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1. INTRODUCTION

Because much of computing practice involves the manipulation of tree structures,
computer science abounds in formalisms for describing trees. Tree constraints and
monadic-second order logic are two declarative approaches to specifying tree prop-
erties, while tree grammars, various flavors of tree automata and tree transducers
are examples of more procedural formalisms. Naturally, an extensive literature
exists comparing the expressive power of each of these formalisms (see [Comon
et al. 1997; Thomas 1997]) and for translating between declarative formalisms and
their procedural implementations. In particular, work on analyzing specifications
of trees plays a significant role in program analysis [Aiken 1994; Müller et al. 2000],
verification [Elgaard et al. 1998; Kupferman et al. 1996; Niwinski and Walukiewicz
1998], logic and constraint programming [Smolka 1995; Smolka and Treinen 1994]
and linguistics [Dörre 1991; Kolb and Mönnich 1999].

In many applications, such as databases for tree-like data (as modeled, for exam-
ple in XML) and program transformation, one does not wish to deal with properties
of a single tree, but with relations between trees. For example, document databases
store and manipulate large sets and relations of trees. A natural aim then is to use
a tree constraint language to describe the properties of interest. Querying a tree-
relation could then be seen as constraint solving – a model very much in line with
the traditional declarative model for database processing. In the present paper, we
will deal with constraint solving both on ranked trees (fixed number of children per
node) and unranked trees.

In the literature, there are two different approaches to logical languages for defin-
ing strings and trees, depending on whether one characterizes a string or tree in
terms of its internal structure or in terms of its relationship with other strings or
trees. In the older and by now classic way of providing logical descriptions of reg-
ularity [Thomas 1997], individual strings and trees are represented as structures,
and definability in a logic (e.g., first-order, monadic-second order) characterizes a
class of strings/trees accepted by certain automata. This is the “finitary struc-
ture” or “internal” approach. In the other setting, one considers the family of all
strings Σ∗ or the family of all trees, and defines some operations on them. This
gives us a first-order structure M, and formulae in one free variable ϕ(x) define
sets of trees/strings {x | M |= ϕ(x)}. This “infinitary structure” approach was
studied in [Benedikt et al. 2003; Bruyère et al. 1994; Blumensath and Gräel 2000;
Khoussainov and Nerode 1995; Hodgson 1983] in the context of strings. Since the
infinitary structure approach is attractive for dealing with relations, we will adopt
it here in studying tree relations.

The infinitary approach led to the study of automatic structures, that is, struc-
tures in which every definable predicate can be represented by a finite automaton
[Hodgson 1983; Khoussainov and Nerode 1995]. It was shown in [Blumensath and
Gräel 2000] that there is a universal automatic structure over strings, that is, a
structure S such that every other automatic structure can be embedded into S. A
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finer study of string relations definable using the infinitary approach was conducted
[Benedikt et al. 2003]; it takes the operations of the universal automatic structures
as the primitive string relations, and studies string relations definable within it,
and also within several of its reducts. [Benedikt et al. 2003] gives an overview of
the expressiveness of several reducts of S, and uses these as the basis for relational
calculi on string databases. In this paper we perform an analogous study for tree
relations. We start with a “universal” structure for tree relations, consider defin-
ability within both this structure and its reducts, and then extend from formulae
over tree tuples to relational algebra over tree relations.

The prior literature does consider properties of tree tuples and sets of trees, both
in relation to logic programming and program analysis [Vorobyov and Voronkov
1998; Su et al. 2002] and with respect to database querying [Dantsin and Voronkov
2000]. Most of this work revolves around the use of equations and inequations
among terms or trees. These works can be considered to take the infinitary ap-
proach to tree relations, studying collections of trees definable through formulae or
constraints in term or feature algebra. Rephrased in the terminology of operations
on labeled trees, term algebra corresponds to the set of trees with the operations of
merging subtrees and extending branches by a single node. Term algebra, however,
does not allow one to express the vertical ordering relationships among nodes that
are important for many applications. For example, general regular tree patterns
cannot be expressed using a term algebra; indeed, one cannot even express each
query asking for the set of trees matching a regular expression pattern on one of
its branches.

In this paper we deal with an infinitary structure different than term algebra. We
investigate tree-tuple specifications given in a constraint formalism that includes
extension relationships between trees: T1 ≺ T2 iff T1 is an initial subtree of T2.
This is the same as the standard subsumption ordering used for feature trees [Dörre
1991; Müller et al. 2001]: intuitively, it means that every branch of T1 is also a
branch of T2. In the unranked case we split it into two relations: ≺→ (extend a
tree by adding siblings), and ≺↓ (extend a tree by adding descendants). We denote
the structure extended with the latter operation (and some others) by T and T

u,
for ranked and unranked trees, respectively.

In addition to dealing with a different structure on the set of trees, we deal with
the first-order theory of our infinite structures, as opposed to just their equational
theory (which is often the focus of investigation for tree algebras [Ésik 1998; Wilke
1996]). One of our key criteria is that the theory is decidable. This makes it impos-
sible to combine the ordering ≺ with term algebra operations, since the resulting
theory is known to be undecidable [Müller et al. 2001]. Instead, we introduce oper-
ations that allow us to extend trees at the leaves, rather than combine subtrees at
the root. We shall call the set of trees with the extension relation (and a number
of other operations to be introduced shortly) tree algebra, and the resulting formu-
lae tree formulae. To get an idea of the combination of multi-tree constraints and
single-tree formulae, we list below several properties that can be expressed in this
algebra.

—branch(T1, T2): T1 is a single branch of T2.

—brancha
i (T1, T2): T1 and T2 are single branches, and T2 extends T1 in direction i,
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labeling the leaf by a.

—ab(T ): Every node labeled a in T is followed by a node labeled b.

—¬∃T1 (branch(T1, T ) ∧ ab(T1)): T does not have a branch in which every node
labeled a is followed by a node labeled b.

We show that the formalism allows considerable expressive power, is closed under
logical operations, and is decidable. After introducing the formalism, the first part
of the paper is devoted to the synthesis of automata from formulae. We show that
constraints given by tree formulae can be solved, with a multi-tree automaton that
recognizes the defined collection of tree tuples. Since automata can be considered as
a special kind of formula on finite structures, we are showing a correspondence be-
tween the infinite structure approach and the traditional finite-structure approach.
We then consider, for the ranked case, restrictions of the tree algebra, possessing
considerable expressive power (in fact, covering all the examples above) and yet
having a simpler automaton construction. We present such a restriction, called
primal tree algebra and denoted by Tp, and a corresponding class of automata,
called splitting automata. We use these results to show separation between the two
algebras.

We use these automata-theoretic tools to establish some properties of definable
sets in the models. These properties will help to clarify the relationship of tree
algebras to other formalisms. We start by investigating what sort of combinatorial
objects can be defined within the model, and how the solution set of a formula
ϕ(~x, ~y) varies as the parameter ~y varies. Term algebras are stable in the model-
theoretic sense (cf. [Hodges 1993]), implying that there is no definable linear order
and the fibers of a formula cannot vary arbitrarily (i.e. the VC-dimension of defin-
able families is bounded). We show that neither of these is true for the tree algebra
– a linear order can be defined, even in the primal case, and the VC-dimension
is unbounded. We also show that conversely there are properties of tree tuples
expressible over term algebra that are not expressible via tree formulae.

Next, we look at restricted definability for both T, Tp, T
u, and T

u
p and give

some finer connections between these classes and those definable in the traditional
(i.e. finitary model) setting in the following sense. W.r.t. the above mentioned
restricted definability, it turns out that some natural sublogics of first-order over
T and T

u correspond to logics that have been studied in connection with XML
pattern languages, and are closely connected to monadic path logic [Thomas 1984].

If we have a formula ϕ(T ), its input, a tree T , can be viewed as a first-order
structure, and hence we can consider the notion of data complexity of a formula.
Reduction to tree automata and other techniques give us good bounds, from AC0

to NC1 to DLOGSPACE, on the data complexity of (restricted) logics over T
u
p and

T
u.
In the second part of the paper, we focus on database related aspects by moving

from tree tuples to set or relations of tree-tuples. We do this by adding a finite
relation on trees to our structures and considering queries against the resulting
expanded structure. The notion of data complexity in this setting views the input
as a database of trees. We show that the data-complexity of query evaluation is in
the polynomial hierarchy, and find a class of queries for which it is AC0; this gives
us some useful bounds on the expressive power. We then look at various relational
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calculi based on restricted logics from the first part of the paper, and find that they
have low data complexity (e.g, NC1) while remaining quite expressive. We also
address the question of characterizing safe queries, and give a range-restricted form
that captures all safe queries with tree extension constraints.

Organization. In Section 2, we introduce the necessary background on strings,
the logics FO and MSO, and Ehrenfeucht-Fräıssé games. In Section 3 and 4, we
discuss definability over ranked and unranked trees, respectively, and their relation-
ship with automata and classical logics. In Section 4, we also discuss complexity.
In Section 5, we consider relational calculi. We conclude in Section 6.

2. PRELIMINARIES

In this section, we give a brief overview of the two different approaches to logi-
cal definability over strings and we discuss Ehrenfeucht-Fräıssé games. To avoid
confusion, when we deal with logics in the first setting, where strings and trees are
represented as separate structures, we use calligraphic letters, e.g. FO (first-order),
MSO (monadic second-order), etc. In the other setting, we normally consider first-
order definability over some structure M, and then we write FO(M). Throughout
the paper, Σ is a finite alphabet with at least two letters.

2.1 FO and MSO.

We briefly discuss the syntax and semantics of FO and MSO. We refer the unfa-
miliar reader to [Ebbinghaus and Flum 1999].

A vocabulary τ is a finite set of relation names and names of constants. Every
relation name has an associated arity. A τ -structure A consists of a domain A,
interprets every relation symbol in τ by a relation over A of the right arity, and
interprets every constant by an element in A.

An atomic FO-formula is of the form x = y or R(x̄) where x and y are variables
or constants, x̄ is a sequence of variables and constants, and R is a relation symbol.
Every atomic FO-formula is an FO-formula. FO-formulae are further closed under
the boolean connectives (∨, ∧, ¬) and first-order quantification (∃x). As usual, we
denote by A |= ϕ that A is a model for ϕ.
MSO is FO extended with set quantification. More precisely, MSO is defined as

follows. Every atomic FO-formula is an atomic MSO-formula. Additionally, let X
be a set variable and let x be a first-order variable or a constant. Then, X(x) is an
atomic MSO-formula expressing that x belongs to the set X . In addition to FO-
formulae, MSO-formulae are closed under set quantification. That is, ∃Xϕ(X) is
an MSO-formulae where X is a set variable and ϕ(X) is an MSO-formula. Over
a structure A, such a formula expresses that there should be a set X ⊆ A such that
A |= ϕ(A).

2.2 Strings.

As mentioned in the introduction, in the finitary approach to definability, a string
s = a1 . . . an over Σ is represented as a structure 〈{1, . . . , n}, <, (Oa)a∈Σ〉, where
< is the usual ordering, and Oa is interpreted as {i | ai = a}. Classical results
state that a set of strings is definable by an MSO (FO) sentence iff it is regular
(star-free, respectively), cf. [Thomas 1997].
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The alternative approach to definability in the string setting is by using an infinite
structure. In that case, we consider several operations on the set Σ∗ of all finite
strings over Σ. One of them is the prefix relation s1 ≤ s2 among strings. For each
symbol a ∈ Σ we have a function la : Σ∗ → Σ∗ that adds a as the last symbol, that
is, la(s) = s ·a. Finally, we have a relation el(s1, s2) which holds iff |s1| = |s2|; here
|s| is the length of the string s.

The structures most often considered in this setting are:

S = 〈Σ∗,≤, (la)a∈Σ, el〉, and,
Sp = 〈Σ∗,≤, (la)a∈Σ〉.

It is known that a subset of Σ∗ is FO(S)-definable iff it is regular [Blumensath
and Gräel 2000; Bruyère et al. 1994], and it is FO(Sp)-definable iff it is star-free
[Benedikt et al. 2003]. Furthermore, S is the “universal” automatic structure,
as any relation given by a finite automaton is FO-definable in S, and vice versa
[Blumensath and Gräel 2000; Bruyère et al. 1994]. The index p in Sp stands for
“primal”.

To explain the notion of a relation, that is, a subset of (Σ∗)k, k > 1, being
definable by an automaton, let ⊥ be a new symbol not in Σ, and Σ⊥ = Σ ∪ {⊥}.
Given a k-tuple of strings ~s = (s1, . . . , sk), we define a string [~s] over Σk

⊥, whose
length is maxj |sj |, and whose ith symbol is (si

1, . . . , s
i
k), where

si
j =

{

the ith symbol of sj , if |sj | ≤ i

⊥, otherwise.

In other words, we pad shorter strings with ⊥ so that all strings are of the same
length. We then say that a relationR ⊆ (Σ∗)k is regular if the language {[~s] | ~s ∈ R}
is accepted by an automaton over Σk

⊥.
The structure S is known as the universal string-automatic structure: any other

structure M = 〈Σ∗,Ω〉 which defines only regular relations is interpretable in S

[Blumensath and Gräel 2000].

2.3 Ehrenfeucht-Fräıssé games.

Most proofs in this paper make extensive use of Ehrenfeucht-Fräıssé (EF) games.
The standard (FO) EF game is played on two structures, A and B, of the same
vocabulary, by two players, the spoiler and the duplicator. In round i, the spoiler
selects a structure, say A, and an element ai of it; the duplicator responds by
selecting an element bi of B. The duplicator wins in k-rounds if {(ai, bi) | i ≤ k}
defines a partial isomorphism between A and B. We write A ≡k B to denote this.
A classical result states that A ≡k B iff A and B agree on all FO sentences of
quantifier rank up to k, cf. [Ebbinghaus and Flum 1999].

The game for MSO is similar, except that the players can play point moves,
like in the FO game, and set moves, in which case the spoiler plays Ai ⊆ A (or
Bi ⊆ B), and the duplicator responds with Bi ⊆ B (or Ai ⊆ A). The winning
condition also requires that, in addition, the ⊆ and ∈ relations be preserved. Then
we write A ≡MSO

k B. Again, A ≡MSO

k B iff A and B agree on all MSO sentences
of quantifier rank up to k, cf. [Ebbinghaus and Flum 1999].

We shall also make use of reduced EF games, which are helpful for logics with
restricted quantification (for instance, to branches of trees). For that, let FOV
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stand for FO with restricted quantification of the form Qx ∈ V , where V is to be
interpreted as a subset of the structure. If V is interpreted as V A in A and V B

in B, then we write (A,~a) ∼V
k (B,~b) if for every such restricted formula ϕ(~x) of

quantifier rank ≤ k, it is the case that A |= ϕ(~a) iff B |= ϕ(~b).
The V -restricted EF game is defined as the usual EF game except that moves

can only come from V A and V B. We write (A,~a) ≡V
k (B,~b) if the duplicator wins

in k rounds of the V -restricted game, starting from the position (~a,~b). Note that

~a and ~b do not have to come from V A and V B. The proof of the following result
mimics the usual proof for EF games, cf. [Ebbinghaus and Flum 1999].

Lemma 2.1. (A,~a) ≡V
k (B,~b) iff (A,~a) ∼V

k (B,~b).

In all the logics we consider, there will be finitely many formulae of quantifier
rank k, up to logical equivalence. A rank-k type of a tuple ~a in A is the set of all
formulae ϕ(~x) of quantifier rank ≤ k such that A |= ϕ(~a). Given the above, there
are only finitely many rank-k types, and each of them is definable by a formula of
quantifier rank k. For more information, see [Ebbinghaus and Flum 1999].

Types and games will be used heavily to prove expressibility of properties in a
certain logic. The basic idea is as follows. Suppose we want to prove that quantifi-
cation over V is sufficient to express all FO-definable properties. For this, it will
suffice to show that for every k ≥ 0, there is an m ≥ 0, such that A ≡V

m B implies
A ≡k B. Indeed, every property definable by an FO sentence of quantifier rank k
is a union of rank-k types, and the above implication says that the ≡V

m equivalence
relation refines ≡k: hence, every rank-k type is a union of ≡V

m equivalence classes,
and each one of those is definable by a formula with V -restricted quantification of
quantifier rank m. We shall see this argument many times in the paper.

3. DEFINABILITY OVER RANKED TREES

3.1 Basic definitions

The trees we consider are based on two fixed alphabets: the alphabet for directions
∆ of the form {1, . . . , n}, and Σ for node labeling. Unless explicitly stated otherwise,
we assume n > 1. Most often we have n = 2 (binary trees). We write s1 ≤ s2 if
a string s1 is a prefix of a string s2. A tree domain is a prefix-closed finite subset
D of ∆∗: s1 ∈ D and s2 ≤ s1 imply s2 ∈ D. A tree is a pair T = (D, f) where
D ⊂ ∆∗ is a tree domain, and f is a function from D to Σ. We use dom(T ) to
denote D. The set of all trees over ∆ = {1, . . . , n} and Σ is denoted by Treen(Σ).
Note that Tree1(Σ) naturally corresponds to Σ∗; we shall say more about this
correspondence later.

A node in a tree T is a string s ∈ D = dom(T ), and f(s) is its labeling. The root
is the empty string ǫ, and the leaves are those s ∈ D such that s is not a proper
prefix of any other string in D. The set of leaves of T is called the frontier of T
and is denoted by Fr(T ).

The yield of a tree T , yield(T ), is the string from Σ∗ read at Fr(T ). That is, if
Fr(T ) = {s1, . . . , sk} where s1, . . . , sk occur in lexicographic order, then yield(T ) is
the string f(s1)f(s2) · · · f(sk).

We now look at the operations (functions, predicates, and constants) on trees in
the algebra we consider. The constants are ǫa, a ∈ Σ, with domain {ǫ} labeled by
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a. Unary term construction operators are as follows. Given i ≤ n (direction) and
a ∈ Σ, for T = (D, f), succa

i (T ) = (D′, f ′) where D′ = D ∪ {s · i | s ∈ Fr(T )}, and
f ′ extends f to D′ by f ′(s · i) = a for each s ∈ Fr(T ).

The basic binary relation – the one that gives the name to the algebra – is the
extension order. Given two trees T = (D, f) and T ′ = (D′, f ′), we write T � T ′

(T ′ extends T ) if D ⊆ D′ and f is the restriction of f ′ to D. Clearly it is a partial
order. As usual T ≺ T ′ means T � T ′ and T 6= T ′. We denote the greatest lower
bound of T and T ′ by T ⊓ T ′.

A tree T is called a branch if dom(T ) is linearly ordered by the prefix relation,
that is, for any s, s′ ∈ dom(T ), either s ≤ s′ or s′ ≤ s. Sometimes we use lowercase
letters to denote branches. If t is a branch and t � T , we say that t is a branch of
T . If in addition Fr(t) ⊆ Fr(T ), then t is called a maximal branch of T .

As we will see, first-order formulae over the above functions and predicates give
us quite an expressive language. But to capture all properties of tree tuples that
are implementable by tree automata, we will require an additional operation that
allows us to compare trees based only on their domains, ignoring alphabet symbols.
That is, for two trees T, T ′, we write T ≈dom T ′ iff dom(T ) = dom(T ′).

We now introduce the basic objects of our study. For each n > 0, we define the
following:

The Primal Tree Algebra is the structure having the successor operations and the
extension relation:

Tp = 〈Treen(Σ),�, (succa
i )i≤n,a∈Σ, (ǫa)a∈Σ〉.

The Tree Algebra is the structure that in addition allows domain comparisons:

T = 〈Treen(Σ),�, (succa
i )i≤n,a∈Σ, (ǫa)a∈Σ,≈dom〉.

First-order formulae over T are called tree formulae.
We can show that many of the basic tree operations and predicates are definable

over Tp. There is a formula saying that t is a branch: ∀x, y (x � t∧ y � t) → (x �
y∨y � x). We denote this formula by η(t). We also write η(t, T ) for η(t)∧ t � T (t
is a branch of T ) and ηmax(t, T ) for η(t, T )∧¬∃t′ (t ≺ t′ ∧ η(t′, T )) (t is a maximal
branch of T ).

One can also see that succa
i could be defined in a number of different ways,

for instance, as extending the leftmost branch, or the rightmost branch, or only
extending branches. With each of those operations and � one would be able to
define succa

i . Furthermore, we can define T ⊓ T ′ as the greatest lower bound of T
and T ′ in � (which is a tree whose domain is the largest prefix-closed subset of
dom(T ) ∩ dom(T ′) on which f and f ′ coincide). We can also define a predicate
La on branches which tests if the leaf is labeled by a: La(t) ≡ (t = ǫa) ∨ ∃t′(t′ ≺
t ∧

∨

i t = succa
i (t′)).

Complete vs incomplete domains. In the literature (cf. [Comon et al. 1997;
Thomas 1997]), it is common to define many concepts related to regular tree lan-
guages for trees over complete domains D: that is, for every s ∈ D, either all
s · i, i ≤ n are in D, or none are.

We thus define a notion of completion of a tree: a completion of T = (D, f)
with respect to a symbol a ∈ Σ as T c

a = (D′, f ′) where D′ is the smallest complete
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domain that contains D, and f ′(s) = f(s) for s ∈ D, and f ′(s) = a for s ∈ D′ −D.
We often consider completions with some symbol ⊥ 6∈ Σ, and we shall write Σ⊥ for
Σ ∪ {⊥}.

Completions T c
a are definable in Tp. Indeed, T c

a is the smallest, with respect to
�, tree T ′ � T such that for any nonmaximal branch t of T ′, and for each i ≤ n,
either succb

i(t) � T for some b ∈ Σ, or succa
i (t) � T ′. Clearly this is definable over

Tp.

FO and MSO. A tree T = (D, f) in Treen(Σ) can be represented as a structure
〈D,<, (Succi)1≤i≤n, (Oa)a∈Σ〉, where < is the prefix relation on D, Succi(s, s

′) iff
s′ = s · i, and Oa is interpreted as {s | f(s) = a}. We then consider FO and MSO
defined over this vocabulary.

3.2 Tree algebra and tree automata

In this section, we show that sets definable by tree formulae are familiar objects:
they are regular (recognizable) tree languages/relations. Furthermore, formulae
over T can be compiled into tree automata, and vice versa: this automata-theoretic
characterization makes T a natural model to work in.

Definition 3.1. Let n ≥ 1. A tree automaton is a tuple A = (Q,Σ⊥, δ0, δn, F )
where Q is a finite set of states; F ⊆ Q is the set of final states; and, δ0 and δn are
functions from Σ⊥ and Qn × Σ⊥ to 2Q, respectively.

A run of A on a complete tree T = (D, f) is a mapping λ : D → Q such that
for every inner node s ∈ D (with n children), λ(s) ∈ δn(λ(s · 1), . . . , λ(s · n), f(s))
and for every leaf node s, λ(s) ∈ δ0(f(s)). A run is accepting if λ(ǫ) ∈ F . The
automaton accepts a tree when there is an accepting run.

A set of trees over complete domains is called regular if it is accepted by a tree
automaton. Extending this to arbitrary domains, we say that a set X ⊆ Treen(Σ)
is regular if the set Xc

⊥ = {T c
⊥ | T ∈ X} is accepted by a tree automaton.

The classical theorem of Doner [Doner 1970], and Thatcher and Wright [Thatcher
and Wright 1968] relates definability and regularity.

Theorem 3.2. A set of trees is MSO-definable iff it is regular.

We next define regular tree relations, that is, subsets of Treen(Σ) × . . . ×

Treen(Σ), following [Comon et al. 1997]. Let ~T = (T1, . . . , Tk) be a tuple of trees.

We represent such a tuple as a tree [~T ] in Treen(Σk
⊥). Let Ti = (Di, fi), i ≤ k.

Then [~T ] = (D,F ) where D = D1∪ . . .∪Dk and for each s ∈ D, F (s) is an element
of Σk

⊥, that is, F (s) = (a1, . . . , ak) in which

ai =

{

fi(s) if s ∈ Di;

⊥ otherwise.

Over complete domains, the notion of recognizability says that the set of trees [~T ]
is accepted by a tree automata over the alphabet Σk

⊥. To account for incomplete

domains, we say that X ⊆ Treen(Σ)k is regular iff the set {[~T ]c⊥⊥⊥ | ~T ∈ X} is
regular, that is, accepted by a tree automaton over the alphabet Σk

⊥. Here ⊥⊥⊥
stands for the k-tuple (⊥, . . . ,⊥).
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Theorem 3.3. (1 ) For any k, n ≥ 1, a subset of Treen(Σ)k is FO(T)-definable
iff it is regular.

(2 ) For any n ≥ 1, a subset of Treen(Σ) is FO(Tp)-definable iff it is regular.
Furthermore, for both (1) and (2), the translations between formulae and au-

tomata are effective.
Proof. (1) It is easy to see that the relations

{(T, T ′) | T ≺ T ′},

{(T, T ′) | T ′ = succa
i (T )}, a ∈ Σ, i ≤ n,

{(T, T ′) | T ≈dom T ′},

as well as the sets {ǫa}, a ∈ Σ, are regular (by constructing tree automata for
them). Furthermore, it is known that regular subsets of Treen(Σ)k are (effectively)
closed under the Boolean operations and projection [Comon et al. 1997], which
implies that every relation definable in T is regular. The statement about the
projection operations requires some care, since such closure is known for trees on
complete domains [Comon et al. 1997]. Dealing with arbitrary domains is not a

problem however. Suppose we have a formula ϕ(~T , V ), and let Rϕ = {[~T , V ]c⊥⊥⊥ |

ϕ(~T , V ) holds}. Then

{[~T ]c⊥⊥⊥ | ∃V ϕ(~T , V ) holds} =

{[~T ]c⊥⊥⊥ | ∃V [~T , V ]c⊥⊥⊥ ∈ Rϕ} =

{[~T ]c⊥⊥⊥ | ∃V [[~T ]c⊥⊥⊥, V
c
⊥] ∈ Rϕ} =

{[~T ]c⊥⊥⊥ | ∃V c
⊥ [[~T ]c⊥⊥⊥, V

c
⊥] ∈ Rϕ}

and now the closure under projection for trees over complete domains implies that
∃V ϕ(~T , V ) defines a regular relation.

To show that every regular relation is definable over T, we use equivalence of
being regular and being definable in MSO (Theorem 3.2). We make use of a
different vocabulary which enables us to get rid of first-order variables in formulae.
In particular, MSO is defined over the structure whose universe is a (complete)
tree domain, and the vocabulary is ⊆, sng, Succi, Pa, a ∈ Σ, cf. [Thomas 1997].
We may assume that all variables are second-order and they range over the subsets
of the domain of a tree. The meaning of the predicates is as follows: sng(X) means
that X is a singleton; Succi(X,Y ) means that X,Y are singletons, and Y is the
ith successor of X (that is, if X = {s}, then Y = {s · i}); Pa(X) means that every
node in X is labeled a. Furthermore, when n > 2, one can assume that for trees
over complete domains, sets X only range over antichains, that is, sets of strings
in {1, . . . , n}∗ such that none of them is a proper prefix of another [Potthoff and
Thomas 1993; Thomas 1997] (this fragment of MSO is called antichain logic). As
for n = 1 the theorem reduces to the string case, we can safely assume that n > 1.

Given a tuple of trees ~T = (T1, . . . , Tk), we have to show how to code antichain

logic on dom([~T ]c⊥⊥⊥) in FO over T. First, an antichain X in dom([~T ]c⊥⊥⊥) is coded by
a tree V whose leaves are precisely X (the labeling could be arbitrary in this case;
we assume that all nodes are labeled by a symbol a). One can test in T if a tree V

codes an antichain in dom([~T ]c⊥⊥⊥): this happens iff for each branch v of V , there is a
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branch ti of (Ti)
c
⊥, i ≤ k, such that dom(v) ⊆ dom(ti). Note that this is the same as

saying that there is a branch ti of (Ti)
c
a, i ≤ k, such that dom(v) ⊆ dom(ti). Since

completions are definable over Tp, we just need to express dom(T ) ⊆ dom(T ′) for
arbitrary T, T ′. But this is simply ∃T ′′ (T ′′ � T ′) ∧ (T ≈dom T ′).

Since antichains of dom([~T ]c⊥⊥⊥) are coded by trees, it remains to show how to code
the basic predicates of MSO. For sng, this is simply the formula η(·) defining a
branch. The successor relation Succ(X,Y ) is η(VX)∧η(VY )∧

∨

i(VY = succa
i (VX)),

where VX and VY are trees coding X and Y . The subset relation is translated
into a formula saying that every maximal branch of VX is a maximal branch of
VY . Finally, for each letter ~a ∈ Σk

⊥, we must define P~a(X). If VX codes X , this
amounts to saying that for every i ≤ k, every leaf of VX is labeled by ai in Ti, for
~a = (a1, . . . , ak). Note that each ai is either an element of Σ or ⊥. It suffices to
define this for VX being a branch (then one could say that the leaves of all maximal
branches are labeled by ~a). Then the formula ϕi(t) which is true for VX iff its leaf
is labeled ai in Ti, is the following: for ai ∈ Σ,

ϕi(t) ≡ ∃t′
(

η(t′, Ti) ∧ (t ≈dom t′) ∧
(

(t′ = ǫai
) ∨

n
∨

j=1

(∃t′′ (t′ = succai

j (t′′)))
)

)

,

and for ai = ⊥,

ϕi(t) ≡ ∃t′∃t′′
(

ηmax(t
′, Ti) ∧ η(t

′′) ∧ t′ ≺ t′′ ∧ t′′ ≈dom t
)

.

For (2), one direction has already been proved (that Tp only defines regular
relations). For the other direction, we use the same proof as for T, coding antichain

logic. When ~T consists of a single tree T , dom([~T ]c⊥⊥⊥) = dom(T c
⊥), that is, the

completion of the domain of T , and an antichain X is coded by a tree VX � T c
a

whose leaves are exactly the nodes in X . This eliminates the need for the ≈dom

predicate, and one can easily modify the previous proof to code MSO. 2

Thus, definability of sets of trees in Treen(Σ) is the same in Tp and T. For
relations, however, definability is different, as we shall see in the next section.

Furthermore, T plays the role of S for trees: that is, it is a universal tree-
automatic structures, as any other structure that only defines regular tree relations
is interpretable in it.

Consequences of the automata-theoretic representation. First, we can show that
in any formula ϕ(~T ), quantifiers only need to range over a finite set. Given a tuple
~T ∈ Treen(Σ)k, let Treen(Σ)|dom(~T ) be the set of all trees whose domain is a

subset of
⋃

T∈~T dom(T ). By encoding the run of a tree automaton over T, one can
see the following.

Corollary 3.4. The finite set Treen(Σ)|dom(~T ) is definable from ~T over T.

Furthermore, every formula ϕ(~T ) over T is equivalent to a formula in which quan-
tifiers range over Treen(Σ)|dom(~T ). 2

The tree automata representation also gives us decidability and lower complexity
bounds.

Corollary 3.5. The theory of T (and thus of Tp) is decidable. Decision pro-
cedures for both Tp and T have non-elementary complexity.
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Proof. Since translation from formulae to tree automata given in the proof of
Theorem 3.3 is effective, and since emptiness of tree automata is decidable, we
conclude that the theory of T is decidable.

For the non-elementary lower bound, we code WS1S, the weak monadic theory
of the successor relation on N. We fix the alphabet Σ to contain a single letter a.
Each number n is represented by a tree (in fact, a branch) tn where t0 = ǫa, and
dom(tn) = {1i | i ≤ n}. A finite set X = {n1, . . . , nk}, where n1 < . . . < nk, is
coded by a tree TX with dom(TX) = {1i | i ≤ nk} ∪ {1ni2 | i ≤ k}. Over Tp, we
can express that t is a branch coding n ∈ N (by saying that every proper subbranch
can only be extended by succa

1), and that T is a tree coding a finite set X ⊂ N (by
saying that all its branches are either of the form ti, or of the form succa

2(ti)). Since
≺ over tn expresses the usual ordering on N, we see that the successor relation is
definable. Finally, if T is of the form TX and t is of the form tn, then succa

2(t) ≺ T
holds iff n ∈ X . This shows that any weak WS1S sentence Φ over 〈N, succ〉 can be
transformed, in polynomial time, into a sentence ΦT over Tp such that Φ is valid
iff ΦT is. Hence, the decision problem for Tp is non-elementary. 2

3.3 Primal tree algebra and automata

The goal of this section is to compare the power of Tp and T. Since the previous
results show that all regular sets of trees can be defined in Tp (assuming n > 1: we
discuss the special case n = 1 later), one might ask whether the domain-comparison
operator ≈dom is in fact already definable in Tp. We show here that ≈dom is not
expressible in the primal tree algebra, and thus Tp and T are different. We make
the difference between the two models more concrete by presenting a restricted
model of tree automata that exactly captures definability in Tp.

Let ~T = (T1, . . . , Tk) be a tuple of trees. We say that t is a branch of ~T if t is a

branch of one of Tis. In this case we also write t ∈ ~T for
∨

i η(t, Ti). The automaton

model is called a splitting automaton; such a device accepts or rejects a tuple ~T by
defining a run over the set of all branches of ~T (as opposed to products of branches
as for general tree-tuple automata). Intuitively, a splitting automaton has parallel

threads moving up distinct branches of ~T , with these threads merging at the point
where the branches meet.

A splitting-vector is a function V that assigns to each (i, a) ∈ ∆ × Σ a finite set
of integers (which will be indices in the tuple of trees on which the automaton is
running) in such a way that for any fixed i, the sets V (i, a), a ∈ Σ, are disjoint.
The range of a splitting vector V is range(V ) =

⋃

(i,a)∈∆×Σ V (i, a).

For a finite set S, an S-splitting vector is a finite set V of tuples (i, a, J, s) ∈
∆×Σ×Pfin(N)×S, such that the projection on the first three components, denoted
by Subset(V ) = {(i, a, J) | ∃s (i, a, J, s) ∈ V }, is a splitting vector, and such that
for every (i, a) there is exactly one (i, a, J, s) ∈ V . We let State(V )(i, a) be the
unique s ∈ S such that for some J , (i, a, J, s) ∈ V . For an S-splitting vector, we
define the range of V to be the range of the ordinary splitting-vector Subset(V ).

An S-splitting rule is a rule of the form

(I, s) ⇐ V,

where I is a finite set of integers, s ∈ S, and V is an S-splitting vector with
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range(V ) ⊆ I. Intuitively, a splitting vector describes for each successor succa
i (t)

of a branch t which components of ~T have that successor. An S-splitting vector
describes the state of the machine on each of these successors of a branch, while a
rule describes a bottom-up transition to a new state and new set of trees in ~T .

An acceptance partition F is a function assigning to each a ∈ Σ a set J ∈ Pfin(N),
while an S-acceptance partition F is a function assigning to each a ∈ Σ a pair
(J, s) ∈ Pfin(N) × S. For such a function F , we let Subset(F ) and State(F ) be the
two projection functions: Subset(F ) is the function mapping a ∈ Σ to the J such
that (J, s) ∈ F (a), and State(F ) is the function that maps a ∈ Σ to the s such that
(J, s) ∈ F (a).

For a branch t, let supp(t, ~T ) be {i | t ∈ Ti}. Given ~T and a branch t of ~T , v(t, ~T )

is the splitting vector assigning to (i, a) the set {j | succa
i (t) ∈ Tj}. We let v(∅, ~T )

be the acceptance partition assigning to each a ∈ Σ the set {i | ǫa ∈ Ti}.
A k-dimensional (bottom-up) splitting automaton A is a tuple (S, δ, IR,F) where:

—S a finite set (the states of A).

—δ, the transition relation, is a finite set of S-splitting rules (I, s) ⇐ V with
I ⊆ {1, . . . , k}, with every S-splitting vector V contained in at least one rule.

—IR, the set of initialization rules is a set of rules of the form (I, s) ⇐ , where
I ⊆ {1, . . . , k}, and each subset I is in at least one rule of IR.

—A collection of S-acceptance partitions F , the accepting partitions of A.

A bottom-up splitting automaton is deterministic if there is at most one initial-
ization rule (I, s) ⇐, for each I ⊆ {1, . . . , k}, and in δ there is at most one rule
with a given right-hand side.

A run r of a k-dimensional bottom-up splitting automaton A on ~T of size k is a
function from the branches of ~T to the states S of A such that:

—For every frontier branch t (i.e. a branch such that no extension of t is a branch

of ~T ) with supp(t, ~T ) = I, r(t) is a state s such that (I, s) ⇐ is in IR.

—For every non-frontier branch t, r(t) is a state s such that (supp(t, ~T ), s) ⇐ V

is in δ, where Subset(V ) = v(t, ~T ) and State(V )(i, a) = r(succa
i (t)), whenever

succa
i (t) is in ~T .

A run is accepting if there is an S-acceptance partition F ∈ F with Subset(F ) =

v(∅, ~T ) and State(F )(a) = r(ǫa) for each a such that ǫa is in ~T .
The following is an example of a 2-splitting automatonA over alphabet Σ = {a, b}

∆ = {1, 2}:
IR = {({1}, s0) ⇐ }
δ = {({1}, s0) ⇐ {(1, b, {1}, s0), (2, b, {1}, s0)}

({1, 2}, s1) ⇐ {(1, b, {1}, s0)}
({1, 2}, s1) ⇐ {(1, a, {1, 2}, s1)}

F = {(a, {1, 2}, s1)}
The initial rule says what A does on nodes that have no successors: these nodes

must only be in the first tree, and on each such node we start in state s0. The first
rule in δ says that if a node n0 has both of its successors n1 and n2 in the first tree
with label b and A is in state s0, then n0 is only in the first tree, and A remains
in state s0 on n0. The second rule says that on a node n0 with only a 1-successor
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n1, if n1 is labeled with b and is only in the first tree, and A is in s0 on n1, then
n0 is in both trees, and A is in state s1 on n0. The final rule says that if n0 has
only 1-successor n1, n1 is in both trees, and n1 is labeled with a, then n0 is in both
trees, and the state of A is unchanged in moving to n0. The acceptance partition
describes the requirement that the root node be common to both trees, labeled
with a, and in state s1. This automaton accepts a pair (T1, T2) iff T1 consists of a
binary tree labeled with b placed below a linear stem labeled with a, T2 ≺ T1, and
T2 is exactly the linear stem.

In the special case of a 1-dimensional automaton, a splitting vector V is just a
collection of pairs (i, a) ∈ ∆ × Σ, such that for each i there is at most one a with
(i, a) ∈ V . A splitting vector can thus be identified with a function from ∆ into Σ⊥.
An S-splitting vector likewise corresponds to a function from ∆ into Σ⊥ × S, and
the set of rules of the automaton can be identified with a partial function mapping
f in (Σ⊥ × S)

∆
to s ∈ S. Under this identification, a run of a splitting automaton

over a single tree T corresponds to a run of a standard bottom-up tree automaton
over T c

⊥, and hence the set of trees accepted by a 1-dimensional splitting automaton
is regular.

Theorem 3.6. A subset of Treen(Σ)k is definable by a formula of Tp iff it
is accepted by a k-dimensional splitting automaton. Furthermore, the translations
from formulae to automata and vice versa are effective.

Proof. We first note the following (which can easily be proved via the usual
subset construction):

Lemma 3.7. For every bottom-up splitting automaton there is a deterministic
bottom-up splitting automaton accepting the same sets of tuples of trees. 2

Lemma 3.8. The set of families of tree-sequences definable from bottom-up split-
ting automata is closed under complement, union, and projection.

Proof of Lemma 3.8. Union is straightforward for deterministic automata. For
complement, if we are given a deterministic bottom-up splitting automaton A, let
A′ be formed by simply complementing the set of acceptance partitions of A. Then
for any vector ~T it is clear that the unique run of A on ~T accepts iff the unique run
of A′ on ~T rejects.

We now turn to projection. Suppose we have a deterministic automaton
A = (S, δ, IR,F) accepting sequences T1 . . . Tk+1. We will create a new non-
deterministic automaton A′ = (S′, δ′, IR′,F ′) as follows.

Let δ1 be the set of rules such that every head is of the form ({k+ 1}, s), IR1 be
all initialization rules of the form ({k+ 1}, s) ⇐, and S1 be all the states reachable
from IR1 by applying the rules in δ1. Then A1 = (S1, δ1, IR1, ∅) can be considered
as a standard bottom-up tree automaton (that is, an automaton over a single tree).

The set of states S′ of A′ will be S × {0, 1}. An S′-splitting vector V ′ is con-
sistent if for every i ∈ ∆ there are no distinct a1, a2 ∈ Σ and s1, s2 ∈ S such that
State(V ′(i, a1)) = (s1, 1) and State(V ′(i, a2)) = (s2, 1).

Similarly, an S′-acceptance partition F ′ is consistent if there are no distinct
a1, a2 ∈ Σ and s1, s2 ∈ S such that State(F ′(i, a1)) = (s1, 1) and State(F ′(i, a2)) =
(s2, 1).

We construct δ′ and IR′ iteratively. First, initialize both to ∅. Then, for all R =
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(Ih, sh) ⇐ V in δ, use the following algorithm. If V contains {(i0, a0, {k + 1}, s0))
with s0 not in S1, or if Ih = {k+1}, then skip to the next R. Otherwise, transform
R to the rule R′ obtained by:

—dropping every tuple of the form (i, a, {k + 1}, s) from V ,

—replacing every element of V of the form (i, a, I ∪ {k + 1}, s) with (i, a, I, (s, 1)),

—replacing every element of V of the form (i, a, I, s) with I ⊂ k with (i, a, I, (s, 0)),

—if Ih = I ∪ {k + 1} for some I ⊂ {1 . . . k}, then replacing the head of R with
(Ih, (s, 1)), otherwise replacing the head of R with (Ih, (s, 0)).

If the resulting rule R′ has empty righthand side, then we add R′ to IR′. Oth-
erwise, if the right-hand side is consistent, we add it to δ′.

Now for all initialization rules R = (Ih, sh) ⇐ in IR use the following algorithm.
If Ih = {k + 1}, then skip to the next rule in IR. Otherwise transform R to the
rule R′ obtained by:

R′ =

{

(I, (s, 1)) ⇐ , if Ih = I ∪ {k + 1}

(Ih, (s, 0)) ⇐ , otherwise

For every S-acceptance partition f ∈ F , let f ′ be the S′-acceptance partition
such that:

—f ′(a) = (J − {k + 1}, (s, 1)) if f(a) = (J, s) and k + 1 ∈ J ,

—f ′(a) = (J, (s, 0)) if f(a) = (J, s) and k + 1 not in J .

We let F ′ = {f ′ | f ∈ F and f ′ is consistent}.
The above fulfills the definition of a splitting-automaton, except possibly for the

“completeness” requirement that every splitting vector be included in the righthand
side of some rule. We can complete the automaton with trivial rules that transition
every “missing” vector to a sink state.

Claim 3.9. A′ = (S′, δ′, IR′,F ′) is an automaton accepting

{(T1 . . . Tk) | ∃Tk+1 (T1 . . . Tk+1) is accepted by A}.

Proof of claim 3.9. In one direction, suppose (T1, . . . , Tk+1) is accepted by A, with
run being an accepting run. Take the function r′ mapping branches of (T1, . . . , Tk)
to S′ as follows: r′ assigns (s, 1) to branch t iff r assigns s to t and t ∈ Tk+1, while
r′ assigns (s, 0) to branch t iff r assigns s to t and t 6∈ Tk+1. Then one can check
that r′ is a run of A′ accepting (T1, . . . , Tk).

Conversely, suppose that r′ is a run of A′ accepting (T1, . . . , Tk). Let B1 be the
set of branches t such that r′(t) = (s, 1) for some s. The consistency conditions
can be used to verify that B1 contains no two distinct branches with the same
domain (if there were two such branches, either their meet is nonempty and we get
a violation of the consistency conditions on transitions, or their meet is empty and
we end up with a violation of the consistency condition on acceptance partitions).

Let B2 be the set of branches t in B1 that are frontier branches of ~T . Since the
initial rules of A′ are constructed from either transition rules of A or initialization
rules of A, we see that if r′(t) = (s, 1) for t ∈ B2, we must have either (s, J ∪ {k +
1}) ∈ IR for some J , or (I, s) ⇐ V for some s ∈ S, I ⊂ {1 . . . k+1}, and S-splitting
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vector V with range(V ) = {k+ 1} and State(V ) ⊂ S1. Let B3 be the subset of B2

for which the latter alternative holds, and for each t in B3 let Vt be the S-splitting
vector above. Let Ext(t) = {(i, a) ∈ ∆ × Σ | ∃st,i,a ∈ S1 (i, a, {k+ 1}, st,i,a) ∈ Vt},
and for each (i, a) ∈ Ext(t) choose a witness st,i,a and a tree Tt,i,a such that the
automaton A1 run on Tt,i,a ends in state st,i,a (one exists from the definition of
S1 and A1). Now let Tk+1 = B1 ∪

⋃

t∈B3

⋃

(i,a)∈Ext(t) Tt,i,a. We can check that

(T1, . . . , Tk+1) is accepted by A. This completes the proof of the claim.
Since the atomic formulae of Tp are clearly definable by splitting automata, we

have shown that every definable set of Tp is definable by a bottom-up splitting
automaton.

We now show the converse, that is, that every set accepted by a splitting au-
tomaton is definable in Tp.

Let A = (S, δ, IR,F) be a deterministic k-dimensional splitting automaton. We
assume that for every state s ∈ S there is exactly one I ⊂ {1 . . . k} such that (I, s)
occurs in a rule of δ or IR . One can transform A into an automaton with this
property by creating one copy of each state for every subset of {1 . . . k} and then
replacing every appearance of (I, s) in a rule with (I, sI), where sI is the copy of
s for I. With the assumptions above, for s ∈ S, we let I(A, s) denote the subset I
such that (I, s) occurs in a rule of A.

Fix a non-empty subset of {1 . . . k}, denoted by I0. Given a sequence of trees ~T ,

we let ~T=(I0) = {t | t a branch of Ti ↔ i ∈ I0}. Note that every branch of ~T=(I0)
is a branch of ⊓i∈I0Ti.

An I0-component is a maximally connected subset of ~T=(I0). (A collection S of
branches of a single tree is connected if the set {Fr(t) | t ∈ S} is a connected subset
of the infinite tree Σ∗.) An I0-root is a minimal element of an I0 component. Given

a branch t ∈ ~T , we let Comp(t, ~T ) be the component of t in ~T .

For a state s ∈ S, we let A(s, ~T ) = {x | x is an I0-root and the unique run of A

on ~T assigns x to state s}, where I0 = I(A, s).

Lemma 3.10. For every state s ∈ S, there is a Tp formula ϕ(v1 . . . vk, w) such

that Tp |= ϕ(~T , t) iff t is a branch of ~T and t is in A(s, ~T ).

This lemma suffices, since the set of ~T accepted by the automaton is a boolean
combination of the sets {~T | ǫa is in A(s, ~T )} for s ∈ S and a ∈ Σ.

Before we prove the Lemma, we need some preliminaries. For a tree T , let Bd(T )
be the set of branches t of T such that for some i, t has no extension in direction
i. The property t ∈ Bd(T ) is definable in Tp.

We note that the argument in Theorem 3.3 can be used to show the following.

Claim 3.11. Let ϕ(E1, . . . , Ej , d) be a formula of MSO (in the vocabulary given
in the proof of Theorem 3.3), with Ei’s second-order variables and d a first-order
variable. Let F (~v, w, y) be a Tp definable predicate such that for every tree-sequence
~T and branch t ∈ ~T , the set F (~T , t) = {t′ | Tp |= F (~T , t, t′)} is a connected subset

of some Ti with t ∈ F (~T , t). For i ≤ j, let Gi(~v, w, y) be definable predicates of Tp

such that Gi(~T , t, t
′) implies t′ ∈ Bd(F (~T , t)). For a tree-sequence ~T and branch t,

we let Gi(~T , t) be the set {Fr(t′) | Tp |= Gi(~T , t, t
′)}.

Let FFF (~T , t) be the tree whose branches are precisely those of F (~T , t), considered
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as a structure of the MSO vocabulary for trees. Then the set

{(~T , t) | FFF (~T , t) |= ϕ((F (~T , t), G1(~T , t), . . . Gj(~T , t),Fr(t)))}

is definable in Tp.

The claim is proved exactly as in Theorem 3.3, part b). Instead of coding quan-
tification over subsets of a variable v, we have to code quantification over subsets
of the connected set defined by definable predicate F (~v, w, z). However, the ele-
ments z of this set are all contained in some fixed vi, and so this is the same as
quantifying over subsets S of vi such that all elements of S happen to satisfy the
predicate F (~v, w, z). Once again, we can work in the completion FFF (~T , t)c

⊥, and
there it suffices to code quantification over antichains of FFF (~v, w, z)c

⊥, which we can
do via subtrees of vi. First-order quantification is mimicked by quantification over
branches, and tests for membership in the additional predicates Ei = Gi(~T , t) can
be performed by the assumption that Gi is definable in Tp.

We now prove Lemma 3.10 by induction on | I0 |= I(A, s). For I0 = {i}, any

run of A that witnesses t ∈ A(s, ~T ) uses transitions and initial states involving only
{i}. Hence this run is simply the run of a standard bottom-up automaton over the
completion of Ti with respect to ⊥. There is thus an MSO statement ϕ(E, d) (with
E a free second-order variable) such that for every branch t,

(Comp(t, ~T ),Fr(t)) |= ϕ iff Fr(t) ∈ A(~T , s)

The ϕ above simply asserts the existence of states witnessing the run. By the
claim above this implies that the set {~T , t | t ≺ ~T (I0) and (~T (t),Fr(t)) |= ϕ} is
definable in Tp, and the base case now follows.

For the inductive step, fix I0 and s0 ∈ S with I(A, s0) = I0. By induction, we

know that for each s with |I(A, s)| < |I0|, there is a predicate defining A(~T , s). Let
F (~v, w, y) hold iff supp(w,~v) = supp(y,~v) = I0, w is an I0-root of ~v, and y is in the

~w component of y. That is, F (~T , t) defines the I0 component whose root is t. For
any S-splitting vector V such that |Subset(V (i, a))| < |I0| for each i and a, we have

a formula GV (~v, w, y) that holds of ~T , t, t′ iff t and t′ are branches in F (~T , t), t is

in Bd(F (~T , t)) and succa
i (t) is assigned by the run of A to State(V (i, a)) whenever

|supp(succa
i (t), ~T )| < |I0|. Let V1, . . . , Vl enumerate all these splitting vectors, with

GVi
being the corresponding predicates. Let Ge(~v, w, y) be an additional formula

saying of (~T , t, t′) that t′ is a maximal branch of some Ti that is in Bd(F (~T , t)).
We now apply the claim above, with F (~v, w, y) and the predicates GVi

(~v, w, y)
and Ge above. The formula ϕ(EV1

. . . EVl
, Ee, d) will state of T, d that d is the root

of T and there is a partition of Bd(T ) into sets {Bs | s ∈ S, I(A, s) = I0} such that
d ∈ Bs0

and for all q in Bd(T ), if q ∈ Bs then either (I0, s) ∈ IR and q ∈ Ee or
there is (I0, s) ⇐ V in δ and an S-splitting vector Vm with |Subset(Vm(i, a))| < |I0|
for each i and a, such that

—for every (i, a, I ′, s′) ∈ V with |I ′| < |I0|, q ∈ EVm
iff Vm(i, a) = s′, and

—for every (i, a, I0, s
′) ∈ V , succa

i (q) ∈ Bs′ .

The formula ϕ applied to the predicates GVi
: i ≤ l and F states exactly that

we have a run of A starting at the leaves of the boundary that assigns d to s0.
Definability of A(s0, ~T ) in Tp now follows from the claim.
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This completes the proof of Lemma 3.10 and Theorem 3.6. 2

Consequences of the automaton representation for Tp. The main consequence is
that Tp and T are different: T defines more subsets of Treen(Σ)k for any k ≥ 2.

Corollary 3.12. If |Σ |> 1, then the predicate ≈dom is not expressible in Tp.

Proof. For each n, let Hn and Kn be distinct integers such that for every string
automaton SA with n or fewer states, SA’s run on the string bHn terminates in the
same state as its run on the string bKn . Let 1a,Hn

consist of the tree with domain
1Hn and which maps everything to a ∈ Σ and similarly for 1a,Kn

. Let 1b,Hn
consist

of the tree with domain 1Hn and which maps everything to b ∈ Σ, and similarly
for 1b,Kn

. Note that 1a,Hn
≈dom 1b,Hn

but 1a,Hn
≈dom 1b,Kn

does not hold. We
will show that the pair Samen = (1a,Hn

, 1b,Hn
) is indistinguishable from the pair

Diffn = (1a,Hn
, 1b,Kn

) on splitting automata with at most n states. By Theorem
3.6 this implies that there can be no Tp formula that distinguishes each Diffn from
Samen. Since there is such a formula in T, this separates T from Tp.

Let A be any deterministic 2-dimensional splitting automaton with n or fewer
states accepting Samen. Clearly, the run of A on Samen or Diffn must begin with
initial rules of the form ({1}, s) ⇐ and ({2}, s) ⇐, make transitions δ only of the
form ({1}, s) ⇐ {(1, a, {1}, s′)} and ({{2}, s) ⇐ {(1, b, {2}, s′)} (for brevity, we
omit all tuples of the form (i, a, ∅, s) | i ∈ ∆, a ∈ Σ in the righthand side of rules).
Furthermore, if the run assigns ǫa to state sa and ǫb to sb on some run, then there
must be an acceptance partition in F of the form {(a, {1}, sa), (b, {2}, sb)}.

Let sa and sb be the states assigned to ǫa and ǫb by the accepting run of A on
Samen, and let s′a and s′b be the two states reached in A on the run on Diffn. Clearly
s′a = sa, since the components extending ǫa in each pair are identical.

We can form a string automaton SAb whose states are the states of A, initial
states {s | ({2}, s) ⇐ ∈ IR}. and whose transitions (s, a, s′) are exactly those
such that ({2}, s) ⇐ {(1, b, {2}, s′)} ∈ δ. That is, a run of SAb corresponds exactly
to a run of A on the second component.

Based on this correspondence, we see that the run of SAb on bHn reaches the
state sb. But then by construction, the run of SAb on the string bKn also reaches
state sb. But using the correspondence above in reverse, we see that the run of SA
on Diffn assigns sb to ǫb. Hence we see that SA accepts Diffn also, and therefore
SA cannot distinguish Diffn from Samen, which completes the proof. 2

Another consequence is that in Tp, quantification can be restricted to a finite
set. For a symbol a ∈ Σ, let Treen(Σ)|~T c

a
be the set of all trees T0 such that every

branch of T0 is a branch of a tree T c
a , T ∈ ~T . Note that this set is definable from ~T

over Tp. By encoding the run of a splitting automaton, we can show:

Corollary 3.13. For any a ∈ Σ, and every Tp formula ϕ(~T ), there is an
equivalent formula in which the quantifiers range over Treen(Σ)|~T c

a
. 2

3.4 Expressibility and model theory

We now study model theoretic properties and the expressive power of the tree
algebras. We start with two results that show a sharp contrast between T and
Tp on the one hand, and term algebra on the other hand. As mentioned in the
introduction, term algebras have a particularly well behaved model theory: they are
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stable (which implies that no linear order is definable), have finite VC dimension,
and admit quantifier-elimination. In contrast to this, we can show:

Proposition 3.14. There is a linear ordering on Treen(Σ) definable in Tp.
Proof. We show how to define a linear order <b on branches. Once this is done,

by a standard construction for lifting a linear order to finite subsets of a set, the
formula ϕ<(T1, T2) given by

∀t1
(

(

ηmax(t1, T1)∧¬ηmax(t1, T2)
)

→ ∃t2
(

ηmax(t2, T2)∧¬ηmax(t2, T1)∧ t1 <b t2
)

)

defines a linear ordering on Treen(Σ). The ordering t <b t
′ is defined as follows.

First we fix an ordering < on Σ. Assume that t 6= t′. If t ≺ t′, then t <b t
′.

Otherwise, let t0 = t ⊓ t′ and let s = Fr(t0). Assume that s · i ∈ dom(t) ∩ dom(t′)
for some i ≤ n. Then t <b t

′ iff f(s · i) < f ′(s · i). Otherwise, we have i 6= j such
that s · i ∈ dom(t) and s · j ∈ dom(t′). Then t <b t

′ iff i < j.
Clearly for t 6= t′ either t <b t

′ or t′ <b t. It remains to prove transitivity. For
this, 12 cases arise, and it is routine to check all of them. 2

Since there is no linear order definable in a term algebra, the operations of Tp

clearly cannot be first-order definable in term algebra.
Let joina(T1, T2) be the binary tree whose root is labeled a, and whose left

and right subtrees are T1 and T2 respectively. The structure 〈Treen(Σ),≺
, (joina)a∈Σ, (ǫa)a∈Σ〉 corresponds to the first-order theory of FT≤ constraints over
feature trees studied in [Müller and Niehren 2000; Müller et al. 2001]. Since that
theory is known to be undecidable [Müller et al. 2001], we obtain:

Proposition 3.15. joina is not definable in T. 2

One can also give a direct proof, showing that with joina one can define predicates
not recognizable by tree automata.

Thus, first-order logic over Tp and T is incomparable with first-order logic over
term and feature algebras [Müller et al. 2001; Dantsin and Voronkov 2000].

VC dimension. We now show that the behavior of definable families in Tp and
T formula is not as tame as in a term algebra. A standard notion of tameness for
definable families is given by the concept of VC dimension (cf. [Anthony and Biggs
1992]) (also known as not having the independence property [Laskowski 1992]).
Given an infinite set X and a family C of its subsets, X shatters a finite set F ⊂ X
if {F∩C | C ∈ C} is the powerset of F . The VC dimension of C is the maximum size
of a finite set it shatters (or ∞ if arbitrarily large finite sets are shattered). Given a
structure M over a set U and a formula ϕ(x1, . . . , xm, yl, . . . , yk) in the language of

M, the definable family given by ϕ is { {~a ∈ Um | M |= ϕ(~a,~b)} | ~b ∈ Uk}. We say
that M has finite VC dimension if every definable family has finite VC dimension.
From the point of view of learning theory, this means that every definable family is
PAC-learnable [Anthony and Biggs 1992]. Finite VC dimension also implies strong
bounds on the expressiveness of relational query languages [Benedikt and Libkin
2000; Benedikt et al. 2003]. It turns out that the presence of the extension predicate
≺, prevents M from having finite VC dimension.

Proposition 3.16. For any nonempty Σ, the structure 〈Tree2(Σ),�〉 does not
have finite VC dimension. Hence Tp and T do not have finite VC dimension. 2
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Model Sp Tp S T

one-dimension *-free regular regular regular
definable sets
arbitrary counter-free splitting regular regular
definable sets prefix automata automata
VC dimension finite infinite infinite infinite
FO theory decidable decidable decidable decidable
(weak) MSO theory decidable undecidable undecidable undecidable

Fig. 1. Comparison of string and tree models

Proof. The formula ηmax(t, T ) saying that t is maximal branch of T is definable in
〈Tree2(Σ),�〉, and it is very easy to see that it has infinite VC dimension. 2

Model theory of strings vs. model theory of trees. We remarked before that if
the alphabet of directions has a unique element, then trees over such alphabet are
naturally associated with strings: that is, trees in Tree1(Σ) are in 1-1 correspon-
dence with Σ∗. The analogs of T and Tp under this correspondence are S and
Sp, respectively. Figure 1 summarizes results on T,Tp, and their string analogs
S [Bruyère et al. 1994; Blumensath and Gräel 2000] and Sp [Benedikt et al. 2003].
It turns out that model-theoretically S and T are rather close, but Sp and Tp are
very different. The first line of the table of Figure 1 talks about one-dimensional de-
finable sets, that is, subsets of Σ∗ or Treen(Σ). The second line is about arbitrary
definable sets. The automaton construction for Sp is a counter-free restriction of
regular prefix automata of [Angluin and Hoover 1984]. No similar restriction (ei-
ther to first-order definable or star-free tree languages [Thomas 1984]) is possible
over Tp, since even in the one-dimensional case, arbitrary regular tree languages
are definable.

The third line compares VC dimension of definable families. The fourth and the
fifth line compare first-order and weak monadic second-order theories; the undecid-
ability of the latter for Tp is stated below; the routine proof is omitted.

Proposition 3.17. One can code arithmetic (+,×) in weak MSO over Tp.
Consequently, the weak MSO theory of Tp (and even the weak EMSO theory) is
undecidable. 2

3.5 Branch quantification

In this section we present two results on restrictions of FO that capture some
familiar subclasses of regular tree languages: those definable in FO and the monadic
chain logic [Thomas 1987]. Let T = (D, f) be a tree. Then a set V ⊆ D is a chain
iff for all s, s′ ∈ V , s ≤ s′ or s′ ≤ s. Monadic chain logic, denoted MSOchain, is the
restriction of MSO where set quantification is restricted to sets that are chains.
We write ∃chainX to emphasize that X can only be interpreted by a chain.

The restrictions on FO(Tp) and FO(T) are based on quantification over branches.
That is, quantification is not over arbitrary trees, but only over branches. These
restrictions will be denoted by FOη(Tp) and FOη(T). We also use the notation
∃η and ∀η to emphasize that quantification is over branches. Clearly, these can be
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defined in FO(Tp) and FO(T).
We state the results for definable subsets of Treen(Σ). For T, the results

straightforwardly extend to definability of relations. A k-ary relation R on trees
over Σ is definable in a logic like FO,MSO, etc, if the set {[~T ] | ~T ∈ R} of trees
over Σk

⊥ is definable in the logic.

Theorem 3.18. a) A set of Treen(Σ)-trees is FO-definable iff it is FOη(Tp)-
definable.

b) A set of Treen(Σ)-trees is MSOchain-definable iff it is FOη(T)-definable.

Proof. We recall that η(t) and η(t, T ) express that t is a branch and that t is a
branch of T , respectively.

We start by proving part a).
We first show that every FO-definable set of trees is also FOη(Tp)-definable. To

this end, we associate with every node in T the branch ending in that node. So,
we prove by induction on the structure of an FO-formula ϕ(x1, . . . , xk) that there
is a FO(Tp)-formula ϕ′(T, T1, . . . , Tk) such that

T |= ϕ(v1, . . . , vk) iff Tp |= ϕ′(T, T1, . . . , Tk),

where quantification in ϕ′ is restricted to branches and Ti is the branch of T ending
in vi. The proof proceeds by induction on the structure of FO-formulae.

If ϕ is of the form succi(x1, x2), then ϕ(T, T1, T2) is

η(T1, T ) ∧ η(T2, T ) ∧
∨

a∈Σ

succa
i (T1) = T2.

If ϕ is of the form Oa(x1) then ϕ′(T, T1) is

η(T1, T ) ∧ La(T1),

where La(T1) is the formula ǫa = T1 ∨ ∃ηT2

∨

i≤n succa
i (T2) = T1 expressing that

the last vertex of T1 is labeled with a.
If ϕ is of the form x1 ≤ x2 then ϕ′(T, T1, T2) is

η(T1, T ) ∧ η(T2, T ) ∧ T1 � T2.

Closure under boolean connectives is immediate. Quantification is restricted to
branches of T .

We now prove that every FOη(Tp)-definable set of trees is also FO-definable.
First, we recall and introduce some new notation. We shall write T1 ≡k T2 if
the duplicator can win the k-round game on T1 and T2 considered as first-order
structures, (Tp, T1) ≡

η
k (Tp, T2) if the duplicator wins a k-round branch-restricted

game that starts with (T1, T2), and (Tp, T1) ≡
η(T1,T2)
k (Tp, T2) if the duplicator wins

a k-round branch-restricted game that starts with (T1, T2) in which in addition all
moves are branches of T1 and T2 respectively. Here, η(T1, T2) denotes the set of
branches occurring in T1 or T2. We will show that for every k > 0, there exists
m > 0, such that:

(1) T1 ≡k T2 implies (Tp, T1) ≡
η(T1,T2)
k (Tp, T2), and

(2) (Tp, T1) ≡
η(T1,T2)
m (Tp, T2) implies (Tp, T1) ≡

η
k (Tp, T2).
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Combining these, we shall conclude that each FOη(Tp)-definable set of ranked
trees is a union of FO types and thus is FO-definable.

For 1), to produce the winning strategy for (Tp, T1) ≡
η(T1,T2)
k (Tp, T2), every

time a branch, say t1 ∈ T1 is played, the duplicator pretends that the spoiler plays
the leaf of that branch in the game on T1 and T2, finds the response (which is a
node in T2), and plays the branch that ends in that node. It is easy to see that this
guarantees a win.

For 2), we let m = k + 3. The general idea, here and for many other proofs, is
as follows. For each move by the spoiler in the branch-restricted game on (Tp, T1)
and (Tp, T2), the duplicator constructs a certain branch in η(T1, T2) and pretends
that the spoiler makes a move with that branch in the η(T1, T2)-restricted game
on (Tp, T1) and (Tp, T2), where, by the assumption, he has a winning strategy.
He then uses this winning strategy to find his response, and uses this response to
construct the response in the branch-restricted game on (Tp, T1) and (Tp, T2). The
chosen bound m ensures that this strategy guarantees him a win.

We now describe the strategy. Let T ′∩T ′′ be the tree whose domain is the largest
prefix-closed subset of domains of T ′ and T ′′ on which labellings from T ′ and T ′′

coincide (and the labeling of T ′ ∩ T ′′ is inherited from T ′ and T ′′).
We denote moves in the game on (Tp, T1) and (Tp, T2) by t1i and t2i, re-

spectively, for round i ≤ k. Furthermore, after each round i, we also have a
configuration ((t′11, . . . , t

′
1i), (t

′
21, . . . , t

′
2i)) corresponding to the winning strategy in

(Tp, T1) ≡
η(T1,T2)
m (Tp, T2).

The game proceed as follows. Suppose in round i (1 ≤ i ≤ k), the spoiler plays t1i

in (Tp, T1) (the case of a move in (Tp, T2) is symmetric). The duplicator computes
t′1i as t1i ∩ T1 and augments the configuration ((t′11, . . . , t

′
1 i−1), (t

′
21, . . . , t

′
2 i−1)) to

((t′11, . . . , t
′
1i), (t

′
21, . . . , t

′
2i)) where t′2i is the response to t′1i according to the winning

strategy (Tp, T1) ≡
η(T1,T2)
m (Tp, T2).

Let s be the leaf node of t′1i, and let s · j1, s · j1 · j2, . . ., s · j1 · j2 · · · jp be the
remaining nodes in t1i. Let s′ be the leaf of t′2i; we construct t2i by adding the
nodes s′ · j1, . . ., s′ · j1 · j2 · · · jp to t′2i, where for each q ≤ p, s′ · j1 · j2 · · · jq has the
same label as s · j1 · j2 · · · jq in t1i.

It remains to show that this strategy guarantees a win for the duplicator. First,
we argue that

t′1i = t1i ∩ T1 and t′2i = t2i ∩ T2. (1)

For t′1i the claim holds by construction. For t′2i, suppose the leaf node of t′1i is s,
its child in t1i is s · j and labeled by a, and s′ is the leaf of t′2i. Then the node
s′ · j is either not in T2 or is not labeled a. Indeed, for each a and j there is a
quantifier-rank 3 formula αa

j (t, T ) that holds iff t is a branch of T whose leafs jth
successor is either not in the domain of T , or is not labeled a. As m was chosen to
be k + 3, αa

j (t′1i, T1) holds iff αa
j (t′2i, T2) does. Hence, t′2i = t2i ∩ T2.

We show that {(t1j , t2j) | 1 ≤ j ≤ i)} defines a partial isomorphism from (Tp, T1)
to (Tp, T2) under the assumption that both {(t1j, t2j) | 1 ≤ j ≤ i − 1)} and
{(t′1j , t

′
2j) | 1 ≤ j ≤ i)} define a partial isomorphism from (Tp, T1) to (Tp, T2). By

(1), we get that t1i is a branch of T1 iff t2i is a branch of T2. By construction,
t1i = ǫa iff t2i = ǫa for all a ∈ Σ. Suppose t1i � t1j , for some j. We distinguish two
cases: (a) t1i is a branch of T1. Then t2i is a branch of T2. Hence, t′1i � t′1j � t1j
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and t2i = t′2i � t′2j � t2j . (b) t1i is not a branch of T1. From (1) and t1i � t1j it
follows that t′1i = t′1j . So, t′2i = t′2j and t2i � t2j .

Finally, let succai (t1i, t1j). We distinguish two cases. (a) t1i is a branch of T1.
Clearly, if t1j is also a branch of T1, then succak(t2i, t2j). Otherwise, as before,
t1i = t′1j and therefore t2i = t′2j . Moreover, if s1 and s2 are the leaf node of t′1j and
t′2j , respectively, then t1j and t2j are obtained by adding the nodes s1 · k and s2 · k
with label a to t′1j and t′2j , respectively. So, succak(t2i, t2j). (b) t1i is not a branch
of T1. Then, t′1i = t′1j and t′2i = t′2j . Let s1 and s2 be the leaf node of t′1j and t′2j ,
respectively. Let s1 · j1, s1 · j1 · j2, . . ., s1 · j1 · j2 · · · jp be the remaining nodes in
t1i. Then, s1 · j1, s1 · j1 · j2, . . ., s1 · j1 · j2 · · · jp, s2 · j1 · j2 · · · jp · k are the remaining
nodes in t1j . However, with s1 replaced with s2, these are also the remaining nodes
of t2i and t2j . Hence, succak(t2i, t2j).

The remaining dual cases are straightforward adaptations.

We next prove part b).
We start by showing that every MSOchain-definable set of trees is FOη(T)-

definable. We only discuss the cases not addressed in the previous proof: chain
quantification ∃chainX . . . and X(x). With every set variable X we associate a
variable TX which will be interpreted by a branch where positions are labeled with
zeros and one’s and whose domain is a subset of T . The idea is that 1-labeled nodes
are in the set X while 0-labeled nodes are not. Note that we tacitly assume that
0, 1 ∈ Σ. More precisely, the formula X(x1) is equivalent to

η(T1, T ) ∧ ∃ηT ′(T ′ ≈dom T1 ∧ T
′ � TX ∧ L1(T1)).

The formula ∃chainX . . . is equivalent to

∃ηTX∃T ′(η(T ′, T ) ∧ T ′ ≈dom TX ∧ ¬∃ηT ′′(T ′′ � TX ∧ ¬L0(T
′′) ∧ ¬L1(T

′′)) . . .).

Here, La with a = 0, 1 is the formula defined in (1).
The proof that shows that every FOη(T)-definable set of trees is MSOchain-

definable proceeds along the same lines as the proof for Tp. We write T1 ≡MSOchain

k

T2 if the duplicator can win the k-round MSOchain game on T1 and T2; (T, T1) ≡
η
k

(T, T2) if the duplicator wins a k-round branch-restricted game that starts with

(T1, T2); and, (T, T1) ≡
η(T1,T2)
k (T, T2) if the duplicator wins a k-round branch-

restricted game that starts with (T1, T2) in which in addition all moves are branches
whose domains are contained in dom(T1) or dom(T2), respectively. We will show
that for every k > 0, there exists m, l > 0, such that:

(1) T1 ≡MSOchain

l T2 implies (T, T1) ≡
η(T1,T2)
k (T, T2), and

(2) (T, T1) ≡
η(T1,T2)
m (T, T2) implies (T, T1) ≡

η
k (T, T2).

The result will follow from these.
Assume, without loss of generality, that Σ = {a, b}. For the first item, we choose l

to be 2k+3. Each move in the game (T, T1) ≡
η(T1,T2)
k (T, T2), say t1 with dom(t1) ⊆

dom(T1), is mimicked by two moves in the game T1 ≡MSOchain

l T2: in the first move,
a chain Ca corresponding to t1’s nodes labeled a is played, and in the second move,
it is the chain Cb corresponding to t1’s nodes labeled b. Assume that the duplicator
responses according to the winning strategy are C′

a and C′
b. The fact that the game
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can continue for an extra 3 moves guarantees that C′
a ∩ C′

b = ∅, and that C′
a ∪ C′

b

encodes a branch in T2. So, there is a branch t2 with dom(t2) ⊆ dom(T2) whose
nodes labeled a (respectively, b) are precisely those in C′

a (respectively, C′
b). This

branch is the duplicator’s response to t1. It is routine to show that the duplicator
wins the game.

The proof for the second item mimics that for Tp, except that t′1i is chosen to
be the maximum subbranch of t1i such that dom(t′1i) ⊆ dom(T1). The rest of the
proof is almost identical to the one for Tp. 2

4. DEFINABILITY OVER UNRANKED TREES

4.1 Basic definitions

In dealing with unranked trees we have no a priori bound on the number of children.
Hence we use consecutive positive integers to enumerate children of a node (that is,
there cannot be a second child without a first). That is, we define an unranked tree
domain as a prefix-closed finite subset D of N∗

+ (finite strings of positive integers)
such that s · i ∈ D implies s · j ∈ D for all j ≤ i. An unranked Σ-tree is a pair
T = (D, f) where D is an unranked tree domain and f : D → Σ. The set of all
unranked trees over Σ is denoted by Utree(Σ). Note that in contrast with ranked
trees, an unranked one cannot have an i-th child without having an (i− 1)-th one.

An unranked tree T = (D, f) is represented as a first-order structure 〈D,<pre

, <sib, (Oa)a∈Σ〉, where Oa is as before, <pre is the prefix relation (we added ‘pre’ for
clarity) and <sib is the order relation on siblings (s · i <sib s · j for all s · i, s · j ∈ D,
i, j ∈ N, and i < j). Denote the above vocabulary by νΣ. Apart from FO and MSO
over νΣ, we also consider the extension of the monadic chain logic to unranked trees

MSO
↓

→
and a logic FOREG, which is the extension of FO with horizontal and

vertical regular path expressions. These will be defined in Section 4.3.
We now look at the operations on unranked trees. The relation ≺ is defined as

before. However, using just this relation would force us to introduce infinitely many
successor relations in the vocabulary. To keep the vocabulary finite, we split ≺ into
two relations:

Extension on the right ≺→. That is, only younger siblings can be added. For-
mally, for T1 = (D1, f1) and T2 = (D2, f2), T1 ≺→ T2 if T1 ≺ T2 and for every
s · i ∈ D2 −D1, there is j < i such that s · j ∈ D1.

Extension down ≺↓. That is, descendant of leaves can be added. Formally, T1 ≺↓

T2 if T1 ≺ T2 and for every s ∈ D2 −D1, s
′ <pre s for some leaf s′ of T1.

Likewise we define �→ and �↓. Clearly, �=�→ ◦ �↓.
Let La(T ) hold, for a ∈ Σ, iff the rightmost node in T (that is, the largest one in

the lexicographic ordering) is labeled a. As before, T1 ≈dom T2 holds iff D1 = D2.
With these operations, we now define two structures:

T
u = 〈Utree(Σ),≺→,≺↓, (La)a∈Σ,≈dom〉

T
u
p = 〈Utree(Σ),≺→,≺↓, (La)a∈Σ〉.

We define unranked branches as trees satisfying η(T ). Similarly to the ranked
case, we define the logics FO(Tu

p), FO(Tu), FOη(Tu
p) and FOη(Tu).
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Fig. 2. A tree T and R(T ).

Note that although the predicates and operations for ranked and unranked trees
differ slightly, it is not difficult to see that when restricted to Treen(Σ), the logics
over T

u and T, and T
u
p and Tp, are equivalent.

Next, we extend the notion of tree automata to the unranked case, follow-
ing [Brüggemann-Klein et al. 2001].

Definition 4.1. An unranked tree automaton is a tuple A = (Q,Σ, δ, F ) where
Q is a finite set of states; F ⊆ Q is the set of final states; and, δ is a function from
Q× Σ to 2Q∗

assigning a regular language of strings over Q to every pair (q, σ).
A run of A on a tree T = (D, f) is a mapping λ : D → Q such that for every

node s ∈ D with n children, λ(s · 1) · · ·λ(s · n) ∈ δ(λ(s), f(s)). Note that for leaf
nodes s this implies that ε ∈ δ(λ(s), f(s)). A run is accepting if λ(ǫ) ∈ F . The
automaton accepts a tree when there is an accepting run.

A set of unranked trees is regular if there is an unranked tree automaton accepting
it. A relation R ⊆ Utree(Σ)k is regular if so is the set {[~T ] | ~T ∈ R} over
Utree(Σk

⊥).

Similarly to the ranked case, MSO over the vocabulary (<sib, <pre, (Oa)a∈Σ)
defines precisely the regular unranked tree languages [Neven and Schwentick 2002].

Encoding unranked trees. This encoding is basically the same as Rabin’s encoding
of SωS into S2S, cf. [Rabin 1969; Börger et al. 1997]. Given a string n1 · · ·nk of
positive integers,

R(n1 · · ·nk) = 01n101n20 · · · 01nk ∈ {0, 1}∗.

Also, R(ǫ) = ǫ.
Given a tree T = (D, f) ∈ Utree(Σ), we define R(T ) = (D′, f ′) ∈ Tree(Σ⊥)

as follows:

—D′ is the prefix-closure of R(D) = {R(s) | s ∈ D};

—If s ∈ D, then f ′(R(s)) = f(s); if s′ ∈ D′ −R(D), then f ′(s′) = ⊥.

We give an example in Figure 2.
It turns out that unranked regular and ranked regular are in fact similar notions.

For a set of unranked trees X , let R(X) = {R(T ) | T ∈ X}. Since MSO over
unranked trees can rather easily be encoded in MSO over ranked trees and vice
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Fig. 3. A branch of T with endpoint labeled f and a branch of R(T ) with endpoint labeled d.

versa, and since the image of R(·) is MSO-definable, we have the following folklore
result (for an explicit proof, see [Suciu 2002]):

Proposition 4.2. For any finite alphabet Σ and X ⊆ Utree(Σ), X is regular
iff R(X) is regular.

We conclude with a note on branches. Recall that a branch t is defined by the
formula η(t) = ∀x, y (x � t ∧ y � t) → (x � y ∨ y � x). Branches are a crucial
notion in many of the restricted logical formalisms. It is therefore worthwhile to
point out that this notion differs for ranked and unranked trees. Indeed, a branch
in an unranked tree includes the left siblings of every node in the branch, while a
branch in a ranked tree does not. The latter follows immediately from the definition
of branches. We give an example in Figure 3.

4.2 Basic definability results

In this section, we link definability over unranked trees in the structures T
u
p and

T
u to regular languages.
Here, and throughout the paper, we make use of the following lemma. The proof

is by induction on FO(Tu
p) and FO(Tu)-formulae.

Lemma 4.3. Let Mu be either T
u
p or T

u, over Utree(Σ), and let M be the
corresponding ranked tree model, over Tree(Σ⊥). Then

—for every FO(Mu)-formula ϕ there exists an FO(M)-formula ϕ′ such that Mu |=

ϕ(~T ) ⇔ M |= ϕ′(R(~T )). Moreover, if ϕ is an FOη(Mu)-formula, then ϕ′ can be
chosen to be an FOη(M)-formula.

—for every FO(M)-formula ϕ there exists an FO(Mu)-formula ϕ′ such that M |=

ϕ(R(~T )) ⇔ Mu |= ϕ′(~T ). Moreover, if ϕ is an FOη(M)-formula, then ϕ′ can be
chosen to be an FOη(Mu)-formula.

Using this Lemma, together with the encoding R(·), we show that Theorem 3.3
extends from ranked to unranked trees.

Theorem 4.4. Let X be a subset of Utree(Σ). Then the following are equiv-
alent:

(1 ) X is definable in T
u
p;

(2 ) X is definable in T
u;

(3 ) X is regular.
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Furthermore, for k > 1 and R ⊆ Utree(Σ)k, R is FO(Tu)-definable iff it is regular.
Moreover, the conversions between formulae and automata are effective.

Proof. (1 ⇒ 2) immediate.

(2 ⇒ 3) Let ϕ(T ) be an FO(Tu)-formula. By Lemma 4.3, there is a formula
ϕ′(T ) such that T

u |= ϕ(T ) ⇔ T |= ϕ′(R(T )). By Theorem 3.3, the set {R(T ) |
T |= ϕ′(R(T ))} is ranked regular. By Proposition 4.2, {T | T |= ϕ′(R(T ))} is
unranked regular.

(3 ⇒ 1) If X is unranked regular, then, by Proposition 4.2, R(X) is ranked
regular. By Theorem 3.3, there is an FO(Tp)-formula ϕ′(T ′) defining R(X). Hence,
by Lemma 4.3, there is an FO(Tu

p)-formula ϕ(T ) defining X .
The proof that the definable relations over T

u are regular, and vice versa, follows
from Theorem 3.3, Lemma 4.3, and Proposition 4.2 in exactly the same way as
the one-dimensional case. The effectiveness follows from the effectiveness of the
translation of Lemma 4.3, the effectiveness of Theorem 3.3, and Proposition 4.2
(see [Börger et al. 1997; Suciu 2002]). 2

So, T
u is the universal automatic structure for unranked trees, meaning that any

other structure that only defines regular relations can be interpreted in it. As over
strings and ranked trees, this implies decidability:

Corollary 4.5. The first-order theories of T
u
p and T

u are decidable.

As we have seen, the decision procedure is non-elementary even for ranked trees.
As a corollary of Theorem 3.3, and Lemma 4.3, we obtain separation of T

u and
T

u
p:

Corollary 4.6. The relation ≈dom is not FO(Tu
p)-definable.

The proof of Theorem 4.4 would have been a trivial corollary of Theorem 3.3 and
Proposition 4.2, had the graph of R(·) been definable in T

u
p or T

u. That is, if by
considering a binary tree T ′ as an unranked one we could have tested by a formula
ϕ(T, T ′) if T ′ = R(T ). The following result shows that such a formula does not
exist. It can be proved by a simple pumping argument.

Proposition 4.7. The graph of R is not FO(Tu)-definable.

We explain how the notion of data complexity for logics can be applied to our
infinite structures. For a complexity class C, we say that the data complexity of
such a logic over M (e.g., FO(Tu

p) or FOη(Tu)) is C, if for every formula ϕ(x) in
the logic, the set {T | M |= ϕ(T )} is in C. Here T is encoded as the appropriate
first-order structure (depending on whether T is ranked or unranked).

As an immediate corollary of Theorem 4.4, we see that the data complexity
of both FO(Tu

p) and FO(Tu) is polynomial, since formulae can be converted into
unranked tree automata. Moreover, [Gottlob et al. 2005] places the complexity of
unranked regular tree languages in DLOGSPACE (for ranked trees, the bound is
NC1 [Lohrey 2001]). We shall see several low data complexity bounds in the next
section. (Notice, however, that the combined complexity, that is, the complexity of
{(ϕ, T ) | ϕ(T ) holds} is hyper-exponential for both T

u
p and T

u).
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4.3 Restricted logics over trees

In this section we consider branch quantification for unranked trees. Recall that
for ranked trees, with branch quantification over Tp and T we obtained FO and

MSOchain-definable tree languages.
The first of these results extends easily to unranked trees.

Proposition 4.8. A set of unranked trees is FO-definable iff it is FOη(Tu
p)-

definable.

Proof. That FO can be coded in FOη(Tu
p) can be shown by a straightforward

extension of the proof for the ranked case (Theorem 3.18). For the converse, it
suffices to show that for every k ≥ 0, there is m ≥ 0 such that T1 ≡m T2 implies
(Tu

p, T1) ≡
η
k (Tu

p, T2).
Fix k ≥ 0. Let ϕ(·) be a formula defining a rank-k type, with respect to branch

quantification, of a single tree in T
u
p. Then ϕ is an FOη(Tu

p)-formula, and by Lemma
4.3, there exists a formula ϕ′ in FOη(Tp) such that T

u
p |= ϕ(T ) iff Tp |= ϕ′(R(T )).

Let l be the maximum quantifier rank of formulae ϕ′ for all such formulae ϕ. Then
(Tp,R(T1)) ≡

η
l (Tp,R(T1)) implies (Tu

p, T1) ≡
η
k (Tu

p, T2).
From the proof of Theorem 3.18 we know that there exists m1 > 0 such that

R(T1) ≡m1
R(T2) implies (Tp,R(T1)) ≡η

l (Tp,R(T1)). It is straightforward to
show that for some m, T1 ≡m T2 implies R(T1) ≡m1

R(T2), and hence (Tu
p, T1) ≡

η
k

(Tu
p, T2). This completes the proof. 2

We now show that FOη(Tu) can be described by a natural extension of the chain
logic to unranked trees. Over ranked trees, we allow quantification over chains
with respect to the <pre partial order. For unranked trees, we use the vocabulary

(<pre, <sib, (Oa)), and hence the extension, called MSO
↓

→
, allows quantification

over both vertical chains (with respect to <pre) and horizontal chains (those with

respect to <sib). In other words, in MSO
↓

→
, quantification is over sets X such that

X is either linearly ordered by <pre, or linearly ordered by <sib. Note that in the
latter case, X must be the set of children of some node.

Theorem 4.9. Let |Σ| > 1. Then a subset of Utree(Σ)k, k ≥ 1, is definable

in FOη(Tu) iff it is definable in MSO
↓

→
.

Proof. We shall prove the result for FOη(Tu) formulae with one free variable. A

generalization to multiple free variables and MSO
↓

→
over [~T ] is straightforward.

For the MSO
↓

→
⊆ FOη(Tu) direction, we only have to show how to code chains

and sets of children of the same node by branches. Recall that we assume the
presence of at least two symbols, say a and b, in the alphabet Σ. Now, given a
chain X ⊆ dom(T ), we construct a tree tX such that dom(tX) is the smallest set
of nodes that contains X and is a domain of an unranked tree. That is, if s ∈ X
and s′ ≤pre s, then s′ ∈ dom(tX), and if s′′ · i ≤pre s, then s′′ · j ∈ dom(tX) for all
j ≤ i. Furthermore, if s ∈ X , then it is labeled a in tX , otherwise it is labeled b.
For a set Y of siblings of a single node, we create a tree tY as follows. Let y0 be
the rightmost node in Y . Then dom(tY ) = dom(t{y0}), and nodes in Y are labeled
a, and the remaining ones are labeled b. It is easy to see that both tX and tY are

branches, and it is completely routine to verify that with this coding, every MSO
↓

→
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formula can be expressed in FOη(Tu).
In the rest of the proof we show the converse. We define, as before, the relation

(Tu, T1) ≡
η(T1,T2)
m (Tu, T2) indicating that the duplicator wins the m-round game in

which moves on (Tu, Ti) are restricted to branches with dom(t) ⊆ dom(Ti), i = 1, 2.
We first show that for every l ≥ 0, there exists k ≥ 0 such that

Lemma 4.10. For every l ≥ 0, there exists k ≥ 0 such that

(Tu, T1) ≡
η(T1,T2)
k (Tu, T2) implies (Tu, T1) ≡

η
l (Tu, T2).

The proof of Lemma 4.10 is very similar to proof of the analogous result for
the ranked trees, used in Theorem 3.18. Let k = l + 3. Suppose a branch t1i in
T1 is played in the ith round of the game on (Tu, T1) and (Tu, T2). Let t′1i be
the restriction of t1i to dom(T1). The duplicator assumes that the spoiler plays

t′1i in the game (Tu, T1) ≡
η(T1,T2)
k (Tu, T2), and finds a response t′2i, which is a

branch of T2. To define t2i, the response to t1i, the duplicator simply “attaches”
the remaining part of t1i to t′2i. That is, if sp = s′p · jp is the rightmost node of
t′pi, p = 1, 2, then for any node s′1 · j · v in dom(t1i), where j ≥ j1, we add a node
s′2 · (j2 + j − j1) · v to t2i and label it the same. The extra 3 moves in the game

(Tu, T1) ≡
η(T1,T2)
l+3 (Tu, T2) ensure that always dom(t′2) = dom(t2) ∩ dom(T2). The

latter then guarantees the winning strategy of the duplicator. This proves Lemma
4.10.

We now need some notation. We write T1 ≡
MSO

↓

→
m T2 to mean that the duplicator

wins the m-round MSO
↓

→
game. Such a game is a restricted MSO game in which

all moves are either chains of nodes (those will be called vertical moves), or sets of
nodes which are children of a single node (those moves will be called horizontal).
A straightforward extension of the standard MSO game argument shows that if

T1 ≡
MSO

↓

→
m T2, then T1 and T2 agree on all MSO

↓

→
sentences of quantifier rank up

to m.
The main part of the proof is the following lemma.

Lemma 4.11. For every k ≥ 0, there exists m ≥ 0 such that

T1 ≡
MSO

↓

→
m T2 implies (Tu, T1) ≡

η(T1,T2)
k (Tu, T2).

Note that proving Lemma 4.11 is sufficient: together with Lemma 4.10, it shows
that every rank-l type of a tree with respect to branch quantification is a union

of MSO
↓

→
rank-m types, and thus every FOη(Tu) formula of quantifier rank l

is equivalent to a Boolean combination of MSO
↓

→
rank-m types, and thus to an

MSO
↓

→
formula of quantifier rank m.

We now prove Lemma 4.11. Without loss of generality, we assume Σ = {a, b}
(the proof straightforwardly extends to larger alphabets). Let νk be the vocabulary
(<,Ua, Ub, U1, . . . , U2k), where where all Uis are unary, and M be the number of

MSO
↓

→
rank-(2k + 1) types over νk. We take m to be kM + 2k + 6.

For a branch t, let e(t) be the rightmost leaf of t (the ending node of t), and let
rbd(t) (the right boundary) be the set of all nodes s ≤pre e(t). For any non-root
node s in a tree T (not necessarily a branch), sibl(s) denotes the set of all siblings
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of s (that is, children of s’s parent). We normally view sibl(s) as a structure in the
vocabulary <, where < is interpreted as <sib, the left-to-right order on the siblings
of a node.

We shall refer to the game (Tu, T1) ≡
η(T1,T2)
k (Tu, T2) as the branch game, and

to the game T1 ≡
MSO

↓

→
m T2 as the chain game, and shall denote the moves in the

branch game by (t1i , t
2
i ).

After i moves of the branch game, ((t11, t
2
1), . . . , (t

1
i , t

2
i )), we have a νi structure

S
Tj

i,s associated with each node s of Tj , j = 1, 2. If s ∈ dom(Tj), then the universe of

S
Tj

i,s is sibl(s), < is interpreted as <sib, Ua (Ub) is interpreted as nodes labeled a (b)
in Ti, and U2q−1, U2q, q ≤ i, are interpreted as nodes labeled a and b respectively
in tiq.

We let τ j(i, s) denote the rank-2(k− i) + 1 MSO-type of S
Tj

i,s, j = 1, 2. We show
that the branch game can be played such that the following holds. After each round
i, there is a number Mi ≤M and a partition of rbd(t1i ) (respectively, rbd(t2i )) into
sets rbdq(t

1
i ) (respectively, rbdq(t

2
i )), q ≤Mi, such that

—from the position

{

(rbdq(t
1
j ), rbdq(t

2
j )) | j ≤ i, q ≤Mj

}

(2)

the duplicator has a winning strategy for (k−i)M+2k+6 moves in the chain game;
more precisely, the above position consists of Σi

j=1(j × Mj) predicates, every

predicate being interpreted by the sets rbdq(t
1
j) and rbdq(t

2
j ) in the corresponding

structures;

—for every q, s1 ∈ rbdq(t
1
i ), and s2 ∈ rbdq(t

2
i ):

τ1(i, s1) = τ2(i, s2). (3)

Claim 4.12. Conditions (2) and (3) guarantee that the duplicator has a winning
strategy in the branch game.

For the proof of Claim 4.12, we show that ≺↓ and ≈dom are preserved; dealing
with other predicates is analogous.

Suppose t1j1 ≺↓ t
1
j2

, and j1 < j2. Then rbd(t1j1) $ rbd(t1j2). This means that

for every s ∈ rbd(t1j1 ) in the structure ST1

k,s the following holds: U2j1−1 = U2j2−1

and U2j1 = U2j2 . Moreover, for every s ∈ rbd(t1j2 ) − rbd(t1j1), in ST1

k,s we have
U2j1−1 = U2j1 = ∅ and U21−1, U2j2 6= ∅. As these properties can be expressed

as MSO
↓

→
formulae of quantifier-rank 1 they are consistent with τ1(k, s) for every

s ∈ rbd(t1j2 ). Given condition (2), the duplicator can use the remaining moves in

the game to show that the partition
⋃Mj2

q=1 rbdq(t
2
j2

) follows the same pattern as

that of
⋃Mj2

q=1 rbdq(t
1
j2

). That is, the nodes in the rbdq(t
2
j2

)’s for which the MSO
↓

→

type of ST1

j2,s is consistent with (U2j1−1 = U2j2−1) ∧ (U2j1 = U2j2) are followed in

the <pre-order by the nodes in the rbdq(t
2
j2

)’s for which this type is consistent with
U2j1−1 = U2j1 = ∅ and U2j2−1, U2j2 6= ∅, and every node in rbd(tj1) is contained in
rbd(tj2). Using condition (3), we then conclude that t2j1 ≺↓ t

2
j2

.
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Suppose t1j1 ≈dom t1j2 . Then

⋃

q≤Mj1

rbdq(t
1
j1

) =
⋃

q≤Mj2

rbdq(t
1
j2

).

Note that this condition can be stated as a quantifier-rank 1 sentence of

MSO
↓

→
in terms of the predicates for sets rbdq(t

1
j1

) and rbdq(t
1
j2

). Hence, if
⋃

q∈Mj1
rbdq(t

2
j1

) 6=
⋃

q∈Mj2
rbdq(t

2
j2

), then the spoiler wins in 1 move in the chain

game from the position {(rbdq(t
1
j), rbdq(t

2
j )) | j ≤ i, q ≤ Mj}, which contradicts

(2). Hence,
⋃

q≤Mj1

rbdq(t
2
j1

) =
⋃

q≤Mj2

rbdq(t
2
j2

).

and thus rbd(t2j1) = rbd(t2j2); since t2j1 and t2j2 are branches, this implies t2j1 ≈dom t2j2 .
This proves Claim 4.12.

It remains to show that the duplicator can play preserving conditions (2) and
(3). Consider the ith move by the spoiler; we assume, without loss of generality,
that the spoiler plays t1i in T1. For each s ∈ rbd(t1i ), compute τ1(i−1, s), and form
the set X1

q = rbdq(t
1
i ) of all s ∈ rbd(t1i ) for which τ1(i, s) is the qth type in the

enumeration 1, . . . ,Mi. Then in the chain game, the duplicator assumes that the
spoiler plays Mi ≤M moves X1

q , and finds the responses X2
q over T2. Clearly such

a play is possible given m. To show (2) and (3), we must prove that there exists a
branch t2i in T2 such that the set of nodes s ∈ rbdq(t

2
i ) for which τ2(i, s) is the qth

type in the enumeration is precisely X2
q .

First, notice that there is a branch t′ in T2 for which rbd(t′) =
⋃

q X
2
q . Since

X1
q ’s satisfy the condition

∀s, s′
(

(
∨

q X
1
q (s) ∧ s′ <pre s) →

∨

q X
1
q (s′)

)

∧ ∀s, s′
(

(
∨

q X
1
q (s) ∧

∨

q X
1
q (s′)) → (s ≤pre s

′ ∨ s′ ≤pre s)
)

,

the same must be true forX2
q ’s (if it were not, the spoiler would have won in 2 moves,

which is impossible given our bound on m). This implies that
⋃

q X
2
q is of the form

rbd(t′), where t′ is a branch. We now take t2i so that rbd(t2i ) = rbd(t′) =
⋃

q X
2
q .

Since the moves X1
q ’s and X2

q ’s are played according to the winning strategy in
the chain game, condition (2) is preserved. Condition (3) is guaranteed by the
following. We show that for every q, every s1 ∈ rbdq(t

1
i ) and s2 ∈ X2

q , it is the case
that τ1(i− 1, s1) = τ2(i− 1, s2); in other words,1

ST1

i−1,s1
≡MSO

2(k−(i−1))+1 S
T2

i−1,s2
. (4)

Then we have two extra moves to play the sets U2i−1 and U2i corresponding to
positions labeled a and b among siblings of s1 in t1i . The responses give us labellings
of siblings of s2, and (4) implies that the MSO game on ST1

i,s1
and ST2

i,s2
can continue

for
(

2(k − (i− 1)) + 1
)

− 2 = 2(k − 1) + 1 rounds, thus giving us (3).

1Note that the horizontal moves on sibl(s1) and sibl(s2) in the chain game are precisely the MSO

moves on string structures S
T1
i−1,s1

and S
T2
i−1,s2

.
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We now prove (4). Consider s1 ∈ X1
q and s2 ∈ X2

q . We may assume, without
loss of generality, that {s1} is the response, in the chain game, to {s2}. Indeed,
any response to {s2} is a singleton set in X1

q , and all elements in X1
q have the same

type τ1(i− 1, s), so we can assume that the response is actually s1.
We now consider structures sibl(s1) and sibl(s2) ordered by <sib, and consider

horizontal moves in the chain game on them (which can be associated with MSO
↓

→

moves). In particular, we show that if the spoiler plays Ua, Ub, or Uj, j ≤ 2i, over
sibl(s1), then the duplicator must respond by the corresponding set over sibl(s2)
(and symmetrically, changing the roles of s1 and s2). This takes 2i+2 moves; from
the bound on m, we know that the duplicator can continue to play for another
2k+6−(2i+2) = 2k−2i+4 moves. Furthermore, the duplicator cannot move away
from sibl(s1) and sibl(s2): if he does, the spoiler can catch him in one move. So we
may assume that the duplicator can continue to play for 2k−2i+3 = 2(k−(i−1))+1
moves on sibl(s1) and sibl(s2), from the position in which Ua, Ub and Uj , j ≤ i, are

already played. That is, starting from ST1

i−1,s1
and ST2

i−1,s2
the duplicator can still

respond to 2(k − (i− 1)) + 1 moves by the spoiler over sibl(s1) and sibl(s2), which

are precisely MSO
↓

→
game moves. Hence, this will give us (4).

To complete the proof now, assume that the spoiler plays Ua over sibl(s1) as
a horizontal move in the chain game. The duplicator must respond by Ua over
sibl(s2): otherwise the spoiler would win in 3 moves. Likewise, the duplicator must
respect Ub. Suppose the spoiler plays U2j−1 over sibl(s1) as a horizontal move, for
j < i, that is, the set of nodes among sibl(s1) that belong to dom(t1j ) and are labeled
a. We must show that the duplicator responds by playing U2j−1 over sibl(s2).

Consider two cases. In the first case, dom(t1j ) ∩ sibl(s1) = ∅. Then dom(t2j ) ∩
sibl(s2) = ∅ (otherwise the spoiler wins in 3 moves), and hence the duplicator is
forced to play the correct move ∅. In the second case, dom(t1j) ∩ sibl(s1) 6= ∅ (and

hence, by symmetry, dom(t2j ) ∩ sibl(s2) 6= ∅). Let rl = rbd(tlj) ∩ sibl(sl), l = 1, 2.
Then U2j is the intersection of {s | s ≤sib r1} ∩ Ua, and hence the duplicator is
forced to play the intersection of Ua over sibl(s2) and {s | s ≤sib r2} – otherwise
the spoiler needs only 3 moves to win the game, and the bound on m makes this
impossible.

This completes the proof of the theorem. 2

As one corollary of Theorem 4.9, we obtain the separation FOη(Tu) $ FO(Tu)

(since MSO
↓

→
$ MSO, which follows from the fact that over ranked trees, chain

logic is properly contained in MSO [Thomas 1984]).

Next, we show that MSO
↓

→
has low data complexity. Recall that NC1 is the class

of languages accepted by bounded fan-in logarithmic-depth polysize circuits; it is

contained in DLOGSPACE. By using a different representation of MSO
↓

→
and a

logical characterization of NC1 [Vollmer 1999], we show:

Proposition 4.13. The data-complexity of MSO
↓

→
is NC1.

Proof. It is shown in [Neven and Schwentick 2000] that every formula in MSO
↓

→

can be transformed to a modal logic called FOREG∗. Hence our proof will proceed
by showing that the data-complexity of FOREG∗ formulae is NC1.

We start with the definition of FOREG∗. We use two kinds of first-order vari-
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ables. One kind is called quantifier variables and used for quantification of vertices
and is denoted by symbols like x, y. The second kind (expression variables, denoted
by r, s) is only used in vertical or horizontal path expressions. We use the following
two kinds of path formulae.

—If P is a regular expression (in the usual sense) over formulae then ϕ = [P ]↓r,s(x, y)
is a vertical path formula. The free variables of ϕ are {x, y} ∪ (free(P ) − {r, s}),
where free(P ) denotes the free variables that occur in at least one of the formulae
that are used to build P .

—If P is a regular expression over formulae then [P ]→r (x) is a horizontal path
formula. The free variables of ϕ are {x} ∪ (free(P ) − {r})

We refer to path formulae also by the term path expressions. A simple example of
a formula which uses a horizontal path expression is [(Oa(r))∗Ob(r)]

→
r (x).

The semantics of such formulae is defined as follows. Let ϕ = [P ]↓r,s(x, y) be a
vertical path formula, t a tree and v, w vertices of t. We assume interpretations for
the free variables occurring in formulae in P . Then, t |= ϕ[v, w], iff v is an ancestor
of w and there is a labeling of the edges on the path from v to w with formulae,
such that

(1) each edge (u, u′) is labeled with a formula θ(r, s) such that t |= θ[u, u′]; and

(2) the sequence of labels along the path from v to w matches P .

For ψ = [P ]→r (x), t |= ψ[v], iff there is a labeling of the children of v with
formulae, such that

(1) each child w of v is labeled with a formula θ(r) such that t |= θ[w]; and

(2) the sequence of labels matches P .

E.g., the above example formula says that the rightmost child of x is labeled with
b and all other children are labeled with an a.

The logic FOREG∗ is obtained from FO by allowing vertical and horizontal path
formulae. More formally,

(1) Every FO formula is an FOREG∗ formula.

(2) If P is a regular expression over FOREG∗ formulae with free variables r, s then
ϕ = [P ]↓r,s(x, y) is an FOREG∗ formula.

(3) If P is a regular expression over FOREG∗ formulae with free variable r then
[P ]→r (x) is an FOREG∗ formula.

(4) FOREG∗ formulae are closed under first-order quantification, disjunction, and
negation, as usual.

To show that the data complexity of FOREG∗ is NC1, we use a logical charac-
terization of NC1 [Vollmer 1999]. The logic capturing NC1 is of the form FO[Q],
where Q is a generalized quantifier (whose precise definition is not needed for the
proof). We shall need the fact that every regular language is in NC1 [Vollmer 1999]
(and therefore expressible in FO[Q]).

To show that FOREG∗ ⊆ FO[Q], one proceeds by induction on FOREG∗ expres-
sions. The only nontrivial case is that of path expressions of the form [P ]↓r,s(u, v)

and [P ]→r (u). Consider, for example, [P ]↓r,s(u, v), and let ψ1, . . . , ψm be all the
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formulae used in P . Let ΨP be an FO[Q] sentence in the string vocabulary
(<,U1, . . . , Um) expressing this regular language. Let ψ′

i(r, s) be the FO[Q] for-
mula equivalent to ψi (which exists by the induction hypothesis). Then the FO[Q]
formula equivalent to [P ]↓r,s(u, v) is obtained from ΨP by replacing each quantifier
∃z with ∃z1, z2 (u ≤pre z1 <pre z2 ≤pre v ∧ ¬∃z3(z1 <pre z3 <pre z2)), and then
replacing each Ui(z) with ψ′

i(z1, z2) and z < y with z1 < y1. The case of [P ]→r (u)
is similar. This completes the proof. 2

We conclude this section by connecting an extension of FOη(Tu
p) with another

logic studied in connection with XML, as an abstraction of XML pattern languages:
FOREG [Neven and Schwentick 2000]. FOREG is the extension of FO with pred-
icates r↓(x) and r→(x) for every regular expression r. For a tree T and a node s,
T |= r↓(s) iff the labels on the path from the root to s satisfy r; T |= r→(s) iff the
string formed by concatenating the labels of the left siblings of s satisfies r.

Now, we introduce the logic FOreg
η . This is FOη extended with the following pred-

icates: for every regular expression r we have r↓(T ) and r→(T ) with the following
meaning:

—r↓(T ) iff T = (D, f) is a branch, {s1, . . . , sp} is the set of right-most siblings with
s1 <pre · · · <pre sp and f(s1) · · · f(sp) ∈ L(r);

—r→(T ) iff T = (D, f) is a branch, {s1, . . . , sp} = {s | s ≤sib e(T )} with s1 <sib

· · · <sib sp, e(T ) the endpoint of T , and f(s1) · · · f(sp) ∈ L(r).

Clearly, FOreg
η (Tu) = FOη(Tu). Therefore, we only consider FOreg

η (Tu
p).

Theorem 4.14. A set X ⊆ Utree(Σ) is definable in FOreg
η (Tu

p) iff X is defin-
able in FOREG.

Proof. The proof is similar to the proof of Theorem 3.18(1). To show that FOREG
can be expressed in FOreg

η (Tu
p), we only need to note that the regular expressions

can easily be expressed in FOreg
η (Tu

p).
We now prove the other direction. The proof is an extension of the proof of

Theorem 3.18(1). Let R be a finite set of regular expressions. We shall write

T1 ≡FOREG,R
k T2 if the duplicator can win the k-round game on T1 and T2 con-

sidered as first-order structures where only the atomic predicates r↓ and r→ for
r ∈ R should be satisfied. We write, (Tu

p, T1) ≡η,R
k (Tu

p, T2) if the duplicator
wins a k-round branch-restricted game that starts with (T1, T2) where only the
atomic predicates r↓ and r→ for r ∈ R should be satisfied. Finally, we write

(Tu
p, T1) ≡

η(T1,T2),R
k (Tu

p, T2) if the duplicator wins a k-round branch-restricted
game that starts with (T1, T2) in which in addition all moves are branches of T1

and T2 respectively, and where only the atomic predicates r↓ and r→ for r ∈ R
should be satisfied.

We will show that for every k > 0 and every finite set of regular expressions R,
there exists m > 0 and a finite set of regular expressions R ⊆ R′ such that:

(1) T1 ≡FOREG,R
k T2 implies (Tu

p, T1) ≡
η(T1,T2),R
k (Tu

p, T2), and

(2) (Tu
p, T1) ≡

η(T1,T2),R
′

m (Tu
p, T2) implies (Tu

p, T1) ≡
η,R
k (Tu

p, T2).

Combining these, we shall conclude that each FOreg
η (Tu

p)-definable set of ranked
trees is FOREG-definable.
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For 1), to produce the winning strategy for (Tu
p, T1) ≡

η(T1,T2),R
k (Tu

p, T2), every
time a branch, say t1 ∈ T1 is played, the duplicator pretends that the spoiler plays
the leaf of that branch in the game on T1 and T2, finds the response (which is a
node in T2), and plays the branch that ends in that node. It is easy to see that this
guarantees a win.

For 2), we let m = k + 3. For every regular expression r ∈ R, let Ar =
(Qr,Σ, q

r
0, δr, Fr) be the equivalent DFA accepting L(r). The following property

holds for every such Ar:

for every w1, w2 ∈ Σ∗, δ∗r (w1) = δ∗r (w2) implies δ∗r (w1v) ∈ Fr iff δ∗r (w2v) ∈ Fr for
all v ∈ Σ∗. (*)

Here, δ∗r is the transition function δr extended to strings. Let Aq
r be the automaton

Ar where F = {q} and let sq
r be the regular expression equivalent to Aq

r. Then
R′ = R ∪ {sq

r | r ∈ R, q ∈ Qr}.
We denote moves in the game on (Tu

p, T1) and (Tu
p, T2) by t1i and t2i, re-

spectively, for round i ≤ k. Furthermore, after each round i, we also have a
configuration ((t′11, . . . , t

′
1i), (t

′
21, . . . , t

′
2i)) corresponding to the winning strategy in

(Tu
p, T1) ≡

η(T1,T2),R′

m (Tu
p, T2).

The game proceed as follows. Suppose in round i (1 ≤ i ≤ k), the spoiler plays t1i

in (Tu
p, T1) (the case of a move in (Tu

p, T2) is symmetric). The duplicator computes
t′1i as t1i ∩ T1 and augments the configuration ((t′11, . . . , t

′
1 i−1), (t

′
21, . . . , t

′
2 i−1)) to

((t′11, . . . , t
′
1i), (t

′
21, . . . , t

′
2i)) where t′2i is the response to t′1i according to the winning

strategy (Tu
p, T1) ≡

η(T1,T2),R′

m (Tu
p, T2). Here, t1i ∩ T is the tree (D, f) where D is

the maximal set which is prefix-closed, contained in dom(t1i), and on which the
labellings of t1i and T coincide; f is the labeling of t1i restricted to D.

To define t2i, the response to t1i, the duplicator simply “attaches” the remaining
part of t1i to t′2i. That is, if sp = s′p · jp is the rightmost node of t′pi, p = 1, 2, then
for any node s′1 · j · v in dom(t1i), where j ≥ j1, we add a node s′2 · (j2 + j − j1) · v
to t2i and label it the same.

It remains to show that this strategy guarantees a win for the duplicator. First,
note that t′2i = t2i∩T2 for every i. The latter follows from the fact that we have three

extra moves in the game (Tu
p, T1) ≡

η(T1,T2),R
′

m (Tu
p, T2). Further, T

u
p |= r↓(t1i) iff

T
u
p |= r↓(t2i) for all r. Indeed, suppose T

u
p |= r↓(t1i) but T

u
p 6|= r↓(t2i). Then, from

(*) it follows that there is a q ∈ Qr such that T
u
p |= sq,↓

r (t′1i) and T
u
p 6|= sq,↓

r (t′2i).
So, t′2i cannot be an answer to t′1i in the small game. If t1i extends t′1i downwards,
then clearly, T

u
p |= r→(t1i) iff T

u
p |= r→(t2i). Otherwise, if t1i only extends t′1i to

the right, then an argument similar to the one above applies. 2

Note that FOreg
η (Tu

p) can express the properties of Proposition 5.10. Since

FOreg
η (Tu

p) ⊆ FOreg
η (Tu) = FOη(Tu), we conclude that its data complexity is NC1.

The bound cannot be lowered, due to the completeness of regular languages for
NC1 [Vollmer 1999].

5. QUERY LANGUAGES

One of the motivations for tree algebras is to get tree constraints relevant in
database (and in particular, XML) applications. In such applications, one writes
queries, typically first-order, not only over trees but also over collections of trees.
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Using database terminology, we deal with relational calculus with tree extension
constraints. From the logical point of view, we consider definability over T, Tp,
T

u, and T
u
p parameterized by sets or relations on trees.

In this section, after giving the basic definition for relational calculi with con-
straints, we obtain normal forms for queries that will allow us to classify the ex-
pressive power and complexity of query evaluation for relational calculi with tree
extension constraints. We then obtain normal forms for queries that are known to
produce finite output on any input.

5.1 Relational calculi over databases of trees

Definitions. A database schema σ is a finite collection of relation symbols. Given
an underlying structure M, relational calculus over M and σ, RC(M, σ), is the
class of first-order queries (formulae) in the language of M supplemented with the
symbols from σ. If σ is understood, or irrelevant, we write RC(M). For example,
if σ has a single binary relation E, then the RC(Tp, σ) query

∀x∀y E(x, y) →
(

η(x) ∧ η(y) ∧ x ≺ y
)

tests whether E is a subgraph of ≺ whose nodes are branches.
We shall always interpret σ relations as finite relations over the universe of M

(in our case, Treen(Σ)). The active domain of a σ-structure A is the set adom(A)
of all the elements of Treen(Σ) that occur in A. Active-domain quantifiers are
quantifiers of the form ∃x∈adom and ∀x∈adom; ∃x∈adom ϕ(x) is interpreted as
the existence of an element a ∈ adom(A) that satisfies ϕ(a).

Normal forms. The main tools for analyzing the expressive power of RC(M, σ)
come in the form of normal forms results. The most commonly used one, restricted-
quantifier normal form [Benedikt and Libkin 2000; Flum and Ziegler 1999; Benedikt
et al. 2003], states that every RC(M, σ) formula is equivalent to a formula in which
no σ symbol appears in the scope of a quantifier ∀x or ∃x (that is, they appear only
in the scope of quantifiers ∀x∈ adom and ∃x∈ adom). The ability to put queries
in restricted-quantifier normal form implies very strong expressivity bounds on
relational calculi with constraints. In particular, it gives a strong bound on generic
queries expressible in such calculi. Recall that a query is generic if it commutes
with permutations of the domain of M. For example, parity, testing if the number
of elements of adom(A) is generic, as is graph connectivity. In fact, any query
definable in a standard relational query language (relational calculus, datalog, etc.)
without constraints is generic. If all queries can be put in restricted-quantifier
normal form, then every generic query in RC(M, σ) is definable in first-order logic
over finite σ structures and a linear ordering on their domain. This in turn implies
that queries such as parity and connectivity are not definable. However, it was
shown in [Benedikt et al. 2003] that no structure with infinite VC dimension admits
restricted-quantifier normal form. Hence,

Corollary 5.1. Tp and T do not admit restricted-quantifier normal form, even
if |Σ |= 1.

We thus need to find a different way of getting bounds on the expressive power
and complexity of RC(T) and RC(Tp). The main tool is a different and weaker
normal form result that shows how to restrict quantification to a finite extension of
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the active domain. From that result, we derive both complexity and expressibility
bounds.

5.2 Relational calculi and ranked trees

We first show that a certain weaker restricted quantifier normal form holds for
relational calculus over T. Recall that for a set X of trees, Treen(Σ)|dom(X) is the
set of all trees T such that dom(T ) ⊆

⋃

T0∈X dom(T0). Note that if X is definable
by a formula of T, then so is Treen(Σ)|dom(X).

The main result of this section is that for every RC(T, σ)-query, quantifiers can
be restricted to range over a finite and definable set of trees. In particular, these
trees can only contain nodes present in the domains of trees in the tuple of free
variables and in the trees in the active domain of the finite σ-structure.

Theorem 5.2. For |Σ |> 1, any relational calculus formula ϕ(~T ) in RC(T, σ)
is equivalent to a formula in which quantifiers range over Treen(Σ)|dom(X) where

X = adom(A) ∪ ~T .

Proof. For n = 1, the result follows from [Benedikt et al. 2003], so we only
consider the case of n > 1. Without loss of generality, we assume n = 2 and Σ =
{a, b} (this will keep the notation more manageable; the extension to larger n and
larger alphabets does not pose any problems). We shall use a different (relational)
vocabulary for T. Namely, instead of ≺ and succ, we have the following predicates:
η(t, T ) indicating that t is a branch of T , lsucc(t, t′) which is true if t′ = succa

1(t)
or t′ = succb

1(t) and both t, t′ are branches (t′ extends t on the left), similarly
rsucc(t, t′) is true if t′ = succa

2(t) or t′ = succb
2(t) and t, t′ are branches (t′ extends

t on the right), and La(t) (Lb(t)) saying that t is a branch and the leaf is labeled a
(b, resp.). Clearly these can be expressed over Tp, and both ≺ and succ functions
can be expressed in the new signature. Indeed, T � T ′ iff ∀t (η(t, T ) → η(t, T ′)).
Furthermore, ηmax(t, T ) can be expressed as η(t, T )∧¬∃t′(t′ 6= t∧η(t′, T )∧η(t, t′)).
Then T ′ = succa

1(T ) iff the following holds:

∀t
(

ηmax(t, T ) → ∃t′ (ηmax(t
′, T ′) ∧ lsucc(t, t′) ∧ La(t

′))
)

∧ ∀t′
(

ηmax(t
′, T ′) → La(t′) ∧ ∃t (ηmax(t, T ) ∧ lsucc(t, t′))

)

and other succ functions are defined similarly. Therefore, we shall view T as a
structure of the vocabulary (η, lsucc, rsucc, La, Lb, ǫa, ǫb,≈dom).

It suffices to prove the theorem for sentences, as a tuple of free variables can
always be encoded as an extra relation with one tuple. Given a prefix-closed subset
X of {1, 2}∗, its frontier Fr(X) is the set of strings from X which are not prefixes of
other strings from X . In other words, for any tree T with dom(T ) = X , Fr(X) =
Fr(T ).

For a σ-structure A, we write dom(A) for
⋃

T∈adom(A) dom(T ), and domc(A) for

the completion of dom(A), that is, the set that contains the following:

(1) dom(A);

(2) for every s · 1 ∈ dom(A) and s · 2 6∈ dom(A), the string s · 2, and

(3) for every s · 2 ∈ dom(A) and s · 1 6∈ dom(A), the string s · 1.

Note the frontier of domc(A) is Fr(dom(A)) plus the strings added by the rules
2 and 3.
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Let T[A] be the structure in the (new) vocabulary for T plus σ whose universe is
the set of all trees T with dom(T ) ⊆ dom(A), and let T

′[A] be the structure in the
same vocabulary whose universe is the set of all trees T with dom(T ) ⊆ domc(A).
The interpretation of T predicates is inherited from T, and the interpretation of σ
predicates from A. The proof follows from two lemmas:

Lemma 5.3. For any k ≥ 0, there exists m ≥ 0 such that T
c[A] ≡m T

c[B]
implies (T,A) ≡k (T,B).

Lemma 5.4. For any k ≥ 0, there exists m ≥ 0 such that T[A] ≡m T[B] implies
T

c[A] ≡k T
c[B].

These lemmas suffice, since they imply that every rank-k type over T and σ
(that is, every RC(T, σ) query of quantifier rank k) is a union of rank-m types
over the restriction of T to trees with dom(T ) ⊆ dom(A), for some m > 0 that
depends on k only. Each such type can be expressed by a query of quantifier rank
m with restricted quantification, since the universe of T[A] (or T[B]) is definable
in RC(T, σ).

Proof of Lemma 5.3. A new notation: for a tree T and a node s, T (s) is the
subtree rooted at s; that is, dom(T (s)) = {s′ | s · s′ ∈ dom(T )}, and the labeling
is inherited from T . Note that T (s) could be empty. Observe that any tree T is
uniquely determined by its restriction to domc(A), denoted by T ′, and all the trees
T (s), s ∈ Fr(domc(A)).

Let di be the (finite) number of rank k − i types of i-tuples of trees over T. We
choose m to be

k
∑

i=1

(di + 1) + 3.

To play the k-round game on (T,A) and (T,B) (called the big game), the duplicator
is also playing an m-round game on T

c[A] and T
c[B] (called the small game), and

is using his winning strategy there to guarantee the win in the big game.
We shall refer to moves in the big game as (Mi, Ni), i ≤ k, with Mi played in

(T,A). Associated with that in the small game we have moves (M ′
i , N

′
i) which are

the restrictions of Mi and Ni to domc(A) and domc(B). The idea of duplicator’s
strategy is as follows. Suppose in the ith round the spoiler playsMi in the big game.
The duplicator pretends that that spoiler plays M ′

i in the small game and find the
response N ′

i . Next, the duplicator looks at what happens with Fr(domc(A)). For
each s ∈ Fr(domc(A)), there are i trees rooted at s which are subtrees of Mj ,
j ≤ i (some of them could be empty). There are di rank k − i types of such i
tuples. For each type τ , the duplicator constructs (in the small game) a tree Uτ

whose leaves are exactly the leaves s ∈ Fr(domc(A)) at which type τ is realized.
Assuming the spoiler plays this tree, the duplicator finds his response Vτ . For
any s ∈ Fr(Vτ ) in T

c[B], the duplicator then chooses a tree N i
s so that the rank

k − i type of (N1(s), . . . , Ni−1(s), N
i
s) is precisely τ . Finally, in the big game the

duplicator responds with Ni which is N ′
i with N i

s attached as subtrees rooted at
s ∈ Fr(domc(B)).

We now present the winning strategy for the duplicator in greater detail. Let
τ i
1, . . . , τ

i
di

enumerate rank k− i types of i-tuples over T. After i rounds have been
played in the big game, in the small game we have the following moves:
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—M ′
j , N

′
j which are restrictions of Mj, Nj to domc(A) and domc(B) respectively,

—U j
l , j ≤ i, l ≤ dj over domc(A), and V j

l , j ≤ i, l ≤ dj over domc(B). The labeling
function on these trees is irrelevant (e.g., it could be assumed to be constantly
a).

These trees will have the following properties:

(1) Fr(U j
l ), l ≤ dj , partition Fr(domc(A)), and likewise Fr(V j

l ), l ≤ dj , partition

Fr(domc(B)). Some of U j
l s and V j

l s are allowed to be empty; since emptiness is

a quantifier-free formula, from the assumption we see that U j
l = ∅ iff V j

l = ∅.

(2) Let Ij

∅ ⊆ {1, . . . , dj} be the set of all indices l such that τ j
l (viewed as a formula)

is consistent with the formula saying that the last element of the j-tuple being ∅.
Then Fr(U j

l ), l ∈ Ij

∅ , partition Fr(domc(A)) − Fr(M ′
j), and likewise Fr(V j

l ), l ∈

Ij

∅ , partition Fr(domc(B)) − Fr(N ′
j).

(3) For any j < i and l ≤ dj , let I be the set of indices p of all τ j+1
p consistent

with τ j
l . Then Fr(U j+1

p ), p ∈ I, form a partition of Fr(U j
l ), and likewise for the

V moves.

(4) For any l ≤ dj , l 6∈ Ij

∅ , there is a symbol a ∈ Σ such that every leaf of M ′
j which

is in dom(U j
l ) is labeled a, and likewise every leaf of N ′

j which is in dom(V j
l )

is labeled a.

(5) For any s ∈ Fr(domc(A)), let U i
l be the unique tree among the U i

qs such that

s ∈ U i
l . Then the rank k − i type of (M1(s), . . . ,Mi(s)) is τ i

l .

Claim 5.5. The duplicator can play in a way that maintains the above conditions
(1)–(5).

This is shown by induction on i. Assume, w.l.o.g., that the (i+ 1)st move of the
spoiler is Mi+1. The duplicator finds M ′

i+1, the restriction to domc(A), and adds

a round (M ′
i+1, N

′
i+1) to the small game. Next, for each type τ i+1

l , l ≤ di+1, the
duplicator collects all the nodes s ∈ Fr(domc(A)) such that the rank k − (i + 1)
type of i+ 1 tuple (M1(s), . . . ,Mi+1(s)) is τ i+1

l . Let X(τ i+1
l ) be the set of all such

nodes. The duplicator forms a tree U i+1
l whose leaves are precisely X(τ i+1

l ). Then,
assuming the spoiler plays U i+1

l , l ≤ di+1 in the small game, the duplicator finds
responses V i+1

l , l ≤ di+1 over domc(B). Note that if conditions 1)–4) above are
violated, the spoiler would be able to win the small game in three extra moves;
thus, by our assumptions, conditions 1)–4) are maintained in the game, since we
allowed for three extra moves in calculating m. (A note on condition 4: this holds
since exactly one formula ǫa � T , a ∈ Σ, is in the atomic type of T ; hence all leafs
of M ′

j that are in U j
l will have the same label. Furthermore, the condition in 4 can

be stated as a quantifier rank 3 sentence, and hence it will hold for V j
l and N ′

j as
well.)

The duplicator now looks at every node s ∈ Fr(domc(B)). If s 6∈ Fr(N ′
i+1), then

there is no subtree of Ni+1 rooted at s. If s ∈ Fr(N ′
i+1), then there exists a unique

l ≤ di+1 such that s ∈ Fr(V i+1
l ). Then there exists l′ ≤ di such that U i+1

l is a
subtree of U i

l′ and V i+1
l is a subtree of V i

l′ . Let ϕi+1
l (T1, . . . , Ti, Ti+1) be the formula

of quantifier rank k − (i+ 1) defining τ i+1
l . We know that for any s′ ∈ Fr(U i+1

l ),

∃U ϕi+1
l (M1(s

′), . . . ,Mi(s
′), U)
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holds (the witness is Mi+1(s
′)). Since s′ ∈ Fr(U i

l′) and s ∈ Fr(V i
l′ ), the rank

k − i types of (M1(s
′), . . . ,Mi(s

′)) and (N1(s), . . . , Ni(s)) are the same, and hence
∃U ϕi+1

l (N1(s), . . . , Ni(s), U) holds. We pick a witness U , and make it Ni+1(s),
that is, the subtree of Ni+1 rooted at s. Since the root of Mi+1(s

′) has the same
label as s′ in U i+1

l , and the label of the root is determined by the atomic type, we
see from condition 4) that the label of s in N ′

i+1 is the same as the label of the root
of U ; hence, U can be attached at s. This completes the construction of Ni+1 which
is the duplicator’s response in the big game. The usual elementary properties of
types ensure that all the conditions (1)–(5) continue to hold. This proves Claim
5.5.

Claim 5.6. A strategy that maintains conditions (1)–(5) is a winning strategy
for the duplicator.

To prove this claim, we need to show that (Mi, Ni), i ≤ k is a partial isomor-
phism, that is, the duplicator wins the big game. If for some k-ary R from σ,
R(Mi1 , . . . ,Mik

) holds, then Mij
s are all trees over domc(A) and hence M ′

ij
= Mij

,

N ′
ij

= Nij
, and R(Ni1 , . . . , Nik

) since the duplicator has a winning strategy in the
small game.

Next, suppose that η(Mi,Mj) is true. If M ′
i = Mi, by the construction and

the winning strategy in the small game we get η(Ni, Nj). If not, let s be the
intersection of dom(Mi) and Fr(domc(A)) (since Mi is a branch, the intersection
is a single node); that is, s is the leaf of M ′

i . Since η(Mi,Mj) holds, s is a node in
Fr(M ′

j), and η(M ′
i ,M

′
j) holds. Thus, η(N ′

i , N
′
j) holds, and by the winning strategy,

the atomic types of (Mi(s),Mj(s)), and (Ni(s
′), Nj(s

′)) are the same, where s′ is
the leaf of N ′

i . Hence, η(Ni(s
′), Nj(s

′)) holds, and thus η(Ni, Nj) is true. The
converse – that η(Ni, Nj) implies η(Mi,Mj) – is identical.

Next, assume lsucc(Mi,Mj) holds. Then either M ′
j = Mj ,Mi = M ′

i , in which
case Ni = N ′

i , Nj = N ′
j and lsucc(Ni, Nj) by the winning strategy in the small

game, or the leaf of M ′
i is on the frontier of domc(A). In this case we conclude that

for the leaf s′ of N ′
i , (Mi(s),Mj(s)) and (Ni(s

′), Nj(s
′)) have the same atomic type,

which implies lsucc(Ni, Nj). The converse, and the case of the rsucc predicate, are
analogous.

We omit the very easy cases of La, Lb, ǫa, ǫb, and consider Mi ≈dom Mj . Clearly
M ′

i ≈dom M ′
j , and thus N ′

i ≈dom N ′
j. Furthermore, for any s′ ∈ Fr(domc(B)),

the atomic type of (N1(s
′), . . . , Nk(s′)) must be equal to the atomic type of

(M1(s), . . . ,Mk(s)) for some s ∈ Fr(domc(A)). In fact, both have type τk
l where

l is the index such that s ∈ Fr(Uk
l ) and s′ ∈ Fr(V k

l ). Since the atomic type of
(M1(s), . . . ,Mk(s)) includes Mi(s) ≈dom Mj(s), we conclude Ni(s

′) ≈dom Nj(s
′),

from which Ni ≈dom Nj follows. The converse is the same. This shows that du-
plicator wins the big game in k rounds, and thus completes the proof of Lemma
5.3.

Proof of Lemma 5.4. We claim that m can be taken to be 5k+2 (more generally,
(n· |Σ | +1) ·k+2, where n is the number of directions). Again we shall refer to the
games as the big game and the small game: the big game is played over domc(A)
and domc(B), and the small one over dom(A) and dom(B). The moves in the big
game will be denoted by (Mi, Ni), i ≤ k.

For each move in the big game, there will be five moves in the small game. These
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moves, denoted byM ′
i , U

i
1a, U

i
2a, U

i
1b, U

i
2b over dom(A) and N ′

i , V
i
1a, V

i
2a, V

i
1b, V

i
2b over

dom(B) will satisfy the following properties:

(1) M ′
i is the restriction of Mi to dom(A) and N ′

i is the restriction of Ni to dom(B).

(2) U i
j ≈dom M ′

i , and V i
j ≈dom N ′

i , j ∈ {1a, 2a, 1b, 2b}.

(3) The labeling of a node s in U i
1a (V i

1a) is a iff s · 1 ∈ domc(A) − dom(A), s ∈
dom(Mi) and the labeling of s in Mi is a (respectively, s·1 ∈ domc(B)−dom(B),
s ∈ dom(Ni) and the labeling of s in Ni is a).

(4) The rules for U i
j , V

i
j , j ∈ {2a, 1b, 2b} are similar: for j = 2a, s · 2 is in the

completion, and the labeling of the node is a; for j = 1b, s·1 is in the completion,
and the labeling is b; finally, for j = 2b, s·2 is in the completion, and the labeling
is b.

(5) A node s ∈ dom(M ′
i) can be labeled a in at most one of U i

js, and likewise a

node s ∈ dom(N ′
i) can be labeled a in at most one of U i

js.

The game proceeds as follows. Suppose i rounds have been played in the big
game (and thus 5i rounds in the small game), and the spoiler makes his i + 1st
move in the big game, say, Mi+1 with dom(Mi+1) ⊆ domc(A) (the case when the
spoiler plays Ni+1 with dom(Ni+1) ⊆ domc(B) is symmetric). Let M ′

i+1 be the

restriction of Mi+1 to dom(A). Let U i+1
j , j ∈ {1a, 2a, 1b, 2b}, be four trees with

the same domain as M ′
i+1, where all nodes s are labeled b except in the following

four cases.

—If s · 1 6∈ dom(M ′
i+1) and it is labeled a in Mi+1, then s is labeled a in U i+1

1a .

—If s · 2 6∈ dom(M ′
i+1) and it is labeled a in Mi+1, then s is labeled a in U i+1

2a .

—If s · 1 6∈ dom(M ′
i+1) and it is labeled b in Mi+1, then s is labeled a in U i+1

1b .

—If s · 2 6∈ dom(M ′
i+1) and it is labeled b in Mi+1, then s is labeled a in U i+1

2b .

The duplicator then assumes that the spoiler played M ′
i+1, U

i+1
j , j ∈

{1a, 2a, 1b, 2b} in the small game, and finds the responses N ′
i+1, V

i+1
j , j ∈

{1a, 2a, 1b, 2b}, according to his winning strategy in the small game. We may
assume that these satisfy conditions 2) an 5), since those conditions can be tested
by a sentence of quantifier rank 2, and hence, if they are violated, the spoiler would
win the small game in the next 2 moves, which we know is not the case. We finally
construct Ni+1, duplicator’s response to Mi+1, by using V i+1

j s. That is, if a certain

node s is labeled a in V i+1
1a , we know that s · 1 ∈ domc(B) − dom(B), so we add

s · 1 labeled a to Ni+1. For V i+1
2a , we add s · 2 labeled a, for V i+1

1b , we add s · 1
labeled b, and for V i+1

2b , we add s · 2 labeled b. This completes the construction of
duplicator’s response Ni+1; clearly, all conditions 1)–5) are satisfied.

It remains to show that (Mi, Ni), i ≤ k defines a partial isomorphism. Clearly all
σ-relations are preserved, as they apply only to trees whose domains are contained
in dom(A) and dom(B), and thus the assumption of the lemma applies to them.
Hence, it remains to check that T predicates are preserved.

Suppose η(Mi,Mj) holds. If dom(Mi) ⊆ dom(A), then Mi = M ′
i and η(Ni, Nj)

is immediate. Suppose the leaf of Mi is a node in domc(A) − dom(A), say s · 1
for s ∈ dom(A), and assume it is labeled a (the other three cases are identical).
Then s is labeled a in both U i

1a and U j
1a. Let s′ be the leaf of N ′

i . By the winning
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strategy of the small game, s′ is labeled a in V i
1a. Furthermore, U i

1a and U j
1a satisfy

the condition that the leaf of U i
1a is also labeled a in U j

1a. Since this is expressed as

a sentence of quantifier rank 2, this condition must be true of V i
1a and V j

1a. Hence,

s′ is labeled by a in V j
1a, meaning that in Nj , the branch leading to s is extended

to s · 1 and s · 1 is labeled a. This implies η(Ni, Nj).
The proofs for lsucc, rsucc, La, Lb are similar, and the proofs for ǫa, ǫb are easy.

It thus remains to show that ≈dom is preserved. Assume again Mi ≈dom Mj (the
other case is symmetric). Then M ′

i ≈dom M ′
j and therefore N ′

i ≈dom N ′
j . Next,

consider a tree W i
ℓ whose domain is dom(M ′

i), and whose labeling combines U i
1a

and U i
1b; that is, a node s is labeled a iff it is labeled a in precisely one of U i

1a

and U i
1b. This indicates that a branch goes to the left at s in Mi. Similarly define

W j
ℓ , and also W i

r by combining U i
2a and U i

2b, and likewise W j
r . Over dom(B), we

define trees Zi
ℓ, Z

j
ℓ , Z

i
r, Z

j
r , whose domain is dom(N ′

i), and the labeling is defined
as for W s, except that V i

p , V
j
p trees are used. From Mi ≈dom Mj, we infer W i

ℓ =

W j
ℓ and W i

r = W j
r . There is a formula α(T1, T2, T3, T4) of quantifier rank 2 such

that α(U i
1a, U

i
1b, U

j
1a, U

j
1b) holds iff W i

ℓ = W j
ℓ . Hence, by the assumptions on the

small game, α(U i
1a, U

i
1b, U

j
1a, U

j
1b) implies α(V i

1a, V
i
1b, V

j
1a, V

j
1b) and hence Zi

ℓ = Zj
ℓ .

This means that the set of nodes s in dom(N ′
i) from which a branch extends to

s · 1 ∈ domc(B)− dom(B) is the same as the set of nodes s with the same property
in dom(N ′

j). The same argument shows that Zi
r = Zj

r ; that is, the set of nodes
s ∈ dom(B) from which a branch extends to s · 2 ∈ domc(B)− dom(B) is the same
for Ni and Nj. Combining this with N ′

i ≈dom N ′
j , we conclude Ni ≈dom Nj .

This concludes the proof that (Mi, Ni), i ≤ k is a partial isomorphism. Hence,
the duplicator wins the big game, which proves Lemma 5.4, and thus the theorem.
2

5.2.1 Data complexity of relational calculi over T and Tp. Using Theorem 5.2,
we obtain bounds on query evaluation over Tp and T. For relational calculi, we are
interested in data complexity [Abiteboul et al. 1995]: the complexity of evaluating
a fixed query as databases vary. The result below says that data complexity is
essentially PH (polynomial hierarchy): PH is an upper bound, and for every level
of PH, there is a complete problem that can be encoded. Since the encoding can
be done in RC(Tp), this gives us matching bounds for the complexity over T and
the simpler algebra Tp.

Theorem 5.7. The data complexity of RC(T) (and thus RC(Tp)) is in PH.
Furthermore, there is an infinite set S ⊆ Treen(Σ) definable in Tp such that for
every n, there are problems complete for Σp

n and Πp
n which can be expressed in

RC(Tp) (and thus RC(T)) over databases whose active domain lies in S.

Proof. We start by proving the PH bound for RC(T, σ). Recall that PH is the
set of all problems that can be solved on an alternating TM in polynomial time
with a constant number of alternations. As before, it suffices to prove the result
for sentences. Assume that ϕ is a sentence of RC(T, σ) and let A be a σ-structure
with active domain {T1, . . . , Tn}. Let D =

⋃

i≤n dom(Ti). By Theorem 5.2, we
may assume that quantifiers in ϕ range over trees over D. Therefore, for every
existential quantifier ∃x the machine simply guesses a tree Tx whose domain is in
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D. Since the size ofD is polynomial in the input size, this guessing takes polynomial
time. For a universal quantifier, the machine does the same, except that guessing
is done in a universal state. At the end, the machine just has to verify a Boolean
combination of atomic statements where every variable x is substituted by a tree
Tx. The latter is clearly possible in deterministic polynomial time. As the total
number of alternations is bounded by the number of quantifier alternations of the
formula the overall complexity is in PH.

We now turn to the lower bound. We note that since RC(T, σ) subsumes the
corresponding calculus over the universal string structure S, the lower bound for
RC(T, σ) follows from the hardness result in [Benedikt et al. 2003]. So we focus
on RC(Tp, σ). We let S be the set of all trees whose domain is a subset of 1∗, and
whose labeling is identically a for a fixed a ∈ Σ. Assume, without loss of generality,
that σ contains one binary relation E. We show that for any MSO sentence Φ over
σ there exists a RC(Tp, σ) sentence ϕ such that for any A with adom(A) ⊆ S,
A |= Φ iff A |= ϕ. Since MSO can express problems complete for any level of PH
over graphs, this suffices to prove the lower bound.

To see that MSO can be modeled in RC(Tp, σ), notice that a set X of trees with
domains { {1j | j ≤ i} | i ∈ {m1, . . . ,mk}}, m1 < . . . < mk, and labeling a is
uniquely identified by the tree T (X) whose domain consists of {1i | i ≤ mk} and
{1mj ·2 | j ≤ k}. That is, one has a formula α(T1, T2) over Tp such that α(T, T (X))
iff T ∈ X . With this, MSO over σ is straightforwardly encoded in RC(Tp, σ). This
completes the proof. 2

5.2.2 Generic data complexity and expressivity bounds. The PH bounds on
query expressivity might lead one to imagine that arbitrary NP-complete calcu-
lations on tree sets can be performed by tree extension queries. We show, however,
that the complexity of generic queries is in fact quite low. A generic (Boolean)
query is just an isomorphism type Q of σ-structures. We say that Q is expressible
in RC(M, σ) if there is a sentence Φ of RC(M, σ) such that for any σ-structure A
over M, (M,A) |= Φ if A is of isomorphism type Q.

Normally, data complexity of a Boolean query Q is defined as the complexity of
the language that consists of encodings of structures A ∈ Q. If A is a relation over
Treen(Σ), such an encoding must also encode all the trees in adom(A). Since in
generic queries it is irrelevant which trees belong to adom(A), we can use a different
encoding, where elements of the active domain, of size k, are encoded as 1, 2, . . . , k
in binary, just as in the case of relational calculus without any additional constraints
[Abiteboul et al. 1995]. We denote such an encoding by encgen(A), and say that
generic data complexity of RC(M) is in a complexity class K if for any σ and any
generic query Q expressible in RC(M, σ), the language {encgen(A) | A ∈ Q} is in
K.

Theorem 5.8. Generic data complexity of RC(T) is in (uniform) AC0.

Proof. Recall the structure S = 〈Σ∗, <, La, el〉 [Blumensath and Gräel 2000;
Benedikt et al. 2003]. We augment its vocabulary with definable functions ga, a ∈ Σ,
that append the symbol a at the end of the string. We shall show the following.
Suppose Φ in RC(T, σ) defines a generic query. Then there is a sentence Ψ in
RC(S, σ) that defines a generic query, and, for every A over T, there exists a σ-
structure B over S such that A and B are isomorphic as σ-structures, and A |= Φ iff
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B |= Ψ. This implies that generic data complexity of Φ is the same as generic data
complexity of Ψ, because encgen(A) = encgen(B), and the generic data complexity
of RC(S, σ) is known to be in uniform AC0, see [Benedikt et al. 2003].

By Theorem 5.2, we can assume that quantification in Φ is restricted to trees
whose domains lie in dom(A). Consider Φ restricted to structures A such that for
every T ∈ adom(A), dom(T ) ⊂ 1∗. Every tree T with dom(T ) ⊂ 1∗ is uniquely
identified by a string sT whose ith position contains the label of 1i−1. In Φ restricted
to such trees, quantification is also restricted to trees with domain contained in 1∗,
that is, to strings. Furthermore, for such trees T1 ≈dom T2 iff el(sT1

, sT2
), T1 ≺ T2

iff sT1
< sT2

, T1 = rsucc(T2) never holds, T1 = lsucc(T2) iff
∨

a∈Σ ga(sT2
) = sT1

holds, and La(T ) iff La(sT ). We thus obtain Ψ from Φ by replacing all the T

predicates by S predicates as above.
From the construction and Theorem 5.2, we see that whenever A is a structure

over T with dom(A) ⊂ 1∗, and Astr is obtained from A by replacing each T with
sT , then A |= Φ iff Astr |= Ψ. Furthermore, A and Astr are isomorphic as σ-
structures. This also implies that Ψ is generic. Indeed, for two structures B,B′

over S which are isomorphic as σ-structures, let A and A′ be structures over T

such that Astr = B and A′
str = B′. Then B |= Ψ iff Astr |= Φ iff (by genericity of

Φ) A′
str |= Φ iff B′ |= Ψ. Thus, Ψ satisfies all the conditions listed above, which

completes the proof of AC0 generic data complexity. 2

From AC0 lower bounds (cf. [Immerman 1998]), we obtain:

Corollary 5.9. Parity test and connectivity test are not definable in RC(T).
2

5.3 Relational calculi and unranked trees

We start by giving a few XML-motivated examples of queries one may want to
express over unranked trees. First, we briefly review DTDs [Bray et al. 2000]
and XPath [Clark and DeRose 1999]. Document Type Definitions (DTDs) is the
most commonly used schema language for XML. It can be abstracted by extended
context-free grammars (with regular expressions as right-hand sides of productions).
Formally, a DTD over Σ is a pair (s, d) where s ∈ Σ is the start symbol and
d : Σ → 2Σ∗

maps every Σ-symbol to a regular language over Σ. A tree T = (D, f)
conforms to d iff f(v · 1) · · · f(v · n) ∈ d(f(v)) for every v ∈ D with n children and
the root of T is labeled with s.

XPath [Clark and DeRose 1999] is an XML pattern language employed by several
XML transformation languages like XSLT [Clark 1999] and XQuery [Chamberlin
et al. 2002]. We have the core XPath fragment in mind, which is normally defined
by the following grammar:

p := p1|p1 | /p | p1/p2 | p1//p2 | p1[p2] | σ | ∗

We refrain from giving a direct formal semantics, but, instead consider a logic
containing this fragment. Recall that νΣ is the vocabulary for unranked trees as
defined in Section 4.1. Let FO(∃∗) be the fragment of FO over νΣ consisting of
formulae ϕ(x, y) in prenex normal form and all quantifiers existential. Additionally,
formulae can make use of the unary predicates root(x), leaf(x), first(x), and last(x)
(denoting that x is the root, a leaf, the first and the last child, respectively) and
the binary predicate succ(x, y) (denoting that y is the right sibling of x). Note
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that these predicates are FO-definable but not by existential formulae. A pattern
ϕ(x, y) is always evaluated against some context node u; we write ϕ(u, T ) for the
set {v | T |= ϕ(u, v)}. For logical characterizations of fragments of XPath, we refer
to [Marx 2004].

Using connections between FO over unranked tree structures and MSO
↓

→
, one

can easily verify the following.

Proposition 5.10. —For any DTD d, there exists an FOη(Tu) formula ϕd with
one free variable such that T

u |= ϕd(T ) iff T conforms to d.

—For every XPath expression e = ψ(x, y), there exists an FOη(Tu) formula
ϕe(T, t, t

′) such that T
u |= ϕe(T, t, t

′) iff t, t′ are branches of T with leaves
u, u′, and ψ(u, u′) holds in T .

We study the expressiveness and complexity of FO(Tu
p, σ) and FO(Tu, σ), and

show that the situation is reminiscent of that for ranked trees: one can prove a
quantifier-restriction result for those calculi that gives us a PH (polynomial hierar-
chy) upper bound on query evaluation. The proof, however, is not an immediate
consequence of its ranked counterpart. The reason is that all known quantifier-
restriction results for ranked trees, when applied to trees of the form R(T ), involve
quantification over trees that are not encodings of unranked trees. This, as before,
is remedied by combining the encoding techniques with some (restricted) EF games.

Theorem 5.11. (1 ) The data complexity of both FO(Tu
p, σ) and FO(Tu, σ) is

PH;

(2 ) The generic data complexity of both FO(Tu
p, σ) and FO(Tu, σ) is AC0.

Proof. Both 1) and 2) are based on the following quantifier-restriction result. By
FOdom(M, σ), where M is one of the ranked or unranked tree models considered
here, we denote the set of FO(M, σ) sentences in which quantification is restricted
to dom(A). Recall that dom(A) =

⋃

T∈adom(A) dom(T ), where A is a σ-structure.

That is, (M,A) |= ∃T ψ(T, ·) means that for some T0 with dom(T0) ⊆ dom(A),
(M,A) |= ψ(T0, ·).

Lemma 5.12. Every FO(Tu, σ) sentence is equivalent to an FOdom(Tu, σ) sen-
tence.

The proof of the lemma is by reduction to a similar result for the ranked trees
(FO(T, σ) = FOdom(T, σ)), but combining it with the translation R(·) requires
some work. Let A be a σ-structure over Utree(Σ). Then R(A) is a σ-structure
over Tree(Σ⊥) whose active domain is {R(T ) | T ∈ adom(A)}, and which contains,
for every tuple (T1, . . . , Tn) in an n-ary relation S in A, a tuple (R(T1), . . . ,R(Tn)).
Recall that T

u[A] stands for the structure (Tu,A) in which the universe is the set
of all trees T with dom(T ) ⊆ dom(A); we define T[R(A)] likewise.

The proof of Lemma 5.12 will be based on the following claim.

Claim 5.13. There exist two functions f, g : N → N such that, for any two
σ-structures A,B over Utree(Σ) and every k ≥ 0:

(1 ) T
u[A] ≡f(k) T

u[B] implies T[R(A)] ≡k T[R(B)];

(2 ) (T,R(A)) ≡g(k) (T,R(B)) implies (Tu,A) ≡k (Tu,B).
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First, we see how Lemma 5.12 follows from this. From Lemma 5.3, we know
that there is a function h : N → N such that T[R(A)] ≡h(k) T[R(A)] implies
(T,R(A)) ≡k (T,R(A)). Hence, for every k ≥ 0,

T
u[A] ≡f◦h◦g(k) T

u[B]
⇓ by Claim 5.13, 1)

T[R(A)] ≡h◦g(k) T[R(B)]
⇓ by Lemma 5.3

(T,R(A)) ≡g(k) (T,R(B))
⇓ by Claim 5.13, 2)

(Tu,A) ≡k (Tu,B)

Thus, every quantifier-rank k sentence of FO(Tu, σ) is equivalent to a quantifier-
rank f(h(g(k))) sentence of FOdom(Tu, σ), which proves Lemma 5.12.

We now prove Claim 5.13, part 1). For that, we need a way of coding a ranked
tree T with dom(T ) ⊆ dom(R(X)), where X is a set of unranked trees. Such trees
are either single nodes, or every node in their domains is of the form 01s where s
does not contain an occurrence of 00.

We fix the alphabet of unranked trees to be Σ = {a, b} (and hence the alphabet
of ranked translations will be Σ⊥ = {a, b,⊥}). Extension to larger alphabets is
straightforward.

Not all ranked trees are translations of unranked trees, but each ranked tree
can be encoded by a tuple of unranked trees in a way that allows the game to
proceed. For this, we define special 8-tuples of unranked trees. We say that a tuple
~V = (V1, . . . , V8) of unranked trees over Σ is nice if dom(V1) = . . . = dom(V8) = D,
and

—nodes labeled a in V1, V2, V3 form a partition of D;

—only non-leaf nodes can be labeled a in V4, V5, and no node is labeled a in both
V4 and V5;

—only leaf nodes can be labeled a in V6, V7, V8, and a node can be labeled a in at
most one of these trees.

Given a nice tuple ~V , we associate a tree T (~V ) in Tree(Σ⊥) with it as follows. Its
domain contains D′, the prefix-closure of R(D). For the root node or a node s of
the form s′ · 1 in D′, let d = R−1(s). Then

label of s in T (~V ) =











a if d is labeled a in V1

b if d is labeled a in V2

⊥ if d is labeled a in V3

Other nodes in D′ are of the form s = s′ · 0. Let d′ = R−1(s′). Note that d′ is not
a leaf node. Then

label of s in T (~V ) =











a if d′ is labeled a in V4

b if d is labeled a in V5

⊥ if d is labeled b in both V4 and V5

Finally, consider a leaf node d in D. Let s = R(d). If d is labeled a in one of
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V6, V7, V8, we add the node s · 0 to the domain of T (~V ) and label it as follows:

label of s · 0 in T (~V ) =











a if d is labeled a in V6,

b if d is labeled a in V7, and

⊥ if d is labeled a in V8.

This completes the description of T (~V ).
Next, suppose we have a ranked tree T which is either a single node, or whose

domain, DT , contains strings of the form 01 · s where s does not contain 00. We
now show how to code it by a tuple ~V so that T (~V ) = T . First, let D0

T be the set
of leaf nodes of the form s · 0 ∈ DT . Then D1

T = DT −D0
T has the property that

for some unranked tree domain D, D1
T is the prefix closure of R(D).

We now define V1, . . . , V8 over D in the natural way: that is, in Vi, i = 1, 2, 3,
we label a the nodes whose image is labeled a, b, ⊥, respectively, in T ; in V4 and
V5 we label by a the nodes d such that R(d) · 0 is labeled a (respectively b) in T ,
and in Vi, i = 6, 7, 8, we label by a the leaves d such that R(d) · 0 is in D0

T , and is

labeled a, b, or ⊥, respectively. It is routine to show that T (~V ) = T .
Note, furthermore, that if for some unranked tree Tu, we have T = R(Tu), then

Tu = V1, and furthermore, there is a formula β(~V ) over T
u that holds iff ~V codes

an image, under R(·), of an unranked tree. Moreover, it is easy to see that that

there are FO(Tu) formulae α0(~V ), αP1
(~V ), and αP2

(~V , ~W ), where P1, P2 range over
unary and binary predicates in the vocabulary of T, such that

—α0(~V ) holds iff ~V is nice;

—αP1
(~V ) holds iff P1(T (~V )) holds; and

—αP2
(~V , ~W ) holds iff P2(T (~V ), T ( ~W )) holds.

We now take c to be the maximum quantifier rank of α0, αP1
, αP2

, and β, and
define f(k) = 8k + c.

We now show how to play the game (T,R(A)) ≡dom
k (T,R(B)). The moves in

the game will be denoted by T i
A and T i

B. Corresponding to those moves, we will
have moves V i

j ,W
i
j , j = 1, . . . , 8, played in the game (Tu,A) ≡dom

8k+c (Tu,B).

Suppose the spoiler plays T i
A over (T,R(A)) in round i (the case when the

spoiler plays over (T,R(B)) is symmetric). Let ~V i be such that T (~V i) = T i
A. The

duplicator assumes that the spoiler plays 8 moves ~V i in the game on (Tu,A) and
(Tu,B) from the position

(

(V l
j | l < i, j = 1, . . . , 8), (W l

j | l < i, j = 1, . . . , 8)
)

and finds the response ~W i according to his winning strategy. Since α0(~V
i) holds,

by the assumption we have α0( ~W
i) and hence there is a ranked tree T ′ such that

T ( ~W i) = T ′. The duplicator then responds by playing T i
B := T ′.

It remains to show that the strategy works. Suppose for some binary predicate
P2 in the vocabulary of T, we have P2(T

i1
A , T

i2
A ). Then αP2

(~V i1 , ~V i2) holds, and

hence αP2
( ~W i1 , ~W i2) holds, which implies P2(T

i1
B , T

i2
B ). The proof of preservation

of unary predicates is the same.
Finally, assume that for some m-ary predicate S from σ, S(T i1

A , . . . , T
im

A ) holds

in R(A). Then, for each l ≤ m, there exists an unranked tree U il

A in adom(A) such

that T il

A = R(U il

A), and S(U i1
A , . . . , U

im

A ) holds in A. Furthermore, this means that
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β(~V il) holds, and V il

1 = U il

A , l ≤ m. By the definition of f(k), we conclude that

β( ~W il) for each l ≤ m, and thus R(W il

1 ) = T il

B . Since S(V i1
1 , . . . , V im

1 ) holds in A,

by the assumption on the game on (Tu,A) and (Tu,B) we have S(W i1
1 , . . . ,W

im

1 )
in B, and hence S(T i1

B , . . . , T
im

B ) in R(B).
This shows that the duplicator has the k-round winning strategy, and completes

the proof of part 1) of the Claim.
Next we prove Claim 5.13, part 2). Let c be the constant which is the maximum

quantifier rank of formulae ϕP such that T
u |= P (T1, T2) iff T |= ϕP (R(T1),R(T2)),

where P is an atomic formula, and the formula over T defining the range of R(·).
Once can see from the proof of Lemma 4.3 that c is a constant and does not depend
on k. We then take g(k) = k + c+ 1.

The moves in the ith round of the game (Tu,A) ≡k (Tu,B) will be denoted by
T i
A and T i

B, respectively. With each such pair of moves, we will have associated
moves V i

A and V i
B for the game (T,R(A)) ≡g(k) (T,R(B)). The game on (Tu,A)

and (Tu,B) is played as follows. Suppose that in round i, the spoiler plays T i
A

in (Tu,A) (the case when the spoiler plays in (Tu,B) is similar). The duplicator
then sets V i

A = R(T i
A), assumes that the spoiler plays V i

A in the position
(

(V j
A, j <

i), (V j
B , j < i)

)

in the game on (T,R(A)) and (T,R(B)), and finds the response
V i
B.
Let α(T ) be the formula over T stating that T is in the image of R(·). Since its

quantifier rank is at most c and α(V i
A) holds, then α(V i

B) holds, and therefore there
exists an unranked tree T ′ which is mapped to V i

B by R(·). We then set T i
B:=T ′.

It remains to show that this provides a winning strategy for the duplicator.
Suppose for some m-ary relation symbol S in σ, we have (T i1

A , . . . , T
im

A ) ∈ SA.
Then

(V i1
A , . . . , V im

A ) = (R(T i1
A ), . . . ,R(T im

A )) ∈ SR(A),

and by the assumption, (V i1
B , . . . , V im

B ) ∈ SR(B). Hence, (T i1
B , . . . , T

im

B ) ∈ SB. A

symmetric argument shows that (T i1
B , . . . , T

im

B ) ∈ SB implies (T i1
A , . . . , T

im

A ) ∈ SA.

Next, suppose P (T i
A, T

j
A) holds, where P is an atomic formula over T

u. Then

by Lemma 4.3 ϕP (V i
A, V

j
A) holds and, since g(k) = k + c and the quantifier rank

of ϕP is at most c, ϕP (V i
B, V

j
B ) holds, which in turn implies that P (T i

B, T
j
B) holds.

This, and the symmetric argument, show that {(T i
A, T

i
B) | i ≤ k} is a T

u-partial
isomorphism, and hence, by the previous paragraph, a partial isomorphism between
(Tu,A) and (Tu,B). This completes the proof of Claim 1, part 2).
Proof of Theorem 5.11. Lemma 5.12 gives the proof of the first part of the theorem,
since with restriction of quantification to dom(A), one can straightforwardly check
the validity of a sentence by using an alternating polynomial time algorithm.

The second part is by using Lemma 5.12 and a reduction to the ranked case.
Suppose Q is a generic query expressible in FO(Tu, σ) by a sentence Φ. From
Lemma 5.12, we may assume that quantification in Φ is already restricted. Suppose
A is such that adom(A) ⊂ Tree(Σ). Then all quantification in Φ is also restricted
to Tree(Σ). Since the restrictions of predicates ≺→ and ≺↓ to Tree(Σ) can be
expressed in FO(T), we see, by genericity, that there is a sentence Φ′ in FO(T, σ)
that expresses Q. Hence, the generic data complexity of FO(Tu, σ) is at most the
generic data complexity of FO(T, σ), which was shown to be AC0. This completes
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the proof of the theorem. 2

Corollary 5.14. Parity and transitive closure cannot be expressed in
FO(Tu, σ).

The upper bound of Theorem 5.11 cannot be lowered, since the relational calculi
we introduced can express problems complete for each level of PH. Moreover, this
can be done in a rather simple setting; for example, over T and T

u, all one needs
is one unary relation and quantification over branches.

Proposition 5.15. Let σ1 contain one unary relation U , and σ2 one binary
relation E. Then for every i, both FO(Tu

p, σ2) and FOη(Tu, σ1) (in fact, even
FOη(T, σ1)) can define Σp

i - and Πp
i -hard problems.

Proof. We have seen in Theorem 5.7 that for every i, FO(Tp, σ2) can define Σp
i - and

Πp
i -hard problems. As FO(Tp, σ2) is easily definable in FO(Tu

p, σ2), the first result
follows. The case of FOη(Tu, σ1) in the presence of a relation of arity at least two
follows from the corresponding results for the string model [Benedikt et al. 2003].

We now turn to the proof for FOη(T, σ1). This is a reduction from QSAT. For
each quantifier-prefix π, we construct an FOη(T, σ1) formula ξ such that, if a unary
relation S models a CNF formula ϕ, then (T, S) |= ξ iff ϕ preceded by the prefix π
is satisfiable.

Assume a formula of the form ψ := θ1Y1θ2Y2 · · · θkYkϕ where ϕ is the conjunction
of ℓ disjuncts Ci, each Yi is a sequence of variables, and each θi is ∃ or ∀. Let
x1, . . . , xn be the variables in ϕ. We can assume that no disjunct contains both xi

and ¬xi.
The unary database relation, which we will name S, contains ℓ trees t1, . . . , tℓ.

Every tree is a unary branch of depth n−1 (so, containing n nodes), every node has
at most one child and is labeled with a label from ({pos, neg} × {1, . . . , k}) ∪ {0}.
Intuitively, the tree ti encodes the disjunct Ci. The node at depth j is labeled
(pos, r), (neg, r), or 0 when xj+1 occurs positively, negatively or does not occur in
Ci, respectively, and xj+1 is in Yr.

Next, we construct the FO(T)-formula ξ which is obtained from ψ as follows.
For clarity, we write ∃t ∈ S rather than ∃t ∈ adom . We precede ψ by (∃t ∈ S). We
replace every quantifier ∃Yi . . . by ∃ηsi(t ≈dom si∧α01(si)∧. . .) and every quantifier
∀Yi . . . by ∀ηsi(t ≈dom si ∧ α01(si) → . . .). Here, α01(si) is the formula expressing
that every node in si is labeled with 0 or 1. Intuitively, every si represents a truth
assignment for all variables. Of course, we will only use si to determine the truth
value of the variables specified in Yi.

The formula ϕ is replaced by

(∀t′ ∈ S)(∃ηt′′)(∃ηs′′)(t′′ ≈dom s′′ ∧ t′′ � t′ ∧
∨

r∈{1,...,k}

(O(pos,r)(t
′′) ∧ s′′ � sr ∧O1(s

′′))

∨
∨

r∈{1,...,k}

(O(neg,r)(t
′′) ∧ s′′ � sr ∧O0(s

′′))

Intuitively, the formula expresses that for every disjunct t′ in S there must be at
least one literal t′′ that becomes true under the interpretation induced by sr. Here,
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Oσ(t) denotes the formula expressing that the endpoint of t is labeled with σ.
Note that ξ only depends on the quantifier prefix of ψ, not on ϕ or the sets Yi.
Clearly, (T, S) |= ξ iff ψ ∈ QSAT. 2

5.4 Restricted query languages

Given the high bounds on the complexity of query languages, we propose some re-
stricted relational calculi with lower data complexity, but still sufficiently expressive
so that they can do, for example, DTD validation and XPath pattern-matching.
The source of high complexity in a query language is the possibility of quantifying
over the entire set of unranked trees. We therefore impose restrictions on such
quantification.

Let FOact(M, σ) be the logic that is build from atomic formulae over σ and
arbitrary formulae of FO(M) by using the Boolean connectives and quantifica-
tion ∃T ∈ adom and ∀T ∈ adom. If only FOη(M) formulae are used, we refer to
FOact

η (M, σ).

Combining the AC0 data complexity of the relational calculus [Abiteboul et al.
1995] with the results of the previous section we get:

Corollary 5.16. The data complexity of both FOact(Tu
p, σ) and FOact(Tu, σ)

is DLOGSPACE, and the data complexity of FOact
η (Tu, σ) is NC1. 2

Indeed, since the data complexity of the relational calculus is AC0, the data com-
plexity of the calculi is the same as the data complexity of the corresponding for-
mulae over T

u or T
u
p, which is then DLOGSPACE by [Gottlob et al. 2005]. If

quantification is over branches only, the data complexity becomes NC1.
Notice that all these languages can do both DTD and XPath checking.
As another restriction, we use the logic FOreg

η (Tu
p) of Section 4.3, which ex-

tends FOη(Tu
p) with predicates r↓(T ) and r→(T ) testing if the labeling of the right

boundary or the siblings of the rightmost node of a branch is in the language de-
noted by the regular expression r. By adding atomic formulae of the form S(~T )
where S ∈ σ, and restricted quantification ∃T ∈adom and ∀T ∈adom, we obtain a
logic FOreg

η (Tu
p, σ). Note that this logic is closer to FO(M, σ) than to FOact(M, σ),

since it can mix quantification over (a subset of) M and quantification over the
active-domain in an arbitrary way. Still, it has low data complexity.

Theorem 5.17. The data-complexity of FOreg
η (Tu

p, σ) is NC1.

Proof. By FOreg
η,dom(Tu

p, σ), we denote the set of FOreg
η (Tu

p, σ) sentences in which

quantification is restricted to branches of trees in adom(A). That is, (Tu
p,A) |=

∃T ψ(T, ·) means that for some branch T0 of a tree T1 ∈ adom(A), (Tu
p,A) |=

ψ(T0, ·).
We need the following lemma.

Lemma 5.18. Every FOreg
η (Tu

p, σ) sentence is equivalent to an FOreg
η,dom(Tu

p, σ)
sentence.

Proof. Denote by η(A) the set of branches occurring in trees in the active domain
of A. Let T

u,R
p be the structure T

u
p extended with the predicates r→ and r↓ for

r ∈ R.
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Let (Tu,R
p ,A) ≡

η(A,B)
k (Tu,R

p ,B) denote the k-move game consisting of two kind
of moves: (1) a move and the response on it is a branch in η(A) and η(B) or vice
versa; or, (2) a move and the response on it is a tree in adom(A) and adom(B) or
vice versa. By (Tu,R

p ,A) ≡η
k (Tu,R

p ,B), we denote the game where (1)-moves are
not restricted to η(A) and η(B) but can be arbitrary branches.

We show that for any k and any finite set of regular expressions R there is an ℓ
and a finite set of regular expressions R′ such that

(Tu,R′

p ,A) ≡
η(A,B)
ℓ (Tu,R′

p ,B) implies (Tu,R
p ,A) ≡η

k (Tu,R
p ,B).

We refer to the left game as the small game and to the right game as the big game.
We set ℓ = k+ 3. For every regular expression r ∈ R, let Ar = (Qr,Σ, q

r
0 , δr, Fr)

be the equivalent DFA accepting L(r). For every DFA, the following property holds:

for every w1, w2 ∈ Σ∗, δ∗r (w1) = δ∗r (w2) implies δ∗r (w1v) ∈ Fr iff δ∗r (w2v) ∈ Fr for
all v ∈ Σ∗. (*)

Here, δ∗r is the transition function δr extended to strings. Let Aq
r be the automa-

ton A where F = {q} and let sq
r be the regular expression equivalent to Aq

r. So,
if w, v ∈ Σ∗ satisfy sq

r, then for all z ∈ Σ∗, wz satisfies r iff vz satisfies r. Set
R′ = R ∪ {sq

r | r ∈ R, q ∈ Qr}.
The winning strategy is similar to the one in the proof of Theorem 4.14. We only

describe the strategy when the spoiler plays in A the converse situation is similar.
If the spoiler makes a (2)-move t1i ∈ adom(A) in the big game then the duplicator
answers with t2i where t2i is the answer to t1i in the small game. Suppose the
spoiler makes a (1)-move t1i ∈ A in the big game. Let t′1i be the restriction to
η(A). Let t′2i be the answer to t′1i in the small game. Then define t2i as the tree
t′2i where the “remaining” part of t1i is attached. That is, if sp = s′p · jp is the
rightmost node of t′pi, p = 1, 2, then for any node s′1 · j ·v in dom(t1i), where j ≥ j1,
we add a node s′2 · (j2 + j − j1) · v to t2i and label it the same.

We need to show that this strategy is indeed a winning strategy. Suppose
(

(t11, . . . t1i), (t21, . . . , t2i)
)

have been chosen in the big game. There are corre-

sponding moves
(

(t′11, . . . t
′
1i), (t

′
21, . . . , t

′
2i)

)

in the small game. Note that when tpj ,
p ∈ {1, 2}, is a branch, then t′1j = t1j ∩ η(A) and t′2j = t2j ∩ η(B). Indeed, one of
them is chosen as such, the reason the other one has to be of the specified form,
follows from the fact that we have three extra moves in the small game.

We introduce the following notation. When tpj is a branch, then define epj :=
tpj − t′pj as the difference between tpj and t′pj . That is, the tree with domain
(m− jp) · v such that sp ·m · v is a node in dom(tpj). The labeling is inherited from
tpj . By definition, e1j = e2j , so we write ej .

We show that the mapping ~t1 : t11, . . . , t2i 7→ ~t2 : t21, . . . , t2i is indeed a partial
isomorphism. We only show that for every atomic formula α, T

u,R
p |= α(~t1) implies

T
u,R
p |= α(~t2). The converse direction is similar.

Suppose T
u,R
p |= t1j �↓ t1r.

(1) both t1j and t1r are branches, and t1j 6∈ η(A). As t1m = t′1m ∩ η(A) (m ≤ i),
there is no t ∈ η(A) such that t′1m ≺ t � t1m. So, t1j �↓ t1r implies that
t′1j = t′1r and ej �↓ er. Therefore, t′2j = t′2r. As ej � ei, we have that
t2j �↓ t2r.
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(2) both t1j and t1r are branches, t1j ∈ η(A) and t1r 6∈ η(A). Then, t1j �↓ t
′
1r.

From the small game t2j �↓ t
′
2r and, therefore, t2j �↓ t2r.

(3) t1j , t1r ∈ η(A). Follows from the small game.

(4) t1j , t1r ∈ adom(A). Then t2j , t2r ∈ adom(B) and T
u,R
p |= t2j �↓ t2r follows

from the small game.

(5) t1j ∈ adom(A) and t1r ∈ η(A), or t1r ∈ adom(A) and t1j ∈ η(A). The former
case reduces to case 3. The latter follows from the small game.

Suppose r↓(t1j). Then, t1j is a branch. From the small game, sq,↓
r (t′1j) iff sq,↓

r (t′2j)
for all regular expressions sq

r. As the same part is added to both t′1j and t′2j , we

have r↓(t2j). Showing that t1j �↓ t1r implies t2j �↓ t2r, r
↓(t1j) implies r↓(t2j), and

La(t1j) implies La(t2j) is similar. Finally, the case of the database relations follows
from the small game. 2

We show that the data-complexity is in NC1. We translate every FOreg
η,dom(Tu

p, σ)
formula to an FOREG formula over an adapted vocabulary µΣ(σ). The translation
of the σ-database to the µΣ(σ)-structure can be done in NC1. From the proof of
Theorem 4.13, it then follows that the data-complexity is NC1.

Suppose adom(A) contains K trees. Consider a fixed enumeration of these K
trees where every tree T has an associated enumeration number enum(T ). Then,
the µΣ(σ)-structure A′ uses the domain {1, . . . ,K}∪{s ∈ dom(T ) | T ∈ adom(A)}.
We associate node s of the j-th tree with the pair (j, s); similarly, we associate the
j-th tree itself with its root (j, ǫ).

We define A′ as follows:

—every tree will be coded in the relations <pre, <sib, Oa of arity 3, 3, and, 2,
respectively, where the first element of every pair is the enumeration number
of the tree. Formally, for every tree T = (D, f) ∈ adom(A), <sib contains
(enum(T ), s · i, s · j) for all s · i, s · j ∈ D, i, j ∈ N and i < j; <pre contains
all (enum(T ), s, s′) where s is a prefix of s′; and, every Oa contains all pairs
(enum(T ), s) with f(s) = a.

—For every relationR ∈ σ of arity k, R′ is a 2k-ary relation; we haveRA(T1, . . . , Tk)
iff RA′

(i1, ǫ, . . . , ik, ǫ) where enum(Tj) = ij.

Clearly, the transformation of A to A′ is in NC1.
The translation is by induction on the structure of FOreg

η,dom(Tu
p, σ) formulae.

To be precise, for every FOreg
η,dom(Tu

p, σ) formula ϕ(T1, . . . , Tn), we construct an
FOREG formula ϕ′(x1, y1, . . . , xn, yn) such that

(Tu
p,A) |= ϕ(T1, . . . , Tn) ⇔ A′ |= ϕ′(a1, b1, . . . , an, bn),

where ai = enum(Ti) and bi = ε if Ti ∈ adom(A), and ai = enum(Ti) and bi = s if
Ti is a branch of a tree T ∈ adom(A) ending in node s. So, with every tree T we
associate two variables x and y. Note that this translation only depends on σ and
not on A.

To facilitate the translation, we make a distinction between branch variables and
domain variables. The former are interpreted by branches, while the latter are
interpreted by trees in the active domain. If we do not care then we use variables
U1, U2, . . ..
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Let dom(x, y) be the formula defining that y is a node of the tree T with
enum(T ) = x. Let root(x, y) denote the formula expressing that y is the root
of x. Let last(x, y) denote the formula expressing that y is the last node of the tree
T with enum(T ) = x. Let s(Ui) be the formula root(xi, yi) if Ui is a domain vari-
able; otherwise, it is the formula dom(xi, yi). Finally, let leaf(x, y) be the formula
expressing that y is a leaf of x.

—if ϕ := U1 = U2 then ϕ′ is s(U1) ∧ s(U2) ∧ x1 = x2 ∧ y1 = y2;

—Let γ be the formula

∀y, y′
∧

R∈{<pre,<sib}

(R(x1, y, y
′) → R(x2, y, y

′)) ∧ ∀y, y′(Oa(x1, y) → Oa(x2, y))

expressing the prefix relation.
Suppose ϕ := U1 �↓U2. Then ϕ′ is the formula

s(U1)∧s(U2)∧γ∧∀y(dom(x2, y)∧¬dom(x1, y) → ∃y′(<pre (x1, y
′, y)∧leaf(x1, y

′))).

Suppose ϕ := U1 �→ U2. Then ϕ′ is the formula

s(U1)∧s(U2)∧γ∧∀y(dom(x2, y)∧¬dom(x1, y) → ∃y′(<sib (x1, y
′, y)∧dom(x1, y

′))).

—If ϕ := La(U1), then ϕ′ is the formula s(U1) ∧ ∃y(last(x1, y) ∧Oa(y)).

—if ϕ := R(U1, . . . , Un) then ϕ′ is
∧n

i=1 s(Ui) ∧R′(x1, y1, . . . , xn, yn);

—the boolean connectives are immediate;

—If ϕ is of the form ∃Uiψ(Ui) then ϕ′ is of the form ∃xi∃yi(s(Ui) ∧ ψ′(xi, yi)). 2

5.5 Safe query languages.

We conclude by a remark on safety in relational calculi. An FO(M, σ) query ϕ(~T )

is safe if for every A, the number of tuples ~T0 such that (M,A) |= ϕ(~T0) is finite.
This property is undecidable even for the pure relational calculus (that is, when
the vocabulary of M is empty), but the class of safe queries often has effective
syntax: that is, an r.e. collection of safe queries ϕi, i ∈ N, such that every safe
query in FO(M, σ) is equivalent to one of ϕi’s. The existence of effective syntax for
pure relational calculus is a standard result of relational database theory [Abiteboul
et al. 1995], but [Stolboushkin and Taitslin 1999] showed that it may not extend
even to some structures with quantifier-elimination and decidable first-order theory.
Nevertheless, for previously studied automatic structures, safe queries were shown
to have effective syntax [Benedikt et al. 2003]. We now extend this result to the
calculi studied here for trees.

Theorem 5.19. Safe queries in all of FO(Tp, σ), FO(T, σ), FO(Tu
p, σ),

FOη(Tu
p, σ), FOreg

η (Tu
p, σ), FO(Tu, σ), and FOη(Tu, σ) have effective syntax.

Proof. We start with ranked trees. We prove the result for T and sketch a very sim-
ilar proof for Tp. For each query ϕ(~T ), define ϕb(t) ≡ ∃T1, . . . , Tn ϕ(T1, . . . , Tn) ∧
(
∨

i η(t, Ti)). That is, ϕb(t) defines all the branches of all the trees in the active
domain of the output of ϕ. Clearly, ϕ is safe iff ϕb is.

Let ℓ(t) be the length of a branch t, and let ℓ(A) be the maximum length of a
branch in a tree in adom(A). We need the following lemma.
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Lemma 5.20. For every k ≥ 0, there is and can be effectively found a number
m > 0 with the following property. Let ψ(t) be a RC(T, σ) query such that if ψ(t) is
true, then t is a branch. Assume that ψ is of quantifier rank k. Suppose A |= ψ(t0)
where ℓ(t0) − ℓ(A) > m. Then ψ(A) is infinite.

Proof of the lemma. Consider all (finitely many) rank k types of a single branch.
Let m be the smallest number with the following property: if for a rank k type
τ there are only finitely many branches that realize it, then each such branch has
length at most m. Clearly this number can be computed from k, since all the types
can be effectively listed, and the theory of T is decidable.

Now suppose that A |= ψ(t0) and ℓ(t0) − ℓ(A) > m. Let s be the largest (with
respect to the prefix relation) node of t0 that also belongs to dom(A). Define t to
be the subbranch of t0 rooted at s. Let t0[s] ≺ t0 be the restriction of t0 to the
nodes which are proper prefixes of s. Note that ℓ(t) > m. Let t′ be a branch of the
same rank k type as t, and let t′0 be the extension of t0[s] with t′ attached as the
subbranch rooted at s. We now claim that (T,A, t0) ≡k (T,A, t′0). Clearly this
suffices, since this implies A |= ψ(t′0), and there are infinitely many branches t′ of
the same rank k type as t (and hence infinitely many branches t′0).

That (T,A, t0) ≡k (T,A, t′0) follows by a straightforward composition argument.
Suppose in round i the spoiler plays Ui in (T,A, t0). To construct the response Vi

in (T,A, t′0), the duplicator splits Ui into U ′
i and U ′′

i , where U ′
i is the restriction of

Ui to nodes which are not suffixes of s, and U ′
i is the subtree of Ui rooted at s. The

duplicator’s response is a tree Vi whose restrictions to nodes which are not suffixes
of s is V ′

i , and whose subtree rooted at s is V ′′
i . To define such a tree, the duplicator

chooses V ′
i = U ′

i , and finds V ′′
i such that (T, t, U ′′

1 , . . . , U
′′
i ) ≡k−i (T, t′, V ′′

1 , . . . , V
′′
i ).

The latter is possible by following a k-round winning strategy for (T, t) and (T, t′).
It is easy to check the the duplicator wins the k-round game on (T,A, t0) and
(T,A, t′0). This completes the proof of the lemma.

To finish the proof of the theorem for T, note that by the lemma, for each query
ϕ, there is (and can be effectively calculated) a number m such that if ϕ is safe
on A, then every branch in ϕb(A) has length at most ℓ(A) + m (by letting k be
the quantifier rank of ϕb and applying the lemma). Note that for each fixed m,
the predicate ℓ(t′) ≤ ℓ(t′′) + m is expressible over T. Thus, it suffices to take
ϕrr(T1, . . . , Tn) to be

m
∧

i=1

∀t
(

η(t, Ti) → ∃T ∈adom ∃t′
(

η(t′, T ) ∧ (ℓ(t) ≤ ℓ(t′) +m)
)

)

For Tp, the proof proceeds similarly, except that in the analogous lemma the
condition ℓ(t0) − ℓ(A) ≤ m is replaced by the condition that there is t′ � t such
that ℓ(t) ≤ ℓ(t′)+m and t′ is a branch of a tree in adom(A). With this modification
(which is proved by a similar game argument), the rest of the proof is identical, as
the predicate t′ � t ∧ (ℓ(t) ≤ ℓ(t′) +m) is expressible over Tp for every fixed m.

We next move to unranked trees. We first prove the result for the calculi based
on T

u
p. Suppose t is a branch and A a σ-structure. By tA we denote the maximal

subbranch of t that is also a branch of some T ∈ adom(A). By d(t,A) we denote
the number of nodes in dom(t)−dom(tA). Our goal is to show that following claim.
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Claim 5.21. For every k ≥ 0, there exists p > 0 such that for every A and every
branch t with d(t,A) > p, there are infinitely many branches t′ such that

(Tu
p,A, t) ≡k (Tu

p,A, t
′).

We now show how the result follows from the claim. Suppose ϕ(T1, . . . , Tm) is a
query in one of the languages; we form a query

ϕη(t) = ∃T1, . . . , Tm (
m
∨

i=1

η(t, Ti) ∧ ϕ(T1, . . . , Tm))

in FO(Tu
p, σ). Let k be the quantifier rank of this query. Then, if there t0 such that

(Tu
p,A) |= ϕη(t0) and d(t0,A) > p, then, by Claim 5.21, infinitely many branches

satisfy ϕη(·) and hence ϕ is not safe.
We now consider the formula

γp(T ) = ∀ηt � T ∃T ′∈adom ∃ηt′ � T ′
(

¬∃t1, . . . , tp+1

(

t′ ≺ t1 ≺ . . . ≺ tp+1 ≺ t
)

)

Thus, if ϕ is safe, then ϕ is equivalent to

ϕ(T1, . . . , Tm) ∧ γp(T1) ∧ . . . ∧ γp(Tm).

Since every query of the above form is safe, and adding the conjunction
∧

i γp(Ti)
does not take the query out of the original syntactic class (among those listed in
the Proposition), we get the result.

It remains to prove the claim. We know that for every k, we can find l > 0 such
that

(Tp,R(A),R(T )) ≡l (Tp,R(A),R(T ′)) implies (Tu
p,A, T ) ≡k (Tu

p,A, T
′).
(5)

This is an easy consequence of Lemma 4.3; the game is played in the obvious way,
that is, each move V is modeled by R(V ), and the bounds on l ensure that the
response to that in the game over Tp is of the form R(W ); then W is selected as
the response.

We have seen that for every σ-structure B over the structure of ranked trees, for
every ranked branch t0, and every s > 0, there exists p > 0 such that d(t0,B) > p
implies the existence of infinitely many branches t1 with (Tp,B, t0) ≡s (Tp,B, t1).
We now apply this to B = R(A) and s = l + 3, and find the corresponding p > 0.

Suppose now we have an unranked branch t with d(t,A) > p. Let t0 = R(t);
then d(t0,R(A)) > p. We thus find infinitely many ranked trees t′i, i > 0 such that
(Tp,R(A), t0) ≡l+3 (Tp,R(A), t′i). Since there is a formula of quantifier-rank 3
stating that a ranked tree V is of the form R(W ), where W is an unranked branch,
we conclude that t′i is of the form R(ti), where ti is an unranked branch. Now (5)
gives us (Tu

p,A, t) ≡k (Tu
p,A, ti) for infinitely many branches ti, which proves the

claim.
The proof of the result for the calculi based on T

u is similar, except that one
uses a different notion of distance: d′(t,A) is the number of nodes in dom(t) that
do not belong to dom(A) =

⋃

T∈adom(A) dom(T ). 2
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Logic Class of Languages

FO(T) MSO = regular

FO(Tp) MSO = regular

FOη(T) MSOchain

FOη(Tp) FO

Fig. 4. Definability over Tp and T.

Logic Class of Languages

FO(Tu) MSO = regular

FO(Tu
p ) MSO = regular

FOη(Tu) MSO
↓

→

FOη(Tu
p ) FO

FOreg
η (Tu) MSO

↓

→

FOreg
η (Tu

p) FOREG

Fig. 5. Definability over T
u
p and T

u .

Relational Calculi Data Complexity

FO(Tu , σ) PH

FO(Tu
p , σ) PH

generic FO(Tu , σ) AC0

FOact(Tu , σ) DLOGSPACE

FOact(Tu
p , σ) DLOGSPACE

FOη(Tu , σ) PH

FOact
η (Tu , σ) NC1

FOreg
η (Tu

p , σ) NC1

Fig. 6. Relational calculi over T
u
p and T

u .

6. CONCLUSION

We examined definability and complexity for both logical constraints over tuples of
trees and query languages over relations on trees. The results obtained for logics
are summarized in Figure 4 and Figure 5. In each case, we show the class of
languages one obtains from using formulae in the logic with no relational variables.
This gives a rather complete picture concerning definability in the classical setting
versus definability in the model-theory setting.

The second half of the paper deals with query languages. Figure 6 summarizes
the expressiveness and data complexity of the corresponding query languages. We
would like to understand the precise expressiveness of generic queries in relational
calculi over automatic structures: we know that AC0 is an upper bound, but we
suspect that these queries may capture an interesting subclass of AC0 that properly
extends the class of first-order definable properties. In addition, we would like
to find precise descriptions of fragments of various XML query languages (e.g.,
[Chamberlin et al. 2002; Cardelli and Ghelli 2004]) that correspond to the logics
studied here.

Although the bounds presented for primal tree formulae are the same as for gen-
eral formulae in the worst case, it remains to check to what extent primal formulae
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can be evaluated with greater parallelism. It is clear that splitting automata can be
implemented more efficiently than general tree-tuple automata on trees with small
overlap, but we currently have no formal results that capture this advantage.

The results here apply to tuples of finite trees. In future work, we will examine
what occurs for tuples of infinite trees. The natural motivation for this comes
from verification: given a set of state machines S1 . . . Sn, one is often interested in
synthesizing a state machine S such that the product of S with Si satisfies some
property. If one passes from the machine Si to the behavior tree Ti obtained by
unwinding it, this corresponds to generating a regular infinite tree T that satisfies
a formula ϕ(T, T1 . . . Tn).
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