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2 � Leonid Libkinneighborhoods of points; here d depends only on k. Gaifman's theorem states thatin a given struture, two tuples annot be distinguished by formulae of quanti-�er rank k whenever d-neighborhoods of these tuples are isomorphi; again d isdetermined by k.It was shown that Hanf's theorem is stritly stronger than Gaifman's, and thatboth apply to a variety of logis that extend FO with ounting mehanisms andlimited in�nitary onnetives [Grohe and Shwentik 2000; Hella et al. 1999a; Hellaet al. 1999b; Libkin 2000; Nurmonen 1996℄. These results found appliations indesriptive omplexity and database theory. Sine the omplexity lass TC0 (withthe appropriate notion of uniformity) an be aptured by FO with ounting quan-ti�ers [Barrington et al. 1990℄, loality an be used to prove lower bounds for logisoming very lose to apturing TC0 [Etessami 1995; Libkin and Wong 1998℄. Indatabase theory, logis with ounting mehanisms model aggregate funtions om-monly found in ommerial query languages. Thus, loality was used to proveexpressivity bounds for query languages with aggregation [Dong et al. 2000; Hellaet al. 1999b℄. For appliations to automata, see [Shwentik and Barthelmann 1998℄.The above-mentioned papers onsidered a sequene of more and more power-ful logis, eah of whih was proved to be loal, starting with FO with ountingquanti�ers, and ending with a logi that permits arbitrary prediates on naturalnumbers, a limited form of in�nitary onnetives [Libkin 2000℄ and even aggregatefuntions [Hella et al. 1999b℄. However, it was not lear how muh one an add tothese logis and still preserve its loality. Our goal, therefore, is to give a preiseharaterization of loal logis.Note that the abstrat notions of loality were previously haraterized on �nitestrutures of bounded valene (e.g., for graphs of �xed maximum degree). The har-aterization for Hanf-loality uses a logi L�1!(C) introdued in [Libkin 2000℄. Thislogi subsumes a number of ounting extensions of FO (suh as FO with ountingquanti�ers [Immerman and Lander 1990℄, FO with unary generalized quanti�ers[Hella 1996; Kolaitis and V�a�an�anen 1995℄, FO with unary ounters [Benedikt andKeisler. 1997℄) and is quite easy to deal with. A result in [Hella et al. 1999a℄ statesthat Hanf-loal properties on strutures of bounded valene are preisely thosede�nable in L�1!(C).The question naturally arises whether this ontinues to hold for arbitrary �nitestrutures. We show in this paper that this is not the ase. We do so by �rst�nding a simple diret proof of Hanf-loality of L�1!(C), and then using it toshow that adding new atomi formulae testing isomorphism of neighborhoods of a�xed radius does not violate Hanf-loality, while stritly inreasing the expressivepower. We next de�ne a logi that aptures preisely the Hanf-loal properties. Itis obtained by adding loal seond-order quanti�ation to L�1!(C). That is, seond-order quanti�ers bind prediates that are only allowed to range over �xed radiusneighborhoods of free �rst-order variables. We will also show that this amounts toadding arbitrarily powerful omputations to L�1!(C) as long as they are bound tosome neighborhoods.For Gaifman-loality, a haraterization theorem in [Hella et al. 1999a℄ statedthat it is equivalent, over strutures of bounded valene, to �rst-order de�nitionby ases. That is, there are m > 0 lasses of strutures and m FO formulae 'isuh that, over the ith lass, the given property is desribed by 'i. Again, thisACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



Logis Capturing Loal Properties � 3falls short of a general haraterization. We show that over the lass of all �nitestrutures (no restrition on valene), Gaifman-loality is equivalent to de�nitionby ases, where the number of lasses an be in�nite. Furthermore, the hierarhygiven by the number of those lasses (that is, the number of ases) is strit.Organization. Setion 2 introdues notations and notions of loality. Setion 3 givesa new simple proof of Hanf-loality of L�1!(C) whih is then used to show thatadding tests for neighborhood isomorphism preserves loality. Setion 4 hara-terizes Hanf-loal properties as those de�nable in L�1!(C) with loal seond-orderquanti�ation. Setion 5 haraterizes Gaifman-loal properties as those de�nableby (�nite or in�nite) ase statements, and shows the stritness of the hierarhy.2. NOTATIONFinite Strutures and Neighborhoods. All strutures are assumed to be �nite. Arelational signature � is a set of relation symbols fR1, ..., Rlg, with assoiatedarities pi > 0. A �-struture is A = hA;RA1 ; : : : ; RAl i, where A is a �nite set, andRAi � Api interprets Ri. The lass of �nite �-strutures is denoted by STRUCT[�℄.When there is no onfusion, we write Ri in plae of RAi . Isomorphism is denotedby �=. The arrier of a struture A is always denoted by A, and the arrier of B isdenoted by B.Given a struture A, its Gaifman graph G(A) is de�ned as hA;Ei where (a; b)is in E i� there is a tuple ~ 2 RAi for some i suh that both a and b are in~. The distane d(a; b) is de�ned as the length of the shortest path from a to bin G(A); we assume d(a; a) = 0. If ~a = (a1; : : : ; an) and ~b = (b1; : : : ; bm), thend(~a;~b) = minij d(ai; bj). Given ~a over A, its r-sphere SAr (~a) is fb 2 A j d(~a; b) � rg.Its r-neighborhood NAr (~a) is de�ned as a struture in the signature that extends �with n new onstant symbols:hSAr (~a); RA1 \ SAr (~a)p1 ; : : : ; RAl \ SAr (~a)pl ; a1; : : : ; aniThat is, the arrier of NAr (~a) is SAr (~a), the interpretation of the �-relations is in-herited from A, and the n extra onstants are the elements of ~a. If A is understood,we write Sr(~a) and Nr(~a).If A;B 2 STRUCT[�℄, and there is an isomorphism NAr (~a)! NBr (~b) (that sends~a to ~b), we write ~a �A;Br ~b. If A = B, we write ~a �Ar ~b.Given a tuple ~a = (a1; : : : ; an), we write ~a for the tuple (a1; : : : ; an; ).The quanti�er rank of a formula is denoted by qr(�).Hanf's and Gaifman's Theorems. An m-ary query on �-strutures, Q, is a map-ping that assoiates to eahA 2 STRUCT[�℄ a struture hA;Si, where S � Am. Wealways assume that queries are invariant under isomorphisms. We write ~a 2 Q(A)if ~a 2 S, where hA;Si = Q(A). A query Q is de�nable in a logi L if there existsan L formula '(x1; : : : ; xm) suh that Q(A) = hA; f~a j A j= '(~a)gi. If m = 0, thenQ is naturally assoiated with a sublass of STRUCT[�℄, and de�nability meansde�nability by a sentene of L.De�nition 2.1 (Gaifman-Loality). (See [Dong et al. 2000; Hella et al. 1999a℄).An m-ary query Q, m � 1, is alled Gaifman-loal if there exists a number r � 0ACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



4 � Leonid Libkinsuh that, for any struture A and any ~a;~b 2 Am~a �Ar ~b implies ~a 2 Q(A) i� ~b 2 Q(A):The minimum suh r is alled the loality rank of Q, and is denoted by lr(Q).Theorem 2.2 (Gaifman [1982℄). Every FO formula '(x1; : : : ; xm) de�nes aGaifman-loal query Q with lr(Q) � (7qr(') � 1)=2.The statement of Gaifman's theorem atually provides more information aboutFO-de�nable properties; it also states that every �rst-order de�nable property anbe expressed in terms of types of neighborhoods realized in a given struture. Anabstrat formulation of this property was introdued in [Hella et al. 1999a℄ underthe name of strong Gaifman-loality, and was shown to be equivalent to �rst-orderde�nability over �nite strutures of bounded degree. However, it is the abovestatement that is used in most appliations for proving expressivity bounds, and italso extends beyond FO. Note also that better bounds of the order O(2qr(')) areknown for lr(Q); see [Libkin 2000℄.For A;B 2 STRUCT[�℄, we write A�dB if the multisets of isomorphism types ofd-neighborhoods of points are the same in A and B. That is, A�dB if there existsa bijetion f : A! B suh that NAd (a) �= NBd (f(a)) for every a 2 A. We also write(A;~a)�d(B;~b) if there is a bijetion f : A! B suh that NAd (~a) �= NBd (~bf()) forevery  2 A.De�nition 2.3 (Hanf-Loality). (See [Hanf 1965; Fagin et al. 1995; Hella et al.1999a℄). An m-ary query Q, m � 0, is alled Hanf-loal if there exist a numberd � 0 suh that for any two strutures A;B and any ~a 2 Am;~b 2 Bm,(A;~a)�d(B;~b) implies ~a 2 Q(A) i� ~b 2 Q(B):The minimum d for whih this holds is alled Hanf loality rank of Q, and is denotedby hlr(Q).For a Boolean query Q (m = 0) this means that Q annot distinguish two stru-tures A and B whenever A�dB.Theorem 2.4 (Hanf [1965℄, Fagin-Stokmeyer-Vardi [1995℄). Every FOsentene ' de�nes a Hanf-loal Boolean query Q with hlr(Q) � 3qr(�). 2An extension to open formulae, although easily derivable from the proof of [Faginet al. 1995℄, was probably �rst expliitly stated in [Hella et al. 1999a℄: every FOformula '(~x) de�nes a Hanf-loal query. Better bounds on hlr(Q) of the orderO(2qr(')) are also known for Hanf-loality [Immerman 1999; Libkin 2000℄.We shall use the following result that onnets the binary relations � and �.Lemma 2.5 (See [Hella et al. 1999a℄). (a) Let A�dB and ~a �A;B3d+1 ~b.Then (A;~a)�d(B;~b).(b) Let (A;~a)�3d+1(B;~b). Then there exists a bijetion f : A ! B suh that(A;~a)�d(B;~bf()) for every  2 A.Note that Lemma 2.5, part (b) is in fat an easy orollary of Lemma 2.5, (a): If(A;~a)�3d+1(B;~b), then there is a bijetion f : A ! B suh that ~a �A;B3d+1 ~bf();sine A�3d+1B and thus A�dB, this implies (A;~a)�d(B;~bf()).ACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



Logis Capturing Loal Properties � 5Another easy orollary of Lemma 2.5, (a), is that every Hanf-loal m-ary queryQ, m � 1, is Gaifman-loal [Hella et al. 1999a℄. Indeed, let d = 3hlr(Q) + 1, andlet ~a �Ad ~b. Sine A�hlr(Q)A, we obtain (A;~a)�hlr(Q)(A;~b) and thus ~a 2 Q(A) i�~b 2 Q(A), by Hanf-loality.Logi L�1!(C). The logi L�1!(C) subsumes a number of ounting extensions ofFO, suh as FO with ounting quanti�ers [Etessami 1995; Immerman and Lander1990℄, unary quanti�ers [Hella 1996℄, and unary ounters [Benedikt and Keisler.1997℄. (When we speak of ounting extensions of FO, we mean extensions thatonly add a ounting mehanism, as opposed to those { extensively studied in theliterature, see [Cai et al. 1992; Otto 1997℄ { that add both ounting and �xpoint.)It is a two-sorted logi, with one sort being the universe of a �nite struture, andthe other sort being N, and it uses ounting terms that produe onstants of theseond sort, similarly to the logis studied in [Gr�adel and Gurevih 1998℄. Theformal de�nition is as follows.We denote the in�nitary logi by L1! ; it extends FO by allowing in�nite on-juntions V and disjuntions W. Then L1!(C) is a two-sorted logi that extendsL1! . Its strutures are of the form (A;N), where A is a �nite relational struture,and N is a opy of natural numbers. We shall use ~x; ~y; et., for variables rangingover the �rst (nonnumerial) sort, and ~{;~|, et., for variables ranging over the se-ond (numerial) sort. Assume that every onstant n 2 N is a seond-sort term. ToL1! , add ounting quanti�ers 9ix for every i 2 N, and ounting terms:|If ' is a formula and ~x is a tuple of free �rst-sort variables in ', then #~x:' isa term of the seond sort, and its free variables are those in ' exept ~x. Itsinterpretation is the number of ~a over the �nite �rst-sort universe that satisfy'. That is, given a struture A, a formula '(~x; ~y;~|), ~b � A, and ~|0 � N, thevalue of the term #~x:'(~x;~b;~|0) is the ardinality of the (�nite) set f~a � A jA j= '(~a;~b;~|0)g. For example, the interpretation of #x:E(x; y) is the in-degreeof node y in a graph with the edge-relation E.|The interpretation of a ounting quanti�er 9ix' is #x:' � i. Note that thisquanti�er binds x, but i remains free.As this logi is too powerful (it expresses every property of �nite strutures), werestrit it by means of the rank of formulae and terms, denoted by rk. It is de�nedas quanti�er rank, but without taking into aount quanti�ation over N. That is:|The rank of a variable or a onstant is 0.|The rank of an atomi formula is the maximum rank of a term in it.|rk(Wi 'i) = rk(Vi 'i) = supi rk('i).|rk(:') = rk(').|rk(9x') = rk(9ix') = rk(') + 1.|rk(9n') = rk('), where n ranges over N.|rk(#~x: ) = rk( )+ j~x j.De�nition 2.6. (See [Libkin 2000℄.) The logi L�1!(C) is de�ned to be the re-strition of L1!(C) to terms and formulae of �nite rank.ACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



6 � Leonid LibkinIt is known [Libkin 2000℄ that L�1!(C) is losed under �nitary Boolean onne-tives and all quanti�ation, and that every prediate on N � : : : � N is de�nableby a L�1!(C) formula of rank 0. Thus, we assume that +; �;�;�, and in fat ev-ery prediate on N is available. Furthermore, ounting terms an be eliminated inL�1!(C) without inreasing the rank; that is, ounting quanti�ers suÆe. In fat,there exists an alternative presentation of this logi, whih is one-sorted, and usesarbitrary unary generalized quanti�ers [Hella 1996; Hella et al. 1999a℄; however,expressing ounting properties with unary quanti�ers is often quite awkward, andthus we hose to use a two-sorted version with ounting terms here.Fat 2.7. (See [Hella et al. 1999b; Libkin 2000℄.) Queries expressed by L�1!(C)formulae without free variables of the seond-sort are Hanf-loal and Gaifman-loal.Gaifman-loality of L�1!(C) was proved by a simple diret argument in [Libkin2000℄; Hanf-loality was shown in [Hella et al. 1999b℄ using bijetive Ehrenfeut-Fra��ss�e games of [Hella 1996℄. The game is played by two players, alled the spoilerand the dupliator, on two strutures A;B 2 STRUCT[�℄. For the n-round game,in eah round i = 1; : : : ; n, the dupliator selets a bijetion fi : A ! B, and thespoiler selets a point ai 2 A (if ard(A) 6= ard(B), then the spoiler wins). Thedupliator wins after n rounds if the relation f(ai; fi(ai)) j 1 � i � ng is a partialisomorphism A ! B; otherwise the spoiler wins. If the dupliator has a winningstrategy in the n-move bijetive game on A and B, we write A �bijn B. It was shownin [Hella et al. 1999b℄ (building upon [Hella 1996℄) that bijetive games haraterizeelementary equivalene in L�1!(C): A and B agree on L�1!(C) sentenes of rankup to n i� A �bijn B.Strutures of Bounded Valene (Degree). We use the notation STRUCTk[�℄ forthe set of strutures A 2 STRUCT[�℄ suh that in the Gaifman graph G(A), everynode has degree at most k.Fat 2.8. (See [Hella et al. 1999a℄.) For any �xed k, a query Q on STRUCTk[�℄is Hanf-loal i� it is expressed by a formula of L�1!(C) (without free seond-sortvariables).An m-ary query Q on a lass C � STRUCT[�℄ is given by a �rst-order de�nitionby ases if there exists a number p, a partition C = C1 [ C2 [ : : : [ Cp and �rst-order formulae �1(x1; : : : ; xm); : : : ; �p(x1; : : : ; xm) in the language � suh that onall strutures A 2 Ci, Q is de�nable by �i. That is, for all 1 � i � p and A 2 Ci,~a 2 Q(A) i� A j= �i(~a). Note that Ci's are not required to be �rst-order-de�nable.Fat 2.9. (See [Hella et al. 1999a℄.) For any �xed k, a query Q on STRUCTk[�℄is Gaifman-loal i� it is given by a �rst-order de�nition by ases.3. ISOMORPHISM OF NEIGHBORHOODS AND L�1!(C)We start with a slightly modi�ed de�nition of loality that makes it onvenient towork with two-sorted logis, like L�1!(C). We say that suh a logi expresses Hanf-loal (or Gaifman-loal) queries if for every formula '(~x;~{) there exists a number dsuh that for every ~{0 � N, the formula '~{0(~x) = '(~x;~{0) (without free seond-sortvariables) expresses a query Q with hlr(Q) � d (lr(Q) � d, respetively).ACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



Logis Capturing Loal Properties � 7Consider a set � of relation symbols, disjoint from �, and de�ne L�1!(C) + � byallowing for eah k-ary U 2 � and a k-tuple ~x of variables of the �rst sort, U(~x)to be a new atomi formula. The rank of this formula is 0. An interpretation ofprediates in � is said to be Hanf-loal if there exists a number d suh that eahprediate in � de�nes a Hanf-loal query Q with hlr(Q) � d.Theorem 3.1. If the interpretation of prediates in � is Hanf-loal, then everyquery de�nable in L�1!(C) + � is Hanf-loal.Proof. Let d witness Hanf-loality of �. We shall show that every L�1!(C) + �formula of rank m de�nes a Hanf-loal query Q with hlr(Q) � 3m �d+ 3m�12 (for allinstantiations of free variables of the seond sort). That is, for a sequene de�nedby d0 = d; d1 = 3d0 + 1; : : : ; di+1 = 3di + 1; : : :, we have hlr(Q) � dm.The proof of this is by indution on a formula. The atomi ase follows fromthe assumption that � is Hanf-loal (note that atomi �-formulae de�ne queries ofHanf loality rank 0). The ases of Boolean or in�nitary onnetives are simple: forexample, if formulae 'j(~x;~{) de�ne queries of Hanf loality rank at most r for allinstantiations~{0 for~{, then the same is true for ' � Wj 'j . Indeed, if (A;~a)�d(B;~b),then A j= 'j(~a;~{0) i� B j= 'j(~b;~{0), and thus the same is true for '. The ases ofnegation and quanti�ation over the numerial sort learly do not hange the valueof hlr, sine hlr is independent of ~{0.It thus remains to onsider the ase of  (~x;~{) � 9iy('(y; ~x;~{)) (as ounting termsan be eliminated without inreasing the rank [Libkin 2000℄) and to show that if' de�nes a query of Hanf loality rank r for every ~{0, then  de�nes a query Qwith hlr(Q) � 3r + 1. We then �x ~{0 and assume (A;~a)�3r+1(B;~b). By Lemma2.5, b), there exists a bijetion f : A ! B suh that (A;~a)�r(B;~bf()) for all 2 A. Thus, A j= '(;~a;~{) i� B j= '(f();~b;~{), due to Hanf-loality of ', andhene A j=  (~a;~{) i� B j=  (~b;~{), as the number of elements satisfying '(�;~a;~{) and'(�;~b;~{) is the same. This ompletes the proof. 2We now onsider the following example. For eah d; k, de�ne a 2k-ary prediateIkd (x1; : : : ; xk ; y1; : : : ; yk) to be interpreted as follows: A j= Ikd (~a;~b) i� NAd (~a) �=NAd (~b). Clearly, (A;~a1~a2)�d(B;~b1~b2) implies NAd (~a1~a2) �= NBd (~b1~b2), and thus~a1 �Ad ~a2 i� ~b1 �Bd ~b2. This shows Hanf-loality of Ikd and gives usCorollary 3.2. For any �xed d, L�1!(C) + fIkd j k > 0g only expresses Hanf-loal properties.We next show that this gives us an inrease in expressive power. The result belowis proved using bijetive games.Proposition 3.3. For any d; k > 0, L�1!(C) + Ikd is stritly more expressivethan L�1!(C).Proof. It suÆes to show this proposition for the ase of d = k = 1. Con-sider the signature of one binary relation E and a formula '(x) � E(x; x) ^9yI11 (x; y). Assume to the ontrary that this is de�nable by a L�1!(C) for-mula  of rank m. Let r = 3m+1. We now onstrut a graph G with theset of nodes V = fa; b; g [ fai; bi; i j 1 � i � 2rg. First, we have loops(a; a); (b; b); (; ) and edges (a; ai); (b; bi); (; i) for eah i � 2r. Furthermore,ACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



8 � Leonid Libkinon the ai's we have two yles of length r: (a1; a2); : : : ; (ar�1; ar); (ar ; a1) and(ar+1; ar+2); : : : ; (a2r�1; a2r); (a2r; ar+1), and likewise for the bi. On the nodes i's,we have one yle of length 2r: (1; 2); : : : ; (2r�1; 2r); (2r; 1). There are no otheredges.Note that the output of ' on G is fa; bg. We next show that (G; a) �bijm (G; )whih would imply that G j=  (a) i� G j=  (b), ontraditing de�nability of 'in L�1!(C). Let Ga be the subgraph of G whose nodes are the aj 's and let Gbe the subgraph whose nodes are the js. Sine Ga�3mG, it follows from [Hellaet al. 1999a; Nurmonen 1996℄ that Ga �bijm G. Then the dupliator wins in them-round bijetive game on (G; a) and (G; ) as follows. For the ith round, thedupliator looks at the points played so far on Ga and G and, assuming he isplaying round i + 1 in the bijetive game on Ga and G, onstruts a bijetionf0 : Ga ! G. Then this bijetion is extended to the bijetion f from (G; a) to(G; ) as follows. First, f(a) = ; f() = a; f(b) = b. Seondly, f(bj) = bj for allj. Finally, f(aj) = f0(aj) and f(j) = f�10 (aj). It follows immediately from theonstrution and from Ga �bijm G that with this strategy, the dupliator maintainspartial isomorphism. 2Corollary 3.4. The logi L�1!(C) fails to apture Hanf-loal properties overarbitrary �nite strutures.Note that we only used Ikd s as atomi formulae. A natural extensionwould be to use them as generalized quanti�ers. In this ase we extendthe de�nition of the logi by a rule that if '1(~v1; ~z); : : : ; 'l(~vl; ~z) are for-mulae with ~vi being an mi-tuple of �rst-sort variables, then  (~x; ~y; ~z) �Ikd[m1; : : : ;ml℄(~v1; : : : ; ~vl)('1(~v1; ~z); : : : ; 'l(~vl; ~z)) is a formula with ~x and ~y beingk-tuples of fresh free variables of the �rst sort. The semantis is that for eah Aand ~, one de�nes a new struture on A in whih the ith prediate of arity mi isinterpreted as f~u 2 Ami j A j= 'i(~u;~)g. Then A j=  (~a;~b;~) if in this struturethe d-neighborhoods of ~a and ~b are isomorphi. However, this generalization doesnot preserve loality.Proposition 3.5. Adding Ikd[m1; : : : ;ml℄ to L�1!(C) violates Hanf-loality. Infat, with addition of I11[2℄ to FO one an de�ne properties that are neither Hanf-loal nor Gaifman-loal.Proof. Consider a signature (E;C1; C2) where E is binary and C1, C2 unary(that is, we deal with 2-olored graphs). Let '(u; v) be (E(u; v)^C1(u))_ (C2(u)^C1(v)). We now form  (x; y) � I11[2℄(u; v)('(u; v)) testing if 1-neighborhoods ofu and v are isomorphi in the output of '. Assume that this de�nes a Gaifman-loal query Q with lr(Q) � r; r > 0. Take m = 4r and onstrut a 2-oloredgraph G as follows. The set of nodes is fai; bi; i; ei j 1 � i � mg. The edges are(ai; ai+1); (bi; bi+1); (i; i+1); (ei; ei+1) for 1 � i < m as well as (ai; bi); (ei; i) forall i. The interpretation of C1 is fai; ei j 1 � i � mg, and the interpretation of C2is fbi; i j 1 � i � mg.For eah bi, its 1-neighborhood in the output of ' onsists of fbig [ faj ; ej j1 � j � mg, with all the E-edges between the aj 's and ej , as well as (ai; bi)and (ei; bi). Likewise, the 1-neighborhood of k in the output of ' onsists offkg [ faj ; ej j 1 � j � mg, with all the E-edges between the aj 's and ej , andACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



Logis Capturing Loal Properties � 9the edges (ak; k); (ek; k). Thus, those neighborhoods are isomorphi i� i = k.However, our hoie of m guarantees that there is i < m suh that (bi; i) �Gr(bi+1; i) whih would imply  (bi; i) i�  (bi+1; i), by the loality of  . However,we have  (bi; i) and : (bi+1; i). This ontradition shows that  is not Gaifman-loal; onsequently, it is not Hanf-loal either. 24. CHARACTERIZING HANF-LOCAL PROPERTIESWe have seen that the logi L�1!(C) fails to apture Hanf-loal properties overarbitrary �nite strutures. To �ll the gap between L�1!(C) and Hanf-loality, weintrodue the notion of loal seond-order quanti�ation. The idea is similar toloal �rst-order quanti�ation whih restrits quanti�ed variables to �xed radiusneighborhoods of free variables. This kind of quanti�ation was used in Gaifman'sloality theorem [Gaifman 1982℄ as well as in translations of various modal logisinto fragments of FO [van Benthem 1985; Gr�adel 1999℄.De�nition 4.1. Fix r � 0 and a relational signature �. Suppose that we have,for every arity k > 0, a ountably in�nite set of k-ary relational symbols T ik, i 2 N,disjoint from �. De�ne a set of formulae F by starting with L�1!(C) atomiformulae involving symbols from � as well as T ik's, and losing under the formationrules of L�1!(C) and the following rule: if '(~x;~{) is a formula, ~y is a subtuple of ~xand d � r, then 1(~x;~{) � 9T ik v Sd(~y) '(~x;~{) and  2(~x;~{) � 8T ik v Sd(~y) '(~x;~{)are formulae of rank rk(') + 1. We say that the symbol T ik is bound in theseformulae.We then de�ne LSOr1!(C) over STRUCT[�℄ as the set of all formulae in Fof �nite rank in whih all ourrenes of the symbols T ik's are bound. The logiLSO�1!(C) (loal seond-order with ounting) is de�ned as Sr�0LSOr1!(C).The semantis of the new onstrut is as follows. Given a �-struture A and aninterpretation T for all the symbols T ik's ourring freely in  1, we have (A; T ) j= 1(~a;~{) i� there exists a set T � Sd(~b)k, where ~b is the subtuple of ~a orrespondingto ~y, suh that (A; T ; T ) j= '(~a;~{). For  2, one replaes \exists" by \for all." 2For example, the formula9x9T v Sr(x)9T 0 v Sr(x) 0� 8y 2 Sr(x) (T (y) ^ :T 0(y)) _ (:T (y) ^ T 0(y))^ 8z; v (T (z) ^ E(z; v)!T 0(v)) ^ (T 0(z) ^ E(z; v)! T (v)) 1Atests if there is a 2-olorable r-neighborhood of a node in a graph. Note that loal�rst-order quanti�ation 8y 2 Sr(x) is de�nable in FO for every �xed r.Our main result an now be stated as follows.Theorem 4.2. An m-ary query Q, m � 0, is Hanf-loal i� it is de�nable by aformula of LSO�1!(C) (without free seond-sort variables).Proof. We �rst show that queries de�nable in LSO�1!(C) are Hanf-loal. As the�rst observation, we note that ounting terms an be eliminated from LSOr1!(C)without inreasing the rank of a formula; in fat, the proof of this result for L�1!(C)ACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



10 � Leonid Libkinfrom [Libkin 2000℄ applies verbatim. Thus, we shall always assume in this diretionof the proof that we deal with formulae without ounting terms.Suppose we are given a signature �0 disjoint from �. If A 2 STRUCT[�℄, ~a is ak-tuple of elements of A, and ~C is an interpretation of �0 prediates as relations ofappropriate arity over A, we write (A; ~C;~a) for the orresponding struture in thelanguage of � [ �0 union onstants for elements of ~a. By adom(~C) we mean theative domain of ~C , that is, the set of all elements of A that our in relations from~C. We then write, for d � r, (A; ~C;~a) �rd (B; ~D;~b)if ~D interprets �0 over B, if ~a, ~b are of the same length, and if the following threeonditions hold:(1) (A;~a)�d(B;~b),(2) adom(~C) � SAr (~a) and adom( ~D) � SBr (~b), and(3) there exists an isomorphism h : NAd (~a)! NBd (~b) suh that h(~C) = ~D.We next prove the following lemma, whih implies the if diretion of the theoremby simply taking �0 to be empty. From now on, we shall often be listing freeseond-order variables expliitly, for bookkeeping onveniene.Lemma 4.3. Let '(~x;~{; ~X) be a LSOr1!(C) formula. Then there exists a numberd � r suh that, for every interpretation ~{0 of ~{, it is the ase that (A;~a; ~C) �rd(B;~b; ~D) implies A j= '(~a;~{0; ~C) i� B j= '(~b;~{0; ~D):Proof. By indution on formulae. Let rk0(') be de�ned as rk(') but withouttaking into aount seond-order quanti�ation (in partiular, rk0(') � rk(')). Weshow that d an be taken to be 9mr + 9m�12 where m = rk0('). That is, for thesequene de�ned by d0 = r, : : :, di+1 = 9di + 4, : : :, it is the ase that d in thelemma an be taken to be dm.The ase of atomi formulae not involving symbols from �0 is straightforward, as~a and ~b satisfy all the same atomi �-formulae if (A;~a)�d(B;~b) for any d � 0. Forthe ase of atomi �0-formulae, one an take d = r. Indeed, assume (A;~a; ~C) �rr(B;~b; ~D), and T (~a0) holds, where ~a0 is a subtuple of ~a of the same length as thearity of a �0-symbol T . Let ~b0 be the orresponding subtuple of ~b. We must showthat T (~b0) holds. Assume T is interpreted by C0 2 ~C over A and D0 2 ~D over B.We have an isomorphism h : NAr (~a) ! NBr (~b) with h(~C) = ~D, and in partiularh(C0) = D0. Sine h(~a0) = ~b0, we obtain from ~a0 2 C0 that ~b0 2 D0, thus showingthat T (~b0) holds over B.The ases of negation, in�nitary onnetives, and quanti�ation over the numer-ial sort are proved just as in the proof of Theorem 3.1.Next, onsider the ase of loal seond-order quanti�ation. Given a formula (~x1~x2;~{; ~X) � 9Y v Sr0(~x1) '(~x1~x2;~{; Y; ~X)for some l-ary symbol Y and r0 � r, let d be given by applying the hypothesis to '.We must show that this d works for  . Fix~{0. Assume (A;~a; ~C) �rd (B;~b; ~D) whereACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



Logis Capturing Loal Properties � 11~C and ~D are interpretations of ~X . We then have an isomorphism h : NAd (~a) !NBd (~b) suh that h(~C) = ~D. Assume that A j=  (~a;~{0; ~C). Then we an �nda set V � (SAr0 (~a1))l suh that A j= '(~a;~{0; V; ~C). Here ~a1 is the subtuple of~a orresponding to ~x1. Note that adom(V ) � SAd (~a); thus we an de�ne U =h(V ). Sine h is an isomorphism, U � (SBr0(~b1))l, and hene all the onditionsfor (A;~a; V; ~C) �rd (B;~b; U; ~D) hold. Sine A j= '(~a;~{0; V; ~C), by the hypothesisthis implies B j= '(~b;~{0; U; ~D) and thus B j=  (~b;~{0; ~D). The onverse (that is,B j=  (� � �) implies A j=  (� � �)) is idential, whih proves the ase of seond-orderquanti�ation.In preparation for the ase of ounting quanti�ers, we need the following.Claim 4.4. Assume (A;~a)�9d+4(B;~b). Let h be an arbitrary isomorphismNA9d+4(~a) ! NB9d+4(~b). Then there exists a bijetion f : A ! B suh that onS6d+3(~a) it oinides with h, and (A;~a)�d(B;~bf()) for every  2 A.Proof. By Lemma 2.5, part (a), A�dB and ~a �A;B3d+1 ~b imply (A;~a)�d(B;~b).We use this as follows. The assumptions show that A�9d+4B and ~a �A;B9d+4 ~b. Fixan isomorphism h : NA9d+4(~a) ! NB9d+4(~b); learly it maps SA6d+3(~a) onto SB6d+3(~b)as it preserves distanes. Consider any isomorphism type � of a 3d+1-neighborhoodof a single point. Suppose  2 SA6d+3(~a) realizes � ; sine SA3d+1() � SA9d+4(~a), itfollows that f() 2 SB6d+3(~b) realizes � in B. Thus, there are equally many realizersof � in SA6d+3(~a) and SB6d+3(~b). Sine A�9d+4B implies A�3d+1B (f. [Fagin et al.1995℄), there are equally many realizers of � in A and B, and thus there exists abijetion g : A � SA6d+3(~a) ! B � SB6d+3(~b) that preserves isomorphism types of3d+ 1-neighborhoods.We now de�ne f : A! B as follows: f() = h() if  2 SA6d+3(~a), and f() = g()otherwise. Clearly, this is a bijetion, that oinides with h on SA6d+3(~a). Nowonsider an arbitrary  2 A. If  2 SA6d+3(~a), then SA3d+1() � SA9d+4(~a) and hene~a �A;B3d+1 ~bf(), sine f() = h() and sine h is an isomorphism. If  62 SA6d+3(~a),then f() = g() 62 SB6d+3(~b) has the same type of its 3d+1-neighborhood as , andagain ~a �A;B3d+1 ~bf() sine there annot be elements from SA3d+1(~a) and SA3d+1(~)that our together in a tuple of a �-relation in A (beause the distane between ~aand  is at least 6d+ 4) and likewise for ~b and f(). Thus, we have ~a �A;B3d+1 ~bf()for every , whih together with A�dB implies (A;~a)�d(B;~bf()). This provesthe laim. 2We now onsider the ase of a formula (~x;~{; ~X) � 9iz '(~x; z;~{; ~X):Applying the hypothesis to ', we obtain a number d � r suh that for every ~{0,(A;~a; ; ~C) �rd (B;~b; e; ~D) implies that A j= '(~a; ;~{0; ~C) i� B j= '(~b; e;~{0; ~D). Toonlude, we must prove that (A;~a; ~C) �r9d+4 (B;~b; ~D) implies that A j=  (~a;~{0; ~C)i� B j=  (~b;~{0; ~D). For this, it will suÆe to establish a bijetion f : A ! B suhthat for every , (A;~a; ; ~C) �rd (B;~b; f(); ~D). Then learly the number of elementssatisfying ' will be preserved.ACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



12 � Leonid LibkinSine (A;~a; ~C) �r9d+4 (B;~b; ~D) and d � r, we have (A;~a)�9d+4(B;~b), andh(~C) = ~D for some isomorphism h : NA9d+4(~a) ! NB9d+4(~b); moreover, adom(~C)is ontained in SAr (~a) � SAd (~a), and likewise for ~D in B. Applying Claim 4.4, weobtain a bijetion f : A ! B that oinides with h on SA6d+3(~a) and suh that(A;~a)�d(B;~bf()) for every .Thus, to onlude that (A;~a; ; ~C) �rd (B;~b; f(); ~D) we must only show that forevery , there is an isomorphism h : NAd (~a) ! NBd (~bf()) with h(~C) = ~D,as other onditions are learly satis�ed. First, assume  62 SA2d+1(~a). Thenf() 62 SB2d+1(~b), sine f oinides with h on SA6d+3(~a). Hene, SAd (~a) is a dis-joint union of SAd (~a) and SAd () (and likewise for SBd (~bf())), and thus there existsan isomorphism h : NAd (~a) ! NBd (~bf()) whih oinides with h on SAd (~a); asadom(~C) � SAd (~a), this implies h(~C) = ~D. Assuming  2 SA2d+1(~a), we havef() = h() and SAd () � SA3d+1(~a), and SBd (f()) � SB3d+1(~b). Thus, in this ase hmaps NAd (~a) isomorphially onto NBd (~bf()), and hene h(~C) = ~D for h being aproper restrition of h. This onludes the proof for the ase of ounting quanti�ers,and thus the proof of the lemma and the if part of the theorem.Proof. (Only if) Let Q be an m-ary query with hlr(Q) � r, r > 0. Weshow that Q is de�nable by a formula of LSO�1!(C). Consider some enumera-tion �i; i 2 N+ of all isomorphism types of r-neighborhoods of m + 1-tuples instrutures from STRUCT[�℄. Note that there ountably many of those. SupposeK = f(i1; j1); : : : ; (il; jl)g is a �nite subset of N+ � N+ with all ips being distint.We write ntpr(A;~a) . K if there are exatly jp elements  suh that the type ofNAr (~a) is �ip , and the ardinality of A is j1 + : : :+ jp (that is, �i1 ; : : : ; �il are theonly isomorphism types of NAr (~a) as  ranges over A). Then Q is uniquely deter-mined by a olletion BQ of �nite subsets K of N+�N+ whih are graphs of partialfuntions. That is, there exists a olletion BQ of suh sets K suh that ~a 2 Q(A)i� ntpr(A;~a).K for someK 2 BQ. Conversely, for any olletion B of �nite partialfuntions K � N+ �N+ , the query de�ned by ~a 2 Q(A) i� ntpr(A;~a) .K for someK 2 B is Hanf-loal with hlr(Q) � r. This follows diretly from the de�nition ofHanf-loality. Thus, the LSOr1!(C) formula de�ning Q is_K2BQ  K(~x);where A j=  K(~a) i� ntpr(A;~a) . K. Furthermore, the formulae  K are de�ned insuh a way that there is an upper bound on rk( K) that depends only on m; r and�; this ensures that the in�nite disjuntion above is a LSOr1!(C) formula.It thus remains to show how to de�ne  K by a formula whose rank is determinedby m, r, and � only. For K = f(i1; j1); : : : ; (il; jl)g, it is de�ned as K(~x) � l̂p=1 9=jpy ��ipr (~x; y)where 9=jy' is an abbreviation for 9jy' ^ :9(j + 1)y' (or #y:' = j) and A j=��ipr (~a; ) i� the isomorphism type of NAr (~a) is �ip .ACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



Logis Capturing Loal Properties � 13To onlude the proof, we show, for arbitrary r; n, and an isomorphism type � ofan n-tuple, n > 0, how to de�ne ��r (~x) suh that A j= ��r (~a) i� NAr (~a) is of type � .Let neighborhoods of type � ontain N elements. (Note that for this onstrution,we only need to onsider the ase when ~x is nonempty, and hene N > 0.) Fix aneighborhood N realizing � , with a1; : : : ; an interpreting ~x, and let e1; : : : ; eN�n beany enumeration of the remaining elements. For eah k-ary relation R from �, a k-tuple ~t over ~a;~e, and a binary relational symbol L not in �, de�ne a �[fLg-formula�~tR(~x) of L�1!(C) as follows. Suppose ej1 ; : : : ; ejs is the subtuple of ~t ontainingthe elements of ~e. Then �~tR(~x) is9y1; : : : ; ys R(~x; ~y) ^ î � (yi 2 Sr(~x)) ^(#z:(z 2 Sr(~x) ^ L(z; yi) ^Vl :(z = xl)) = ji) �where by R(~x; ~y) we mean that the position orresponding to ai in ~t is oupied byxi, and the position orresponding to eji is oupied by by yi. This formula saysthat for L de�ning the linear ordering orresponding to e1; : : : ; eN�n on Sr(~a)�~a,the tuple extending ~a with elements ourring in the positions of ej1 ; : : : ; ejs in theordering, belongs to R. Note that the membership in Sr(~x) an be tested by anFO formula whose rank is at most r + p� � 1, where p� is the maximum arity of arelation in � (with � being nonempty, p� > 0). Thus, �~tR is an L�1!(C) formula,whose rank is at most s+ r + p� � r + 2p�.We now de�ne a formula �r(~x; L) as^R(~t)2Diag(N ) �~tR(~x) ^ ^R(~t)62Diag(N ) :�~tR(~x);where Diag(N ) is the diagram of the neighborhood N . This formula says thatexatly Diag(N ) atomi formulae hold in Nr(~x), assuming L de�nes an ordering onSr(~x)� ~x onsistent with that hosen on N . Let (~x; L) be an FO formula sayingthat L de�nes a linear order on Sr(~x)� ~x. We then onlude that9L v Sr(~x) ((#z:z 2 Sr(~x) = N) ^ �(~x; L) ^ (~x; L))de�nes ��r (~x). Indeed, if A j= ��r (~a), then the diagram of NAr (~a) is the same asthat of N for some ordering on SAr (~a) � ~a, and thus the type of NAr (~a) is � . Ifthe type of NAr (~a) is � , the hoose the ordering as in N to see that ��r (~a) holds.We �nally note that � inreases the rank of the �'s by at most r + p� + 1. Thenrk(��ipr ) � r + p� + 1 + r + 2p� = 2r + 3p� + 1 and hene rk( K) � 2r + 3p� + 2.This onludes the proof of de�nability of Q in LSO�1!(C), and thus proves thetheorem. 2There are several orollaries to the proof. First notie that if we de�nedLSO�1!(C) without inreasing the rank of a formula for every seond-order lo-al quanti�er, the proof would go through verbatim. We an also de�ne a logiLr1! (C) just as LSOr1!(C) exept that �rst-order loal quanti�ation 9z 2 Sr(~x)and 8z 2 Sr(~x) is used in plae of seond-order loal quanti�ers, and those loalquanti�ers do not inrease the rank (in partiular, the depth of their nesting anbe in�nite, whih allows one to de�ne arbitrary omputations on those neighbor-hoods). Let then L�1! (C) be Sr Lr1! (C). The proof of Hanf-loality of L�1! (C)ACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



14 � Leonid Libkingoes through as before, and proving that every Hanf-loal query is de�nable inL�1! (C) is very similar to that of LSO�1!(C) as with in�nitely many loal �rst-order quanti�ers we an write out diagrams of neighborhoods. We thus obtain:Corollary 4.5. The following have the same expressive power as LSO�1!(C)(and thus apture Hanf-loal properties):|the logi obtained from LSO�1!(C) by allowing the depth of nesting of loal quan-ti�ers to be in�nite and|the logi L�1! (C).Analyzing the proof of Theorem 4.2, we also obtain the following normal form forLSO�1!(C) formulae, whih shows that the depth of nesting of loal seond-orderquanti�ers need not exeed 1.Corollary 4.6. Every LSO�1!(C) formula '(~x) is equivalent to a formula inthe form _i ĵ (nij = #y:(9S v Sd(~x)  ij(~x; y; S)))where the onjuntions are �nite, S is binary, and eah  ij is a L�1!(C) formula.As a �nal remark, we note that LSO�1!(C) is stritly more expressive thanL�1!(C) extended with tests for neighborhood isomorphisms.Proposition 4.7. Sd>0(L�1!(C) + fIkd j k > 0g) $ LSO�1!(C).Proof. Consider a signature � that onsists of three binary relations E1; E2,and T . We shall use the notation adom(Ei) for the set of elements of �-struturesthat our in Ei-tuples, i = 1; 2. We now de�ne the following Boolean query Q onSTRUCT[�℄: Q(A) is true i� T is the total relation on A 6= ; (T = A � A), andE1- and E2-reduts of A are isomorphi as graphs. This is de�nable in LSO�1!(C).First note that if T is the total relation, then for every a 2 A, SA1 (a) = A. Thus,we de�ne Q by the onjuntion of 8x8y T (x; y) and the sentene9x9F v S1(x) 0BB� funtion(F )^ dom(D) = adom(E1)^ odom(D) = adom(E2)^ 8x; y; u; v F (x; u) ^ F (y; v)! (E1(x; y)$ E2(u; v))1CCAwhih asserts that T is total and that an isomorphism F exists (sine SA1 (a) = A,the seond-order quanti�ation is over the entire universe). Here funtion(F ) is a�rst-order sentene stating that F is a 1-1 funtion, dom(D) = adom(E1) is an FOsentene saying that F 's domain is adom(E1), and odom(D) = adom(E2) is anFO sentene saying that F 's odomain is adom(E2).To prove that Q is not de�nable in Sd>0(L�1!(C) + fIkd j k > 0g), de�ne a lassC of nonempty �-strutures as follows. In a struture A in C, T is interpreted asa total relation (that is, A2), A is the disjoint union of adom(E1) and adom(E2),and E1 and E2 are suessor relations, possibly with loops on some nodes.We now assume that Q is de�nable by a sentene � of Sd>0(L�1!(C) + fIkd jk > 0g) of rank m. Consider any ourrene of Ikd (~x; ~y) in �. Suppose we have astruture A from C. Sine SA1 (a) = A for all a 2 A, A j= Ikd (~a;~b), ~a;~b 2 Ak meansACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



Logis Capturing Loal Properties � 15that there exists an automorphism h : A ! A suh that h(~a) = ~b. However, sineE1 and E2 are disjoint suessor relations (perhaps with loops on some nodes), thestruture A is rigid, and thus h must be the identity. Hene, A j= Ikd (~a;~b) i� ~a = ~b.Using this, onstrut a sentene �0 of L�1!(C) of rank m by replaing eah Ikd (~x; ~y)in � with Vi(xi = yi). We thus showed that for any A in C, A j= � i� A j= �0.It remains to show that Q annot be expressed by an L�1!(C) sentene of rankm on C. Construt two strutures A;B in the lass C. In both of them, the E1- andE2-suessor relations have length 2 � 3m+3. In A, there are loops on the nodes inE1 and E2 at the same distane 3m+1 from the start node. In B, there is one loopon E1 at the distane 3m + 1 from the start, and one loop on E2 at the distane3m + 2 from the start. Hene, Q is true on A and false on B.Let A0 and B0 be the (E1; E2) reduts of A and B respetively. Then A0�3mB0,sine the nodes with loops are at the distane at least 3m + 1 from the start andend nodes of the suessor relations. Hene, by [Hella et al. 1999a; Nurmonen1996℄, the dupliator wins the m-round bijetive Ehrenfeut-Fra��ss�e game on A0and B0. This shows in turn that A �bijm B. Indeed, for eah round of the game,the dupliator just forgets the T -relation, and uses the strategy for A0 and B0to pik his bijetion. We know that after eah round i, the points (a1; : : : ; ai)and (b1; : : : ; bi) played in A and B respetively de�ne a partial isomorphism withrespet to E1 and E2. Sine (al; ak) 2 T i� (bl; bk) 2 T for all l; k, it follows thatthey de�ne a partial isomorphism A ! B. We thus found two strutures A �bijm Bin C that disagree on Q, showing that on C, Q annot be de�ned by an L�1!(C)sentene of rank m. Hene, by the above, Q annot be de�ned by a sentene of �of Sd>0(L�1!(C) + fIkd j k > 0g). This ompletes the proof. 25. CHARACTERIZING GAIFMAN-LOCAL PROPERTIESWe now turn to Gaifman's notion of loality, whih states that a query Q is loalwith lr(Q) � r if NAr (~a1) �= NAr (~a2) implies that ~a1 2 Q(A) i� ~a2 2 Q(A). Forstrutures of bounded valene, this notion was haraterized by �rst-order de�nitionby ases. An extended version of this notion aptures Gaifman-loality in thegeneral ase.De�nition 5.1. An m-ary query, m > 0, on STRUCT[�℄ is given by a Hanf-loalde�nition by ases if there exists a �nite or ountable partition of STRUCT[�℄ intolasses Ci, i 2 N, a number d � 0, and Hanf-loal queriesQi, i 2 N, with hlr(Qi) � d,suh that for every i and every A 2 Ci, it is the ase that Q(A) = Qi(A).Theorem 5.2. A query is Gaifman-loal i� it is given by a Hanf-loal de�nitionby ases.Proof. Assume that Q is given by a Hanf-loal de�nition by ases. Let d bean upper bound on hlr(Qi). We laim that Q is Gaifman-loal and lr(Q) � 3d+ 1.Fix A, and assume A 2 Ci. Let ~a1 �A3d+1 ~a2. Then by Lemma 2.5 we obtain(A;~a1)�d(A;~a2), and Hanf-loality of Qi implies ~a1 2 Qi(A) = Q(A) i� ~a2 2Qi(A) = Q(A).Conversely, let a Gaifman-loal Q be given, with lr(Q) = d. Let �1; �2 : : : bean enumeration of isomorphism types of �nite �-strutures. Let Ci be the lass ofstrutures of type �i. We de�ne Qi as follows: ~b 2 Qi(B) i� there exists A of type�i and ~a 2 Am suh that (B;~b)�d(A;~a) and ~a 2 Q(A).ACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



16 � Leonid LibkinFirst show that eah Qi is Hanf-loal, with hlr(Qi) � d. Let (B1;~b1)�d(B2;~b2).Assume ~b1 2 Qi(B1). Then for some A of type �i and ~a 2 Am suh that(B1;~b1)�d(A;~a) we have ~a 2 Q(A). We thus have (B2;~b2)�d(A;~a), and hene~b2 2 Qi(B2). The onverse (that ~b2 2 Qi(B2) implies ~b1 2 Qi(B1)) is idential.To onlude, we must show that for every A of type �i, Q(A) = Qi(A). Assume�rst that ~a 2 Qi(A). Then for some A0 �= A and ~a0 suh that (A;~a)�d(A0;~a0) wehave ~a0 2 Q(A0). Let h be an isomorphism A ! A0. Sine the isomorphism type ofthe d-neighborhood of h(~a) in A0 is the same as that of the d-neighborhood of ~a0,it follows from Gaifman-loality that h(~a) 2 Q(A0). Sine queries are losed underisomorphisms, applying h�1 we get ~a 2 Q(A). Conversely, assume ~a 2 Q(A). Sine(A;~a)�d(A;~a) we obtain ~a 2 Qi(A). This onludes the proof. 2Unlike in Fat 2.9, the number of ases in a Hanf-loal de�nition by ases an bein�nite. A natural question to ask is whether a �nite number of ases is suÆient (inpartiular, whether the statement of Fat 2.9 holds for arbitrary �nite strutures).We now show that the in�nite number of ases is unavoidable. In fat, we show astronger result.De�nition 5.3. For k > 0, let Loalk be the lass of queries given by a Hanf-loal de�nition by ases, where the number of ases is at most k. Let Loal� beSk>0 Loalk, and G Loal be the lass of all Gaifman-loal queries.Note that Loal1 is preisely the lass of Hanf-loal queries.Theorem 5.4. The hierarhyLoal1 � Loal2 � : : : � Loal� � G Loalis strit.Proof. We �rst exhibit a query Q 2 Loall+1 � Loall. Intuitively, a queryfrom Loall annot make l + 1 hoies, and thus is di�erent from every query inLoall+1 on some lass of the partition. More preisely, we de�ne a lass Cl+1i ,1 � i � l + 1, of graphs that onsists of graphs with the number of onnetedomponents being i� 1 modulo l + 1. De�ne Ql+1i as a query returning the set ofnodes that an be reahed by a path of length i�1 from a node of indegree 0. Thatis, if the input is a suessor relation, this query returns the ith node. Clearly, Ql+1iis FO-de�nable and thus Hanf-loal. We now form a query Q that oinides withQl+1i on Cl+1i . (Note that Q is not FO, as the lasses Cl+1i are not FO-de�nable.)From Theorem 5.2, this is a Gaifman-loal query, and it belongs to Loall+1.Suppose Q is in Loall; that is, there is a partition of the lass of all �nite graphsinto l lasses C01; : : : ; C0l and Hanf-loal queries Q0i suh that on C0i, Q oinides withQ0i, i = 1; : : : ; l. Let d = 1 + max hlr(Q0i). Let G0 be a suessor relation on l + 1nodes. De�ne a graph H l+1i as the union of i yles with (l+1)!(2d+1)i nodes eah,i = 1; : : : ; l + 1. As the total number of nodes in eah H l+1i is (l + 1)!(2d+ 1) andall d-neighborhoods are isomorphi, we have H l+1i �dH l+1j for all i; j � l + 1. Letnow Gl+1i be the disjoint union of G0 and H l+1i , i = 1; : : : ; l+1. If x and y are thenodes in the G0 part of Gl+1i and Gl+1j respetively at the same distane from thestart node, then (Gl+1i ; x)�d(Gl+1j ; y).ACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.



Logis Capturing Loal Properties � 17By the pigeonhole priniple, there exists a lass C0k and i 6= j; i; j � l + 1 suhthat Gl+1i ; Gl+1j 2 C0k. Let x; y be the nodes at distane i� 1 from the start node ofthe G0 part of Gl+1i and Gl+1j , resp. Let z be the node at distane j � 1 from thestart node of the G0 part of Gl+1j ; note that z 6= y. By de�nition of Q, it returnsx on Gl+1i and z on Gl+1j . However, (Gl+1i ; x)�d(Gl+1j ; y), and sine Q is given onC0k by Q0k of hlr(Q0k) � d, it must return y on Gl+1j if it returns x on Gl+1i . Thisontradition shows that Q 62 Loall.To separate G Loal from Loal�, we exhibit a query Q of lr(Q) = 1 suhthat Q 62 Loal�. Consider a signature onsisting of two binary relations E1 andE2. Let Q be as follows: if no element of the universe ours in an E1-tuple andan E2-tuple, if E1 is a linear ordering, and if its length is at least the number k ofonneted omponents of E2, then return the kth element in the linear order E1;otherwise return nothing. Clearly this Q is of loality rank 1. In inputs on whihthe output of Q is not empty, two points with isomorphi 1-neighborhoods mayonly our in E2, and thus no suh point belongs to the output of Q. We nextshow that Q 62 Loall for eah l. We onsider the example we used to separateLoall+1 from Loall, and modify it in suh a way that in a struture Gi+1i , G0,whih will interpret E1 is a linear order of length l+1, and H l+1i , whih interpretsE2, is the same as before. It again follows that (Gl+1i ; x)�d(Gl+1j ; y), where x and yare in the same position in the linear order part G0 of Gl+1i and Gl+1j . We then usethe same pigeonhole argument as before to prove that Q 62 Loall. This onludesthe proof. 2Thus, similarly to the ase of Hanf-loal queries, the haraterization for stru-tures of bounded valene fails to extend to the lass of all �nite strutures.Corollary 5.5. There exist Gaifman-loal queries that annot be given by �rst-order de�nition by ases.6. CONCLUSIONNotions of loality have been used in logi numerous times. The loal nature of �rst-order logi is partiularly transparent when one deals with fragments orrespondingto various modal logis; in general, Gaifman's and Hanf's theorems state that FOan only express loal properties. These theorems were generalized, and, beingappliable to �nite strutures, they found appliations in areas suh as omplexityand databases.However, while more and more powerful logis were proved to be loal, there wasno lear understanding of what kind of mehanisms an be added to logis whilepreserving loality. Here we answered this question by providing logial harater-izations of loal properties on �nite strutures. For Hanf-loality, arbitrary ount-ing power and testing arbitrary properties of small neighborhoods an be added to�rst-order logi while retaining loality; moreover, with a limited form of in�nitaryonnetives, suh a logi aptures all Hanf-loal properties. For Gaifman-loality,one an in addition permit de�nition by ases, and the number of ases be either�nite or in�nite. ACM Transations on Computational Logi, Vol. 2, No. 1, January 2001.
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