus, since §(z) is quantifier-free, we obtain R |= §(b) for each b from this
neighborhood of a, which implies that 6(R) is infinite.

Now suppose p; is of degree d;, and suppose we have formulae p; () saying that
x is the kth real root of p; (or 0, if there is no such root), k < d;. Then we would
define formulae

iy k)i k) @15 0n) = N\ pigns (93), ky < dj
j=1

producing n-tuples of real roots of polynomials in P (some entries in those tuples
can be 0 as well). We know for every equivalence class of =, there is a tuple in it that
satisfies one of these formulae. Moreover, the number of formulae 7(;, ,),....(i k)
is at most (I - D)™, where D is the maximum degree of a polynomial in P. From
each formula 7;, 1,),....(in,k,), We define the equivalence class as

iy ey ) (in i) T = YL (T k1) (i k) (1) A (0T, 2) & @(i1, 7))

Since the quantifier prefix 37VZ is fixed (as n and m are fixed), we conclude
that a quantifier-free formula equivalent to a(;, r,),....(in,k,) Can be found in time
O((N + nN")®), where s is determined by P, and N’ is an upper bound on the
size of pi(x). This, and the estimate on the number of formulae 7(;, x.)....(inkn):
show that the required collection of formulae defining equivalence classes can be
produced in time polynomial in the size of ¢, provided two conditions hold:

(1) The set P can be found in polynomial time (in N, with P fixed);
(2) Each formula p;;(x) can be constructed in time polynomial in N.
The first item follows from the fact that d(z) is found in time polynomial in N (see
above). To show the second item, consider each polynomial p;(z) € P. Using an
algorithm for root isolation (see, for example, [Caviness and Johnson 1998; Collins

and Loos 1983]), we find a sequence a; < az < ... < a,, where r is at most the
degree of p; plus one, such that each interval (a;,a;11), 1 < i < r, contains exactly
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one root of p;. This sequence can be found in time polynomial in the size of the
representation of p; [Caviness and Johnson 1998; Collins and Loos 1983]. We now
define

pin(z) = {;pi:(afo):0)/\(m>ak)/\(a:<ak+1) Z;:

Clearly, these formulae define the roots (and perhaps 0), and due to the bounds on
root isolation, they can be found in polynomial time. This completes the proof of
item 2, and thus the theorem for the case of R.

For linear constraints (Riin), the proof follows along the same lines, but is a
bit easier. Since there similar bounds on quantifier elimination over Ry;,, where
the exponent depends only on the number of free variables in the quantifier-prefix
[Caviness and Johnson 1998], we can use the same proof as above, except that we
do not have to deal with the real root isolation, as a linear function in one variable
has at most one root, which is definable. O

4.4 Other constraints

In this section, we consider two examples of nicely-behaving structures over which
the variable independence problem is decidable, despite the fact that they do not
satisfy all the conditions of Theorem 3. Admittedly, this is more of purely theo-
retical interest, although algebraically closed fields were studied in connection with
some expressivity problems inspired by constraint databases [Chapuis and Koiran
1999].

The first structure we consider is the field of complex numbers C = (C, +,-). Tt
has a decidable theory and admits quantifier-elimination; furthermore, it is strongly
minimal (every definable subset of C is either finite or cofinite) [Hodges 1993]. The
latter property implies that it does not have definable Skolem functions (invariant
or not). Indeed, if the equivalence relation 22 = 32 had a definable set of represen-
tatives, this set and its complement would be infinite. Hence, Theorem 3 does not
apply to C. Still, we can prove a weaker result. We say that variables z; and z; are
weakly independent in ¢(Z) if there exists a finite set C' C C and a finite collection
of formulae a (%) in the language of C extended with constants for C, such that no
oy, mentions both z; and z;, and ¢ is equivalent to a Boolean combination of as.

PROPOSITION 13. Let (&) be a formula over C, and x;,x; two distinct variables.
Then it is decidable if x; and x; are weakly independent in .

Proof. The proof follows closely the proof of Theorem 3. Instead of Skolem-
ization to find representatives of equivalence classes, we use a weaker property of
elimination of imaginaries [Hodges 1993; Marker et al. 1996], which says that for
every definable equivalence relation E on CF, there exists a function f : C¥ — C™
such that E(a,b) implies f(a) = f(b). Furthermore, such a function can be found
effectively (because the theory is decidable), and it can also be tested effectively
if a formula () is algebraic: this follows from quantifier elimination and strong
minimality. Thus, we prove an analog of lemma 4 (since we do not have defin-
able Skolem functions, we must use finitely many new constant symbols to identify
equivalence classes), and then use the function that eliminates imaginaries and test
for algebraicity to check if a given equivalence relation is finite. a
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Another example is that of the random graph, that is, a countable structure
that satisfies every sentence that is true in almost all finite graphs (this theory is
w-categorical; hence we speak of the random graph). Again, its theory is decidable,
and has quantifier elimination, but does not have definable Skolem functions. Still,
a simple argument shows:

PrROPOSITION 14. The variable independence problem is decidable over the ran-
dom graph.

Proof. There are only finitely many non-equivalent formulae in n variables, and
they can all be effectively listed. We look at all of them in which two given variables
do not occur in the same atomic formula, and check if any of them is equivalent to
a given formula . a

4.5 Spatio-temporal applications

Even though we do have polynomial-time algorithms for testing variable indepen-
dence for linear and polynomial constraints, the exponent becomes quite large as
the dimension increases. This kind of situation is not new at all; it is the case, for
example, for some quantifier-elimination algorithms that, although polynomial for
a fixed dimension, become unmanageable for high dimensions.

Fortunately, in practical applications of variable independence encountered so far,
the dimension is not very high, as typically this concept is important for spatio-
temporal applications [Grumbach et al. 1998; 1999]. In this case, one deals with
formulae ¢(z,y,t) over Ry, or R; that is, linear or polynomial constraints in three
variables z,y and t, where z,y describe the spatial component and t describes the
temporal component; one is then interested in showing the independence of (z,y)
and t. A typical application is cadastral information, that is, information about
land ownership over time. As ownership does not change continuously with time,
often variables z,y are independent of .

We now show that there is a simpler way of testing variable independence in this
setting than in the general setting of Theorem 12.

Recall that a cylindrical algebraic decomposition (CAD) of R" [Bochnak et al.
1998; Caviness and Johnson 1998] is a partition of R" into finitely many sets,
called cells, such that each cell is homeomorphic to Rf, i < n. A CAD of R! is a
decomposition into points and open intervals. A CAD of R" is defined as follows.
Let Cy,..., C)p be the cells of a CAD of R""!. Suppose that for each C; we have

) )

a collection of continuous functions f{,..., f,’n : C; = R, m; > 0, such that for
each ¥ € Cy, fi(x) < ... < fL.(&). Then the cells of a CAD in R" are {(Z,c¢) |
e Che< fi@}, {(&c) | &€ Cie> fi (@)}, {(@ )| T e Cie= f]’(is')}
j=1,...,m;, and {(Z,c) | ¥ € C’Zf]’(a':') <e< f]?+1(:E')}, j<mi,i=1,...,p.

A classical result on cell decomposition says that given a set py,...,py of poly-
nomials in Z[z1,...,z,], one can effectively construct a CAD of R™ such that all
the functions f]’ (for all steps of the inductive construction) are definable over R,
and polynomials p;s do not change their sign on any cell. In particular, if we have a
formula ¢(Z) which is a Boolean combination of polynomial inequalities involving
pis, then p(R) is a union of some cells of this CAD.

Now consider a formula ¢(z,y, t) which is a Boolean combination of equalities and

inequalities involving polynomials pi,...,px € Z[z,y,t], and let P = {{z,y}, {t}}.

3
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First notice that if ¢ ~ P, then ¢ is equivalent to a formula of the form \/, a;(z,y)A
Bi(t), where each f3;(t) is either ¢ = ¢;, or ¢; < t, or t < d;, or ¢; < t < d;, where ¢;
and d; are constants; this follows from o-minimality of the real field.

Suppose then that we do a CAD using the polynomials p;s, and let Cy,...,C)
be the cells in the zy-plane, and fJ’ the functions on C;s which define the cells of
a three-dimensional CAD. Each such function fJ’ on C} is called y-significant if for
the cell {(z,y,t) | (z,y) € Ci,t = f]’(a?,y)} and two cells in C; x R adjacent to it, it
is not the case that the three simultaneously belong to ¢(R) or R* — (R). (Since
¢ is a Boolean combination of constraints involving p;s, several adjacent cells may
belong to ¢(R) or its complement.)

Then, if f} is -significant, C; is not a single point, and f} takes at least two
different (and hence infinitely many) distinct values, we can easily see that there is
no representation for ¢ in which ¢ occurs only in the subformulae defining intervals
with constant endpoints. This implies:

PROPOSITION 15. Given a formula ¢(x,y,t) which is a Boolean combination
of polynomial (in)equalities involving p1,...,pr € Z[z,y,t], the variables x,y are
independent from t iff in any CAD for the polynomials p;s, every @-significant
function f on a non-singleton cell in the zy-plane, is a constant. |

Since there exist specialized algorithms for constructing CAD in the three-
dimensional space that have good enough complexity bounds to be applicable in
practice [Arnon et al. 1988], this gives us a good method for testing variable inde-

pendence in spatio-temporal applications.

5. CONCLUSION

We looked at the problem of deciding, for a set represented by a collection of con-
straints, whether some variables in those constraints are independent of each other.
Knowing this can considerably improve the running time of several constraint pro-
cessing algorithms, in particular, quantifier elimination. The problem originated in
the field of spatio-temporal databases represented by constraints (linear or poly-
nomial over the reals, for example); it was demonstrated that on large datasets,
reasonable performance can only be achieved if variables comprise small indepen-
dent groups. It had not been known, however, if such independence conditions are
decidable.

Here we showed that these conditions are decidable for a large class of constraints,
including those relevant to spatial and temporal applications. Moreover, for linear
and polynomial constraints over the reals, we gave a uniform decision procedure
that implies tractability, and we showed that a given constraint set can be converted
into one in a nice shape in polynomial time, too. We also considered specialized
algorithms suitable for spatio-temporal applications.
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