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Well-known theorems of Hanf and Gaifman establishing locality of first-order definable properties
have been used in many applications. These theorems were recently generalized to other logics,
which led to new applications in descriptive complexity and database theory. However, a logical
characterization of local properties that correspond to Hanf’s and Gaifman’s theorems is still
lacking. Such a characterization only exists for structures of bounded valence. In this paper, we
give logical characterizations of local properties behind Hanf’s and Gaifman’s theorems. We first
deal with an infinitary logic with counting terms and quantifiers that is known to capture Hanf-
locality on structures of bounded valence. We show that testing isomorphism of neighborhoods can
be added to it without violating Hanf-locality, while increasing its expressive power. We then show
that adding local second-order quantification to it captures precisely all Hanf-local properties. To
capture Gaifman-locality, one must also add a (potentially infinite) case statement. We further
show that the hierarchy based on the number of variants in the case statement is strict.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic

General Terms: Languages, Theory

Additional Key Words and Phrases: Locality, logic, counting

1. INTRODUCTION

It is well known that first-order logic (FO) only expresses local properties. Two
best known formal results stating locality of FO are Hanf’s and Gaifman’s theorems
[Hanf 1965; Gaifman 1982]. They both found numerous applications in computer
science, due to the fact that they are among relatively few results in first-order
model theory that apply to both finite and infinite structures. Gaifman’s theorem
itself works for both finite and infinite structures, while for Hanf’s theorem an
extension to finite structures was formulated by Fagin, Stockmeyer, and Vardi
[1995].

More recently, the statements underlying Hanf’s and Gaifman’s theorems have
been abstracted from the statements of the theorems, and used in their own right.
In essence, Hanf’s theorem states that two structures cannot be distinguished
by sentences of quantifier rank k& whenever they realize the same multiset of d-
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2 . Leonid Libkin

neighborhoods of points; here d depends only on k. Gaifman’s theorem states that
in a given structure, two tuples cannot be distinguished by formulae of quanti-
fier rank k& whenever d-neighborhoods of these tuples are isomorphic; again d is
determined by k.

It was shown that Hanf’s theorem is strictly stronger than Gaifman’s, and that
both apply to a variety of logics that extend FO with counting mechanisms and
limited infinitary connectives [Grohe and Schwentick 2000; Hella et al. 1999a; Hella
et al. 1999b; Libkin 2000; Nurmonen 1996]. These results found applications in
descriptive complexity and database theory. Since the complexity class TC? (with
the appropriate notion of uniformity) can be captured by FO with counting quan-
tifiers [Barrington et al. 1990], locality can be used to prove lower bounds for logics
coming very close to capturing TC° [Etessami 1995; Libkin and Wong 1998]. In
database theory, logics with counting mechanisms model aggregate functions com-
monly found in commercial query languages. Thus, locality was used to prove
expressivity bounds for query languages with aggregation [Dong et al. 2000; Hella
et al. 1999b]. For applications to automata, see [Schwentick and Barthelmann 1998].

The above-mentioned papers considered a sequence of more and more power-
ful logics, each of which was proved to be local, starting with FO with counting
quantifiers, and ending with a logic that permits arbitrary predicates on natural
numbers, a limited form of infinitary connectives [Libkin 2000] and even aggregate
functions [Hella et al. 1999b]. However, it was not clear how much one can add to
these logics and still preserve its locality. Our goal, therefore, is to give a precise
characterization of local logics.

Note that the abstract notions of locality were previously characterized on finite
structures of bounded valence (e.g., for graphs of fixed maximum degree). The char-
acterization for Hanf-locality uses a logic £%_ (C) introduced in [Libkin 2000]. This
logic subsumes a number of counting extensions of FO (such as FO with counting
quantifiers [Immerman and Lander 1990], FO with unary generalized quantifiers
[Hella 1996; Kolaitis and Vadninen 1995], FO with unary counters [Benedikt and
Keisler. 1997]) and is quite easy to deal with. A result in [Hella et al. 1999a] states
that Hanf-local properties on structures of bounded valence are precisely those
definable in £%_ (C).

The question naturally arises whether this continues to hold for arbitrary finite
structures. We show in this paper that this is not the case. We do so by first
finding a simple direct proof of Hanf-locality of £*  (C), and then using it to
show that adding new atomic formulae testing isomorphism of neighborhoods of a
fixed radius does not violate Hanf-locality, while strictly increasing the expressive
power. We next define a logic that captures precisely the Hanf-local properties. It
is obtained by adding local second-order quantification to L%, (C). That is, second-
order quantifiers bind predicates that are only allowed to range over fixed radius
neighborhoods of free first-order variables. We will also show that this amounts to
adding arbitrarily powerful computations to £, (C) as long as they are bound to
some neighborhoods.

For Gaifman-locality, a characterization theorem in [Hella et al. 1999a] stated
that it is equivalent, over structures of bounded valence, to first-order definition
by cases. That is, there are m > 0 classes of structures and m FO formulae ¢;
such that, over the ith class, the given property is described by ;. Again, this
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falls short of a general characterization. We show that over the class of all finite
structures (no restriction on valence), Gaifman-locality is equivalent to definition
by cases, where the number of classes can be infinite. Furthermore, the hierarchy
given by the number of those classes (that is, the number of cases) is strict.

Organization. Section 2 introduces notations and notions of locality. Section 3 gives
a new simple proof of Hanf-locality of £ ,(C) which is then used to show that
adding tests for neighborhood isomorphism preserves locality. Section 4 charac-
terizes Hanf-local properties as those definable in £ (C) with local second-order
quantification. Section 5 characterizes Gaifman-local properties as those definable
by (finite or infinite) case statements, and shows the strictness of the hierarchy.

2. NOTATION
Finite Structures and Neighborhoods. All structures are assumed to be finite. A
relational signature o is a set of relation symbols {R;, ..., R}, with associated

arities p; > 0. A o-structure is A = (A, R{A, ..., R{'), where A is a finite set, and
R{ C APi interprets R;. The class of finite o-structures is denoted by STRUCT[o].
When there is no confusion, we write R; in place of RZA. Isomorphism is denoted
by 2. The carrier of a structure A is always denoted by A, and the carrier of B is
denoted by B.

Given a structure A, its Gaifman graph G(A) is defined as (A, E) where (a,b)
is in F iff there is a tuple ¢ € Ry for some i such that both a and b are in
é. The distance d(a,b) is defined as the length of the shortest path from a to b
in G(A); we assume d(a,a) = 0. If @ = (ay,...,a,) and b = (by,...,by,), then
d(a@,b) = min;; d(a;, b;). Given @ over A, its r-sphere SA(@) is {b € A | d(d@,b) <r}.
Its r-neighborhood NA(@) is defined as a structure in the signature that extends o
with n new constant symbols:

(SM@), RAn SA@)P, ..., RANSA@"P a1, ...,a,)

That is, the carrier of NA(@) is S7A(@), the interpretation of the o-relations is in-
herited from A, and the n extra constants are the elements of @. If A is understood,
we write S, (d@) and N,(a).

If A,B € STRUCTJ[o], and there is an isomorphism NA(@) — NF(A) (that sends
@ to b), we write @ ~AB b, If A = B, we write @ ~ b.

Given a tuple @ = (ay,...,a,), we write dc for the tuple (ay,...,an,c).

The quantifier rank of a formula is denoted by qr(-).

Hanf’s and Gaifman’s Theorems. An m-ary query on o-structures, @, is a map-
ping that associates to each A € STRUCT|o] a structure (4, S), where S C A™. We
always assume that queries are invariant under isomorphisms. We write @ € Q(.A)
if @ € S, where (A4,S) = Q(A). A query Q is definable in a logic £ if there exists
an L formula p(z1,. .., 2y) such that Q(A) = (A, {d | A E ¢(@)}). If m =0, then

@ is naturally associated with a subclass of STRUCT([o], and definability means
definability by a sentence of L.

Definition 2.1 (Gaifman-Locality). (See [Dong et al. 2000; Hella et al. 1999a]).
An m-ary query @, m > 1, is called Gaifman-local if there exists a number r > 0
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such that, for any structure A and any d, be A
a~tb implies @€ Q(A) iff be Q(A).
The minimum such r is called the locality rank of @, and is denoted by Ir(Q).

THEOREM 2.2 (GAIFMAN [1982]). Ewery FO formula ¢(z1,...,zmy) defines a
Gaifman-local query Q with Ir(Q) < (79"¥) —1)/2.

The statement of Gaifman’s theorem actually provides more information about
FO-definable properties; it also states that every first-order definable property can
be expressed in terms of types of neighborhoods realized in a given structure. An
abstract formulation of this property was introduced in [Hella et al. 1999a] under
the name of strong Gaifman-locality, and was shown to be equivalent to first-order
definability over finite structures of bounded degree. However, it is the above
statement that is used in most applications for proving expressivity bounds, and it
also extends beyond FO. Note also that better bounds of the order O(29"(¥)) are
known for Ir(@); see [Libkin 2000].

For A, B € STRUCT[o], we write A5 ;B if the multisets of isomorphism types of
d-neighborhoods of points are the same in A and B. That is, A5 B if there exists
a bijection f : A — B such that Nj(a) = NZ(f(a)) for every a € A. We also write
(A, @)S 4(B,b) if there is a bijection f: A — B such that N{(dc) = Nf(gf(c)) for
every ¢ € A.

Definition 2.3 (Hanf-Locality). (See [Hanf 1965; Fagin et al. 1995; Hella et al.
1999a]). An m-ary query @, m > 0, is called Hanf-local if there exist a number
d > 0 such that for any two structures A, B and any @ € A™, be B™,

—

(A,@)S,(B,b)  implies @€ Q(A) iff be Q(B).
The minimum d for which this holds is called Hanf locality rank of ), and is denoted
by hlr(Q).

For a Boolean query @ (m = 0) this means that () cannot distinguish two struc-
tures A and B whenever A5 B.

THEOREM 2.4 (HANF [1965], FAGIN-STOCKMEYER-VARDI [1995]). Every FO
sentence @ defines a Hanf-local Boolean query Q with hlr(Q) < 39(®). O

An extension to open formulae, although easily derivable from the proof of [Fagin
et al. 1995], was probably first explicitly stated in [Hella et al. 1999a]: every FO
formula ¢(Z) defines a Hanf-local query. Better bounds on hlr(Q) of the order
0(29"(¥)) are also known for Hanf-locality [Immerman 1999; Libkin 2000].

We shall use the following result that connects the binary relations < and =.

LEMMA 2.5 (SEE [HELLA ET AL. 1999A)). (a) Let AS, B and @ zg‘d’fl b.

Then (A,@)S (B, b).
(b) Let (A,d')‘:>3d+1(8,g). Then there exists a bijection f : A — B such that
(A, @c)S (B, bf(c)) for every c € A.

Note that Lemma 2.5, part (b) is in fact an easy corollary of Lemma 2.5, (a): If
(A,d'):3d+1(8,g), then there is a bijection f : A — B such that dc %3/‘351 bf(c):;
since AS 3,4, 1B and thus AS B, this implies (A, dec)S 4(B, bf(c)).
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Another easy corollary of Lemma 2.5, (a), is that every Hanf-local m-ary query
@, m > 1, is Gaifman-local [Hella et al. 1999a]. Indeed, let d = 3hlr(Q) + 1, and
let @ 7 b. Since AS @) A, we obtain (A, @) Sy q) (A, b) and thus @ € Q(A) iff
be Q(A), by Hanf-locality.

Logic L%, (C). The logic £*__(C) subsumes a number of counting extensions of
FO, such as FO with counting quantifiers [Etessami 1995; Immerman and Lander
1990], unary quantifiers [Hella 1996], and unary counters [Benedikt and Keisler.
1997]. (When we speak of counting extensions of FO, we mean extensions that
only add a counting mechanism, as opposed to those — extensively studied in the
literature, see [Cai et al. 1992; Otto 1997] — that add both counting and fixpoint.)
It is a two-sorted logic, with one sort being the universe of a finite structure, and
the other sort being N, and it uses counting terms that produce constants of the
second sort, similarly to the logics studied in [Gradel and Gurevich 1998]. The
formal definition is as follows.

We denote the infinitary logic by Low; it extends FO by allowing infinite con-
junctions A and disjunctions \/. Then L., (C) is a two-sorted logic that extends
Loy Its structures are of the form (A, N), where A is a finite relational structure,
and N is a copy of natural numbers. We shall use Z, 4, etc., for variables ranging
over the first (nonnumerical) sort, and 7, 7, etc., for variables ranging over the sec-
ond (numerical) sort. Assume that every constant n € N is a second-sort term. To
Loow, add counting quantifiers iz for every i € N, and counting terms:

—If ¢ is a formula and 7 is a tuple of free first-sort variables in ¢, then #Z.¢ is
a term of the second sort, and its free variables are those in ¢ except #. Its
interpretation is the number of @ over the finite first-sort universe that satisfy
. That is, given a structure A, a formula ¢(Z,7:7), b C A, and jo C N, the
value of the term #&.¢(Z,b; Jo) is the cardinality of the (finite) set {@ C A |
A = (@, 5;]‘5)}. For example, the interpretation of #z.E(z,y) is the in-degree
of node y in a graph with the edge-relation E.

—The interpretation of a counting quantifier Jixp is #x.0 > i. Note that this
quantifier binds z, but ¢ remains free.

As this logic is too powerful (it expresses every property of finite structures), we
restrict it by means of the rank of formulae and terms, denoted by rk. It is defined
as quantifier rank, but without taking into account quantification over N. That is:
—The rank of a variable or a constant is 0.

—The rank of an atomic formula is the maximum rank of a term in it.

—tk(V; @i) = rk(A; i) = sup; rk(ei).-

—rk(—¢) = rk(p).

—rk(Fzp) = rk(Jizy) = rk(p) + 1.

Iny) = rk(p), where n ranges over N.

—rk(#Z.9) = rk(¥)+ | 7).

Definition 2.6. (See [Libkin 2000].) The logic £, (C) is defined to be the re-
striction of Lo, (C) to terms and formulae of finite rank.
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It is known [Libkin 2000] that £%_ ,(C) is closed under finitary Boolean connec-
tives and all quantification, and that every predicate on N x ... x N is definable
by a £* ,(C) formula of rank 0. Thus, we assume that +,*, —, <, and in fact ev-
ery predicate on N is available. Furthermore, counting terms can be eliminated in
L%, (C) without increasing the rank; that is, counting quantifiers suffice. In fact,
there exists an alternative presentation of this logic, which is one-sorted, and uses
arbitrary unary generalized quantifiers [Hella 1996; Hella et al. 1999a]; however,
expressing counting properties with unary quantifiers is often quite awkward, and
thus we chose to use a two-sorted version with counting terms here.

FacT 2.7. (See [Hella et al. 1999b; Libkin 2000].) Queries expressed by L%, (C)
formulae without free variables of the second-sort are Hanf-local and Gaifman-local.

Gaifman-locality of L%, (C) was proved by a simple direct argument in [Libkin
2000]; Hanf-locality was shown in [Hella et al. 1999b] using bijective Ehrenfeuct-
Fraissé games of [Hella 1996]. The game is played by two players, called the spoiler
and the duplicator, on two structures A, B € STRUCT[o]. For the n-round game,
in each round ¢ = 1,...,n, the duplicator selects a bijection f; : A — B, and the
spoiler selects a point a; € A (if card(A) # card(B), then the spoiler wins). The
duplicator wins after n rounds if the relation {(a;, fi(a;)) | 1 < i < n} is a partial
isomorphism A — B; otherwise the spoiler wins. If the duplicator has a winning
strategy in the n-move bijective game on A and B, we write A =¥ B. It was shown
in [Hella et al. 1999b] (building upon [Hella 1996]) that bijective games characterize
elementary equivalence in £%  (C): A and B agree on L% ,(C) sentences of rank
up to n iff A =5V B.

Structures of Bounded Valence (Degree). We use the notation STRUCT[o] for
the set of structures A € STRUCT|[o] such that in the Gaifman graph G(A), every
node has degree at most k.

FacT 2.8. (See [Hella et al. 1999a].) For any fized k, a query Q@ on STRUCT[o]
is Hanf-local iff it is expressed by a formula of L% ,(C) (without free second-sort
variables).

An m-ary query @ on a class C C STRUCT][o] is given by a first-order definition
by cases if there exists a number p, a partition C = C; UCy U ... UC, and first-
order formulae o (z1,...,%m),...,p(21,...,Zy) in the language o such that on
all structures A € C;, @ is definable by a;. That is, for all 1 < i < p and A4 € C;,
d € Q(A) iff A = a;(@). Note that C;’s are not required to be first-order-definable.

FacT 2.9. (See [Hella et al. 1999a].) For any fized k, a query @@ on STRUCT[o]
is Gaifman-local iff it is given by a first-order definition by cases.

3. ISOMORPHISM OF NEIGHBORHOODS AND £%_(C)

We start with a slightly modified definition of locality that makes it convenient to
work with two-sorted logics, like £*_ (C). We say that such a logic expresses Hanf-
local (or Gaifman-local) queries if for every formula p(Z,7) there exists a number d
such that for every 75 C N, the formula ¢z (%) = ¢(Z, %) (without free second-sort
variables) expresses a query ) with hir(Q) < d (Ir(Q) < d, respectively).
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Consider a set 6 of relation symbols, disjoint from o, and define £%_,(C) + 6 by
allowing for each k-ary U € 6 and a k-tuple & of variables of the first sort, U(Z)
to be a new atomic formula. The rank of this formula is 0. An interpretation of
predicates in 6 is said to be Hanf-local if there exists a number d such that each
predicate in 6 defines a Hanf-local query @ with hlr(Q) < d.

THEOREM 3.1. If the interpretation of predicates in 6 is Hanf-local, then every
query definable in L%, ,(C) + 6 is Hanf-local.

PRrROOF. Let d witness Hanf-locality of §. We shall show that every £*__(C) + 6
formula of rank m defines a Hanf-local query @ with hlr(Q) < 3™ -d+ 3*"271 (for all
instantiations of free variables of the second sort). That is, for a sequence defined
by do =d,d; =3dp+1,...,di11 =3d; + 1,..., we have hir(Q) < d,.

The proof of this is by induction on a formula. The atomic case follows from
the assumption that 6 is Hanf-local (note that atomic o-formulae define queries of
Hanf locality rank 0). The cases of Boolean or infinitary connectives are simple: for

example, if formulae ¢;(&,7) define queries of Hanf locality rank at most r for all

instantiations % for 7, then the same is true for o = \/; ¢;. Indeed, if (A, @)S (B, g),
then A |= ¢;(@, ) iff B |= ¢;(b,7), and thus the same is true for . The cases of
negation and quantification over the numerical sort clearly do not change the value
of hlr, since hlr is independent of 7.

It thus remains to consider the case of ¥/(&F,7) = Jiy(p(y, #,7)) (as counting terms
can be eliminated without increasing the rank [Libkin 2000]) and to show that if
¢ defines a query of Hanf locality rank r for every 7y, then ¢ defines a query @
with hlr(Q) < 3r + 1. We then fix 75 and assume (A, @)S;,,,(B,b). By Lemma
2.5, b), there exists a bijection f : A — B such that (A,dc)S, (B,bf(c)) for all
¢ € A. Thus, A | ¢(e,a,7) iff B = @(f(c),g,i), due to Hanf-locality of ¢, and
hence A | ¢(d,7) ift B = (b, 7), as the number of elements satisfying (-, @,7) and
(- 5, 7) is the same. This completes the proof. O

We now consider the following example. For each d, k, define a 2§—ary predicate
I%(x1,..., %k, y1,--.,yk) to be interpreted as follows: A = Ik(d,b) iff Nj\(ad) =
Nf(g). Clearly, (A,@1d,)S 4(B,b1by) implies N{\(dyds) = Nf(glgg) and thus

a ~7 a@y iff by ~5 by. This shows Hanf-locality of I* and gives us

Y

COROLLARY 3.2. For any fivred d, L%, (C) + {Ik | k > 0} only expresses Hanf-
local properties.

We next show that this gives us an increase in expressive power. The result below
is proved using bijective games.

PROPOSITION 3.3. For any d,k > 0, L% (C) + IX is strictly more ezpressive
than L%, ,(C).
ProoOF. It suffices to show this proposition for the case of d = &k = 1. Con-

sider the signature of one binary relation E and a formula ¢(z) = E(z,z) A
JyI}(z,y). Assume to the contrary that this is definable by a £ (C) for-
mula ¢ of rank m. Let r = 3™+, We now construct a graph G with the

set of nodes V = {a,b,c} U {a;,b;,¢c; | 1 < i < 2r}. First, we have loops
(a,a), (b,b),(c,c) and edges (a,a;), (b,b;),(c,c;) for each i < 2r. Furthermore,

Y
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on the a;’s we have two cycles of length r: (ai,as),...,(ar—1,a.),(a,,a;) and
(Ars1,0r42), ..., (a2r—1,a2.), (a2r, ary1), and likewise for the b;. On the nodes ¢;’s,
we have one cycle of length 2r: (¢1,¢2),...,(car_1,¢ar), (car,c1). There are no other
edges.

Note that the output of ¢ on G is {a,b}. We next show that (G,a) =¥ (G,c)
which would imply that G |= ¢(a) iff G = ¥(b), contradicting definability of ¢
in £%,(C). Let G, be the subgraph of G whose nodes are the a;’s and let G,
be the subgraph whose nodes are the ¢;s. Since G,S3mG., it follows from [Hella
et al. 1999a; Nurmonen 1996] that G, =% G.. Then the duplicator wins in the
m-round bijective game on (G,a) and (G,c) as follows. For the ith round, the
duplicator looks at the points played so far on G, and G, and, assuming he is
playing round ¢ + 1 in the bijective game on G, and G, constructs a bijection
fo : Go = G.. Then this bijection is extended to the bijection f from (G,a) to
(G, c) as follows. First, f(a) = ¢, f(c) = a, f(b) = b. Secondly, f(b;) = b; for all
j. Finally, f(a;) = fo(a;) and f(c;) = f, *(a;). It follows immediately from the
construction and from G, =¥ G, that with this strategy, the duplicator maintains
partial isomorphism. O

COROLLARY 3.4. The logic L%, (C) fails to capture Hanf-local properties over
arbitrary finite structures.

Note that we only used Igs as atomic formulae. A natural extension
would be to use them as generalized quantifiers. In this case we extend
the definition of the logic by a rule that if ¢ (71,2),...,¢(0,2) are for-
mulae with @; being an m;-tuple of first-sort variables, then ¢(Z,¢,2) =
ma, ... ,my)(@, ..., @) (p1 (01, 2), .. ., i (31, 7)) is a formula with & and § being
k-tuples of fresh free variables of the first sort. The semantics is that for each A
and ¢, one defines a new structure on A in which the ith predicate of arity m; is
interpreted as {#@ € A™ | A |= ¢;(@,@}. Then A = ¢(d,b,é) if in this structure
the d-neighborhoods of @ and b are isomorphic. However, this generalization does
not preserve locality.

PROPOSITION 3.5. Adding I5[m4,...,my] to L%, (C) violates Hanf-locality. In
fact, with addition of 11[2] to FO one can define properties that are neither Hanf-
local nor Gaifman-local.

Proor. Consider a signature (E, Cy,Cs) where E is binary and C;, Cy unary
(that is, we deal with 2-colored graphs). Let ¢(u,v) be (E(u,v) ACi(w)) V (C2(uw) A
C1(v)). We now form ¢ (z,y) = I [2](u,v)(¢(u,v)) testing if 1-neighborhoods of
u and v are isomorphic in the output of ¢. Assume that this defines a Gaifman-
local query @ with Ir(Q) < r,r > 0. Take m = 4r and construct a 2-colored
graph G as follows. The set of nodes is {a;, b;,ci,e; | 1 <i < m}. The edges are
(ai, ait1), (bi,biy1), (¢i,civ1), (ei,eir1) for 1 < i < m as well as (a4, b;), (€4, ¢;) for
all . The interpretation of Cy is {a;,e; | 1 <i < m}, and the interpretation of C

For each b;, its 1-neighborhood in the output of ¢ consists of {b;} U {a;,e; |
1 < j < m}, with all the E-edges between the a;’s and e;, as well as (a;, b;)
and (e;, b;). Likewise, the 1l-neighborhood of ¢; in the output of ¢ consists of
{ex} U{aj,e; | 1 < j < m}, with all the E-edges between the a;’s and e;, and
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the edges (ax,ck), (ex,cr). Thus, those neighborhoods are isomorphic iff i = k.

However, our choice of m guarantees that there is i < m such that (b;,¢;) zf
(bit1,¢i) which would imply v (b;, ¢;) iff ¥(biy1,¢;), by the locality of . However,
we have ¢ (b;, ¢;) and =) (b;11, ¢;). This contradiction shows that 1) is not Gaifman-

local; consequently, it is not Hanf-local either. O

4. CHARACTERIZING HANF-LOCAL PROPERTIES

We have seen that the logic £3 (C) fails to capture Hanf-local properties over
arbitrary finite structures. To fill the gap between £* (C) and Hanf-locality, we
introduce the notion of local second-order quantification. The idea is similar to
local first-order quantification which restricts quantified variables to fixed radius
neighborhoods of free variables. This kind of quantification was used in Gaifman’s
locality theorem [Gaifman 1982] as well as in translations of various modal logics
into fragments of FO [van Benthem 1985; Grédel 1999].

Definition 4.1. Fix r > 0 and a relational signature o. Suppose that we have,
for every arity k > 0, a countably infinite set of k-ary relational symbols T}, i € N,
disjoint from o. Define a set of formulae F by starting with £*  (C) atomic
formulae involving symbols from o as well as T}’s, and closing under the formation
rules of £%_(C) and the following rule: if ¢(&,7) is a formula, ¥ is a subtuple of #
and d < r, then

Yi(#,7) = 3T T Sa(f) ¢(#,7)  and  ¢u(,7) = VI C Sa(§) @(&,7)

are formulae of rank rk(p) + 1. We say that the symbol T} is bound in these
formulae.

We then define £SO%,  (C) over STRUCT|o] as the set of all formulae in F
of finite rank in which all occurrences of the symbols T}’s are bound. The logic
LSO%,,(C) (local second-order with counting) is defined as |J,~, LSOL,,, (C).

The semantics of the new construct is as follows. Given a o-structure A and an
interpretation 7 for all the symbols T}\’s occurring freely in ¢, we have (A, T) =
1 (@,7) iff there exists a set T C Sy(b)¥, where b is the subtuple of @ corresponding
to ¢, such that (A, T,T) = ¢(d@,7). For 1, one replaces “exists” by “for all.” O

For example, the formula

Vy € Sp(x) (T(y) A=T'(y)) V (-T(y) A T'(y))
23T C S, (z)3T' C Sp(x) | A Vz,0 (T(2) A E(z,v) —
T'(v)) A (T'(2) N E(z,v) = T(v))

tests if there is a 2-colorable r-neighborhood of a node in a graph. Note that local

first-order quantification Yy € S,(x) is definable in FO for every fixed r.
Our main result can now be stated as follows.

THEOREM 4.2. An m-ary query Q, m > 0, is Hanf-local iff it is definable by a
formula of LSO}, ,(C) (without free second-sort variables).

PROOF. We first show that queries definable in £50%, ,(C) are Hanf-local. As the
first observation, we note that counting terms can be eliminated from £SOZ_(C)
without increasing the rank of a formula; in fact, the proof of this result for £%_, (C)
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from [Libkin 2000] applies verbatim. Thus, we shall always assume in this direction
of the proof that we deal with formulae without counting terms.

Suppose we are given a signature o' disjoint from o. If 4 € STRUCT|o], @ is a
k-tuple of elements of A, and C is an interpretation of ¢’ predicates as relations of
appropriate arity over A, we write (A, C, @) for the corresponding structure in the
language of o U o' union constants for elements of @ By adom(C) we mean the
active domain of 6_", that is, the set of all elements of A that occur in relations from
C. We then write, for d > r,

(A,C,d@) ~j (B,D,b)

if D interprets o' over B, if a, b are of the same length, and if the following three
conditions hold:

(1) (4,@)54(B,b),
(2) adom(C) C SA(d@) and adom(D) C Sf(g), and
(3) there exists an isomorphism h : Nj(@) — Nf(l_;) such that h(C) = D.
We next prove the following lemma, which implies the if direction of the theorem

by simply taking ¢’ to be empty. From now on, we shall often be listing free
second-order variables explicitly, for bookkeeping convenience.

LEMMA 4.3. Let o(#,7, X) be a £SO, (C) formula. Then there exists a number
d > r such that, for every interpretation 1 of 7, it is the case that (A,d,C) ~
(B,b,l_j) implies

AE¢(@1,0) iff B b, D).

ProoF. By induction on formulae. Let rko(y) be defined as rk(y) but without
taking into account second-order quantification (in particular, rkg(¢) < rk(p)). We
show that d can be taken to be 9™r + 2L where m = rko(p). That is, for the
sequence defined by dy = r, ..., diy1 = 9d; + 4, ..., it is the case that d in the
lemma can be taken to be d,,.

The case of atomic formulae not involving symbols from ¢’ is straightforward, as
@ and b satisfy all the same atomic o-formulae if (A, @)S (B, b) for any d > 0. For
the case of atomic ¢’-formulae, one can take d = r. Indeed, assume (A,d, C_") ~T
(B,b, D), and T (d@,) holds, where @, is a subtuple of @ of the same length as the
arity of a o'-symbol T'. Let b(] be the corresponding subtuple of b. We must show
that T'(bo) holds. Assume T is interpreted by Co € € over A and Dy € D over B.
We have an isomorphism h : NA(@) — NB(B) with h(C) = D, and in particular
h(Cy) = Dy. Since h(dy) = 50, we obtain from dy € Cy that 50 € Dy, thus showing
that T (bo) holds over B.

The cases of negation, infinitary connectives, and quantification over the numer-
ical sort are proved just as in the proof of Theorem 3.1.

Next, consider the case of local second-order quantification. Given a formula

(&1 72,7, X) = Y C S (1) p(#182,7,Y, X)

for some [-ary symbol Y and ' < r, let d be given by applying_’the hypo_t’heisis to .
We must show that this d works for . Fix 7. Assume (A, d, C) ~% (B,b, D) where
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C and D are interpretations of X. We then have an isomorphism h : N (@) —
Nf(g) such that h(C) = D. Assume that A |= ¢(d@,%,C). Then we can find
aset V. C (S/(d))! such that A = (@, 7,V, (). Here @ is the subtuple of
@ corresponding to #. Note that adom(V) C Sy(@); thus we can define U =
h(V). Since h is an isomorphism, U C (Sﬁ(gl))l, and hence all the conditions
for (A,@,V,C) ~7 (B,b,U, D) hold. Since A |= ¢(a@,,V,C), by the hypothesis
this implies B = go(l_;, Z’g,U,ﬁ) and thus B w(g, Z’g,ﬁ). The converse (that is,
B = (---) implies A = (- -+)) is identical, which proves the case of second-order
quantification.
In preparation for the case of counting quantifiers, we need the following.

Claim 4.4. Assume (A,6)39d+4(8,g). Let h be an arbitrary isomorphism
Ngy, (@) — N§d+4(5). Then there exists a bijection f : A — B such that on
Seays(@) it coincides with h, and (A, @c)S (B, bf(c)) for every ¢ € A.

PROOF. By Lemma 2.5, part (a), AS,B and @ %?d’fl b imply (A,@)S,(B,b).
We use this as follows. The assumptions show that 45, 4B and @ ngéi b. Fix
an isomorphism h : Ny, ,(@) — NB,, ,(b); clearly it maps Sgy, (@) onto SE, ,(b)
as it preserves distances. Consider any isomorphism type 7 of a 3d+1-neighborhood
of a single point. Suppose ¢ € S, (@) realizes 7; since Sz, (c) C Sgy (@), it
follows that f(c) € gd+3(g) realizes 7 in B. Thus, there are equally many realizers
of 7in Sgl, (@) and S§, (b b). Since ASg444B implies AS5,, 1B (cf. [Fagin et al.
1995]), there are equally many realizers of 7 in A and B, and thus there exists a

—

bijection g : A — SéﬁlH(a) — B — Sﬁd+3( ) that preserves isomorphism types of
3d + 1-neighborhoods.

We now define f : A — B as follows: f(c) = h(c) ifc € Sed+3( @), and f(c) = g(c)
otherwise. Clearly, this is a bijection, that coincides with h on Sﬁd+3("). Now
cons1der an arbitrary ¢ € A. If ¢ € Sz, 5(@), then S5y, (c) C S5%,,(@) and hence
dc ~ ~3d+1 bf(c), since f(c) = h(c) and since h is an isomorphism. If ¢ ¢ Sgls(@),
then f(c) = ( ) & Sk (b b) has the same type of its 3d + 1-neighborhood as ¢, and
again dc ~ ~3d+1 bf(c) since there cannot be elements from Sz.1(@) and Sz, (@)
that occur together in a tuple of a o-relation in A (because the distance between @
and ¢ is at least 6d + 4) and likewise for b and f(c). Thus, we have dc zgi’fl bf(c)
for every ¢, which together with A5 ,B implies (A, d@c)S,(B,bf(c)). This proves
the claim. O

We now consider the case of a formula

O(@,7,X) = Jiz o(&, 2,7, X).
Applylng the hypothe51s to ¢, we obtain a number d > such that for every 10,
(A,d@,c,C) ~ n (B, b,e, D) implies that A E ¢(a@, c,1,C) iff B = o(b,e, iy, D). To
conclude, we must prove that (A, @, C) oda (B, 5, ﬁ) implies that A |= ¢(@, 7, é)
iff B = 1[)(5, 70, ﬁ) For this, it will suffice to establish a bijection f : A — B such

that for every ¢, (A, d, ¢, 6) L (B, b fle), ) Then clearly the number of elements
satisfying ¢ will be preserved
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Since (A, a,C) ~Odta (B,b,D) and d > r, we have (A,&)Sgd+4(8,g), and
h(C) = D for some isomorphism h : Nb (@) — std+4(5); moreover, adom (C)
is contained in S;}(@) C S3'(d@), and likewise for D in B. Applying Claim 4.4, we
obtain a bijection f : A — B that coincides with h on SgY, (@) and such that

(A, @c)s (B, bf(c)) for every c.

Thus, to conclude that (A, d, c, é) ~7 (B, 5, f(e), 5) we must only show that for
every c, there is an isomorphism h, : Nj‘(dc) — Nf(gf(c)) with h.(C) = D,
as other conditions are clearly satisfied. First, assume ¢ ¢ Syy,;(@). Then
fle) ¢ S2d+1(4), since f coincides with h on Sgl,,(@). Hence, S7'(dc) is a dis-
joint union of S7!(&@) and S7'(c) (and likewise for Sf(gf(c))), and thus there exists
an isomorphism h. : N\ (dc) — Nf(l_;f(c)) which coincides with h on S(d); as
adom(C) C S74(@), this implies h(C) = D. Assuming ¢ € SgY.1(d@), we have
f(e) = h(c) and S7'(c) C SzY,,(d@), and S¥(f(c)) C S5, (b b). Thus, in this case h

maps N;(d@c) isomorphically onto Nf(gf(c)), and hence h(C) = D for h, being a
proper restriction of A. This concludes the proof for the case of counting quantifiers,
and thus the proof of the lemma and the if part of the theorem.

ProoF. (Only if) Let @ be an m-ary query with hir(Q) < r, r > 0. We
show that @ is definable by a formula of £SO} ,(C). Consider some enumera-
tion 7;,i € Ny of all isomorphism types of r-neighborhoods of m + 1-tuples in
structures from STRUCT]o]. Note that there countably many of those. Suppose
K = {(i1,41),.--, (i, i)} is a finite subset of N} x N with all ips being distinct.
We write ntp,. (A, @) > K if there are exactly jp elements ¢ such that the type of
N(dc) is 7;,, and the cardinality of A is j; + ...+ j, (that is, 7;,,...,7;, are the
only 1somorphlsm types of N/A(dc) as ¢ ranges over A). Then Q is uniquely deter-
mined by a collection B of finite subsets K of Ny x Ny which are graphs of partial
functions. That is, there exists a collection B¢ of such sets K such that @ € Q(A)
iff ntp,. (A, @)> K for some K € Bg. Conversely, for any collection B of finite partial
functions K C Ny x Ny, the query defined by @ € Q(A) iff ntp,. (A, @) > K for some
K € B is Hanf-local with hlr(Q) < r. This follows directly from the definition of
Hanf-locality. Thus, the £SO”__(C) formula defining @ is

\V vk (@)

KEBQ

where A = ¢k (@) iff ntp,. (A, @) > K. Furthermore, the formulae ¢ i are defined in
such a way that there is an upper bound on rk(¢K) that depends only on m,r and
o; this ensures that the infinite disjunction above is a £507_,(C) formula.

It thus remains to show how to define i by a formula whose rank is determined
by m, r, and o only. For K = {(i1,71),..., (i1, i)}, it is defined as

l

/\ Sry v (#,y)

where 37y is an abbreviation for 3jye A -3(j + l)ygo (or #y.p = j) and A |=

v,'" (@, c) iff the isomorphism type of NA(dc) is 7;,

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.



Logics Capturing Local Properties . 13

To conclude the proof, we show, for arbitrary r,n, and an isomorphism type 7 of
an n-tuple, n > 0, how to define v7 (¥) such that A |= v7 (@) iff NA(@) is of type 7.
Let neighborhoods of type 7 contain N elements. (Note that for this construction,
we only need to consider the case when # is nonempty, and hence N > 0.) Fix a
neighborhood N realizing 7, with ay, ..., a, interpreting #, and let e, ..., en_p be
any enumeration of the remaining elements. For each k-ary relation R from o, a k-
tuple # over @, €, and a binary relational symbol L not in o, define a o U {L}-formula

a%(f) of £%,,(C) as folloyvs. Suppose ej,,...,e;, is the subtuple of # containing

s

the elements of €. Then ol (Z) is

2 o (yi € Sr(%)) A
1, ..ys R(EG) A /\ <(#Z_(Z € 5,(7) A L=,y A, ~( = 21)) =j¢)>
where by R(Z,7) we mean that the position corresponding to a; in # is occupied by
x;, and the position corresponding to ej; is occupied by by y;. This formula says
that for L defining the linear ordering corresponding to ey,...,en_p on S,.(@) — @,
the tuple extending @ with elements occurring in the positions of e;,, ..., e;, in the
ordering, belongs to R. Note that the membership in S,(Z) can be tested by an
FO formula whose rank is at most r + p, — 1, where p, is the maximum arity of a
relation in o (with o being nonempty, p, > 0). Thus, o, is an £, (C) formula,
whose rank is at most s +r + p, <7+ 2p,.

We now define a formula 5, (%, L) as
A aR(Z) A A —ag(T),
R(f)eDiag(N) R(f)¢Diag(N)

where Diag(N) is the diagram of the neighborhood A. This formula says that
exactly Diag(N') atomic formulae hold in N,.(Z), assuming L defines an ordering on

S,.(#) — 7 consistent with that chosen on A'. Let v(#, L) be an FO formula saying
that L defines a linear order on S, (#) — Z. We then conclude that

AL E S,(Z) ((#2.2 € 5,(%) = N) A B(Z, L) Av(Z, L))

defines v7 (%). Indeed, if A = v7 (@), then the diagram of N(d@) is the same as
that of A for some ordering on S;(@) — @, and thus the type of NA(@) is 7. If
the type of NA(@) is 7, the choose the ordering as in N to see that v7(a@) holds.
We finally note that v increases the rank of the a’s by at most r + p, + 1. Then
rk(l/:ip) <r+p,+1+7r+2p, =2r+ 3p, + 1 and hence rk(¢vk) < 2r + 3p, + 2.
This concludes the proof of definability of @ in £S0% ,(C), and thus proves the
theorem. O

There are several corollaries to the proof. First notice that if we defined
LSO}, (C) without increasing the rank of a formula for every second-order lo-
cal quantifier, the proof would go through verbatim. We can also define a logic
L7, (C) just as LSO!_ (C) except that first-order local quantification 3z € S, (%)
and Vz € S,(Z) is used in place of second-order local quantifiers, and those local
quantifiers do not increase the rank (in particular, the depth of their nesting can
be infinite, which allows one to define arbitrary computations on those neighbor-

hoods). Let then L (C) be |, LL., (C). The proof of Hanf-locality of L%, (C)
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goes through as before, and proving that every Hanf-local query is definable in
L¥., (C) is very similar to that of £SO} ,(C) as with infinitely many local first-
order quantifiers we can write out diagrams of neighborhoods. We thus obtain:

COROLLARY 4.5. The following have the same expressive power as LSO% (C)
(and thus capture Hanf-local properties):

—the logic obtained from LSO%_,(C) by allowing the depth of nesting of local quan-
tifiers to be infinite and

—the logic L, (C).

Analyzing the proof of Theorem 4.2, we also obtain the following normal form for
LSO%,, (C) formulae, which shows that the depth of nesting of local second-order

oow
quantifiers need not exceed 1.

COROLLARY 4.6. Every L50%_,(C) formula ¢(Z) is equivalent to a formula in
the form

V A\ (i = #y.3S € 54(@) v3(7,,5))

J

where the conjunctions are finite, S is binary, and each v;; is a L%, (C) formula.

As a final remark, we note that £SO% ,(C) is strictly more expressive than
L%, (C) extended with tests for neighborhood isomorphisms.

PROPOSITION 4.7. Uyso(L5,(C) + {1} [ k> 0}) G £S0%,(C).

oW
ProoF. Consider a signature o that consists of three binary relations Ei, Es,
and T. We shall use the notation adom(E;) for the set of elements of o-structures
that occur in E;-tuples, i = 1,2. We now define the following Boolean query @ on
STRUCT([o]: Q(A) is true iff T' is the total relation on A # §§ (T' = A x A), and
E;- and Es-reducts of A are isomorphic as graphs. This is definable in £50%_,(C).
First note that if T is the total relation, then for every a € A, Si'(a) = A. Thus,

we define () by the conjunction of VaVy T'(z,y) and the sentence

function(F')
A dom(D) = adom(Ey)
A codom (D) = adom(E,)
A Ve, y,u,v F(z,u) A F(y,v) = (Ei(z,y) < E2(u,v))

Jz3F C S (x)

which asserts that T is total and that an isomorphism F exists (since Si'(a) = A,
the second-order quantification is over the entire universe). Here function(F') is a
first-order sentence stating that F' is a 1-1 function, dom(D) = adom(E,) is an FO
sentence saying that F’s domain is adom(E,), and codom(D) = adom(E>) is an
FO sentence saying that F’s codomain is adom(E>).

To prove that @ is not definable in (J,;- (L5, (C) + {I} | k > 0}), define a class
C of nonempty o-structures as follows. In a structure A in C, T is interpreted as
a total relation (that is, A%), A is the disjoint union of adom(E;) and adom(Es),
and E; and FEs are successor relations, possibly with loops on some nodes.

We now assume that @ is definable by a sentence ® of J, (L5, (C) + {1 |
k > 0}) of rank m. Consider any occurrence of I¥(#, ) in ®. Suppose we have a

structure A from C. Since Si'(a) = A for all a € A, A = I¥(a, b), @b € A* means
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that there exists an automorphism h : A — A such that h(@) = b. However, since
E, and E, are disjoint successor relations (perhaps with loops on some nodes), the
structure A is rigid, and thus h must be the identity. Hence, A |= Ik (@, l_;) iff @ = b.
Using this, construct a sentence ®' of £, (C) of rank m by replacing each I%(Z,7)
in ® with A;(z; = y;). We thus showed that for any Ain C, A= @ iff A= '

It remains to show that @ cannot be expressed by an £*  (C) sentence of rank
m on C. Construct two structures A, B in the class C. In both of them, the F;- and
Es-successor relations have length 2-3™ 4 3. In A, there are loops on the nodes in
E; and E, at the same distance 3™ + 1 from the start node. In B, there is one loop
on E; at the distance 3™ + 1 from the start, and one loop on Fs at the distance
3™ 4+ 2 from the start. Hence, @ is true on A and false on B.

Let A" and B’ be the (E, E2) reducts of A and B respectively. Then A'S,.. B,
since the nodes with loops are at the distance at least 3™ + 1 from the start and
end nodes of the successor relations. Hence, by [Hella et al. 1999a; Nurmonen
1996], the duplicator wins the m-round bijective Ehrenfeuct-Fraissé game on A’
and B'. This shows in turn that A4 =¥ B. Indeed, for each round of the game,
the duplicator just forgets the T-relation, and uses the strategy for A’ and B’
to pick his bijection. We know that after each round i, the points (ai,...,a;)
and (by,...,b;) played in A and B respectively define a partial isomorphism with
respect to By and E,. Since (a;,ar) € T iff (b, by) € T for all I, k, it follows that
they define a partial isomorphism A — B. We thus found two structures A =¥ B
in C that disagree on @, showing that on C, @) cannot be defined by an £*_,(C)
sentence of rank m. Hence, by the above, () cannot be defined by a sentence of ®
of Uyso(Liew (C) + {I5 | k> 0}). This completes the proof. O

5. CHARACTERIZING GAIFMAN-LOCAL PROPERTIES

We now turn to Gaifman’s notion of locality, which states that a query @ is local
with Ir(Q) < r if NA(@) = NA(d») implies that @ € Q(A) iff @ € Q(A). For
structures of bounded valence, this notion was characterized by first-order definition
by cases. An extended version of this notion captures Gaifman-locality in the
general case.

Definition 5.1. An m-ary query, m > 0, on STRUCT|[o] is given by a Hanf-local
definition by cases if there exists a finite or countable partition of STRUCT(o] into
classes C;, i € N, a number d > 0, and Hanf-local queries Q;, i € N, with hlr(Q;) < d,
such that for every i and every A € C;, it is the case that Q(A) = Q;(A).

THEOREM 5.2. A query is Gaifman-local iff it is given by a Hanf-local definition
by cases.

PROOF. Assume that @ is given by a Hanf-local definition by cases. Let d be
an upper bound on hlr(Q;). We claim that @ is Gaifman-local and Ir(Q) < 3d + 1.
Fix A, and assume A € C;. Let a; zgldﬂ @. Then by Lemma 2.5 we obtain
(A,d1)5,4(A,ds), and Hanf-locality of @; implies d@; € Q;(A) = Q(A) iff @ €
Qi(A) = Q(A).

Conversely, let a Gaifman-local @) be given, with Ir(Q) = d. Let 7,7 ... be
an enumeration of isomorphism types of finite o-structures. Let C; be the class of
structures of type 7;. We define @; as follows: be Q;(B) iff there exists A of type

-

7; and @ € A™ such that (B,0)S,(A,d) and @ € Q(A).
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First show that each Q; is Hanf-local, with hir(Q;) < d. Let (By,b1)S 4(Bs, bs).
Assume l_ﬁ € Q;i(By). Then for some A of type 7; and @ € A™ such that
(B1,b1)S (A, @) we have @ € Q(A). We thus have (Bs,bs)S (A, @), and hence
by € Qi(B,). The converse (that by € Q;(Bs) implies by € Q;(By)) is identical.

To conclude, we must show that for every A of type 7;, Q(A) = Q;(A). Assume
first that @ € Q;(A). Then for some A’ 2 A and @ such that (A, @)S,(A',d') we
have @ € Q(A'). Let h be an isomorphism A — A’. Since the isomorphism type of
the d-neighborhood of h(@) in A’ is the same as that of the d-neighborhood of @,
it follows from Gaifman-locality that h(@) € Q(A’). Since queries are closed under
isomorphisms, applying h~! we get @ € Q(A). Conversely, assume @ € Q(A). Since
(A,@)S (A, @) we obtain @ € Q;(A). This concludes the proof. O

Unlike in Fact 2.9, the number of cases in a Hanf-local definition by cases can be
infinite. A natural question to ask is whether a finite number of cases is sufficient (in
particular, whether the statement of Fact 2.9 holds for arbitrary finite structures).
We now show that the infinite number of cases is unavoidable. In fact, we show a
stronger result.

Definition 5.3. For k > 0, let LOCAL; be the class of queries given by a Hanf-
local definition by cases, where the number of cases is at most k. Let LOCAL* be
Ukso LOCALg, and G_LOCAL be the class of all Gaifman-local queries.

Note that LOCAL; is precisely the class of Hanf-local queries.
THEOREM 5.4. The hierarchy
LocAL; C LOCALy C ... C LocAL* C G_LOCAL

18 strict.

PRrOOF. We first exhibit a query ) € LOCAL;11 — LOCAL;. Intuitively, a query
from LocCAL; cannot make [ + 1 choices, and thus is different from every query in
LocAL;41 on some class of the partition. More precisely, we define a class Cﬁ“,
1 < i <141, of graphs that consists of graphs with the number of connected
components being i — 1 modulo [ + 1. Define Qi“ as a query returning the set of
nodes that can be reached by a path of length i — 1 from a node of indegree 0. That
is, if the input is a successor relation, this query returns the ¢th node. Clearly, Qi“
is FO-definable and thus Hanf-local. We now form a query @) that coincides with
Qé"'l on Cf"‘l_ (Note that @ is not FO, as the classes Cll-"'1 are not FO-definable.)
From Theorem 5.2, this is a Gaifman-local query, and it belongs to LOCAL;11.

Suppose @ is in LOCALy; that is, there is a partition of the class of all finite graphs
into [ classes C1,. .., C; and Hanf-local queries @} such that on C}, () coincides with

3 )

i=1,...,1. Let d = 1+ maxhlr(Q}). Let Gy be a successor relation on I + 1
nodes. Define a graph Hf“ as the union of ¢ cycles with w nodes each,
i=1,...,1+1. As the total number of nodes in each H'*' is (I +1)!(2d + 1) and
all d-neighborhoods are isomorphic, we have Hf“SdH]l.H for all 4,5 <1+ 1. Let
now Gé"'l be the disjoint union of Gy and HZH'I, i=1,...,14+1. If z and y are the
nodes in the Gy part of Giﬂ and Géﬂ respectively at the same distance from the
start node, then (Gi',2)5 (G, y).

ACM Transactions on Computational Logic, Vol. 2, No. 1, January 2001.
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By the pigeonhole principle, there exists a class C;, and i # j,i,j < 1+ 1 such
that Gi»"'l,Gé"'l € C},. Let 2,y be the nodes at distance ¢ — 1 from the start node of
the Go part of Gé“ and Gé-“, resp. Let z be the node at distance j — 1 from the
start node of the Gy part of Gg“; note that z # y. By definition of @, it returns
Z on Gi“ and z on Gé“. However, (GéJ“l,a:)‘I)d(GéH,y), and since @ is given on
Cp. by @}, of hir(Q}) < d, it must return y on Géﬂ if it returns z on Gi"'l. This
contradiction shows that @ ¢ LocAlL;.

To separate G_LOCAL from LocAL*, we exhibit a query @ of Ir(Q) = 1 such
that @ ¢ LocAL*. Consider a signature consisting of two binary relations E; and
E5. Let () be as follows: if no element of the universe occurs in an F;-tuple and
an Fs-tuple, if F; is a linear ordering, and if its length is at least the number £ of
connected components of Fs, then return the kth element in the linear order FEj;
otherwise return nothing. Clearly this @ is of locality rank 1. In inputs on which
the output of @ is not empty, two points with isomorphic 1-neighborhoods may
only occur in F,, and thus no such point belongs to the output of ). We next
show that Q € LocAr; for each [. We consider the example we used to separate
LocAr;4, from Locar;, and modify it in such a way that in a structure G§+1, G,
which will interpret E; is a linear order of length [ + 1, and HZH'I, which interprets
E,, is the same as before. It again follows that (Gif"l , m):d(Gé'H ,y), where z and y

are in the same position in the linear order part G of G4 and Gé-“. We then use
the same pigeonhole argument as before to prove that @ ¢ LocAr,. This concludes
the proof. O

Thus, similarly to the case of Hanf-local queries, the characterization for struc-
tures of bounded valence fails to extend to the class of all finite structures.

COROLLARY 5.5. There exist Gaifman-local queries that cannot be given by first-
order definition by cases.

6. CONCLUSION

Notions of locality have been used in logic numerous times. The local nature of first-
order logic is particularly transparent when one deals with fragments corresponding
to various modal logics; in general, Gaifman’s and Hanf’s theorems state that FO
can only express local properties. These theorems were generalized, and, being
applicable to finite structures, they found applications in areas such as complexity
and databases.

However, while more and more powerful logics were proved to be local, there was
no clear understanding of what kind of mechanisms can be added to logics while
preserving locality. Here we answered this question by providing logical character-
izations of local properties on finite structures. For Hanf-locality, arbitrary count-
ing power and testing arbitrary properties of small neighborhoods can be added to
first-order logic while retaining locality; moreover, with a limited form of infinitary
connectives, such a logic captures all Hanf-local properties. For Gaifman-locality,
one can in addition permit definition by cases, and the number of cases be either
finite or infinite.
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