
Logi
s Capturing Lo
al PropertiesLEONID LIBKINUniversity of Toronto and Bell LaboratoriesWell-known theorems of Hanf and Gaifman establishing lo
ality of �rst-order de�nable propertieshave been used in many appli
ations. These theorems were re
ently generalized to other logi
s,whi
h led to new appli
ations in des
riptive 
omplexity and database theory. However, a logi
al
hara
terization of lo
al properties that 
orrespond to Hanf's and Gaifman's theorems is stillla
king. Su
h a 
hara
terization only exists for stru
tures of bounded valen
e. In this paper, wegive logi
al 
hara
terizations of lo
al properties behind Hanf's and Gaifman's theorems. We �rstdeal with an in�nitary logi
 with 
ounting terms and quanti�ers that is known to 
apture Hanf-lo
ality on stru
tures of bounded valen
e. We show that testing isomorphism of neighborhoods 
anbe added to it without violating Hanf-lo
ality, while in
reasing its expressive power. We then showthat adding lo
al se
ond-order quanti�
ation to it 
aptures pre
isely all Hanf-lo
al properties. To
apture Gaifman-lo
ality, one must also add a (potentially in�nite) 
ase statement. We furthershow that the hierar
hy based on the number of variants in the 
ase statement is stri
t.Categories and Subje
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ounting1. INTRODUCTIONIt is well known that �rst-order logi
 (FO) only expresses lo
al properties. Twobest known formal results stating lo
ality of FO are Hanf's and Gaifman's theorems[Hanf 1965; Gaifman 1982℄. They both found numerous appli
ations in 
omputers
ien
e, due to the fa
t that they are among relatively few results in �rst-ordermodel theory that apply to both �nite and in�nite stru
tures. Gaifman's theoremitself works for both �nite and in�nite stru
tures, while for Hanf's theorem anextension to �nite stru
tures was formulated by Fagin, Sto
kmeyer, and Vardi[1995℄.More re
ently, the statements underlying Hanf's and Gaifman's theorems havebeen abstra
ted from the statements of the theorems, and used in their own right.In essen
e, Hanf's theorem states that two stru
tures 
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2 � Leonid Libkinneighborhoods of points; here d depends only on k. Gaifman's theorem states thatin a given stru
ture, two tuples 
annot be distinguished by formulae of quanti-�er rank k whenever d-neighborhoods of these tuples are isomorphi
; again d isdetermined by k.It was shown that Hanf's theorem is stri
tly stronger than Gaifman's, and thatboth apply to a variety of logi
s that extend FO with 
ounting me
hanisms andlimited in�nitary 
onne
tives [Grohe and S
hwenti
k 2000; Hella et al. 1999a; Hellaet al. 1999b; Libkin 2000; Nurmonen 1996℄. These results found appli
ations indes
riptive 
omplexity and database theory. Sin
e the 
omplexity 
lass TC0 (withthe appropriate notion of uniformity) 
an be 
aptured by FO with 
ounting quan-ti�ers [Barrington et al. 1990℄, lo
ality 
an be used to prove lower bounds for logi
s
oming very 
lose to 
apturing TC0 [Etessami 1995; Libkin and Wong 1998℄. Indatabase theory, logi
s with 
ounting me
hanisms model aggregate fun
tions 
om-monly found in 
ommer
ial query languages. Thus, lo
ality was used to proveexpressivity bounds for query languages with aggregation [Dong et al. 2000; Hellaet al. 1999b℄. For appli
ations to automata, see [S
hwenti
k and Barthelmann 1998℄.The above-mentioned papers 
onsidered a sequen
e of more and more power-ful logi
s, ea
h of whi
h was proved to be lo
al, starting with FO with 
ountingquanti�ers, and ending with a logi
 that permits arbitrary predi
ates on naturalnumbers, a limited form of in�nitary 
onne
tives [Libkin 2000℄ and even aggregatefun
tions [Hella et al. 1999b℄. However, it was not 
lear how mu
h one 
an add tothese logi
s and still preserve its lo
ality. Our goal, therefore, is to give a pre
ise
hara
terization of lo
al logi
s.Note that the abstra
t notions of lo
ality were previously 
hara
terized on �nitestru
tures of bounded valen
e (e.g., for graphs of �xed maximum degree). The 
har-a
terization for Hanf-lo
ality uses a logi
 L�1!(C) introdu
ed in [Libkin 2000℄. Thislogi
 subsumes a number of 
ounting extensions of FO (su
h as FO with 
ountingquanti�ers [Immerman and Lander 1990℄, FO with unary generalized quanti�ers[Hella 1996; Kolaitis and V�a�an�anen 1995℄, FO with unary 
ounters [Benedikt andKeisler. 1997℄) and is quite easy to deal with. A result in [Hella et al. 1999a℄ statesthat Hanf-lo
al properties on stru
tures of bounded valen
e are pre
isely thosede�nable in L�1!(C).The question naturally arises whether this 
ontinues to hold for arbitrary �nitestru
tures. We show in this paper that this is not the 
ase. We do so by �rst�nding a simple dire
t proof of Hanf-lo
ality of L�1!(C), and then using it toshow that adding new atomi
 formulae testing isomorphism of neighborhoods of a�xed radius does not violate Hanf-lo
ality, while stri
tly in
reasing the expressivepower. We next de�ne a logi
 that 
aptures pre
isely the Hanf-lo
al properties. Itis obtained by adding lo
al se
ond-order quanti�
ation to L�1!(C). That is, se
ond-order quanti�ers bind predi
ates that are only allowed to range over �xed radiusneighborhoods of free �rst-order variables. We will also show that this amounts toadding arbitrarily powerful 
omputations to L�1!(C) as long as they are bound tosome neighborhoods.For Gaifman-lo
ality, a 
hara
terization theorem in [Hella et al. 1999a℄ statedthat it is equivalent, over stru
tures of bounded valen
e, to �rst-order de�nitionby 
ases. That is, there are m > 0 
lasses of stru
tures and m FO formulae 'isu
h that, over the ith 
lass, the given property is des
ribed by 'i. Again, thisACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



Logi
s Capturing Lo
al Properties � 3falls short of a general 
hara
terization. We show that over the 
lass of all �nitestru
tures (no restri
tion on valen
e), Gaifman-lo
ality is equivalent to de�nitionby 
ases, where the number of 
lasses 
an be in�nite. Furthermore, the hierar
hygiven by the number of those 
lasses (that is, the number of 
ases) is stri
t.Organization. Se
tion 2 introdu
es notations and notions of lo
ality. Se
tion 3 givesa new simple proof of Hanf-lo
ality of L�1!(C) whi
h is then used to show thatadding tests for neighborhood isomorphism preserves lo
ality. Se
tion 4 
hara
-terizes Hanf-lo
al properties as those de�nable in L�1!(C) with lo
al se
ond-orderquanti�
ation. Se
tion 5 
hara
terizes Gaifman-lo
al properties as those de�nableby (�nite or in�nite) 
ase statements, and shows the stri
tness of the hierar
hy.2. NOTATIONFinite Stru
tures and Neighborhoods. All stru
tures are assumed to be �nite. Arelational signature � is a set of relation symbols fR1, ..., Rlg, with asso
iatedarities pi > 0. A �-stru
ture is A = hA;RA1 ; : : : ; RAl i, where A is a �nite set, andRAi � Api interprets Ri. The 
lass of �nite �-stru
tures is denoted by STRUCT[�℄.When there is no 
onfusion, we write Ri in pla
e of RAi . Isomorphism is denotedby �=. The 
arrier of a stru
ture A is always denoted by A, and the 
arrier of B isdenoted by B.Given a stru
ture A, its Gaifman graph G(A) is de�ned as hA;Ei where (a; b)is in E i� there is a tuple ~
 2 RAi for some i su
h that both a and b are in~
. The distan
e d(a; b) is de�ned as the length of the shortest path from a to bin G(A); we assume d(a; a) = 0. If ~a = (a1; : : : ; an) and ~b = (b1; : : : ; bm), thend(~a;~b) = minij d(ai; bj). Given ~a over A, its r-sphere SAr (~a) is fb 2 A j d(~a; b) � rg.Its r-neighborhood NAr (~a) is de�ned as a stru
ture in the signature that extends �with n new 
onstant symbols:hSAr (~a); RA1 \ SAr (~a)p1 ; : : : ; RAl \ SAr (~a)pl ; a1; : : : ; aniThat is, the 
arrier of NAr (~a) is SAr (~a), the interpretation of the �-relations is in-herited from A, and the n extra 
onstants are the elements of ~a. If A is understood,we write Sr(~a) and Nr(~a).If A;B 2 STRUCT[�℄, and there is an isomorphism NAr (~a)! NBr (~b) (that sends~a to ~b), we write ~a �A;Br ~b. If A = B, we write ~a �Ar ~b.Given a tuple ~a = (a1; : : : ; an), we write ~a
 for the tuple (a1; : : : ; an; 
).The quanti�er rank of a formula is denoted by qr(�).Hanf's and Gaifman's Theorems. An m-ary query on �-stru
tures, Q, is a map-ping that asso
iates to ea
hA 2 STRUCT[�℄ a stru
ture hA;Si, where S � Am. Wealways assume that queries are invariant under isomorphisms. We write ~a 2 Q(A)if ~a 2 S, where hA;Si = Q(A). A query Q is de�nable in a logi
 L if there existsan L formula '(x1; : : : ; xm) su
h that Q(A) = hA; f~a j A j= '(~a)gi. If m = 0, thenQ is naturally asso
iated with a sub
lass of STRUCT[�℄, and de�nability meansde�nability by a senten
e of L.De�nition 2.1 (Gaifman-Lo
ality). (See [Dong et al. 2000; Hella et al. 1999a℄).An m-ary query Q, m � 1, is 
alled Gaifman-lo
al if there exists a number r � 0ACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



4 � Leonid Libkinsu
h that, for any stru
ture A and any ~a;~b 2 Am~a �Ar ~b implies ~a 2 Q(A) i� ~b 2 Q(A):The minimum su
h r is 
alled the lo
ality rank of Q, and is denoted by lr(Q).Theorem 2.2 (Gaifman [1982℄). Every FO formula '(x1; : : : ; xm) de�nes aGaifman-lo
al query Q with lr(Q) � (7qr(') � 1)=2.The statement of Gaifman's theorem a
tually provides more information aboutFO-de�nable properties; it also states that every �rst-order de�nable property 
anbe expressed in terms of types of neighborhoods realized in a given stru
ture. Anabstra
t formulation of this property was introdu
ed in [Hella et al. 1999a℄ underthe name of strong Gaifman-lo
ality, and was shown to be equivalent to �rst-orderde�nability over �nite stru
tures of bounded degree. However, it is the abovestatement that is used in most appli
ations for proving expressivity bounds, and italso extends beyond FO. Note also that better bounds of the order O(2qr(')) areknown for lr(Q); see [Libkin 2000℄.For A;B 2 STRUCT[�℄, we write A�dB if the multisets of isomorphism types ofd-neighborhoods of points are the same in A and B. That is, A�dB if there existsa bije
tion f : A! B su
h that NAd (a) �= NBd (f(a)) for every a 2 A. We also write(A;~a)�d(B;~b) if there is a bije
tion f : A! B su
h that NAd (~a
) �= NBd (~bf(
)) forevery 
 2 A.De�nition 2.3 (Hanf-Lo
ality). (See [Hanf 1965; Fagin et al. 1995; Hella et al.1999a℄). An m-ary query Q, m � 0, is 
alled Hanf-lo
al if there exist a numberd � 0 su
h that for any two stru
tures A;B and any ~a 2 Am;~b 2 Bm,(A;~a)�d(B;~b) implies ~a 2 Q(A) i� ~b 2 Q(B):The minimum d for whi
h this holds is 
alled Hanf lo
ality rank of Q, and is denotedby hlr(Q).For a Boolean query Q (m = 0) this means that Q 
annot distinguish two stru
-tures A and B whenever A�dB.Theorem 2.4 (Hanf [1965℄, Fagin-Sto
kmeyer-Vardi [1995℄). Every FOsenten
e ' de�nes a Hanf-lo
al Boolean query Q with hlr(Q) � 3qr(�). 2An extension to open formulae, although easily derivable from the proof of [Faginet al. 1995℄, was probably �rst expli
itly stated in [Hella et al. 1999a℄: every FOformula '(~x) de�nes a Hanf-lo
al query. Better bounds on hlr(Q) of the orderO(2qr(')) are also known for Hanf-lo
ality [Immerman 1999; Libkin 2000℄.We shall use the following result that 
onne
ts the binary relations � and �.Lemma 2.5 (See [Hella et al. 1999a℄). (a) Let A�dB and ~a �A;B3d+1 ~b.Then (A;~a)�d(B;~b).(b) Let (A;~a)�3d+1(B;~b). Then there exists a bije
tion f : A ! B su
h that(A;~a
)�d(B;~bf(
)) for every 
 2 A.Note that Lemma 2.5, part (b) is in fa
t an easy 
orollary of Lemma 2.5, (a): If(A;~a)�3d+1(B;~b), then there is a bije
tion f : A ! B su
h that ~a
 �A;B3d+1 ~bf(
);sin
e A�3d+1B and thus A�dB, this implies (A;~a
)�d(B;~bf(
)).ACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



Logi
s Capturing Lo
al Properties � 5Another easy 
orollary of Lemma 2.5, (a), is that every Hanf-lo
al m-ary queryQ, m � 1, is Gaifman-lo
al [Hella et al. 1999a℄. Indeed, let d = 3hlr(Q) + 1, andlet ~a �Ad ~b. Sin
e A�hlr(Q)A, we obtain (A;~a)�hlr(Q)(A;~b) and thus ~a 2 Q(A) i�~b 2 Q(A), by Hanf-lo
ality.Logi
 L�1!(C). The logi
 L�1!(C) subsumes a number of 
ounting extensions ofFO, su
h as FO with 
ounting quanti�ers [Etessami 1995; Immerman and Lander1990℄, unary quanti�ers [Hella 1996℄, and unary 
ounters [Benedikt and Keisler.1997℄. (When we speak of 
ounting extensions of FO, we mean extensions thatonly add a 
ounting me
hanism, as opposed to those { extensively studied in theliterature, see [Cai et al. 1992; Otto 1997℄ { that add both 
ounting and �xpoint.)It is a two-sorted logi
, with one sort being the universe of a �nite stru
ture, andthe other sort being N, and it uses 
ounting terms that produ
e 
onstants of these
ond sort, similarly to the logi
s studied in [Gr�adel and Gurevi
h 1998℄. Theformal de�nition is as follows.We denote the in�nitary logi
 by L1! ; it extends FO by allowing in�nite 
on-jun
tions V and disjun
tions W. Then L1!(C) is a two-sorted logi
 that extendsL1! . Its stru
tures are of the form (A;N), where A is a �nite relational stru
ture,and N is a 
opy of natural numbers. We shall use ~x; ~y; et
., for variables rangingover the �rst (nonnumeri
al) sort, and ~{;~|, et
., for variables ranging over the se
-ond (numeri
al) sort. Assume that every 
onstant n 2 N is a se
ond-sort term. ToL1! , add 
ounting quanti�ers 9ix for every i 2 N, and 
ounting terms:|If ' is a formula and ~x is a tuple of free �rst-sort variables in ', then #~x:' isa term of the se
ond sort, and its free variables are those in ' ex
ept ~x. Itsinterpretation is the number of ~a over the �nite �rst-sort universe that satisfy'. That is, given a stru
ture A, a formula '(~x; ~y;~|), ~b � A, and ~|0 � N, thevalue of the term #~x:'(~x;~b;~|0) is the 
ardinality of the (�nite) set f~a � A jA j= '(~a;~b;~|0)g. For example, the interpretation of #x:E(x; y) is the in-degreeof node y in a graph with the edge-relation E.|The interpretation of a 
ounting quanti�er 9ix' is #x:' � i. Note that thisquanti�er binds x, but i remains free.As this logi
 is too powerful (it expresses every property of �nite stru
tures), werestri
t it by means of the rank of formulae and terms, denoted by rk. It is de�nedas quanti�er rank, but without taking into a

ount quanti�
ation over N. That is:|The rank of a variable or a 
onstant is 0.|The rank of an atomi
 formula is the maximum rank of a term in it.|rk(Wi 'i) = rk(Vi 'i) = supi rk('i).|rk(:') = rk(').|rk(9x') = rk(9ix') = rk(') + 1.|rk(9n') = rk('), where n ranges over N.|rk(#~x: ) = rk( )+ j~x j.De�nition 2.6. (See [Libkin 2000℄.) The logi
 L�1!(C) is de�ned to be the re-stri
tion of L1!(C) to terms and formulae of �nite rank.ACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



6 � Leonid LibkinIt is known [Libkin 2000℄ that L�1!(C) is 
losed under �nitary Boolean 
onne
-tives and all quanti�
ation, and that every predi
ate on N � : : : � N is de�nableby a L�1!(C) formula of rank 0. Thus, we assume that +; �;�;�, and in fa
t ev-ery predi
ate on N is available. Furthermore, 
ounting terms 
an be eliminated inL�1!(C) without in
reasing the rank; that is, 
ounting quanti�ers suÆ
e. In fa
t,there exists an alternative presentation of this logi
, whi
h is one-sorted, and usesarbitrary unary generalized quanti�ers [Hella 1996; Hella et al. 1999a℄; however,expressing 
ounting properties with unary quanti�ers is often quite awkward, andthus we 
hose to use a two-sorted version with 
ounting terms here.Fa
t 2.7. (See [Hella et al. 1999b; Libkin 2000℄.) Queries expressed by L�1!(C)formulae without free variables of the se
ond-sort are Hanf-lo
al and Gaifman-lo
al.Gaifman-lo
ality of L�1!(C) was proved by a simple dire
t argument in [Libkin2000℄; Hanf-lo
ality was shown in [Hella et al. 1999b℄ using bije
tive Ehrenfeu
t-Fra��ss�e games of [Hella 1996℄. The game is played by two players, 
alled the spoilerand the dupli
ator, on two stru
tures A;B 2 STRUCT[�℄. For the n-round game,in ea
h round i = 1; : : : ; n, the dupli
ator sele
ts a bije
tion fi : A ! B, and thespoiler sele
ts a point ai 2 A (if 
ard(A) 6= 
ard(B), then the spoiler wins). Thedupli
ator wins after n rounds if the relation f(ai; fi(ai)) j 1 � i � ng is a partialisomorphism A ! B; otherwise the spoiler wins. If the dupli
ator has a winningstrategy in the n-move bije
tive game on A and B, we write A �bijn B. It was shownin [Hella et al. 1999b℄ (building upon [Hella 1996℄) that bije
tive games 
hara
terizeelementary equivalen
e in L�1!(C): A and B agree on L�1!(C) senten
es of rankup to n i� A �bijn B.Stru
tures of Bounded Valen
e (Degree). We use the notation STRUCTk[�℄ forthe set of stru
tures A 2 STRUCT[�℄ su
h that in the Gaifman graph G(A), everynode has degree at most k.Fa
t 2.8. (See [Hella et al. 1999a℄.) For any �xed k, a query Q on STRUCTk[�℄is Hanf-lo
al i� it is expressed by a formula of L�1!(C) (without free se
ond-sortvariables).An m-ary query Q on a 
lass C � STRUCT[�℄ is given by a �rst-order de�nitionby 
ases if there exists a number p, a partition C = C1 [ C2 [ : : : [ Cp and �rst-order formulae �1(x1; : : : ; xm); : : : ; �p(x1; : : : ; xm) in the language � su
h that onall stru
tures A 2 Ci, Q is de�nable by �i. That is, for all 1 � i � p and A 2 Ci,~a 2 Q(A) i� A j= �i(~a). Note that Ci's are not required to be �rst-order-de�nable.Fa
t 2.9. (See [Hella et al. 1999a℄.) For any �xed k, a query Q on STRUCTk[�℄is Gaifman-lo
al i� it is given by a �rst-order de�nition by 
ases.3. ISOMORPHISM OF NEIGHBORHOODS AND L�1!(C)We start with a slightly modi�ed de�nition of lo
ality that makes it 
onvenient towork with two-sorted logi
s, like L�1!(C). We say that su
h a logi
 expresses Hanf-lo
al (or Gaifman-lo
al) queries if for every formula '(~x;~{) there exists a number dsu
h that for every ~{0 � N, the formula '~{0(~x) = '(~x;~{0) (without free se
ond-sortvariables) expresses a query Q with hlr(Q) � d (lr(Q) � d, respe
tively).ACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



Logi
s Capturing Lo
al Properties � 7Consider a set � of relation symbols, disjoint from �, and de�ne L�1!(C) + � byallowing for ea
h k-ary U 2 � and a k-tuple ~x of variables of the �rst sort, U(~x)to be a new atomi
 formula. The rank of this formula is 0. An interpretation ofpredi
ates in � is said to be Hanf-lo
al if there exists a number d su
h that ea
hpredi
ate in � de�nes a Hanf-lo
al query Q with hlr(Q) � d.Theorem 3.1. If the interpretation of predi
ates in � is Hanf-lo
al, then everyquery de�nable in L�1!(C) + � is Hanf-lo
al.Proof. Let d witness Hanf-lo
ality of �. We shall show that every L�1!(C) + �formula of rank m de�nes a Hanf-lo
al query Q with hlr(Q) � 3m �d+ 3m�12 (for allinstantiations of free variables of the se
ond sort). That is, for a sequen
e de�nedby d0 = d; d1 = 3d0 + 1; : : : ; di+1 = 3di + 1; : : :, we have hlr(Q) � dm.The proof of this is by indu
tion on a formula. The atomi
 
ase follows fromthe assumption that � is Hanf-lo
al (note that atomi
 �-formulae de�ne queries ofHanf lo
ality rank 0). The 
ases of Boolean or in�nitary 
onne
tives are simple: forexample, if formulae 'j(~x;~{) de�ne queries of Hanf lo
ality rank at most r for allinstantiations~{0 for~{, then the same is true for ' � Wj 'j . Indeed, if (A;~a)�d(B;~b),then A j= 'j(~a;~{0) i� B j= 'j(~b;~{0), and thus the same is true for '. The 
ases ofnegation and quanti�
ation over the numeri
al sort 
learly do not 
hange the valueof hlr, sin
e hlr is independent of ~{0.It thus remains to 
onsider the 
ase of  (~x;~{) � 9iy('(y; ~x;~{)) (as 
ounting terms
an be eliminated without in
reasing the rank [Libkin 2000℄) and to show that if' de�nes a query of Hanf lo
ality rank r for every ~{0, then  de�nes a query Qwith hlr(Q) � 3r + 1. We then �x ~{0 and assume (A;~a)�3r+1(B;~b). By Lemma2.5, b), there exists a bije
tion f : A ! B su
h that (A;~a
)�r(B;~bf(
)) for all
 2 A. Thus, A j= '(
;~a;~{) i� B j= '(f(
);~b;~{), due to Hanf-lo
ality of ', andhen
e A j=  (~a;~{) i� B j=  (~b;~{), as the number of elements satisfying '(�;~a;~{) and'(�;~b;~{) is the same. This 
ompletes the proof. 2We now 
onsider the following example. For ea
h d; k, de�ne a 2k-ary predi
ateIkd (x1; : : : ; xk ; y1; : : : ; yk) to be interpreted as follows: A j= Ikd (~a;~b) i� NAd (~a) �=NAd (~b). Clearly, (A;~a1~a2)�d(B;~b1~b2) implies NAd (~a1~a2) �= NBd (~b1~b2), and thus~a1 �Ad ~a2 i� ~b1 �Bd ~b2. This shows Hanf-lo
ality of Ikd and gives usCorollary 3.2. For any �xed d, L�1!(C) + fIkd j k > 0g only expresses Hanf-lo
al properties.We next show that this gives us an in
rease in expressive power. The result belowis proved using bije
tive games.Proposition 3.3. For any d; k > 0, L�1!(C) + Ikd is stri
tly more expressivethan L�1!(C).Proof. It suÆ
es to show this proposition for the 
ase of d = k = 1. Con-sider the signature of one binary relation E and a formula '(x) � E(x; x) ^9yI11 (x; y). Assume to the 
ontrary that this is de�nable by a L�1!(C) for-mula  of rank m. Let r = 3m+1. We now 
onstru
t a graph G with theset of nodes V = fa; b; 
g [ fai; bi; 
i j 1 � i � 2rg. First, we have loops(a; a); (b; b); (
; 
) and edges (a; ai); (b; bi); (
; 
i) for ea
h i � 2r. Furthermore,ACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



8 � Leonid Libkinon the ai's we have two 
y
les of length r: (a1; a2); : : : ; (ar�1; ar); (ar ; a1) and(ar+1; ar+2); : : : ; (a2r�1; a2r); (a2r; ar+1), and likewise for the bi. On the nodes 
i's,we have one 
y
le of length 2r: (
1; 
2); : : : ; (
2r�1; 
2r); (
2r; 
1). There are no otheredges.Note that the output of ' on G is fa; bg. We next show that (G; a) �bijm (G; 
)whi
h would imply that G j=  (a) i� G j=  (b), 
ontradi
ting de�nability of 'in L�1!(C). Let Ga be the subgraph of G whose nodes are the aj 's and let G
be the subgraph whose nodes are the 
js. Sin
e Ga�3mG
, it follows from [Hellaet al. 1999a; Nurmonen 1996℄ that Ga �bijm G
. Then the dupli
ator wins in them-round bije
tive game on (G; a) and (G; 
) as follows. For the ith round, thedupli
ator looks at the points played so far on Ga and G
 and, assuming he isplaying round i + 1 in the bije
tive game on Ga and G
, 
onstru
ts a bije
tionf0 : Ga ! G
. Then this bije
tion is extended to the bije
tion f from (G; a) to(G; 
) as follows. First, f(a) = 
; f(
) = a; f(b) = b. Se
ondly, f(bj) = bj for allj. Finally, f(aj) = f0(aj) and f(
j) = f�10 (aj). It follows immediately from the
onstru
tion and from Ga �bijm G
 that with this strategy, the dupli
ator maintainspartial isomorphism. 2Corollary 3.4. The logi
 L�1!(C) fails to 
apture Hanf-lo
al properties overarbitrary �nite stru
tures.Note that we only used Ikd s as atomi
 formulae. A natural extensionwould be to use them as generalized quanti�ers. In this 
ase we extendthe de�nition of the logi
 by a rule that if '1(~v1; ~z); : : : ; 'l(~vl; ~z) are for-mulae with ~vi being an mi-tuple of �rst-sort variables, then  (~x; ~y; ~z) �Ikd[m1; : : : ;ml℄(~v1; : : : ; ~vl)('1(~v1; ~z); : : : ; 'l(~vl; ~z)) is a formula with ~x and ~y beingk-tuples of fresh free variables of the �rst sort. The semanti
s is that for ea
h Aand ~
, one de�nes a new stru
ture on A in whi
h the ith predi
ate of arity mi isinterpreted as f~u 2 Ami j A j= 'i(~u;~
)g. Then A j=  (~a;~b;~
) if in this stru
turethe d-neighborhoods of ~a and ~b are isomorphi
. However, this generalization doesnot preserve lo
ality.Proposition 3.5. Adding Ikd[m1; : : : ;ml℄ to L�1!(C) violates Hanf-lo
ality. Infa
t, with addition of I11[2℄ to FO one 
an de�ne properties that are neither Hanf-lo
al nor Gaifman-lo
al.Proof. Consider a signature (E;C1; C2) where E is binary and C1, C2 unary(that is, we deal with 2-
olored graphs). Let '(u; v) be (E(u; v)^C1(u))_ (C2(u)^C1(v)). We now form  (x; y) � I11[2℄(u; v)('(u; v)) testing if 1-neighborhoods ofu and v are isomorphi
 in the output of '. Assume that this de�nes a Gaifman-lo
al query Q with lr(Q) � r; r > 0. Take m = 4r and 
onstru
t a 2-
oloredgraph G as follows. The set of nodes is fai; bi; 
i; ei j 1 � i � mg. The edges are(ai; ai+1); (bi; bi+1); (
i; 
i+1); (ei; ei+1) for 1 � i < m as well as (ai; bi); (ei; 
i) forall i. The interpretation of C1 is fai; ei j 1 � i � mg, and the interpretation of C2is fbi; 
i j 1 � i � mg.For ea
h bi, its 1-neighborhood in the output of ' 
onsists of fbig [ faj ; ej j1 � j � mg, with all the E-edges between the aj 's and ej , as well as (ai; bi)and (ei; bi). Likewise, the 1-neighborhood of 
k in the output of ' 
onsists off
kg [ faj ; ej j 1 � j � mg, with all the E-edges between the aj 's and ej , andACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



Logi
s Capturing Lo
al Properties � 9the edges (ak; 
k); (ek; 
k). Thus, those neighborhoods are isomorphi
 i� i = k.However, our 
hoi
e of m guarantees that there is i < m su
h that (bi; 
i) �Gr(bi+1; 
i) whi
h would imply  (bi; 
i) i�  (bi+1; 
i), by the lo
ality of  . However,we have  (bi; 
i) and : (bi+1; 
i). This 
ontradi
tion shows that  is not Gaifman-lo
al; 
onsequently, it is not Hanf-lo
al either. 24. CHARACTERIZING HANF-LOCAL PROPERTIESWe have seen that the logi
 L�1!(C) fails to 
apture Hanf-lo
al properties overarbitrary �nite stru
tures. To �ll the gap between L�1!(C) and Hanf-lo
ality, weintrodu
e the notion of lo
al se
ond-order quanti�
ation. The idea is similar tolo
al �rst-order quanti�
ation whi
h restri
ts quanti�ed variables to �xed radiusneighborhoods of free variables. This kind of quanti�
ation was used in Gaifman'slo
ality theorem [Gaifman 1982℄ as well as in translations of various modal logi
sinto fragments of FO [van Benthem 1985; Gr�adel 1999℄.De�nition 4.1. Fix r � 0 and a relational signature �. Suppose that we have,for every arity k > 0, a 
ountably in�nite set of k-ary relational symbols T ik, i 2 N,disjoint from �. De�ne a set of formulae F by starting with L�1!(C) atomi
formulae involving symbols from � as well as T ik's, and 
losing under the formationrules of L�1!(C) and the following rule: if '(~x;~{) is a formula, ~y is a subtuple of ~xand d � r, then 1(~x;~{) � 9T ik v Sd(~y) '(~x;~{) and  2(~x;~{) � 8T ik v Sd(~y) '(~x;~{)are formulae of rank rk(') + 1. We say that the symbol T ik is bound in theseformulae.We then de�ne LSOr1!(C) over STRUCT[�℄ as the set of all formulae in Fof �nite rank in whi
h all o

urren
es of the symbols T ik's are bound. The logi
LSO�1!(C) (lo
al se
ond-order with 
ounting) is de�ned as Sr�0LSOr1!(C).The semanti
s of the new 
onstru
t is as follows. Given a �-stru
ture A and aninterpretation T for all the symbols T ik's o

urring freely in  1, we have (A; T ) j= 1(~a;~{) i� there exists a set T � Sd(~b)k, where ~b is the subtuple of ~a 
orrespondingto ~y, su
h that (A; T ; T ) j= '(~a;~{). For  2, one repla
es \exists" by \for all." 2For example, the formula9x9T v Sr(x)9T 0 v Sr(x) 0� 8y 2 Sr(x) (T (y) ^ :T 0(y)) _ (:T (y) ^ T 0(y))^ 8z; v (T (z) ^ E(z; v)!T 0(v)) ^ (T 0(z) ^ E(z; v)! T (v)) 1Atests if there is a 2-
olorable r-neighborhood of a node in a graph. Note that lo
al�rst-order quanti�
ation 8y 2 Sr(x) is de�nable in FO for every �xed r.Our main result 
an now be stated as follows.Theorem 4.2. An m-ary query Q, m � 0, is Hanf-lo
al i� it is de�nable by aformula of LSO�1!(C) (without free se
ond-sort variables).Proof. We �rst show that queries de�nable in LSO�1!(C) are Hanf-lo
al. As the�rst observation, we note that 
ounting terms 
an be eliminated from LSOr1!(C)without in
reasing the rank of a formula; in fa
t, the proof of this result for L�1!(C)ACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



10 � Leonid Libkinfrom [Libkin 2000℄ applies verbatim. Thus, we shall always assume in this dire
tionof the proof that we deal with formulae without 
ounting terms.Suppose we are given a signature �0 disjoint from �. If A 2 STRUCT[�℄, ~a is ak-tuple of elements of A, and ~C is an interpretation of �0 predi
ates as relations ofappropriate arity over A, we write (A; ~C;~a) for the 
orresponding stru
ture in thelanguage of � [ �0 union 
onstants for elements of ~a. By adom(~C) we mean thea
tive domain of ~C , that is, the set of all elements of A that o

ur in relations from~C. We then write, for d � r, (A; ~C;~a) �rd (B; ~D;~b)if ~D interprets �0 over B, if ~a, ~b are of the same length, and if the following three
onditions hold:(1) (A;~a)�d(B;~b),(2) adom(~C) � SAr (~a) and adom( ~D) � SBr (~b), and(3) there exists an isomorphism h : NAd (~a)! NBd (~b) su
h that h(~C) = ~D.We next prove the following lemma, whi
h implies the if dire
tion of the theoremby simply taking �0 to be empty. From now on, we shall often be listing freese
ond-order variables expli
itly, for bookkeeping 
onvenien
e.Lemma 4.3. Let '(~x;~{; ~X) be a LSOr1!(C) formula. Then there exists a numberd � r su
h that, for every interpretation ~{0 of ~{, it is the 
ase that (A;~a; ~C) �rd(B;~b; ~D) implies A j= '(~a;~{0; ~C) i� B j= '(~b;~{0; ~D):Proof. By indu
tion on formulae. Let rk0(') be de�ned as rk(') but withouttaking into a

ount se
ond-order quanti�
ation (in parti
ular, rk0(') � rk(')). Weshow that d 
an be taken to be 9mr + 9m�12 where m = rk0('). That is, for thesequen
e de�ned by d0 = r, : : :, di+1 = 9di + 4, : : :, it is the 
ase that d in thelemma 
an be taken to be dm.The 
ase of atomi
 formulae not involving symbols from �0 is straightforward, as~a and ~b satisfy all the same atomi
 �-formulae if (A;~a)�d(B;~b) for any d � 0. Forthe 
ase of atomi
 �0-formulae, one 
an take d = r. Indeed, assume (A;~a; ~C) �rr(B;~b; ~D), and T (~a0) holds, where ~a0 is a subtuple of ~a of the same length as thearity of a �0-symbol T . Let ~b0 be the 
orresponding subtuple of ~b. We must showthat T (~b0) holds. Assume T is interpreted by C0 2 ~C over A and D0 2 ~D over B.We have an isomorphism h : NAr (~a) ! NBr (~b) with h(~C) = ~D, and in parti
ularh(C0) = D0. Sin
e h(~a0) = ~b0, we obtain from ~a0 2 C0 that ~b0 2 D0, thus showingthat T (~b0) holds over B.The 
ases of negation, in�nitary 
onne
tives, and quanti�
ation over the numer-i
al sort are proved just as in the proof of Theorem 3.1.Next, 
onsider the 
ase of lo
al se
ond-order quanti�
ation. Given a formula (~x1~x2;~{; ~X) � 9Y v Sr0(~x1) '(~x1~x2;~{; Y; ~X)for some l-ary symbol Y and r0 � r, let d be given by applying the hypothesis to '.We must show that this d works for  . Fix~{0. Assume (A;~a; ~C) �rd (B;~b; ~D) whereACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



Logi
s Capturing Lo
al Properties � 11~C and ~D are interpretations of ~X . We then have an isomorphism h : NAd (~a) !NBd (~b) su
h that h(~C) = ~D. Assume that A j=  (~a;~{0; ~C). Then we 
an �nda set V � (SAr0 (~a1))l su
h that A j= '(~a;~{0; V; ~C). Here ~a1 is the subtuple of~a 
orresponding to ~x1. Note that adom(V ) � SAd (~a); thus we 
an de�ne U =h(V ). Sin
e h is an isomorphism, U � (SBr0(~b1))l, and hen
e all the 
onditionsfor (A;~a; V; ~C) �rd (B;~b; U; ~D) hold. Sin
e A j= '(~a;~{0; V; ~C), by the hypothesisthis implies B j= '(~b;~{0; U; ~D) and thus B j=  (~b;~{0; ~D). The 
onverse (that is,B j=  (� � �) implies A j=  (� � �)) is identi
al, whi
h proves the 
ase of se
ond-orderquanti�
ation.In preparation for the 
ase of 
ounting quanti�ers, we need the following.Claim 4.4. Assume (A;~a)�9d+4(B;~b). Let h be an arbitrary isomorphismNA9d+4(~a) ! NB9d+4(~b). Then there exists a bije
tion f : A ! B su
h that onS6d+3(~a) it 
oin
ides with h, and (A;~a
)�d(B;~bf(
)) for every 
 2 A.Proof. By Lemma 2.5, part (a), A�dB and ~a �A;B3d+1 ~b imply (A;~a)�d(B;~b).We use this as follows. The assumptions show that A�9d+4B and ~a �A;B9d+4 ~b. Fixan isomorphism h : NA9d+4(~a) ! NB9d+4(~b); 
learly it maps SA6d+3(~a) onto SB6d+3(~b)as it preserves distan
es. Consider any isomorphism type � of a 3d+1-neighborhoodof a single point. Suppose 
 2 SA6d+3(~a) realizes � ; sin
e SA3d+1(
) � SA9d+4(~a), itfollows that f(
) 2 SB6d+3(~b) realizes � in B. Thus, there are equally many realizersof � in SA6d+3(~a) and SB6d+3(~b). Sin
e A�9d+4B implies A�3d+1B (
f. [Fagin et al.1995℄), there are equally many realizers of � in A and B, and thus there exists abije
tion g : A � SA6d+3(~a) ! B � SB6d+3(~b) that preserves isomorphism types of3d+ 1-neighborhoods.We now de�ne f : A! B as follows: f(
) = h(
) if 
 2 SA6d+3(~a), and f(
) = g(
)otherwise. Clearly, this is a bije
tion, that 
oin
ides with h on SA6d+3(~a). Now
onsider an arbitrary 
 2 A. If 
 2 SA6d+3(~a), then SA3d+1(
) � SA9d+4(~a) and hen
e~a
 �A;B3d+1 ~bf(
), sin
e f(
) = h(
) and sin
e h is an isomorphism. If 
 62 SA6d+3(~a),then f(
) = g(
) 62 SB6d+3(~b) has the same type of its 3d+1-neighborhood as 
, andagain ~a
 �A;B3d+1 ~bf(
) sin
e there 
annot be elements from SA3d+1(~a) and SA3d+1(~
)that o

ur together in a tuple of a �-relation in A (be
ause the distan
e between ~aand 
 is at least 6d+ 4) and likewise for ~b and f(
). Thus, we have ~a
 �A;B3d+1 ~bf(
)for every 
, whi
h together with A�dB implies (A;~a
)�d(B;~bf(
)). This provesthe 
laim. 2We now 
onsider the 
ase of a formula (~x;~{; ~X) � 9iz '(~x; z;~{; ~X):Applying the hypothesis to ', we obtain a number d � r su
h that for every ~{0,(A;~a; 
; ~C) �rd (B;~b; e; ~D) implies that A j= '(~a; 
;~{0; ~C) i� B j= '(~b; e;~{0; ~D). To
on
lude, we must prove that (A;~a; ~C) �r9d+4 (B;~b; ~D) implies that A j=  (~a;~{0; ~C)i� B j=  (~b;~{0; ~D). For this, it will suÆ
e to establish a bije
tion f : A ! B su
hthat for every 
, (A;~a; 
; ~C) �rd (B;~b; f(
); ~D). Then 
learly the number of elementssatisfying ' will be preserved.ACM Transa
tions on Computational Logi
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12 � Leonid LibkinSin
e (A;~a; ~C) �r9d+4 (B;~b; ~D) and d � r, we have (A;~a)�9d+4(B;~b), andh(~C) = ~D for some isomorphism h : NA9d+4(~a) ! NB9d+4(~b); moreover, adom(~C)is 
ontained in SAr (~a) � SAd (~a), and likewise for ~D in B. Applying Claim 4.4, weobtain a bije
tion f : A ! B that 
oin
ides with h on SA6d+3(~a) and su
h that(A;~a
)�d(B;~bf(
)) for every 
.Thus, to 
on
lude that (A;~a; 
; ~C) �rd (B;~b; f(
); ~D) we must only show that forevery 
, there is an isomorphism h
 : NAd (~a
) ! NBd (~bf(
)) with h
(~C) = ~D,as other 
onditions are 
learly satis�ed. First, assume 
 62 SA2d+1(~a). Thenf(
) 62 SB2d+1(~b), sin
e f 
oin
ides with h on SA6d+3(~a). Hen
e, SAd (~a
) is a dis-joint union of SAd (~a) and SAd (
) (and likewise for SBd (~bf(
))), and thus there existsan isomorphism h
 : NAd (~a
) ! NBd (~bf(
)) whi
h 
oin
ides with h on SAd (~a); asadom(~C) � SAd (~a), this implies h(~C) = ~D. Assuming 
 2 SA2d+1(~a), we havef(
) = h(
) and SAd (
) � SA3d+1(~a), and SBd (f(
)) � SB3d+1(~b). Thus, in this 
ase hmaps NAd (~a
) isomorphi
ally onto NBd (~bf(
)), and hen
e h(~C) = ~D for h
 being aproper restri
tion of h. This 
on
ludes the proof for the 
ase of 
ounting quanti�ers,and thus the proof of the lemma and the if part of the theorem.Proof. (Only if) Let Q be an m-ary query with hlr(Q) � r, r > 0. Weshow that Q is de�nable by a formula of LSO�1!(C). Consider some enumera-tion �i; i 2 N+ of all isomorphism types of r-neighborhoods of m + 1-tuples instru
tures from STRUCT[�℄. Note that there 
ountably many of those. SupposeK = f(i1; j1); : : : ; (il; jl)g is a �nite subset of N+ � N+ with all ips being distin
t.We write ntpr(A;~a) . K if there are exa
tly jp elements 
 su
h that the type ofNAr (~a
) is �ip , and the 
ardinality of A is j1 + : : :+ jp (that is, �i1 ; : : : ; �il are theonly isomorphism types of NAr (~a
) as 
 ranges over A). Then Q is uniquely deter-mined by a 
olle
tion BQ of �nite subsets K of N+�N+ whi
h are graphs of partialfun
tions. That is, there exists a 
olle
tion BQ of su
h sets K su
h that ~a 2 Q(A)i� ntpr(A;~a).K for someK 2 BQ. Conversely, for any 
olle
tion B of �nite partialfun
tions K � N+ �N+ , the query de�ned by ~a 2 Q(A) i� ntpr(A;~a) .K for someK 2 B is Hanf-lo
al with hlr(Q) � r. This follows dire
tly from the de�nition ofHanf-lo
ality. Thus, the LSOr1!(C) formula de�ning Q is_K2BQ  K(~x);where A j=  K(~a) i� ntpr(A;~a) . K. Furthermore, the formulae  K are de�ned insu
h a way that there is an upper bound on rk( K) that depends only on m; r and�; this ensures that the in�nite disjun
tion above is a LSOr1!(C) formula.It thus remains to show how to de�ne  K by a formula whose rank is determinedby m, r, and � only. For K = f(i1; j1); : : : ; (il; jl)g, it is de�ned as K(~x) � l̂p=1 9=jpy ��ipr (~x; y)where 9=jy' is an abbreviation for 9jy' ^ :9(j + 1)y' (or #y:' = j) and A j=��ipr (~a; 
) i� the isomorphism type of NAr (~a
) is �ip .ACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



Logi
s Capturing Lo
al Properties � 13To 
on
lude the proof, we show, for arbitrary r; n, and an isomorphism type � ofan n-tuple, n > 0, how to de�ne ��r (~x) su
h that A j= ��r (~a) i� NAr (~a) is of type � .Let neighborhoods of type � 
ontain N elements. (Note that for this 
onstru
tion,we only need to 
onsider the 
ase when ~x is nonempty, and hen
e N > 0.) Fix aneighborhood N realizing � , with a1; : : : ; an interpreting ~x, and let e1; : : : ; eN�n beany enumeration of the remaining elements. For ea
h k-ary relation R from �, a k-tuple ~t over ~a;~e, and a binary relational symbol L not in �, de�ne a �[fLg-formula�~tR(~x) of L�1!(C) as follows. Suppose ej1 ; : : : ; ejs is the subtuple of ~t 
ontainingthe elements of ~e. Then �~tR(~x) is9y1; : : : ; ys R(~x; ~y) ^ î � (yi 2 Sr(~x)) ^(#z:(z 2 Sr(~x) ^ L(z; yi) ^Vl :(z = xl)) = ji) �where by R(~x; ~y) we mean that the position 
orresponding to ai in ~t is o

upied byxi, and the position 
orresponding to eji is o

upied by by yi. This formula saysthat for L de�ning the linear ordering 
orresponding to e1; : : : ; eN�n on Sr(~a)�~a,the tuple extending ~a with elements o

urring in the positions of ej1 ; : : : ; ejs in theordering, belongs to R. Note that the membership in Sr(~x) 
an be tested by anFO formula whose rank is at most r + p� � 1, where p� is the maximum arity of arelation in � (with � being nonempty, p� > 0). Thus, �~tR is an L�1!(C) formula,whose rank is at most s+ r + p� � r + 2p�.We now de�ne a formula �r(~x; L) as^R(~t)2Diag(N ) �~tR(~x) ^ ^R(~t)62Diag(N ) :�~tR(~x);where Diag(N ) is the diagram of the neighborhood N . This formula says thatexa
tly Diag(N ) atomi
 formulae hold in Nr(~x), assuming L de�nes an ordering onSr(~x)� ~x 
onsistent with that 
hosen on N . Let 
(~x; L) be an FO formula sayingthat L de�nes a linear order on Sr(~x)� ~x. We then 
on
lude that9L v Sr(~x) ((#z:z 2 Sr(~x) = N) ^ �(~x; L) ^ 
(~x; L))de�nes ��r (~x). Indeed, if A j= ��r (~a), then the diagram of NAr (~a) is the same asthat of N for some ordering on SAr (~a) � ~a, and thus the type of NAr (~a) is � . Ifthe type of NAr (~a) is � , the 
hoose the ordering as in N to see that ��r (~a) holds.We �nally note that � in
reases the rank of the �'s by at most r + p� + 1. Thenrk(��ipr ) � r + p� + 1 + r + 2p� = 2r + 3p� + 1 and hen
e rk( K) � 2r + 3p� + 2.This 
on
ludes the proof of de�nability of Q in LSO�1!(C), and thus proves thetheorem. 2There are several 
orollaries to the proof. First noti
e that if we de�nedLSO�1!(C) without in
reasing the rank of a formula for every se
ond-order lo-
al quanti�er, the proof would go through verbatim. We 
an also de�ne a logi
Lr1! (C) just as LSOr1!(C) ex
ept that �rst-order lo
al quanti�
ation 9z 2 Sr(~x)and 8z 2 Sr(~x) is used in pla
e of se
ond-order lo
al quanti�ers, and those lo
alquanti�ers do not in
rease the rank (in parti
ular, the depth of their nesting 
anbe in�nite, whi
h allows one to de�ne arbitrary 
omputations on those neighbor-hoods). Let then L�1! (C) be Sr Lr1! (C). The proof of Hanf-lo
ality of L�1! (C)ACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



14 � Leonid Libkingoes through as before, and proving that every Hanf-lo
al query is de�nable inL�1! (C) is very similar to that of LSO�1!(C) as with in�nitely many lo
al �rst-order quanti�ers we 
an write out diagrams of neighborhoods. We thus obtain:Corollary 4.5. The following have the same expressive power as LSO�1!(C)(and thus 
apture Hanf-lo
al properties):|the logi
 obtained from LSO�1!(C) by allowing the depth of nesting of lo
al quan-ti�ers to be in�nite and|the logi
 L�1! (C).Analyzing the proof of Theorem 4.2, we also obtain the following normal form forLSO�1!(C) formulae, whi
h shows that the depth of nesting of lo
al se
ond-orderquanti�ers need not ex
eed 1.Corollary 4.6. Every LSO�1!(C) formula '(~x) is equivalent to a formula inthe form _i ĵ (nij = #y:(9S v Sd(~x)  ij(~x; y; S)))where the 
onjun
tions are �nite, S is binary, and ea
h  ij is a L�1!(C) formula.As a �nal remark, we note that LSO�1!(C) is stri
tly more expressive thanL�1!(C) extended with tests for neighborhood isomorphisms.Proposition 4.7. Sd>0(L�1!(C) + fIkd j k > 0g) $ LSO�1!(C).Proof. Consider a signature � that 
onsists of three binary relations E1; E2,and T . We shall use the notation adom(Ei) for the set of elements of �-stru
turesthat o

ur in Ei-tuples, i = 1; 2. We now de�ne the following Boolean query Q onSTRUCT[�℄: Q(A) is true i� T is the total relation on A 6= ; (T = A � A), andE1- and E2-redu
ts of A are isomorphi
 as graphs. This is de�nable in LSO�1!(C).First note that if T is the total relation, then for every a 2 A, SA1 (a) = A. Thus,we de�ne Q by the 
onjun
tion of 8x8y T (x; y) and the senten
e9x9F v S1(x) 0BB� fun
tion(F )^ dom(D) = adom(E1)^ 
odom(D) = adom(E2)^ 8x; y; u; v F (x; u) ^ F (y; v)! (E1(x; y)$ E2(u; v))1CCAwhi
h asserts that T is total and that an isomorphism F exists (sin
e SA1 (a) = A,the se
ond-order quanti�
ation is over the entire universe). Here fun
tion(F ) is a�rst-order senten
e stating that F is a 1-1 fun
tion, dom(D) = adom(E1) is an FOsenten
e saying that F 's domain is adom(E1), and 
odom(D) = adom(E2) is anFO senten
e saying that F 's 
odomain is adom(E2).To prove that Q is not de�nable in Sd>0(L�1!(C) + fIkd j k > 0g), de�ne a 
lassC of nonempty �-stru
tures as follows. In a stru
ture A in C, T is interpreted asa total relation (that is, A2), A is the disjoint union of adom(E1) and adom(E2),and E1 and E2 are su

essor relations, possibly with loops on some nodes.We now assume that Q is de�nable by a senten
e � of Sd>0(L�1!(C) + fIkd jk > 0g) of rank m. Consider any o

urren
e of Ikd (~x; ~y) in �. Suppose we have astru
ture A from C. Sin
e SA1 (a) = A for all a 2 A, A j= Ikd (~a;~b), ~a;~b 2 Ak meansACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



Logi
s Capturing Lo
al Properties � 15that there exists an automorphism h : A ! A su
h that h(~a) = ~b. However, sin
eE1 and E2 are disjoint su

essor relations (perhaps with loops on some nodes), thestru
ture A is rigid, and thus h must be the identity. Hen
e, A j= Ikd (~a;~b) i� ~a = ~b.Using this, 
onstru
t a senten
e �0 of L�1!(C) of rank m by repla
ing ea
h Ikd (~x; ~y)in � with Vi(xi = yi). We thus showed that for any A in C, A j= � i� A j= �0.It remains to show that Q 
annot be expressed by an L�1!(C) senten
e of rankm on C. Constru
t two stru
tures A;B in the 
lass C. In both of them, the E1- andE2-su

essor relations have length 2 � 3m+3. In A, there are loops on the nodes inE1 and E2 at the same distan
e 3m+1 from the start node. In B, there is one loopon E1 at the distan
e 3m + 1 from the start, and one loop on E2 at the distan
e3m + 2 from the start. Hen
e, Q is true on A and false on B.Let A0 and B0 be the (E1; E2) redu
ts of A and B respe
tively. Then A0�3mB0,sin
e the nodes with loops are at the distan
e at least 3m + 1 from the start andend nodes of the su

essor relations. Hen
e, by [Hella et al. 1999a; Nurmonen1996℄, the dupli
ator wins the m-round bije
tive Ehrenfeu
t-Fra��ss�e game on A0and B0. This shows in turn that A �bijm B. Indeed, for ea
h round of the game,the dupli
ator just forgets the T -relation, and uses the strategy for A0 and B0to pi
k his bije
tion. We know that after ea
h round i, the points (a1; : : : ; ai)and (b1; : : : ; bi) played in A and B respe
tively de�ne a partial isomorphism withrespe
t to E1 and E2. Sin
e (al; ak) 2 T i� (bl; bk) 2 T for all l; k, it follows thatthey de�ne a partial isomorphism A ! B. We thus found two stru
tures A �bijm Bin C that disagree on Q, showing that on C, Q 
annot be de�ned by an L�1!(C)senten
e of rank m. Hen
e, by the above, Q 
annot be de�ned by a senten
e of �of Sd>0(L�1!(C) + fIkd j k > 0g). This 
ompletes the proof. 25. CHARACTERIZING GAIFMAN-LOCAL PROPERTIESWe now turn to Gaifman's notion of lo
ality, whi
h states that a query Q is lo
alwith lr(Q) � r if NAr (~a1) �= NAr (~a2) implies that ~a1 2 Q(A) i� ~a2 2 Q(A). Forstru
tures of bounded valen
e, this notion was 
hara
terized by �rst-order de�nitionby 
ases. An extended version of this notion 
aptures Gaifman-lo
ality in thegeneral 
ase.De�nition 5.1. An m-ary query, m > 0, on STRUCT[�℄ is given by a Hanf-lo
alde�nition by 
ases if there exists a �nite or 
ountable partition of STRUCT[�℄ into
lasses Ci, i 2 N, a number d � 0, and Hanf-lo
al queriesQi, i 2 N, with hlr(Qi) � d,su
h that for every i and every A 2 Ci, it is the 
ase that Q(A) = Qi(A).Theorem 5.2. A query is Gaifman-lo
al i� it is given by a Hanf-lo
al de�nitionby 
ases.Proof. Assume that Q is given by a Hanf-lo
al de�nition by 
ases. Let d bean upper bound on hlr(Qi). We 
laim that Q is Gaifman-lo
al and lr(Q) � 3d+ 1.Fix A, and assume A 2 Ci. Let ~a1 �A3d+1 ~a2. Then by Lemma 2.5 we obtain(A;~a1)�d(A;~a2), and Hanf-lo
ality of Qi implies ~a1 2 Qi(A) = Q(A) i� ~a2 2Qi(A) = Q(A).Conversely, let a Gaifman-lo
al Q be given, with lr(Q) = d. Let �1; �2 : : : bean enumeration of isomorphism types of �nite �-stru
tures. Let Ci be the 
lass ofstru
tures of type �i. We de�ne Qi as follows: ~b 2 Qi(B) i� there exists A of type�i and ~a 2 Am su
h that (B;~b)�d(A;~a) and ~a 2 Q(A).ACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



16 � Leonid LibkinFirst show that ea
h Qi is Hanf-lo
al, with hlr(Qi) � d. Let (B1;~b1)�d(B2;~b2).Assume ~b1 2 Qi(B1). Then for some A of type �i and ~a 2 Am su
h that(B1;~b1)�d(A;~a) we have ~a 2 Q(A). We thus have (B2;~b2)�d(A;~a), and hen
e~b2 2 Qi(B2). The 
onverse (that ~b2 2 Qi(B2) implies ~b1 2 Qi(B1)) is identi
al.To 
on
lude, we must show that for every A of type �i, Q(A) = Qi(A). Assume�rst that ~a 2 Qi(A). Then for some A0 �= A and ~a0 su
h that (A;~a)�d(A0;~a0) wehave ~a0 2 Q(A0). Let h be an isomorphism A ! A0. Sin
e the isomorphism type ofthe d-neighborhood of h(~a) in A0 is the same as that of the d-neighborhood of ~a0,it follows from Gaifman-lo
ality that h(~a) 2 Q(A0). Sin
e queries are 
losed underisomorphisms, applying h�1 we get ~a 2 Q(A). Conversely, assume ~a 2 Q(A). Sin
e(A;~a)�d(A;~a) we obtain ~a 2 Qi(A). This 
on
ludes the proof. 2Unlike in Fa
t 2.9, the number of 
ases in a Hanf-lo
al de�nition by 
ases 
an bein�nite. A natural question to ask is whether a �nite number of 
ases is suÆ
ient (inparti
ular, whether the statement of Fa
t 2.9 holds for arbitrary �nite stru
tures).We now show that the in�nite number of 
ases is unavoidable. In fa
t, we show astronger result.De�nition 5.3. For k > 0, let Lo
alk be the 
lass of queries given by a Hanf-lo
al de�nition by 
ases, where the number of 
ases is at most k. Let Lo
al� beSk>0 Lo
alk, and G Lo
al be the 
lass of all Gaifman-lo
al queries.Note that Lo
al1 is pre
isely the 
lass of Hanf-lo
al queries.Theorem 5.4. The hierar
hyLo
al1 � Lo
al2 � : : : � Lo
al� � G Lo
alis stri
t.Proof. We �rst exhibit a query Q 2 Lo
all+1 � Lo
all. Intuitively, a queryfrom Lo
all 
annot make l + 1 
hoi
es, and thus is di�erent from every query inLo
all+1 on some 
lass of the partition. More pre
isely, we de�ne a 
lass Cl+1i ,1 � i � l + 1, of graphs that 
onsists of graphs with the number of 
onne
ted
omponents being i� 1 modulo l + 1. De�ne Ql+1i as a query returning the set ofnodes that 
an be rea
hed by a path of length i�1 from a node of indegree 0. Thatis, if the input is a su

essor relation, this query returns the ith node. Clearly, Ql+1iis FO-de�nable and thus Hanf-lo
al. We now form a query Q that 
oin
ides withQl+1i on Cl+1i . (Note that Q is not FO, as the 
lasses Cl+1i are not FO-de�nable.)From Theorem 5.2, this is a Gaifman-lo
al query, and it belongs to Lo
all+1.Suppose Q is in Lo
all; that is, there is a partition of the 
lass of all �nite graphsinto l 
lasses C01; : : : ; C0l and Hanf-lo
al queries Q0i su
h that on C0i, Q 
oin
ides withQ0i, i = 1; : : : ; l. Let d = 1 + max hlr(Q0i). Let G0 be a su

essor relation on l + 1nodes. De�ne a graph H l+1i as the union of i 
y
les with (l+1)!(2d+1)i nodes ea
h,i = 1; : : : ; l + 1. As the total number of nodes in ea
h H l+1i is (l + 1)!(2d+ 1) andall d-neighborhoods are isomorphi
, we have H l+1i �dH l+1j for all i; j � l + 1. Letnow Gl+1i be the disjoint union of G0 and H l+1i , i = 1; : : : ; l+1. If x and y are thenodes in the G0 part of Gl+1i and Gl+1j respe
tively at the same distan
e from thestart node, then (Gl+1i ; x)�d(Gl+1j ; y).ACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.



Logi
s Capturing Lo
al Properties � 17By the pigeonhole prin
iple, there exists a 
lass C0k and i 6= j; i; j � l + 1 su
hthat Gl+1i ; Gl+1j 2 C0k. Let x; y be the nodes at distan
e i� 1 from the start node ofthe G0 part of Gl+1i and Gl+1j , resp. Let z be the node at distan
e j � 1 from thestart node of the G0 part of Gl+1j ; note that z 6= y. By de�nition of Q, it returnsx on Gl+1i and z on Gl+1j . However, (Gl+1i ; x)�d(Gl+1j ; y), and sin
e Q is given onC0k by Q0k of hlr(Q0k) � d, it must return y on Gl+1j if it returns x on Gl+1i . This
ontradi
tion shows that Q 62 Lo
all.To separate G Lo
al from Lo
al�, we exhibit a query Q of lr(Q) = 1 su
hthat Q 62 Lo
al�. Consider a signature 
onsisting of two binary relations E1 andE2. Let Q be as follows: if no element of the universe o

urs in an E1-tuple andan E2-tuple, if E1 is a linear ordering, and if its length is at least the number k of
onne
ted 
omponents of E2, then return the kth element in the linear order E1;otherwise return nothing. Clearly this Q is of lo
ality rank 1. In inputs on whi
hthe output of Q is not empty, two points with isomorphi
 1-neighborhoods mayonly o

ur in E2, and thus no su
h point belongs to the output of Q. We nextshow that Q 62 Lo
all for ea
h l. We 
onsider the example we used to separateLo
all+1 from Lo
all, and modify it in su
h a way that in a stru
ture Gi+1i , G0,whi
h will interpret E1 is a linear order of length l+1, and H l+1i , whi
h interpretsE2, is the same as before. It again follows that (Gl+1i ; x)�d(Gl+1j ; y), where x and yare in the same position in the linear order part G0 of Gl+1i and Gl+1j . We then usethe same pigeonhole argument as before to prove that Q 62 Lo
all. This 
on
ludesthe proof. 2Thus, similarly to the 
ase of Hanf-lo
al queries, the 
hara
terization for stru
-tures of bounded valen
e fails to extend to the 
lass of all �nite stru
tures.Corollary 5.5. There exist Gaifman-lo
al queries that 
annot be given by �rst-order de�nition by 
ases.6. CONCLUSIONNotions of lo
ality have been used in logi
 numerous times. The lo
al nature of �rst-order logi
 is parti
ularly transparent when one deals with fragments 
orrespondingto various modal logi
s; in general, Gaifman's and Hanf's theorems state that FO
an only express lo
al properties. These theorems were generalized, and, beingappli
able to �nite stru
tures, they found appli
ations in areas su
h as 
omplexityand databases.However, while more and more powerful logi
s were proved to be lo
al, there wasno 
lear understanding of what kind of me
hanisms 
an be added to logi
s whilepreserving lo
ality. Here we answered this question by providing logi
al 
hara
ter-izations of lo
al properties on �nite stru
tures. For Hanf-lo
ality, arbitrary 
ount-ing power and testing arbitrary properties of small neighborhoods 
an be added to�rst-order logi
 while retaining lo
ality; moreover, with a limited form of in�nitary
onne
tives, su
h a logi
 
aptures all Hanf-lo
al properties. For Gaifman-lo
ality,one 
an in addition permit de�nition by 
ases, and the number of 
ases be either�nite or in�nite. ACM Transa
tions on Computational Logi
, Vol. 2, No. 1, January 2001.
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