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2 � M. Arenas and L. LibkinDTDs (Doument Type De�nitions), and some other proposals exist or are underdevelopment [W3C 2001; 1998℄. What would it mean then for suh a shema to bewell or poorly designed? Clearly, this question has arisen in pratie: one an �ndompanies o�ering help in \good DTD design." This help, however, omes in formof onsulting servies rather than ommerially available software, as there are nolear guidelines for produing well designed XML.Our goal is to �nd priniples for good XML data design, and algorithms toprodue suh designs. We believe that it is important to do this researh now, as alot of data is being put on the web. One massive web databases are reated, it isvery hard to hange their organization; thus, there is a risk of having large amountsof widely aessible, but at the same time poorly organized legay data.Normalization is one of the most thoroughly researhed subjets in database the-ory (a survey [Beeri et al. 1978℄ produed many referenes more than 20 years ago),and annot be reonstruted in a single paper in its entirety. Here we follow thestandard treatment of one of the most ommon (if not the most ommon) nor-mal forms, BCNF. It eliminates redundanies and avoids update anomalies whihthey ause by deomposing into relational subshemas in whih every nontrivialfuntional dependeny de�nes a key. Just to retrae this development in the XMLontext, we need the following:a) Understanding of what a redundany and an update anomaly is.b) A de�nition and basi properties of funtional dependenies (so far, most pro-posals for XML onstraints onentrate on keys).) A de�nition of what \bad" funtional dependenies are (those that ause redun-danies and update anomalies).d) An algorithm for onverting an arbitrary DTD into one that does not admitsuh bad funtional dependenies.Starting with point a), how does one identify bad designs? We have looked at alarge number of DTDs and found two kinds of ommonly present design problems.They are illustrated in two examples below.Example 1.1. Consider the following DTD that desribes a part of a universitydatabase:<!DOCTYPE ourses [<!ELEMENT ourses (ourse*)><!ELEMENT ourse (title, taken_by)><!ATTLIST ourseno CDATA #REQUIRED><!ELEMENT title (#PCDATA)><!ELEMENT taken_by (student*)><!ELEMENT student (name, grade)><!ATTLIST studentsno CDATA #REQUIRED><!ELEMENT name (#PCDATA)><!ELEMENT grade (#PCDATA)>℄>ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 3For every ourse, we store its number (no), its title and the list of students takingthe ourse. For eah student taking a ourse, we store his/her number (sno), name,and the grade in the ourse.
�sno"st1" name"Deere" grade"A+" �sno"st2" name"Smith" grade"B-" �sno"st1" name"Deere" "A"grade �sno name grade"st3" "Smith" "B+"

oursestitle"AutomataTheory" title"Calulus I" taken bytaken by�no"s200" �no"mat100"student student studentstudent
ourse ourse

Fig. 1. A doument ontaining redundant information.An example of an XML doument that onforms to this DTD is shown in �gure1. This doument satis�es the following onstraint: any two student elementswith the same sno value must have the same name. This onstraint (whih looksvery muh like a funtional dependeny), auses the doument to store redundantinformation: for example, the name Deere for student st1 is stored twie. Andjust as in relational databases, suh redundanies an lead to update anomalies: forexample, updating the name of st1 for only one ourse results in an inonsistentdoument, and removing the student from a ourse may result in removing thatstudent from the doument altogether.In order to eliminate redundant information, we use a tehnique similar to therelational one, and split the information about the name and the grade. Sine wedeal with just one XML doument, we must do it by reating an extra elementtype, info, for student information, as shown below:<!DOCTYPE ourses [<!ELEMENT ourses (ourse*, info*)><!ELEMENT ourse (title,taken_by)><!ATTLIST ourseno CDATA #REQUIRED><!ELEMENT title (#PCDATA)><!ELEMENT taken_by (student*)><!ELEMENT student (grade)><!ATTLIST studentsno CDATA #REQUIRED><!ELEMENT grade (#PCDATA)><!ELEMENT info (number*,name)><!ELEMENT number EMPTY><!ATTLIST numbersno CDATA #REQUIRED>ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



4 � M. Arenas and L. Libkin<!ELEMENT name (#PCDATA)>℄>Eah info element has as hildren one name and a sequene of number elements,with sno as an attribute. Di�erent students an have the same name, and we groupall student numbers sno for eah name under the same info element. A restrutureddoument that onforms to this DTD is shown in �gure 2. Note that st2 and st3are put together beause both students have the same name. 2
�sno"st1" grade"A+" �sno"st1" grade"A" �sno"st3" grade"B+"�sno"st2" grade"B-"

info info�no"s200" taken bytitle"AutomataTheory" "Smith"title"Calulus I" taken by number number number name�no"mat100" "Deere"namestudent student studentstudent �sno"st1" �sno"st2" �sno"st3"
oursesourse ourse

Fig. 2. A well-designed doument.This example is reminisent of the anonial example of bad relational designaused by non-key funtional dependenies, and so is the modi�ation of the shema.Some examples of redundanies are more losely related to the hierarhial strutureof XML douments.Example 1.2. The DTD below is a part of the DBLP database [Ley 2003℄ forstoring data about onferenes.<!DOCTYPE db [<!ELEMENT db (onf*)><!ELEMENT onf (title, issue+)><!ELEMENT title (#PCDATA)><!ELEMENT issue (inproeedings+)><!ELEMENT inproeedings (author+, title)><!ATTLIST inproeedingskey ID #REQUIREDpages CDATA #REQUIREDyear CDATA #REQUIRED><!ELEMENT author (#PCDATA)>℄>Eah onferene has a title, and one or more issues (whih orrespond to yearswhen the onferene was held). Papers are stored in inproeedings elements; theyear of publiation is one of its attributes.Suh a doument satis�es the following onstraint: any two inproeedings hil-dren of the same issue must have the same value of year. This too is similarto relational funtional dependenies, but now we refer to the values (the yearACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 5attribute) as well as the struture (hildren of the same issue). Moreover, weonly talk about inproeedings nodes that are hildren of the same issue element.Thus, this funtional dependeny an be onsidered relative to eah issue.The funtional dependeny here leads to redundany: year is stored multipletimes for a onferene. The natural solution to the problem in this ase is not toreate a new element for storing the year, but rather restruture the doument andmake year an attribute of issue. That is, we hange attribute lists as:<!ATTLIST issueyear CDATA #REQUIRED><!ATTLIST inproeedingskey ID #REQUIREDpages CDATA #REQUIRED> 2Our goal is to show how to detet anomalies of those kinds, and to transformdouments in a lossless fashion into ones that do not su�er from those problems.The �rst step towards that goal is to introdue funtional dependenies (FDs)for XML douments. So far, most proposals for XML onstraints deal with keysand foreign keys [Buneman et al. 2001a; 2001b; W3C 2001℄. We introdue FDs forXML by onsidering a relational representation of douments and de�ning FDs onthem. The relational representation is somewhat similar to the total unnesting ofa nested relation [Suiu 1997; Van den Busshe 2001℄; however, we have to dealwith DTDs that may ontain arbitrary regular expressions, and be reursive. Ourrepresentation via tree tuples, introdued in Setion 3, may ontain null values. InSetion 4, XML FDs are introdued via FDs on inomplete relations [Atzeni andMorfuni 1984; Levene and Loizou 1998℄.The next step is the de�nition of a normal form that disallows redundany-ausing FDs. We give it in Setion 5, and show that our normal form, alled XNF,generalizes BCNF and a nested normal form NNF [Mok et al. 1996℄ when onlyfuntional dependenies are onsidered (see Setion 5.2 for a preise statement ofthis laim).The last step then is to �nd an algorithm that onverts any DTD, given a set ofFDs, into one in XNF. We do this in Setion 6. On both examples shown earlier,the algorithm produes exatly the desired reonstrution of the DTD. The mainalgorithm uses impliation of funtional dependenies (although there is a versionthat does not use impliation, but it may produe suboptimal results). In Setion 7,we show that for a large lass of DTDs, overing most DTDs that our in pratie,the impliation problem is tratable (in fat, quadrati). Finally, in Setion 8 wedesribe related work and some topis of future researh.One of the reasons for the suess of the normalization theory is its simpliity, atleast for the ommonly used normal forms suh as BCNF, 3NF and 4NF. Hene,the normalization theory for XML should not be extremely ompliated in order tobe appliable. In partiular, this was the reason we hose to use DTDs instead ofmore omplex formalisms [W3C 2001℄. This is in perfet analogy with the situationin the relational world: although SQL DDL is a rather ompliated language withnumerous features, BCNF deomposition uses a simple model of a set of attributesACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



6 � M. Arenas and L. Libkinand a set of funtional dependenies.2. NOTATIONSAssume that we have the following disjoint sets: El of element names, Att ofattribute names, Str of possible values of string-valued attributes, and Vert ofnode identi�ers. All attribute names start with the symbol �, and these are theonly ones starting with this symbol. We let S and ? (null) be reserved symbols notin any of those sets.De�nition 2.1. A DTD (Doument Type De�nition) is de�ned to be D =(E; A; P; R; r), where:|E � El is a �nite set of element types.|A � Att is a �nite set of attributes.|P is a mapping from E to element type de�nitions: Given � 2 E, P (�) = S orP (�) is a regular expression � de�ned as follows:� ::= � j � 0 j �j� j �; � j ��where � is the empty sequene, � 0 2 E, and \j", \;" and \�" denote union,onatenation, and the Kleene losure, respetively.|R is a mapping from E to the powerset of A. If �l 2 R(�), we say that �l isde�ned for � .|r 2 E and is alled the element type of the root. Without loss of generality, weassume that r does not our in P (�) for any � 2 E.The symbols � and S represent element type delarations EMPTY and #PCDATA, re-spetively.Given a DTD D = (E; A; P; R; r), a string w = w1 � � �wn is a path in D ifw1 = r, wi is in the alphabet of P (wi�1), for eah i 2 [2; n � 1℄, and wn is in thealphabet of P (wn�1) or wn = �l for some �l 2 R(wn�1). We de�ne length(w)as n and last(w) as wn. We let paths(D) stand for the set of all paths in D andEPaths(D) for the set of all paths that ends with an element type (rather than anattribute or S); that is, EPaths(D) = fp 2 paths(D) j last(p) 2 Eg. A DTD isalled reursive if paths(D) is in�nite.De�nition 2.2. An XML tree T is de�ned to be a tree (V; lab; ele; att; root),where|V � Vert is a �nite set of verties (nodes).|lab : V ! El .|ele : V ! Str [ V �.|att is a partial funtion V � Att ! Str . For eah v 2 V , the set f�l 2 Att jatt(v;�l) is de�nedg is required to be �nite.|root 2 V is alled the root of T .The parent-hild edge relation on V , f(v1; v2) j v2 ours in ele(v1)g, is required toform a rooted tree.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 7Notie that we do not allow mixed ontent in XML trees. The hildren of anelement node an be either zero or more element nodes or one string.Given an XML tree T , a string w1 � � �wn, with w1; : : : ; wn�1 2 El and wn 2El [Att [ fSg, is a path in T if there are verties v1 � � � vn�1 in V suh that:|v1 = root, vi+1 is a hild of vi (1 � i � n� 2), lab(vi) = wi (1 � i � n� 1).|If wn 2 El , then there is a hild vn of vn�1 suh that lab(vn) = wn. If wn = �l,with �l 2 Att , then att(vn�1; �l) is de�ned. If wn = S, then vn�1 has a hild inStr .We let paths(T ) stand for the set of paths in T . We next give a standard de�nitionof a tree onforming to a DTD (T j= D) as well as a weaker version of T beingompatible with D (T �D).De�nition 2.3. Given a DTD D = (E; A; P; R; r) and an XML tree T = (V;lab; ele; att; root), we say that T onforms to D (T j= D) if|lab is a mapping from V to E.|For eah v 2 V , if P (lab(v)) = S, then ele(v) = [s℄, where s 2 Str . Otherwise,ele(v) = [v1; : : : ; vn℄, and the string lab(v1) � � � lab(vn) must be in the regularlanguage de�ned by P (lab(v)).|att is a partial funtion from V �A to Str suh that for any v 2 V and �l 2 A,att(v; �l) is de�ned i� �l 2 R(lab(v)).|lab(root) = r.We say that T is ompatible with D (written T �D) i� paths(T ) � paths(D).Clearly, T j= D implies T is ompatible with D.3. TREE TUPLESTo extend the notions of funtional dependenies to the XML setting, we representXML trees as sets of tuples. While various mappings from XML to the relationalmodel have been proposed [Floresu and Kossmann 1999; Shanmugasundaram et al.1999℄, the mapping that we use is of a di�erent nature, as our goal is not to �nda way of storing douments eÆiently, but rather �nd a orrespondene betweendouments and relations that lends itself to a natural de�nition of funtional de-pendeny.Various languages proposed for expressing XML integrity onstraints suh askeys, [Buneman et al. 2001a; 2001b; W3C 2001℄, treat XML trees as unordered (forthe purpose of de�ning the semantis of onstraints): that is, the order of hildrenof any given node is irrelevant as far as satisfation of onstraints is onerned. InXML trees, on the other hand, hildren of eah node are ordered. Sine the notionof funtional dependeny we propose also does not use the ordering in the tree, we�rst de�ne a notion of subsumption that disregard this ordering.Given two XML trees T1 = (V1; lab1; ele1; att1; root1) and T2 = (V2; lab2; ele2;att2; root2), we say that T1 is subsumed by T2, written as T1 � T2 if|V1 � V2.|root1 = root2. ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



8 � M. Arenas and L. Libkin|lab2�V1 = lab1.|att2�V1�Att = att1.|For all v 2 V1, ele1(v) is a sublist of a permutation of ele2(v).This relation is a pre-order, whih gives rise to an equivalene relation: T1 � T2 i�T1 � T2 and T2 � T1. That is, T1 � T2 i� T1 and T2 are equal as unordered trees.We de�ne [T ℄ to be the �-equivalene lass of T . We write [T ℄ j= D if T1 j= D forsome T1 2 [T ℄. It is easy to see that for any T1 � T2, paths(T1) = paths(T2); heneT1 �D i� T2 �D. We shall also write T1 � T2 when T1 � T2 and T2 6� T1.In the following de�nition we extend the notion of tuple for relational databasesto the ase of XML. In a relational database, a tuple is a funtion that assigns toeah attribute a value from the orresponding domain. In our setting, a tree tuple tin a DTD D is a funtion that assigns to eah path in D a value in Vert [Str [f?gin suh a way that t represents a �nite tree with paths from D ontaining at mostone ourrene of eah path. In this setion, we show that an XML tree an berepresented as a set of tree tuples.De�nition 3.1 (Tree tuples). Given a DTD D = (E; A; P; R; r), a tree tuple tin D is a funtion from paths(D) to Vert [ Str [ f?g suh that:|For p2EPaths(D), t(p)2Vert [ f?g, and t(r) 6=?.|For p 2 paths(D)� EPaths(D), t(p) 2 Str [ f?g.|If t(p1) = t(p2) and t(p1) 2 Vert , then p1 = p2.|If t(p1)=? and p1 is a pre�x of p2, then t(p2)=?.|fp 2 paths(D) j t(p) 6= ?g is �nite.T (D) is de�ned to be the set of all tree tuples in D. For a tree tuple t and a pathp, we write t:p for t(p).Example 3.2. Suppose that D is the DTD shown in example 1.1. Then a treetuple in D assigns values to eah path in paths(D):t(ourses) = v0t(ourses :ourse) = v1t(ourses :ourse:�no) = s200t(ourses :ourse:title) = v2t(ourses :ourse:title:S) = Automata Theoryt(ourses :ourse:taken by) = v3t(ourses :ourse:taken by :student) = v4t(ourses :ourse:taken by :student :�sno) = st1t(ourses :ourse:taken by :student :name) = v5t(ourses :ourse:taken by :student :name:S) = Deeret(ourses :ourse:taken by :student :grade) = v6t(ourses :ourse:taken by :student :grade:S) = A+ 2We intend to onsider tree tuples in XML trees onforming to a DTD. The ability tomap a path to null (?) allow one in priniple to onsider tuples with paths that donot reah the leaves of a give tree, although our intention is to onsider only pathsACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 9that do reah the leaves. However, nulls are still needed in tree tuples beause ofthe disjuntion in DTDs. For example, let D = (E; A; P; R; r), where E = fr; a; bg,A = ;, P (r) = (ajb), P (a) = � and P (b) = �. Then paths(D) = fr; r:a; r:bg but notree tuple oming from an XML tree onforming to D an assign non-null valuesto both r:a and r:b.If D is a reursive DTD, then paths(D) is in�nite; however, only a �nite numberof values in a tree tuple are di�erent from ?. For eah tree tuple t, its non-nullvalues give rise to an XML tree as follows.De�nition 3.3 (treeD). Given a DTD D = (E; A; P; R; r) and a tree tuple t 2T (D), treeD(t) is de�ned to be an XML tree (V; lab; ele; att; root), where root = t:rand|V = fv 2 Vert j 9p 2 paths(D) suh that v = t:pg.|If v = t:p and v 2 V , then lab(v) = last(p).|If v = t:p and v 2 V , then ele(v) is de�ned to be the list ontaining ft:p0 j t:p0 6=? and p0 = p:�; � 2 E, or p0 = p:Sg, ordered lexiographially.|If v = t:p, �l 2 A and t:p:�l 6= ?, then att(v; �l) = t:p:�l.We note that in this de�nition the lexiographi order is arbitrary, and it is hosensimply beause an XML tree must be ordered.Example 3.4. Let D be the DTD from example 1.1 and t the tree tuple fromexample 3.2. Then, t gives rise to the following XML tree:v0 v3s200 v4Automata Theory v5 v6st1 Deere A+
v2v1

2Notie that the tree in the example onforms to the DTD from exam-ple 1.1. In general, this need not be the ase. For instane, if therule <!ELEMENT taken_by (student*)> in the DTD shown in example 1.1 ishanged by a rule saying that every ourse must have at least two students<!ELEMENT taken_by (student, student+)>, then the tree shown in example 3.4does not onform to the DTD. However, treeD(t) would always be ompatible withD, as easily follows from the de�nition:Proposition 3.5. If t 2 T (D), then treeD(t)�D.We would like to desribe XML trees in terms of the tuples they ontain. For this,we need to selet tuples ontaining the maximal amount of information. This is doneACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



10 � M. Arenas and L. Libkinvia the usual notion of ordering on tuples (and relations) with nulls, [Buneman et al.1991; Grahne 1991; Gunter 1992℄. If we have two tree tuples t1; t2, we write t1 v t2if whenever t1:p is de�ned, then so is t2:p, and t1:p 6= ? implies t1:p = t2:p. As usual,t1 � t2 means t1 v t2 and t1 6= t2. Given two sets of tree tuples, X and Y , we writeX v[ Y if 8t1 2 X9t2 2 Y t1 v t2.De�nition 3.6 (tuplesD). Given a DTD D and an XML tree T suh that T �D,tuplesD(T ) is de�ned to be the set of maximal, with respet to v, tree tuples t suhthat treeD(t) is subsumed by T ; that is:maxvft 2 T (D) j treeD(t) � Tg:Observe that T1 � T2 implies tuplesD(T1) = tuplesD(T2). Hene, tuplesD appliesto equivalene lasses: tuplesD([T ℄) = tuplesD(T ). The following proposition listssome simple properties of tuplesD(�).Proposition 3.7. If T �D, then tuplesD(T ) is a �nite subset of T (D). Fur-thermore, tuplesD(�) is monotone: T1 � T2 implies tuplesD(T1) v[ tuplesD(T2).Proof. We prove only monotoniity. Suppose that T1 � T2 and t1 2tuplesD(T1). We have to prove that there exists t2 2 tuplesD(T2) suh that t1 v t2.If t1 2 tuplesD(T2), this is obvious, so assume that t1 62 tuplesD(T2). Giventhat t1 2 tuplesD(T1), treeD(t1) � T1, and, therefore, treeD(t1) � T2. Hene,by de�nition of tuplesD(�), there exists t2 2 tuplesD(T2) suh that t1 � t2, sinet1 62 tuplesD(T2).Example 3.8. In example 1.1 we saw a DTD D and a tree T onforming to D.In example 3.2 we saw one tree tuple t for that tree, with identi�ers assigned tosome of the element nodes of T . If we assign identi�ers to the rest of the nodes, wean ompute the set tuplesD(T ) (the attributes are sorted as in example 3.2):f (v0; v1; s200; v2; Automata Theory; v3; v4; st1; v5; Deere; v6; A+);(v0; v1; s200; v2; Automata Theory; v3; v7; st2; v8; Smith; v9; B-);(v0; v10; mat100; v11; Calulus I; v12; v13; st1; v14; Deere; v15; A);(v0; v10; mat100; v11; Calulus I; v12; v16; st3; v17; Smith; v18; B+) g 2Finally, we de�ne the trees represented by a set of tuples X as the minimal, withrespet to �, trees ontaining all tuples in X .De�nition 3.9 (treesD). Given a DTD D and a set of tree tuples X � T (D),treesD(X) is de�ned to be:min�fT j T �D and 8t 2 X; treeD(t) � Tg:Notie that if T 2 treesD(X) and T 0 � T , then T 0 is in treesD(X). The followingshows that every XML doument an be represented as a set of tree tuples, if weonsider it as an unordered tree. That is, a tree T an be reonstruted fromtuplesD(T ), up to equivalene �.Theorem 3.10. Given a DTD D and an XML tree T , if T � D, thentreesD(tuplesD([T ℄)) = [T ℄.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 11Proof. Every XML tree is �nite, and, therefore, tuplesD([T ℄) = ft1; : : : ; tng, forsome n. Suppose that T 62 treesD(ft1; : : : ; tng). Given that treeD(ti) � T , for eahi 2 [1; n℄, there is an XML tree T 0 suh that T 0 � T and treeD(ti) � T 0, for eahi 2 [1; n℄. If T 0 � T , there is at least one node, string or attribute value ontained inT whih is not ontained in T 0. This value must be ontained in some tree tuple tj(j 2 [1; n℄), whih ontradits treeD(tj) � T 0. Therefore, T 2 treesD(tuplesD([T ℄)).Let T 0 2 treesD(tuplesD([T ℄)). For eah i 2 [1; n℄, treeD(ti) � T 0. Thus, giventhat tuplesD(T ) = ft1; : : : ; tng, we onlude that T � T 0, and, therefore, by de�ni-tion of treesD , T 0 � T .Example 3.11. It ould be the ase that for some set of tree tuples X there isno an XML tree T suh that for every t 2 X , tree(t) � T . For example, let D be aDTD D = (E; A; P; R; r), where E = fr; a; bg, A = ;, P (r) = (ajb), P (a) = � andP (b) = �. Let t1; t2 2 T (D) be de�ned ast1:r = v0 t2:r = v2t1:r:a = v1 t2:r:a = ?t1:r:b = ? t2:r:b = v3Sine t1:r 6= t2:r, there is no an XML tree T suh that treeD(t1) � T andtreeD(t2) � T . 2We say that X � T (D) is D-ompatible if there is an XML tree T suh that T �Dand X � tuplesD(T ). For a D-ompatible set of tree tuples X there is always anXML tree T suh that for every t 2 X , treeD(t) � T . Moreover,Proposition 3.12. If X � T (D) is D-ompatible, then (a) There is an XMLtree T suh that T �D and treesD(X) = [T ℄, and (b) X v[ tuplesD(treesD(X)).Proof. (a) Assume that D = (E; A; P; R; r). Sine X is D-ompatible, thereexists an XML tree T 0 = (V 0; lab0; ele0; att0; root0) suh that T 0 � D and X �tuplesD(T 0). We use T 0 to de�ne an XML tree T = (V; lab; ele; att; root) suh thattreesD(X) = [T ℄.For eah v 2 V 0, if there is t 2 X and p 2 paths(D) suh that t:p = v, thenv is inluded in V . Furthermore, for eah v 2 V , lab(v) is de�ned as lab0(v),ele(v) = [s1; : : : ; sn℄, where eah si = t0:p:S or si = t0:p:� for some t0 2 X and� 2 E suh that t0:p = v. For eah �l 2 A suh that t0:p:�l 6= ? and t0:p = v forsome t0 2 X , att(v;�l) is de�ned as t0:p:�l. Finally, root is de�ned as root0. It iseasy to see that treesD(X) = [T ℄.(b) Let t 2 X and T be an XML tree suh that treesD(X) = [T ℄. If t 2 tuplesD([T ℄),then the property holds trivially. Suppose that t 62 tuplesD([T ℄). Then, given thattreeD(t) � T , there is t0 2 tuplesD([T ℄) suh that t � t0. In either ase, we onludethat there is t0 2 tuplesD(treesD(X)) suh that t v t0.The example below shows that it ould be the ase that tuplesD(treesD(X)) prop-erly dominatesX , that is, X v[ tuplesD(treesD(X)) and tuplesD(treesD(X)) 6v[ X .In partiular, this example shows that the inverse of Theorem 3.10 does not hold,that is, tuplesD(treesD(X)) is not neessarily equal to X for every set of tree tuplesX , even if this set is D-ompatible. Let D be as in example 3.11 and t1; t2 2 T (D)be de�ned as ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



12 � M. Arenas and L. Libkint1:r = v0 t2:r = v0t1:r:a = v1 t2:r:a = ?t1:r:b = ? t2:r:b = v2Let t3 be a tree tuple de�ned as t3:r = v0, t3:r:a = v1 and t3:r:b = v2. Then,tuplesD(treesD(ft1; t2g)) = ft3g sine t1 � t3 and t2 � t3, and, therefore, ft1; t2g v[tuplesD(treesD(ft1; t2g)) and tuplesD(treesD(ft1; t2g)) 6v[ ft1; t2g.From Theorem 3.10 and Proposition 3.12, it is straightforward to prove the fol-lowing Corollary.Corollary 3.13. For a D-ompatible set of tree tuples X,treesD(tuplesD(treesD(X))) = treesD(X).Theorem 3.10 and Proposition 3.12 are summarized in the diagram presented inthe following �gure. In this diagram, X is a D-ompatible set of tree tuples. Thearrow � - stands for the v[ ordering.X treesD - [T ℄X 0tuplesD ? treesD6� -4. FUNCTIONAL DEPENDENCIESWe de�ne funtional dependenies for XML by using tree tuples. For a DTD D,a funtional dependeny (FD) over D is an expression of the form S1 ! S2 whereS1; S2 are �nite non-empty subsets of paths(D). The set of all FDs over D isdenoted by FD(D).For S � paths(D), and t; t0 2 T (D), t:S = t0:S means t:p = t0:p for all p 2 S.Furthermore, t:S 6= ? means t:p 6= ? for all p 2 S. If S1 ! S2 2 FD(D) and Tis an XML tree suh that T �D and S1 [ S2 � paths(T ), we say that T satis�esS1 ! S2 (written T j= S1 ! S2) if for every t1; t2 2 tuplesD(T ), t1:S1 = t2:S1and t1:S1 6= ? imply t1:S2 = t2:S2. We observe that if tree tuples t1; t2 satisfyan FD S1 ! S2, then for every path p 2 S2, t1:p and t2:p are either both null orboth non-null. Moreover, if for every pair of tree tuples t1, t2 in an XML tree T ,t1:S1 = t2:S1 implies they have a null value on some p 2 S1, then the FD is triviallysatis�ed by T .The previous de�nition extends to equivalene lasses, sine for any FD ', andT � T 0, T j= ' i� T 0 j= '. We write T j= �, for � � FD(D), if T j= ' for eah' 2 �, and we write T j= (D;�), if T j= D and T j= �.Example 4.1. Referring bak to example 1.1, we have the following FDs. no isa key of ourse: ourses :ourse:�no ! ourses :ourse: (FD1)Another FD says that two distint student subelements of the same ourse annotACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 13have the same sno:fourses :ourse; ourses :ourse:taken by :student :�snog !ourses :ourse:taken by :student : (FD2)Finally, to say that two student elements with the same sno value must have thesame name, we useourses :ourse:taken by :student :�sno !ourses :ourse:taken by :student :name:S: (FD3)2We o�er a few remarks on our de�nition of FDs. First, using the tree tuples rep-resentation, it is easy to ombine node and value equality: the former orrespondsto equality between verties and the latter to equality between strings. Moreover,keys naturally appear as a sublass of FDs, and relative onstraints an also beenoded. Note that by de�ning the semantis of FD(D) on T (D), we essentiallyde�ne satisfation of FDs on relations with null values, and our semantis is thestandard semantis used in [Atzeni and Morfuni 1984; Levene and Loizou 1998℄.Given a DTD D, a set � � FD(D) and ' 2 FD(D), we say that (D;�) implies', written (D;�) ` ', if for any tree T with T j= D and T j= �, it is the asethat T j= '. The set of all FDs implied by (D;�) will be denoted by (D;�)+.Furthermore, an FD ' is trivial if (D; ;) ` '. In relational databases, the only trivialFDs are X ! Y , with Y � X . Here, DTD fores some more interesting trivialFDs. For instane, for eah p 2 EPaths(D) and p0 a pre�x of p, (D; ;) ` p ! p0,and for every p; p:�l 2 paths(D), (D; ;) ` p ! p:�l. As a matter of fat, trivialfuntional dependenies in XML douments an be muh more ompliated thanin the relational ase, as we show in the following example.Example 4.2. Let D = (E; A; P; R; r) be a DTD. Assume that a, b and  areelement types in D and P (r) = (ajbj). Then, for every p 2 paths(D), fr:a; r:bg ! pis a trivial FD sine for every XML tree T onforming to D and every tree tuple tin T , t:r:a = ? or t:r:b = ?. 25. XNF: AN XML NORMAL FORMWith the de�nitions of the previous setion, we are ready to present the normalform that generalizes BCNF for XML douments.De�nition 5.1. Given a DTD D and � � FD(D), (D;�) is in XML normalform (XNF) i� for every nontrivial FD ' 2 (D;�)+ of the form S ! p:�l orS ! p:S, it is the ase that S ! p is in (D;�)+.The intuition is as follows. Suppose that S ! p:�l is in (D;�)+. If T is an XMLtree onforming to D and satisfying �, then in T for every set of values of theelements in S, we an �nd only one value of p:�l. Thus, for every set of values ofS we need to store the value of p:�l only one; in other words, S ! p must beimplied by (D;�). ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



14 � M. Arenas and L. LibkinIn this de�nition, we impose the ondition that ' is a nontrivial FD. Indeed, thetrivial FD p:�l! p:�l is always in (D;�)+, but often p:�l ! p 62 (D;�)+, whihdoes not neessarily represent a bad design.To show how XNF distinguishes good XML design from bad design, we revisitthe examples from the introdution, and prove that XNF generalizes BCNF andNNF, a normal form for nested relations [Mok et al. 1996; �Ozsoyoglu and Yuan1987℄, when only funtional dependenies are provided.Example 5.2. Consider the DTD from example 1.1 whose FDs are (FD1), (FD2),(FD3) shown in the previous setion. (FD3) assoiates a unique name with eahstudent number, whih is therefore redundant. The design is not in XNF, sine itontains (FD3) but does not imply the funtional dependenyourses :ourse:taken by :student :�sno ! ourses :ourse:taken by :student :name:To remedy this, we gave a revised DTD in example 1.1. The idea was to reatea new element info for storing information about students. That design satis�esFDs (FD1), (FD2) as well asourses :info:number :�sno ! ourses :info;and an be easily veri�ed to be in XNF. 2Example 5.3. Suppose that D is the DBLP DTD from example 1.2. Among theset � of FDs satis�ed by the douments are:db:onf :title:S! db:onf (FD4)db:onf :issue ! db:onf :issue:inproeedings :�year (FD5)fdb:onf :issue ; db:onf :issue:inproeedings :title:Sg !db:onf :issue:inproeedings (FD6)db:onf :issue:inproeedings :�key ! db:onf :issue:inproeedings (FD7)Constraint (FD4) enfores that two distint onferenes have distint titles. Giventhat an issue of a onferene represents a partiular year of the onferene, on-straint (FD5) enfores that two artiles of the same issue must have the same valuein the attribute year. Constraint (FD6) enfores that for a given issue of a on-ferene, two distint artiles must have di�erent titles. Finally, onstraint (FD7)enfores that key is an identi�er for eah artile in the database.By (FD5) for eah issue of a onferene, its year is stored in every artile in thatissue and, thus, DBLP douments an store redundant information. (D;�) is notin XNF, sine db:onf :issue ! db:onf :issue:inproeedingsis not in (D;�)+.The solution we proposed in the introdution was to make year an attributeof issue. (FD5) is not valid in the revised spei�ation, whih an be easilyveri�ed to be in XNF. Note that we do not replae (FD5) by db.onf.issue !db.onf.issue.�year, sine it is a trivial FD and thus is implied by the new DTDalone. 2ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 155.1 BCNF and XNFRelational databases an be easily mapped into XML douments. Given a relationG(A1; : : : ; An) and a set of FDs FD over G, we translate the shema (G;FD) intoan XML representation, that is, a DTD and a set of XML FDs (DG;�FD ). TheDTD DG = (E; A; P; R; db) is de�ned as follows:|E = fdb;Gg.|A = f�A1; : : : ;�Ang.|P (db) = G� and P (G) = �.|R(db) = ;, R(G) = f�A1; : : : ;�Ang.Without loss of generality, assume that all FDs are of the form X ! A, where A isan attribute. Then �FD over DG is de�ned as follows.|For eah FD Ai1 � � �Aim ! Ai 2 FD , fdb:G:�Ai1 ; : : : ; db:G:�Aimg ! db:G:�Aiis in �FD .|fdb:G:�A1; : : : ; db:G:�Ang ! db:G is in �FD .The latter is inluded to avoid dupliates.Example 5.4. A shema G(A;B;C) an be oded by the following DTD:<!ELEMENT db (G*)><!ELEMENT G EMPTY><!ATTLIST GA CDATA #REQUIREDB CDATA #REQUIREDC CDATA #REQUIRED>In this shema, an FD A! B is translated into db:G:�A! db:G:�B. 2The following proposition shows that BCNF and XNF are equivalent when rela-tional databases are appropriately oded as XML douments.Proposition 5.5. Given a relation shema G(A1; : : : ; An) and a set of fun-tional dependenies FD over G, (G;FD) is in BCNF i� (DG;�FD ) is in XNF.Proof. This follows from Proposition 5.6 (to be proved in the next setion)sine every relation shema is trivially onsistent (see next setion) and NNF-FDoinides with BCNF when only funtional dependenies are provided [Mok et al.1996℄.5.2 NNF and XNFA nested relation shema is either a set of attributes X , or X(G1)� : : : (Gn)�, whereGi's are nested relation shemas. An example of a nested relation for the shemaH1 = Country(H2)�, H2 = State(H3)�, H3 = City is shown in �gure 3 (a).Nested shemas are naturally mapped into DTDs, as they are de�ned by meansof regular expressions. For a nested shema G = X(G1)� : : : (Gn)�, we introduean element type G with P (G) = G�1; : : : ; G�n and R(G) = f�A1; : : : ;�Amg, whereX = fA1; : : : ; Amg; at the top level we have a new element type db with P (db) = G�and R(db) = ;. In our example the DTD is:ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



16 � M. Arenas and L. LibkinCountryUnited States StateTexas CityHoustonDallasStateOhio CityColumbusCleveland(a) Nested relation H1
Country State CityUnited States Texas HoustonUnited States Texas DallasUnited States Ohio ColumbusUnited States Ohio Cleveland
(b) Complete unnesting of H1Fig. 3. Nested relation and its unnesting.<!DOCTYPE db [<!ELEMENT db (H1*)><!ELEMENT H1 (H2*)><!ATTLIST H1 Country CDATA #REQUIRED><!ELEMENT H2 (H3*)><!ATTLIST H2 State CDATA #REQUIRED><!ELEMENT H3 EMPTY><!ATTLIST H3 City CDATA #REQUIRED>℄>The de�nition of FDs for nested relations uses the notion of omplete unnesting.The omplete unnesting of a nested relation from our example is shown in �gure 3(b); in general, this notion is easily de�ned by indution. In our example, we havea valid FD State ! Country , while the FD State ! City does not hold.Normalization is usually onsidered for nested relations in the partition normalform (PNF) [Abiteboul et al. 1995; Mok et al. 1996; �Ozsoyoglu and Yuan 1987℄.A nested relation r over X(G1)� : : : (Gn)� is in PNF if for any two tuples t1, t2in r: (1) if t1:X = t2:X , then the nested relation t1:Gi and t2:Gi are equal, forevery i 2 [1; n℄, and (2) eah nested relation t1:Gi is in PNF, for every i 2 [1; n℄.Note that PNF an be enfored by using FDs on the XML representation. In ourexample this is done as follows: db:H1:�Country ! db:H1fdb:H1; db:H1:H2:�Stateg ! db:H1:H2fdb:H1:H2; db:H1:H2:H3:�Cityg ! db:H1:H2:H3It turns out that one an de�ne FDs over nested relations by using the XMLrepresentation. Let U be a set of attributes, G1 a nested relation shema overU and FD a set of funtional dependenies over G1. Assume that G1 inludesnested relation shemas G2, : : :, Gn and a set of attributes U 0 � U . For eah Gi(i 2 [1; n℄), path(Gi) is indutively de�ned as follows. If Gi = G1, then path(Gi) =ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 17db:G1. Otherwise, if Gi is a nested attribute of Gj , then path(Gi) = path(Gj):Gi.Furthermore, if A 2 U 0 is an atomi attribute of Gi, then path(A) = path(Gi):�A.For instane, for the shema of the nested relation in �gure 3, path(H2) = db:H1:H2and path(City) = db:H1:H2:H3:�City .We now de�ne �FD as follows:|For eah FD Ai1 � � �Aim ! Ai 2 FD , fpath(Ai1); : : : ; path(Aim)g ! path(Ai)is in �FD .|For eah i 2 [1; n℄, if Aj1 ; : : : ; Ajm is the set of atomi attributes of Gi and Gi isa nested attribute of Gj , fpath(Gj); path(Aj1 ); : : : ; path(Ajm )g ! path(Gi) isin �FD .Furthermore, if Bj1 ; : : : ; Bjl is the set of atomi attributes of G1, thenfpath(Bj1); : : : ; path(Bjl)g ! path(G1) is in �FD .Note that the last rule imposes the partition normal form. The set �PNF ontainsall the funtional dependenies de�ned by this rule.Normal forms for nested relations were proposed in [Mok et al. 1996; �Ozsoyogluand Yuan 1987℄. These normal forms were de�ned for nested shemas ontainingfuntional and multivalued dependenies. Here we onsider a normal form NNF-FD, whih is the nested normal form NNF introdued in [Mok et al. 1996℄ restritedto FDs only. To de�ne this normal form we need to introdue some terminology.CountryTitle StateDiretor Theater CitySnak(a) (b)Fig. 4. Two shema trees.Every nested relation shema G an be represented as a tree st(G), alled theshema tree of G. Formally, if G is a at shema ontaining a set of attributes X ,then st(G) is a single node tree whose root is the set of attributes X . Otherwise, Gis of the form X(G1)� : : : (Gn)� and st(G) is a tree de�ned as follows. The root ofst(G) is X and the hildren of X are the roots of st(G1), : : :, st(Gn). For example,the shema trees of nested relation shemas G1 = Title(G2)�(G3)�, G2 = Diretor ,G3 = Theater (G4)�, G4 = Snak and H1 = Country(H2)�, H2 = State(H3)�,H3 = City are shown in �gures 4 (a) and 4 (b), respetively. Given a nestedrelation shemaG inluding a set of attributes U , for eah nodeX of st(G) we de�neanestor(X) as the union of attributes in all anestors of X in st(G), inluding X .For instane, anestor(State) = fCountry ; Stateg in the shema tree shown in �gure4 (b). Similarly, for every A 2 U , we de�ne anestor(A) as the set of attributesanestor(XA), where XA is the one of st(G) ontaining the attribute A, and forevery node X of st(G) we de�ne desendant(X) as the union of attributes in alldesendants of X in st(G), inluding X .ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



18 � M. Arenas and L. LibkinData dependenies for nested relations are de�ned by using the notion of ompleteunnesting. Thus, every nested shema has some multivalued dependenies. Forexample, the nested relation shema G1 = Title(G2)�(G3)�, G2 = Diretor , G3 =Theater (G4)�, G4 = Snak has the following set of multivalued dependenies:fTitle !! Diretor ; Title !! fTheater ;Snakg; fTitle;Theaterg !! Snakg;sine for every nested relation I of G1, the omplete unnesting of I satis�es thesedependenies. Formally, the set of multivalued dependenies embedded in a nestedrelation shema G is de�ned to be:MVD(G) = fanestor(X)!! desendant(Y ) j (X;Y ) is an edge in st(G)g:Given a nested relation shema G, the set MVD(G) is used to de�ne NNF-FD.More preisely, if FD is a set of FDs over G, then (G;FD) is in NNF-FD [Moket al. 1996℄ if (1) FD ` MVD(G), that is, every multivalued dependeny embeddedin G is implied by FD , and (2) for eah nontrivial FD X ! A 2 (G;FD)+,X ! anestor(A) is also in (G;FD)+. As before, (G;FD)+ stands for the set ofall FDs implied by (G;FD).To establish the relationship between NNF-FD and XNF, we have to introduethe notion of onsistent nested shemas. Given a nested relation shema G and aset of FDs FD over G, (G;FD) is onsistent [Mok et al. 1996℄ if FD ` MVD(G).It was shown in [Mok et al. 1996℄ that for onsistent nested shemas, NNF pre-isely haraterize redundany in nested relations. The result below shows that foronsistent nested shemas, NNF-FD and XNF oinide.Proposition 5.6. Let G be a nested relation shema and FD a set of funtionaldependenies over G suh that (G;FD) is onsistent. Then (G;FD) is in NNF-FDi� (DG;�FD ) is in XNF.Proof. First we need to prove the following laim.Claim 5.7. Ai1 � � � Aim ! Ai 2 (G;FD)+ if and only if fpath(Ai1 ); : : : ;path(Aim)g ! path(Ai) 2 (DG;�FD )+.The proof of this laim follows from the following fat. For eah instane I ofG, there is an XML tree TI onforming to DG suh that I j= FD i� TI j= �FD .Moreover, for eah XML tree T onforming to DG and satisfying �PNF , there isan instane IT of G suh that T j= �FD i� IT j= FD .Now we prove the proposition.(() Suppose that (DG;�FD ) is in XNF. We prove that (G;FD) is in NNF-FD.Given that (G;FD) is onsistent, we only need to onsider the seond onditionin the de�nition of NNF-FD. Let Ai1 � � � Aim ! Ai be a nontrivial funtionaldependeny in (G;FD)+. We have to prove that Ai1 ; : : : ; Aim ! anestor(Ai)is in (G;FD)+. By Claim 5.7, we know that fpath(Ai1 ); : : : ; path(Aim )g !path(Ai) is a nontrivial funtional dependeny in (DG;�FD )+. Sine (DG;�FD )is in XNF, fpath(Ai1 ); : : : ; path(Aim)g ! path(Gj) is in (DG;�FD)+, where Gjis a nested relation shema ontained in G suh that Ai is an atomi attribute ofGj . Thus, given that path(Gj) ! path(A) is a trivial funtional dependeny inDG, for eah A 2 anestor(Ai), we onlude that fpath(Ai1); : : : ; path(Aim)g !ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 19path(A) is in (DG;�FD )+ for eah A 2 anestor(Ai). By Claim 5.7, Ai1 � � � Aim! anestor(Ai) is in (G;FD)+.()) Suppose that (G;FD) is in NNF-FD. We will prove that (DG;�FD ) isin XNF. Let R be a nested relation shema ontained in G and A an atomiattribute of R. Suppose that there is S � paths(DG) suh that S ! path(A)is a nontrivial funtional dependeny in (DG;�FD )+. We have to prove thatS ! path(R) 2 (DG;�FD )+. Let S1 and S2 be set of paths suh that S = S1 [ S2,S1 � EPaths(DG) and S2 \ EPaths(DG) = ;. Let S01 = fpath(A0) j there ispath(R0) 2 S1 suh that A0 is an atomi attribute of some nested relation shemamentioned in path(R0)g. Given that �PNF � �FD , S01 ! S1 2 (DG;�FD )+.Thus, S01 [ S2 ! path(A) 2 (DG;�FD )+. Assume that S01 [ S2 = fpath(Ai1);: : : ; path(Aim )g. By Claim 5.7, Ai1 � � � Aim ! A is a nontrivial funtionaldependeny in (G;FD)+. Thus, given that (G;FD) is in NNF-FD, we onludethat Ai1 � � � Aim ! anestor(A) is in (G;FD)+. Therefore, by Claim 5.7,S01 [ S2 ! path(B) is in (DG;�FD)+, for eah B 2 anestor(A). But fpath(B) j B2 anestor(A)g ! path(R) is in (DG;�FD )+, sine �PNF � �FD . Thus,S01 [ S2 ! path(R) 2 (DG;�FD)+, and given that S1 ! S01 is a trivial funtionaldependeny in DG, we onlude that S ! path(R) is in (DG;�FD)+.6. NORMALIZATION ALGORITHMSThe goal of this setion is to show how to transform a DTD D and a set of FDs �into a new spei�ation (D0;�0) that is in XNF and ontains the same information.Throughout the setion, we assume that the DTDs are non-reursive. This anbe done without any loss of generality. Notie that in a reursive DTD D, the setof all paths is in�nite. However, a given set of FDs � only mentions a �nite numberof paths, whih means that it suÆes to restrit one's attention to a �nite numberof \unfoldings" of reursive rules.We make an additional assumption that all the FDs are of the form:fq; p1:�l1; : : : ; pn:�lng ! p. That is, they ontain at most one element path onthe left-hand side. Note that all the FDs we have seen so far are of this form.While onstraints of the form fq; q0; : : :g are not forbidden, they appear to be quiteunnatural (in fat it is very hard to ome up with a reasonable example where theyould be used). Furthermore, even if we have suh onstraints, they an be easilyeliminated. To do so, we reate a new attribute �l, remove fq; q0g [ S ! p andreplae it by q0:�l! q0 and fq; q0:�lg [ S ! p.We shall also assume that paths do not ontain the symbol S (sine p:S an alwaysbe replaed by a path of the form p:�l).6.1 The Deomposition AlgorithmFor presenting the algorithm and proving its losslessness, we make the followingassumption: if X ! p:�l is an FD that auses a violation of XNF, then every timethat p:�l is not null, every path in X is not null. This will make our presentationsimpler, and then at the end of the setion we will show how to eliminate thisassumption.Given a DTD D and a set of FDs �, a nontrivial FD S ! p:�l is alledanomalous, over (D;�), if it violates XNF; that is, S ! p:�l 2 (D;�)+ butACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



20 � M. Arenas and L. LibkinS ! p 62 (D;�)+. A path on the right-hand side of an anomalous FD is alled ananomalous path, and the set of all suh paths is denoted by AP(D;�).In this setion we present an XNF deomposition algorithm that ombines twobasi ideas presented in the introdution: reating a new element type, and movingan attribute.6.1.1 Moving attributes. Let D = (E; A; P; R; r) be a DTD and � a set ofFDs over D. Assume that (D;�) ontains an anomalous FD q ! p:�l, whereq 2 EPaths(D). For example, the DBLP database shown in example 1.2 ontainsan anomalous FD of this form:db:onf :issue ! db:onf :issue:inproeedings :�year : (1)To eliminate the anomalous FD, we move the attribute �l from the set of attributesof the last element of p to the set of attributes of the last element of q, as shown inthe following �gure. r�llast(p) �mlast(q)p q
For instane, to eliminate the anomalous funtional dependeny (1) we move theattribute �year from the set of attributes of inproeedings to the set of attributesof issue. Formally, the new DTD D[p:�l := q:�m℄, where �m is an attribute, isde�ned to be (E; A0; P; R0; r), where A0 = A [ f�mg, R0(last(q)) = R(last(q)) [f�mg, R0(last(p)) = R(last(p)) � f�lg and R0(� 0) = R(� 0) for eah � 0 2 E �flast(q); last(p)g.After transforming D into a new DTD D[p:�l := q:�m℄, a new set of fun-tional dependenies is generated. Formally, the set of FDs �[p:�l := q:�m℄over D[p:�l := q:�m℄ onsists of all FDs S1 ! S2 2 (D;�)+ with S1 [ S2 �paths(D[p:�l := q:�m℄). Observe that the new set of FDs does not inlude thefuntional dependeny q ! p:�l and, thus, it ontains a smaller number of anoma-lous paths, as we show in the following proposition.Proposition 6.1. Let D be a DTD, � a set of FDs over D, q ! p:�l ananomalous FD, with q 2 EPaths(D), D0 = D[p:�l := q:�m℄, where �m is not anattribute of last(q), and �0 = �[p:�l := q:�m℄. Then AP(D0;�0) $ AP(D;�).Proof. First, we prove (by ontradition) that q:�m 62 AP(D0;�0). Supposethat S0 � paths(D0) and S0 ! q:�m 2 (D0;�0)+ is a nontrivial funtional depen-deny. Assume that S0 ! q 62 (D0;�0)+. Then there is an XML tree T 0 suh thatT 0 j= (D0;�0) and T 0 ontains tree tuples t1; t2 suh that t1:S0 = t2:S0, t1:S0 6= ?and t1:q 6= t2:q. Given that there is no a onstraint in �0 inluding the path q:�m,the XML tree T 00 onstruted from T 0 by giving two distint values to t1:q:�m andt2:q:�m onforms to D0, satis�es �0 and does not satisfy S0 ! q:�m, a ontradi-tion. Hene, q:�m 62 AP(D0;�0).ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 21Seond, we prove that for every S1[S2 � paths(D0)�fq:�mg, (D;�) ` S1 ! S2if and only if (D0;�0) ` S1 ! S2, and, thus, by onsidering the previous paragraphwe onlude that AP(D0;�0) � AP(D;�). Let S1 [ S2 � paths(D0)�fq:�mg. Byde�nition of �0, we know that if (D;�) ` S1 ! S2, then (D0;�0) ` S1 ! S2 and,therefore, we only need to prove the other diretion. Assume that (D;�) 6` S1 ! S2.Then there exists an XML tree T suh that T j= (D;�) and T 6j= S1 ! S2. De�nean XML tree T 0 from T by assigning arbitrary values to q:�m and removing theattribute �l from last(p). Then T 0 j= (D0;�0) and T 0 6j= S1 ! S2, sine all thepaths mentioned in �0 [ fS1 ! S2g are inluded in paths(D0) � fq:�mg. Thus,(D0;�0) 6` S1 ! S2.To onlude the proof we note that p:�l 2 AP(D;�) and p:�l 62 AP(D0;�0),sine p:�l 62 paths(D0). Therefore, AP(D0;�0) $ AP(D;�).6.1.2 Creating new element types. Let D = (E; A; P; R; r) be a DTDand � a set of FDs over D. Assume that (D;�) ontains an anomalous FDfq; p1:�l1; : : : ; pn:�lng ! p:�l, where q 2 EPaths(D) and n � 1. For example,the university database shown in example 1.1 ontains an anomalous FD of thisform (onsidering name.S as an attribute of student):fourses; ourses :ourse:taken by :student :�snog !ourses :ourse:taken by :student :name:S: (2)To eliminate the anomalous FD, we reate a new element type � as a hild of thelast element of q, we make �1, : : :, �n its hildren, where �1, : : :, �n are new elementtypes, we remove �l from the list of attributes of last(p) and we make it an attributeof � and we make �l1, : : :, �ln attributes of �1, : : :, �n, respetively, but withoutremoving them from the sets of attributes of last(p1), : : :, last(pn), as shown in thefollowing �gure.
.   .   .

.  .  .

r p
�

�ln�l1�1 �n
p1last(p1)last(pn)

�l�ln �l1 �lpn q last(q) last(p)

For instane, to eliminate the anomalous funtional dependeny (2), in example 1.1we reate a new element type info as a hild of ourses, we remove name.S fromACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



22 � M. Arenas and L. Libkinstudent and we make it an \attribute" of info, we reate an element type numberas a hild of info and we make �sno its attribute. We note that we do not remove�sno as an attribute of student. Formally, if �; �1; : : : ; �n are element types whihare not in E, the new DTD, denoted by D[p:�l := q:� [�1:�l1; : : : ; �n:�ln;�l℄℄, is(E0; A; P 0; R0; r), where E0 = E [ f�; �1; : : : ; �ng and(1) if P (last(q)) is a regular expression s, then P 0(last(q)) is de�ned as the on-atenation of s and ��, that is (s; ��). Furthermore, P 0(�) is de�ned as theonatenation of ��1 , : : :, ��n , P 0(�i) = �, for eah i 2 [1; n℄, and P 0(� 0) = P (� 0),for eah � 0 2 E � flast(q)g.(2) R0(�) = f�lg, R0(�i) = f�lig, for eah i 2 [1; n℄, R0(last(p)) = R(last(p)) �f�lg and R0(� 0) = R(� 0) for eah � 0 2 E � flast(p)g.After transforming D into a new DTD D0 = D[p:�l := q:� [�1:�l1; : : : ; �n:�ln; �l℄℄,a new set of funtional dependenies is generated. Formally, �[p:�l := q:� [�1:�l1;: : : ; �n:�ln;�l℄℄ is a set of FDs overD0 de�ned as the union of the sets of onstraintsde�ned in 1., 2. and 3.:(1) S1 ! S2 2 (D;�)+ with S1 [ S2 � paths(D0).(2) Eah FD over q, pi, pi:�li (i 2 [1; n℄) and p:�l is transferred to � and itshildren. That is, if S1 [ S2 � fq; p1; : : : ; pn; p1:�l1; : : : ; pn:�ln; p:�lg andS1 ! S2 2 (D;�)+, then we inlude an FD obtained from S1 ! S2 by hangingpi to q:�:�i, pi:�li to q:�:�i:�li, and p:�l to q:�:�l.(3) fq; q:�:�1:�l1; : : : ; q:�:�n:�lng ! q:� , and fq:�; q:�:�i:�lig ! q:�:�i fori 2 [1; n℄ 1.We are not interested in applying this transformation to an arbitrary anomalousFD, but rather to a minimal one. To understand the notion of minimality for XMLFDs, we �rst introdue this notion for relational databases. Let R be a relationshema ontaining a set of attributes U and � be a set of FDs over R. If (R;�)is not in BCNF, then there exist pairwise disjoint sets of attributes X , Y and Zsuh that U = X [ Y [ Z, � ` X ! Y and � 6` X ! A, for every A 2 Z. Inthis ase we say that X ! Y is an anomalous FD. To eliminate this anomaly, adeomposition algorithm splits relation R into two relations: S(X;Y ) and T (X;Z).A desirable property of the new shema is that S or T is in BCNF. We say thatX ! Y is a minimal anomalous FD if S(X;Y ) is in BCNF, that is, S(X;Y ) doesnot ontain an anomalous FD. This ondition an be de�ned as follows: X ! Y isminimal if there are no pairwise disjoint sets X 0; Y 0 � U suh that X 0[Y 0 $ X[Y ,� ` X 0 ! Y 0 and � 6` X 0 ! X [ Y .In the XML ontext, the de�nition of minimality is similar in the sense thatwe expet the new element types � , �1, : : :, �n form a struture not ontaininganomalous elements. However, the de�nition of minimality is more omplex toaount for paths used in FDs. We say that fq; p1:�l1; : : : ; pn:�lng ! p0:�l0 is(D;�)-minimal if there is no anomalous FD S0 ! pi:�li 2 (D;�)+ suh that1If ? an be a value of p:�l in tuplesD(T ), the de�nition must be modi�ed slightly, by lettingP 0(�) be ��1 ; : : : ; ��n ; (� 0j�), where � 0 is fresh, making �l an attribute of � 0, and modifying thede�nition of FDs aordingly.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 23i 2 [0; n℄ and S0 is a subset of fq; p1; : : : ; pn; p0:�l0; : : : ; pn:�lng suh that jS0 j� nand S0 ontains at most one element path.Proposition 6.2. Let D be a DTD, � a set of FDs over D andfq; p1:�l1; : : : ; pn:�lng ! p:�l a (D;�)-minimal anomalous FD, where q 2EPaths(D) and n � 1. If D0 = D[p:�l := q:� [�1:�l1; : : : ; �n:�ln;�l℄℄, where � ,�1, : : :, �n are new element types, and �0 = �[p:�l := q:� [�1:�l1; : : : ; �n:�ln;�l℄℄,then AP(D0;�0) $ AP(D;�).Proof. First, we prove that q:�:�i:�li 62 AP(D0;�0), for eah i 2 [1; n℄. Supposethat there is S0 � paths(D0) suh that S0 ! q:�:�i:�li is a nontrivial funtionaldependeny in (D0;�0)+ for some i 2 [1; n℄. Notie that q:�:�i 62 S0, sine q:�:�i !q:�:�i:�li is a trivial funtional dependeny. Let S1 [ S2 = S0, where (1) S1 \(fq; q:�:�lg [ fq:�:�j j j 2 [1; n℄ and j 6= ig [ fq:�:�j :�lj j j 2 [1; n℄g) = ; and (2)S2 � fq; q:�:�lg [ fq:�:�j j j 2 [1; n℄ and j 6= ig [ fq:�:�j :�lj j j 2 [1; n℄g.If there is no an XML tree T 0 onforming to D0, satisfying �0 and ontaining atuple t suh that t:S1 [S2 6= ?, then S1 [S2 ! q:�:�i must be in (D0;�0)+. In thisase q:�:�i:�li 62 AP(D0;�0). Suppose that there is an XML tree T 0 onforming toD0, satisfying �0 and ontaining a tuple t suh that t:S1 [ S2 6= ?. In this ase, byde�nition of �0 it is straightforward to prove that S2 ! q:�:�i:�li is in (D0;�0)+.By de�nition of �0 and (D;�)-minimality of fq; p1:�l1; : : : ; pn:�lng ! p:�l,one of the following is true: (1) S2 ! q:�:�i:�li is not an anomalous FD, (2)fq; q:�:�1:�l1; : : : ; q:�:�n:�ln; q:�:�lg = S2 [ fq:�:�i:�lig or (3) fq:�:�j ; q:�:�1:�l1;: : : ; q:�:�n:�ln; q:�:�lg = S2 [ fq:�:�i:�lig for some j 6= i (j 2 [1; n℄). In the�rst ase, q:�:�i:�li 62 AP(D0;�0), so we assume that either (2) or (3) holds. Weprove that S2 ! q:�:�i must be in (D0;�0)+. If either (2) or (3) holds, thenS2[fq:�:�i:�lig ! q:� is in (D0;�0)+ sine fq; q:�:�1:�l1; : : : ; q:�:�n:�lng ! q:� isin �0 and q:�:�k ! q is a trivial FD inD0, for every k 2 [1; n℄. Let T 0 be an XML treeonforming to D0 and satisfying �0 and t1; t2 2 tuplesD0(T 0) suh that t1:S2 = t2:S2and t1:S2 6= ?. Given that S2 ! q:�:�i:�li 2 (D0;�0)+, t1:q:�:�i:�li = t2:q:�:�i:�li.If t1:q:�:�i:�li = ?, then t1:q:�:�i = t2:q:�:�i = ?. If t1:q:�:�i:�li 6= ?, thent1:q:� = t2:q:� and t1:q:� 6= ?, beause S2[fq:�:�i:�lig ! q:� 2 (D0;�0)+. But, byde�nition of �0, fq:�; q:�:�i:�lig ! q:�:�i 2 �0, and, therefore, t1:q:�:�i = t2:q:�:�i.In any ase, we onlude that t1:q:�:�i = t2:q:�:�i and, therefore, S2 ! q:�:�i 2(D0;�0)+. Thus, q:�:�i:�li 62 AP(D0;�0).In a similar way, we onlude that q:�:�l 62 AP(D0;�0).Seond, we prove that for every S3 [ S4 � paths(D)� fp:�lg, (D;�) ` S3 ! S4if and only if (D0;�0) ` S3 ! S4, and, thus, by onsidering the previous paragraphwe onlude that AP(D0;�0) � AP(D;�). Let S3 [ S4 � paths(D) � fp:�lg. Byde�nition of �0, we know that if (D;�) ` S3 ! S4, then (D0;�0) ` S3 ! S4 and,therefore, we only need to prove the other diretion. Assume that (D;�) 6` S3 ! S4.Then there exists an XML tree T suh that T j= (D;�) and T 6j= S3 ! S4. De�nean XML tree T 0 from T by assigning ? to q:� and removing the attribute �l fromlast(p). Then T 0 j= (D0;�0) and T 0 6j= S3 ! S4, sine all the paths mentioned in�0 [ fS3 ! S4g are inluded in paths(D)� fp:�lg. Thus, (D0;�0) 6` S3 ! S4.To onlude the proof we note that p:�l 2 AP(D;�) and p:�l 62 AP(D0;�0),sine p:�l 62 paths(D0). Therefore, AP(D0;�0) $ AP(D;�).ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



24 � M. Arenas and L. Libkin(1) If (D;�) is in XNF then return (D;�), otherwise go to step (2).(2) If there is an anomalous FD X ! p:�l and q 2 EPaths(D) suh that q 2 X andq ! X 2 (D;�)+, then:(2.1) Choose a fresh attribute �m(2.2) D := D[p:�l := q:�m℄(2.3) � := �[p:�l := q:�m℄(2.4) Go to step (1)(3) Choose a (D;�)-minimal anomalous FD X ! p:�l, where X = fq; p1:�l1; : : : ; pn:�lng(3.1) Create fresh element types � , �1, : : :, �n(3.2) D := D[p:�l := q:� [�1:�l1; : : : ; �n:�ln; �l℄℄(3.3) � := �[p:�l := q:� [�1:�l1; : : : ; �n:�ln; �l℄℄(3.4) Go to step (1) Fig. 5. XNF deomposition algorithm.6.1.3 The algorithm. The algorithm applies the two transformations presentedin the previous setions until the shema is in XNF, as shown in �gure 5. Step (2) ofthe algorithm orresponds to the \moving attributes" rule applied to an anomalousFD q ! p:�l and step (3) orresponds to the \reating new element types" ruleapplied to an anomalous FD fq; p1:�l1; : : : ; pn:�lng ! p:�l. We hoose to apply�rst the \moving attributes" rule sine the other one involves minimality testing .The algorithm shows in �gure 5 involves FD impliation, that is, testing mem-bership in (D;�)+ (and onsequently testing XNF and (D;�)-minimality), whihwill be desribed in Setion 7. Sine eah step redues the number of anomalouspaths (Propositions 6.1 and 6.2), we obtain:Theorem 6.3. The XNF deomposition algorithm terminates, and outputs aspei�ation (D;�) in XNF.Even if testing FD impliation is infeasible, one an still deompose into XNF,although the �nal result may not be as good as with using the impliation. A slightmodi�ation of the proof of Propositions 6.1 and 6.2 yields:Proposition 6.4. Consider a simpli�ation of the XNF deomposition algo-rithm whih only onsists of step (3) applied to FDs S ! p:�l 2 �, and in whihthe de�nition of �[p:�l := q:� [�1:�l1; : : : ; �n:�ln; �l℄℄ is modi�ed by using � in-stead of (D;�)+. Then suh an algorithm always terminates and its result is inXNF.6.2 Lossless DeompositionTo prove that our transformations do not lose any information from the douments,we de�ne the onept of lossless deompositions similarly to the relational notionof \alulously dominane" from [Hull 1986℄. That notion requires the existene oftwo relational algebra queries that translate bak and forth between two relationalshemas. Adapting the de�nition of [Hull 1986℄ is problemati in our setting, as noXML query language yet has the same \yardstik" status as relational algebra forrelational databases.Instead, we de�ne (D0;�0) as a lossless deomposition of (D;�) if there is amapping f from paths in the DTD D0 to paths in the DTD D suh that for everyACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 25tree T j= (D;�), there is a tree T 0 j= (D0;�0) suh that T and T 0 agree on all thepaths with respet to this mapping f .This an be done formally using the relational representation of XML trees via thetuplesD(�) operator. Given DTDs D and D0, a funtion f : paths(D0) ! paths(D)is a mapping from D0 to D if f is onto and a path p is an element path in D0 if andonly if f(p) is an element path in D. Given tree tuples t 2 T (D) and t0 2 T (D0), wewrite t �f t0 if for all p 2 paths(D0) � EPaths(D0), t0:p = t:f(p). Given nonemptysets of tree tuples X � T (D) and X 0 � T (D0), we let X �f X 0 if for every t 2 X ,there exists t0 2 X 0 suh that t �f t0, and for every t0 2 X 0, there exist t 2 X suhthat t �f t0. Finally, if T and T 0 are XML trees suh that T �D and T 0 �D0, wewrite T �f T 0 if tuplesD(T ) �f tuplesD0(T 0).De�nition 6.5. Given XML spei�ations (D;�) and (D0;�0), (D0;�0) is a loss-less deomposition of (D;�), written (D;�) �lossless (D0;�0), if there exists a map-ping f from D0 to D suh that for every T j= (D;�) there is T 0 j= (D0;�0) suhthat T �f T 0.In other words, all information about a doument onforming to (D;�) an bereovered from some doument that onforms to (D0;�0).It follows immediately from the de�nition that�lossless is transitive. Furthermore,we show that every step of the normalization algorithm is lossless.Proposition 6.6. If (D0;�0) is obtained from (D;�) by using one of the trans-formations from the normalization algorithm, then (D;�) �lossless (D0;�0).Proof. We onsider the two steps of the normalization algorithm, and for eahstep generate a mapping f . The proofs that those mappings satisfy the onditionsof De�nition 6.5 are straightforward.(1) Assume that the \moving attribute" transformation was used to generate(D0;�0). Then D0 = D[p:�l := q:�m℄, �0 = �[p:�l := q:�m℄ and q ! p:�lis an anomalous FD in (D;�)+. In this ase, the mapping f from D0 to Dis de�ned as follows. For every p0 2 paths(D0) � fq:�mg, f(p0) = p0, andf(q:�m) = p:�l.(2) Assume that the \reating new element types" transformation was used to gen-erate (D0;�0). Then (D0;�0) was generated by onsidering a (D;�)-minimalanomalous FD fq; p1:�l1; : : : ; pn:�lng ! p:�l. Thus, D0 = D[p:�l :=q:� [�1:�l1; : : : ; �n:�ln;�l℄℄ and �0 = �[p:�l := q:� [�1:�l1; : : : ; �n:�ln;�l℄℄. Inthis ase, the mapping f from D0 to D is de�ned as follows: f(q:�) = p,f(q:�:�l) = p:�l, f(q:�:�i) = pi, f(q:�:�i:�li) = pi:�li and f(p0) = p0 for theremaining paths p0 2 paths(D0).Thus, if (D0;�0) is the output of the normalization algorithm on (D;�), then(D;�) �lossless (D0;�0).In relational databases, the de�nition of lossless deomposition indiates how totransform instanes ontaining redundant information into databases without re-dundany. This transformation uses the projetion operator. Notie that De�nition6.5 also indiates a way of transforming XML douments to generate well-designedACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



26 � M. Arenas and L. Libkindouments: If (D;�) �lossless (D0;�0), then for every T j= (D;�) there existsT 0 j= (D0;�0) suh that T and T 0 ontain the same data values. The mappingsT 7! T 0 orresponding to the two transformations of the normalization algorithman be implemented in an XML query language, more preisely, using XQueryFLWOR2 expressions. We use transformations of douments shown in Setion 1for illustration; the reader will easily generalize them to produe the general queriesorresponding to the transformations of the normalization algorithm.Example 6.7. Assume that the DBLP database is stored in a �le dblp.xml. Asshown in example 1.2, this doument an ontain redundant information sine yearis stored multiple times for a given onferene. We an solve this problem byapplying the \moving attribute" transformation and making year an attribute ofissue. This transformation an be implementing by using the following FLWORexpression:let $root := doument("dblp.xml")/db<db>{ for $o in $root/onf<onf><title> { $o/title/text() } </title>,{ for $is in $o/issuelet $value := $is/inproeedings[position() = 1℄/�year<issue year="{ $value }">{ for $in in $is/inproeedings<inproeedings key="{ $in/�key }" pages="{ $in/�pages }">{ for $au in $in/author<author> { $au/text() } </author>,<title> { $in/title/text() } </title>}</inproeedings>}</issue>}</onf>}</db>The XPath expression $is/inproeedings[position() = 1℄/�year is used toretrieve for every issue the value of the attribute year in the �rst paper in thatissue. For every issue this number is stored in a variable $value and it beomesthe value of its attribute year: <issue year="{ $value }">. 2Example 6.8. Assume that the XML doument shown in �gure 1 is stored in a �leuniversity.xml. This doument stores information about ourses in a universityand it ontains redundant information sine for every student taking a ourse westore his/her name. To solve this problem, we split the information about namesand grades by reating an extra element type, info, for student information. Thistransformation an be implemented as follows.2FLWOR stands for for, let, where, order by, and return.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 27let $root := doument("university.xml")/ourses<ourses>{ for $o in $root/ourse<ourse> {-- Query that removes name as a hild of student --} </ourse>,for $na in distint-values($root/ourse/taken_by/student/name/text())<info>{ for $nu in distint-values($root/ourse/taken_by/student[name/text() =$na℄/�sno)<number sno="{ $nu }">,<name> { $na } </name>}</info>}</ourses>We omitted the query that removes name as a hild of student sine it an be doneas in the previous example. 26.3 Eliminating additional assumptionsFinally, we have to show how to get rid of the additional assumption that for everyanomalous FD X ! p:�l, every time that p:�l is not null, every path in X is notnull. We illustrate this by a simple example.Assume that D is the DTD shown in �gure 6 (a). Every XML tree onformingto this DTD has as root an element of type r whih has a hild of type either Aor B and an arbitrary number of elements of type C, eah of them ontaining anattribute �l. Let � be the set of FDs fr:A! r:C:�lg. Then, (D;�) is not in XNFsine (D;�) 6` r:A! r:C.r �l(a)
rr1 j r2�l1 �l2(b)

A jB C� A1 C�1 B2 C�2
Fig. 6. Splitting a DTD.If we want to eliminate the anomalous FD r:A ! r:C:�l, we annot diretlyapply the algorithm presented in Setion 6.1, sine this FD does not satisfy the basiassumption made in that setion; it ould be the ase that r:C:�l is not null andr:A is null. To solve this problem we transform (D;�) into a new XML spei�ation(D0;�0) that is essentially equivalent to (D;�) and satis�es the assumption made inSetion 6.1. The new XML spei�ation is onstruted by splitting the disjuntion.More preisely, DTD D0 is de�ned as the DTD shown in �gure 6 (b). This DTDontains two opies of the DTD D, one of then ontaining element type A, denotedACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



28 � M. Arenas and L. Libkinby A1, and the other one ontaining element type B, denoted by B2. The set offuntional dependenies �0 is onstruted by inluding the FD r:A ! r:C:�l inboth DTDs, that is, �0 = fr:A1 ! r:C1:�l1; r:A2 ! r:C2:�l2g.In the new spei�ation (D0;�0), the user hooses between having either A or Bby hoosing between either r1 or r2. We note that the new FD r:A2 ! r:C2:�l2 istrivial and, therefore, to normalize the new spei�ation we only have to take intoaount FD r:A1 ! r:C1:�l1. This funtional dependeny satis�es the assumptionmade in Setion 6.1, so we an use the deomposition algorithm presented in thatsetion.It is straightforward to generalize the methodology presented in the previousexample for any DTD. In partiular, if we have an arbitrary regular expression sin a DTD D = (E; A; P; R; r) and we have to split it into one regular expressionontaining an element type � 2 E and another one not ontaining this symbol, weonsider regular expressions s \ (E��E�) and s� (E��E�).7. REASONING ABOUT FUNCTIONAL DEPENDENCIESIn the previous setion we saw that it is possible to losslessly onvert a DTD into onein XNF. The algorithm used XML funtional dependeny impliation. AlthoughXML FDs and relational FDs are de�ned similarly, the impliation problem forthe former lass is far more intriate. In this setion we study the impliationproblem for XML funtional dependenies. In setions 7.1 and 7.2 we introduetwo lasses of DTDs for whih the impliation problem an be solved eÆiently.These lasses inlude most of real-world DTDs. In setion 7.3 we introdue twolasses of DTDs for whih the impliation problem is oNP-omplete. In setion7.4 we show that, unlike relational FDs, XML FDs are not �nitely axiomatizable.Finally, in setion 7.5 we study the omplexity of the XNF satisfation problem. Inall these setions we assume, without loss of generality, that all FDs have a singlepath on the right-hand side.7.1 Simple regular expressionsTypially, regular expressions used in DTDs are rather simple. We now formulatea riterion for simpliity that orresponds to a ommon pratie of writing regularexpressions in DTDs. Given an alphabet A, a regular expression over A is alledtrivial if it of the form s1; : : : ; sn, where for eah si there is a letter ai 2 A suhthat si is either ai or ai? (whih abbreviates aij�), or a+i or a�i , and for i 6= j,ai 6= aj . We all a regular expression s simple if there is a trivial regular expressions0 suh that any word w in the language denoted by s is a permutation of a wordin the language denoted by s0, and vie versa. Simple regular expressions were alsoonsidered in [Abiteboul et al. 2001℄ under the name of multipliity atoms.For example, (ajbj)� is simple: a�; b�; � is trivial, and every word in (ajbj)�is a permutation of a word in a�; b�; � and vie versa. A DTD is alled simple ifall produtions in it use simple regular expressions over E [ fSg. Simple regularexpressions are prevalent in DTDs. For instane, the Business Proess Spei�ationShema of ebXML [ebXML 2001℄, a set of spei�ations to ondut business overthe Internet, is a simple DTD. Part of this shema is showed in �gure 7.Theorem 7.1. The impliation problem for FDs over simple DTDs is solvableACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 29<!ELEMENT ProessSpeifiation (Doumentation*, SubstitutionSet*, (Inlude |BusinessDoument | ProessSpeifiation | Pakage | BinaryCollaboration |BusinessTransation | MultiPartyCollaboration)*)><!ELEMENT Inlude (Doumentation*)><!ELEMENT BusinessDoument (ConditionExpression?, Doumentation*)><!ELEMENT SubstitutionSet (DoumentSubstitution | AttributeSubstitution |Doumentation)*><!ELEMENT BinaryCollaboration (Doumentation*, InitiatingRole,RespondingRole, (Doumentation | Start | Transition | Suess | Failure |BusinessTransationAtivity | CollaborationAtivity | Fork | Join)*)><!ELEMENT Transition (ConditionExpression?, Doumentation*)>Fig. 7. Part of the Business Proess Spei�ation Shema of ebXML.in quadrati time.Proof sketh: Here we present the sketh of the proof. The omplete proofan be found in eletroni appendix A.1.In the �rst part of the proof we show that given a simple DTD D and a set of FDs�[fS ! pg over D, the problem of verifying whether � 6` S ! p an be redued tothe problem of �nding a ounterexample to a ertain impliation problem. That is,we need to �nd an XML tree T suh that T j= (D;�), T 6j= S ! p, T ontains twotree tuples and T satis�es some additional onditions that depend on the simpliityof D. Essentially, if an element type is allowed to our zero times (a? or a�), thenin onstruting the ounterexample suh elements not need to be onsidered if theyare irrelevant to the funtional dependenies under onsideration. Furthermore, allthe element types in a regular expression in D an be onsidered independently.Observe that this ondition is not longer valid if a regular expression in D ontainsa disjuntion (D is not simple). For instane, if (ajb) is a regular expression in D,then a and b are not independent; if a does not appear in an XML tree onformingto D, then b appears in this tree.In the seond part of the proof we show that the problem of �nding this oun-terexample an be redued to the problem of verifying if a ertain propositionalformula ', onstruted from D and � [ fS ! pg, is satis�able. This formula is ofthe form '1 _ � � � _ 'n, where n is at most the length of the path p and eah 'i(i 2 [1; n℄) is a onjuntion of Horn lauses and is of linear size in the size of D and� [ fS ! pg. Given that the onsisteny problem for Horn lauses is solvable inlinear time [Dowling and Gallier 1984℄, we onlude that the ounterexample anbe found in quadrati time and, therefore, our original problem an be solved inquadrati time. 27.2 Small number of disjuntionsIn a simple DTD, disjuntion an appear in expressions of the form (aj�) or (ajb)�,but a general disjuntion (ajb) is not allowed. For example, the following DTDannot be represented as a simple DTD:<!DOCTYPE university [<!ELEMENT university (ourse*)><!ELEMENT ourse (number, student*)>ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



30 � M. Arenas and L. Libkin<!ELEMENT number (#PCDATA)><!ELEMENT student ((name | FLname), grade)><!ELEMENT name (#PCDATA)><!ELEMENT FLname (first_name, last_name)><!ELEMENT first_name (#PCDATA)><!ELEMENT last_name (#PCDATA)><!ELEMENT grade (#PCDATA)>℄>In this example, every student must have a name. This name an be an string or itan be a omposition of a �rst and a last name. It is desirable to express onstraintson this kind of DTDs. For instane,student :name:S! student ;fstudent :FLname:�rst name :S; student:FLname :last name:Sg ! student ;are funtional dependenies in this domain. It is also desirable to reason aboutthese onstraints eÆiently. Often, a DTD is not simple beause a small number ofregular expressions in it are not simple. In this setion we will show that there is apolynomial time algorithm for reasoning about onstraints over DTDs ontaininga small number of disjuntions.A regular expression s over an alphabet A is a simple disjuntion if s = �, s = a,where a 2 A, or s = s1js2, where s1, s2 are simple disjuntions over alphabets A1,A2 and A1 \A2 = ;. A DTD D = (E; A; P; R; r) is alled disjuntive if for every� 2 E, P (�) = s1; : : : ; sm, where eah si is either a simple regular expression or asimple disjuntion over an alphabet Ai (i 2 [1;m℄), and Ai \ Aj = ; (i; j 2 [1;m℄and i 6= j). This generalizes the onept of a simple DTD.With eah disjuntive DTD D, we assoiate a number ND that measures theomplexity of unrestrited disjuntions in D. Formally, for a simple regular expres-sion s, Ns = 1. If s is a simple disjuntion, then Ns is the number of symbols jin s plus 1. If P (�) = s1; : : : ; sn, then N� is 1, if s1; : : : ; sn is a simple regular ex-pression, N� = jfp 2 paths(D) j last(p) = �gj �Ns1 � � � � �Nsn otherwise. Finally,ND =Q�2EN� .Theorem 7.2. For any �xed  > 0, the FD impliation problem for disjuntiveDTDs D with ND � kDk is solvable in polynomial time3.Proof sketh: Here we present the sketh of the proof. The omplete proofan be found in eletroni appendix A.2.The main idea of this proof is that the impliation problem for disjuntive DTDsan be redued to a number of impliation problems for simple DTDs by splittingthe disjuntions. More preisely, given a disjuntive DTD D and a set of funtionaldependenies � [ fS ! pg over D, there exist (D1;�1), : : :, (Dn;�n) suh thateah Di (i 2 [1; n℄) is a simple DTD, �i is a set of funtional dependenies over Di(i 2 [1; n℄) and (D;�) ` S ! p if and only if (Di;�i) ` S ! p for every i 2 [1; n℄.The number n of impliation problems for simple DTDs is at most ND. Thus,3k � k is the size of the desription of an objet. For instane, kpk is the length of the path p andkSk is the sum of the lengths of the paths in S.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 31sine the impliation problem for simple DTDs an be solved in quadrati time (seeTheorem 7.1), the impliation problem for disjuntive DTDs D with ND � kDk,for some onstant , an be solved in polynomial time. 27.3 Relational DTDsThere are some lasses of DTDs for whih the impliation problem is not tratable.One suh lass onsists of arbitrary disjuntive DTDs. Another lass is that ofrelational DTDs. We say that D is a relational DTD if for eah XML tree T j= D,if X is a non-empty subset of tuplesD(T ), then treesD(X) j= D. This lass ontainsregular expressions like the one below, from a DTD for Frequently Asked Questions[Higgins and Jelli�e 1999℄:<!ELEMENT setion (logo*, title,(qna+ | q+ | ( p | div | setion)+))>There exist non-relational DTDs (for example, <!ELEMENT a (b,b)>). However:Proposition 7.3. Every disjuntive DTD is relational.Proof. LetD = (E; A; P; R; r) be a disjuntive DTD, T an XML tree onform-ing to D and X a non-empty subset of tuplesD(T ). Assume that treesD(X) 6j= D,that is, there is an XML tree T 0 = (V; lab; ele; att; root) in treesD(X) suh thatT 0 6j= D. Then, there is a vertex v 2 V reahable from the root by following a pathp suh that lab(v) = � and ele(v) does not onform to the regular expression P (�).If P (�) = s, where s is a simple disjuntion over an alphabet A, then there ist0 2 X suh that t0:p = v and t0:p:a = ?, for eah a 2 A. Thus, given that T j= D,we onlude that there is a tuple t 2 tuplesD(T ) suh that t:p:b 6= ?, for some b 2 A,and t0:w = t:w for eah w 2 paths(D) suh that p:b is not a pre�x of w. Hene,t0 � t. But, this ontradits the de�nition of tuplesD(�), sine t0; t 2 tuplesD(T ).The proof for P (�) = s1; : : : ; sn, where eah si (i 2 [1; n℄) is either a simple regularexpression or a simple disjuntion, is similar.Theorem 7.4. The FD impliation problem over relational DTDs and over dis-juntive DTDs is oNP-omplete.Proof. Here we prove the intratability of the impliation problem for disjun-tive DTDs. The oNP membership proof an be found in eletroni appendix A.3.In order to prove the oNP-hardness, we will redue SAT-CNF to the omplementof the impliation problem for disjuntive DTDs. Let � be a propositional formulaof the form C1 ^ � � � ^Cn, where eah Ci (i 2 [1; n℄) is a lause. Assume that � usespropositional variables x1, : : :, xm.We need to onstrut a disjuntive DTD D and a set of funtional dependenies� [ f'g suh that (D;�) 6` ' if and only if � is satis�able. We de�ne the DTDD = (E; A; P; R; r) as follows.E = fr; B;Cg [ fCi;j j Ci mentions literal xjg [ f �Ci;j j Ci mentions literal :xjg;A = f�lg:In order to de�ne P , �rst we de�ne a funtion for translating lauses into reg-ular expressions. If the set of literal mentioned in the lause Ci (i 2 [1; n℄) isACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



32 � M. Arenas and L. Libkin
�l �l�l�l�l�l

rC2;1j �C2;3C1;1jC1;2 B C�
Fig. 8. DTD generated from a formula (x1 _ x2) ^ (x1 _ :x3).fxj1 ; : : : ; xjp ; �xk1 ; : : : ; �xkqg, thentr(Ci) = Ci;j1 j � � � jCi;jp j �Ci;k1 j � � � j �Ci;kq :We de�ne the funtion P on the root as P (r) = tr(C1); : : : ; tr(Cn); B; C�. For theremaining elements of E, we de�ne P as �. Finally, R(r) = ; and R(�) = f�lgfor every � 2 E � frg. For example, �gure 8 shows the DTD generated from apropositional formula (x1 _ x2) ^ (x1 _ :x3).For eah pair of elements Ci;j ; �Ck;j 2 E, the set of funtional dependenies �inludes the onstraint fr:Ci;j :�l; r: �Ck;j :�lg ! r:C:�l. Funtional dependeny 'is de�ned as r:B:�l ! r:C:�l.We now prove that (D;�) 6` ' if and only if � is satis�able.()) Suppose that (D;�) 6` '. Then, there is an XML tree T suh thatT j= (D;�) and T 6j= '. We de�ne a truth assignment � from T as follows. Foreah j 2 [1;m℄, if there is i 2 [1; n℄ suh that r has a hild of type Ci;j in T , then�(xj) = 1, otherwise �(xj) = 0. We now prove that � j= Ci, for eah i 2 [1; n℄. Byde�nition of D, there is j 2 [1;m℄ suh that r has a hild in T of type either Ci;jor �Ci;j . In the �rst ase, Ci ontains the literal xj and �(xj) = 1, by de�nition of�. Therefore, � j= Ci. In the seond ase, Ci ontains a literal :xj . If �(xj) = 1,then there is k 2 [1; n℄ suh that r has a hild of type Ck;j in T , by de�nition of�. Sine fr:Ck;j :�l; r: �Ci;j :�lg ! r:C:�l is a onstraint in �, all the nodes in T oftype C have the same value in the attribute �l. Thus, T j= r:B:�l ! r:C:�l, aontradition. Hene, �(xj ) = 0 and � j= Ci.(() Suppose that � is satis�able. Then, there exists a truth assignment �suh that � j= �. We de�ne an XML tree T onforming to D as follows. Foreah i 2 [1; n℄, hoose a literal lj in Ci suh that � j= lj . If lj = xj , then r hasa hild of type Ci;j in T , otherwise r has a hild of type �Ci;j in T . Moreover, rhas one hild of type B and two hildren of type C. We assign two distint valuesto the attribute �l of the nodes of type C, and the same value to the rest of theattributes in T . Thus, T 6j= ', and it is easy to verify that T j= �. This ompletesthe proof.7.4 Nonaxiomatizability of XML funtional dependeniesIn this setion we present a simple proof that XML FDs annot be �nitely ax-iomatized. This proof shows that, unlike relational databases, there is a nontrivialinteration between DTDs and funtional dependenies. To present this proof weneed to introdue some terminology.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 33Given a DTD D and a set of funtional dependenies � over D, we say that(D;�) is losed under impliation if for every FD ' over D suh that (D;�) ` ',it is the ase that ' 2 �. Furthermore, we say that (D;�) is losed under k-aryimpliation, k � 0, if for every FD ' over D, if there exists �0 � � suh thatj�0j � k and (D;�0) ` ', then ' 2 �. For example, if (D;�) is losed under 0-aryimpliation, then � ontains all the trivial FDs.Sine the impliation problem for relational FDs is �nitely axiomatizable, thereexists k � 0 suh that eah relation shema R(A1; : : : ; An) admits a k-ary groundaxiomatization for the impliation problem, that is, an axiomatization ontainingrules of the form if � then , where �[fg is a set of FDs over R(A1; : : : ; An) andj�j � k. For instane, R(A;B;C) admits a 2-ary ground axiomatization inluding,among others, the following rules: if ; then AB ! A, if A ! B then AC !BC and if fA ! B;B ! Cg then A ! C. Similarly, if there exists a �niteaxiomatization for the impliation problem of XML FDs, then there exists k � 0suh that eah DTD D admits a (possible in�nite) k-ary ground axiomatization forthe impliation problem. The ontrapositive of the following proposition gives usa suÆient ondition for showing that the XML FD impliation problem does notadmit a k-ary ground axiomatization for every k � 0 and, therefore, it does notadmit a �nite axiomatization.Proposition 7.5. For every k � 0, if there is a k-ary ground axiomatizationfor the impliation problem of XML FDs, then for every DTD D and set of FDs� over D, if (D;�) is losed under k-ary impliation then (D;�) is losed underimpliation.Proof. This proposition was proved in [Abiteboul et al. 1995℄ for the ase ofrelational databases. The proof for XML FDs is similar.Theorem 7.6. The impliation problem for XML funtional dependenies is not�nitely axiomatizable.Proof. By Proposition 7.5, for every k � 0 we need to exhibit a DTD Dkand a set of funtional dependenies �k suh that (Dk;�k) is losed under k-aryimpliation and (Dk;�k) is not losed under impliation.The DTD Dk = (E; A; P; R; r) is de�ned as follows: E = fA1; : : : ; Ak; Ak+1; Bg,A = ;, P (r) = (A1j � � � jAk jAk+1); B� and P (�) = � for every � 2 E �frg. The setof FDs �k is de�ned as the union of the following sets:|fr:Ai ! r:B j i 2 [1; k + 1℄g [ ffr; r:Aig ! r:B j i 2 [1; k + 1℄g,|fS ! p j S ! p is a trivial FD in Dkg.It is easy to see that if ' is not a trivial funtional dependeny in Dk and ' 62 �k,then ' = r ! r:B. Thus, in order to prove that (Dk;�k) is losed under k-aryimpliation and is not losed under impliation, we have to show that:(1) For every �0 � �k suh that j�0j � k, (Dk;�0) 6` r ! r:B. Sine j�0j � k,there exists i 2 [1; k + 1℄ suh that r:Ai ! r:B 62 �0 and fr; r:Aig ! r:B 62 �0.Thus, an XML tree T de�ned asACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



34 � M. Arenas and L. Libkin Ai B Bronforms to Dk, satis�es �0 and does not satisfy r ! r:B. We onlude that(Dk;�0) 6` r ! r:B.(2) (Dk;�k) ` r ! r:B. This proof is straightforward.This ompletes the proof of the theorem.7.5 The omplexity of testing XNFRelational DTDs have the following useful property that lets us establish the om-plexity of testing XNF.Proposition 7.7. Given a relational DTD D and a set � of FDs over D, (D;�)is in XNF i� for eah nontrivial FD of the form S ! p:�l or S ! p:S in �,S ! p 2 (D;�)+.Proof. The proof is given in eletroni appendix A.4.From this, we immediately derive:Corollary 7.8. Testing if (D;�) is in XNF an be done in ubi time forsimple DTDs, and is oNP-omplete for relational DTDs.8. RELATED WORK AND FUTURE RESEARCHIt was introdued in [Embley and Mok 2001℄ an XML normal form de�ned in termsof funtional dependenies, multi-valued dependenies and inlusion onstraints.Although that normal form was also alled XNF the approah of [Embley and Mok2001℄ was very di�erent from ours. The normal form of [Embley and Mok 2001℄ wasde�ned in terms of two onditions: XML spei�ations must not ontain redundantinformation with respet to a set of onstraints, and the number of shema trees(see Setion 5.2) must be minimal. The normalization proess is similar to the ERapproah in relational databases. A oneptual-model hypergraph is onstruted tomodel the real world and an algorithm produes an XML spei�ation in XNF. Itwas proved in [Arenas and Libkin 2003℄ that an XML spei�ation given by a DTDD and a set � of XML funtional dependenies is in XNF if and only if no XMLtree onforming to D and satisfying � ontains redundant information. Thus, forthe lass of funtional dependenies de�ned in this paper, the XML normal formintrodued in [Embley and Mok 2001℄ is more restritive than our XML normalform.Normal forms for extended ontext-free grammars, similar to the Greibah nor-mal form for CFGs, were onsidered in [Albert et al. 2001℄. These, however, do notneessarily guarantee good XML design.The funtional dependeny language used in [Embley and Mok 2001℄ is basedon a language for nested relations and it does not onsider relative onstraints.In a very reent paper [Lee et al. 2002℄ was introdued a language for expressingfuntional dependenies for XML. In that language, a funtional dependeny isan expression of the form (p; [q1; : : : ; qn ! qn+1℄), where p is a path and every qiACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � 35(i 2 [1; n + 1℄) is of the form �:�l, where � is an element type. An XML tree Tsatis�es this onstraint if for any two subtrees T1, T2 of T whose roots are nodesreahable from the root of T by following path p, if T1 and T2 agree on the valueof qi, for every i 2 [1; n℄, then they agree on the value of qn+1. This languagedoes not onsider relative onstraints and its semantis only works properly if somesyntati restritions are imposed on the funtional dependenies [Lee et al. 2002℄.The normalization problem is not onsidered in [Lee et al. 2002℄.Other proposals for XML onstraints (mostly keys) have been studied in [Bune-man et al. 2001a; 2001b; Fan and Sim�eon 2000℄; these onstraints do not use DTDs.XML onstraints that takes DTDs into aount are studied in [Fan and Libkin 2001℄.Numerous surveys of relational normalization an be found in the literature [Beeriet al. 1978; Kanellakis 1990; Abiteboul et al. 1995℄. Normalization for nested rela-tions and objet-oriented databases is studied in [ �Ozsoyoglu and Yuan 1987; Moket al. 1996; Tari et al. 1997℄. Coding nested relations into at ones, similar toour tree tuples, is done in [Suiu 1997; Van den Busshe 2001℄. We use funtionaldependenies over inomplete relations using the tehniques from [Atzeni and Mor-funi 1984; Buneman et al. 1991; Grahne 1991; Imielinski and Jr. 1984; Levene andLoizou 1998℄.8.1 Future ResearhThe deomposition algorithm an be improved in various ways, and we plan to workon making it more eÆient. We also would like to �nd a omplete lassi�ation ofthe omplexity of the FD impliation problem for various lasses of DTDs.As prevalent as BCNF is, it does not solve all the problems of relational shemadesign, and one annot expet XNF to address all shortomings of DTD design.We plan to work on extending XNF to more powerful normal forms, in partiularby taking into aount multi-valued dependenies whih are naturally indued bythe tree struture.ELECTRONIC APPENDIXThe eletroni appendix for this artile an be aessed in the ACM Digital Li-brary by visiting the following URL: http://www.am.org/pubs/itations/journals/tods/20YY-V-N/p1-URLend.ACKNOWLEDGMENTSDisussions with Mihael Benedikt and Wenfei Fan were extremely helpful. Theauthors were supported in part by grants from the Natural Sienes and EngineeringResearh Counil of Canada and from Bell University Laboratories.REFERENCESAbiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.Abiteboul, S., Segoufin, L., and Vianu, V. 2001. Representing and Querying XML withInomplete Information. In Proeedings of the Twentieth ACM Symposium on Priniples ofDatabase Systems. 150 { 161.Albert, J., Giammarresi, D., and Wood, D. 2001. Normal Form Algorithms for ExtendedContext-free Grammars. Theoretial Computer Siene 267, 1-2, 35 { 47.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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A Normal Form for XML Douments � App{1This doument is the online-only appendix to:A Normal Form for XML DoumentsMARCELO ARENASUniversity of TorontoandLEONID LIBKINUniversity of TorontoACM Transations on Database Systems, Vol. V, No. N, Month 20YY, Pages 1{37.A. PROOF OF SECTION 7A DTD D an be inonsistent in the sense that there is no XML tree T suh thatT j= D. For example, a reursive DTD ontaining a rule P (a) = a is not onsistent;there is no a �nite XML tree satisfying this rule. In this setion we only onsideronsistent DTDs, sine the impliation problem for inonsistent DTDs is trivialand it an be heked in linear time whether a DTD is onsistent [Fan and Libkin2001℄.A.1 Proof of Theorem 7.1To prove this theorem we start by introduing some terminology. Given a simpleDTD D = (E; A; P; R; r) and p, p0 2 paths(D) suh that p is a proper pre�x ofp0, we say that p0 an be nulli�ed from p if p0 is of the form p:w1: � � � :wn, wherewi 2 E [ A [ fSg (i 2 [1; n℄) and either (1) P (last(p)) ontains w1? or w�1 ; or (2)there is i 2 [1; n� 1℄ suh that P (wi) ontains wi+1? or w�i+1. Intuitively, p0 an benulli�ed from p if there exists and XML tree T onforming to D and a tree tuplet in T suh that t:p 6= ? and t:p0 = ?. For example, if P (r) = a, P (a) = b� andP (b) = , then r:a:b: an be nulli�ed from r and r:a, but it annot be nulli�edfrom r:a:b. Given S � paths(D), we say that p0 an be nulli�ed from S if p0 an benulli�ed from p, where p is the longest ommon pre�x of p0 and a path from S.The following is proved by the same argument as Lemma A.6 shown in eletroniappendix A.3.Lemma A.1. Given a simple DTD D, a set � of funtional dependenies overD and S [ fpg � paths(D), (D;�) 6` S ! p if and only if there is an XML tree Tand a path q pre�x of p suh that T j= (D;�), tuplesD(T ) = ft1; t2g, t1:S = t2:S,t1:S 6= ?, t1:p 6= t2:p, t1:p 6= ?, t2:p 6= ?, t1:q 6= t2:q and|For eah s 2 paths(D), if s an be nulli�ed from S [ fpg, then t1:s = t2:s = ?.Permission to make digital/hard opy of all or part of this material without fee for personalor lassroom use provided that the opies are not made or distributed for pro�t or ommerialadvantage, the ACM opyright/server notie, the title of the publiation, and its date appear, andnotie is given that opying is by permission of the ACM, In. To opy otherwise, to republish,to post on servers, or to redistribute to lists requires prior spei� permission and/or a fee. 20YY ACM 0362-5915/20YY/0300-0001 $5.00ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



App{2 � M. Arenas and L. Libkin|For eah s 2 paths(D), if q is not a pre�x of s and s annot be nulli�ed fromS [ fpg, then t1:s = t2:s and t1:s 6= ?.To prove that the impliation problem for simple DTDs an be solved in polyno-mial time, we use the tehnique of [Sagiv et al. 1981℄ and ode onstraints withpropositional formulas. That is, for eah simple DTD D and set of funtional de-pendenies �[fS ! pg over D, we will de�ne a propositional formula ' suh that(D;�) 6` S ! p if and only if ' is satis�able. This formula will be of the form'1_� � �_'n, where eah 'i (i 2 [1; n℄) is a onjuntion of Horn lauses. Given thatthe onsisteny problem for Horn lauses is solvable in linear time, we will onludethat our problem is solvable in quadrati time.Let D be a DTD, � a set of funtional dependenies over D and S [ fpg �paths(D). Reall that we assumed that eah onstraints in � is of the form S0 ! p0,where S0 [ fp0g � paths(D). We de�ne paths(�) as fs j there is S0 ! p0 2 � suhthat s 2 S0 [ fp0gg. To de�ne the propositional formula ' we view eah paths 2 paths(�) [ S [ fpg as a propositional variable. Furthermore, for eah path qwhih is a pre�x of p we de�ne a propositional formula 'q as:p ^ ( ^s2Pq[S s) ^ ( ^s2Nq :s) ^  ̂2� ;where Pq , Nq and � are set of propositional variables and formulas de�ned asfollows.|For eah s 2 paths(�) suh that s annot be nulli�ed from S [ fpg and q is nota pre�x of s, s is inluded in Pq .|For eah s 2 paths(�) suh that s 2 EPaths(D), s annot be nulli�ed from S [fpg and q is a pre�x of s, s is inluded in Nq.|For eah S0 ! p0 2 �, if there is no q0 2 S0 [ fp0g suh that q0 an be nulli�edfrom S [ fpg, then (Vs2S0 s) ! p0 is inluded in �We note that 'q is a onjuntion of Horn lauses.The propositional formula ' is de�ned as the disjuntion of some of the formula'qs. The following lemma shows that in this disjuntion we only need to onsiderqs suh that q = q0:� , for some � 2 E, and P (last(q0)) ontains �� or �+.Lemma A.2. Let D = (E; A; P; R; r) be a simple DTD, � a set of funtionaldependenies over D and S [ fp; qg � paths(D) suh that q is a pre�x of p. Ifthere is � 2 E suh that q = q0:� and P (last(q0)) ontains �� or �+, then 'q issatis�able i� there is an XML tree T suh that T j= (D;�), tuplesD(T ) = ft1; t2g,t1:S = t2:S, t1:S 6= ?, t1:p 6= t2:p, t1:p 6= ?, t2:p 6= ?, t1:q 6= t2:q and|For eah s 2 paths(D), if s an be nulli�ed from S [ fpg, then t1:s = t2:s = ?.|For eah s 2 paths(D), if q is not a pre�x of s and s annot be nulli�ed fromS [ fpg, then t1:s = t2:s and t1:s 6= ?.Proof. ()) Let � be a truth assignment satisfying 'q . We de�ne tuples t1and t2 as follows. For eah s 2 paths(D), if s an be nulli�ed from S [ fpg, thent1:s = t2:s = ?. If s annot be nulli�ed from S [ fpg we onsider two ases. If qis not a pre�x of s, then t1:s = t2:s and t1:s 6= ?. Otherwise, if �(s) = 1, thent1:s = t2:s and t1:s 6= ?, else t1:s 6= t2:s, t1:s 6= ? and t2:s 6= ?.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � App{3It is straightforward to prove that there is an XML tree T 2 treesD(ft1; t2g)suh that T j= D and tuplesD(T ) = ft1; t2g. Given that � j= :p ^ Vs2S s,t1:S = t2:S, t1:S 6= ?, t1:p 6= t2:p, t1:p 6= ? and t2:p 6= ?. Besides, t1:q 6= t2:q,sine q 2 Nq and � j= Vs2Nq :s. Thus, to �nish the proof we have to show thatT j= �. Let S0 ! p0 2 �. If there is q0 2 S0 [ fp0g suh that q0 an be nulli�edfrom S [ fpg, then T trivially satis�es S0 ! p0 sine t1:q0 = t2:q0 = ?. Otherwise,suppose that t1:S0 = t2:S0 and t1:S0 6= ?. Then, by onsidering that � j= Vs2Pq sand the de�nition of t1 and t2, we onlude that � j= Vs2S0 s. Thus, given that� j= (Vs2S0 s)! p0, we onlude that �(p0) = 1, and, therefore, t1:p0 = t2:p0.(() Suppose that there is an XML tree T satisfying the onditions of thelemma. De�ne a truth assignment � as follows. For eah s 2 paths(�)[ S [ fpg, ift1:s 6= t2:s then �(s) = 0. Otherwise, �(s) = 1.Given that t1:p 6= t2:p and t1:S = t2:S, �(:p) = 1 and � j= Vs2S s. Let s 2 Pq .By de�nition, s annot be nulli�ed from S [ fpg and q is not a pre�x of s, and,therefore, t1:s = t2:s. Thus, �(s) = 1. We onlude that � j= Vs2Pq s. Lets 2 Nq . By de�nition, s annot be nulli�ed from S [ fpg, q is a pre�x of s ands 2 EPaths(D). Hene, t1:s 6= t2:s and �(s) = 0. We onlude that � j= Vs2Nq :s.Finally, let (Vs2S0 s)! p0 2 �q . If � j= Vs2S0 s, then by de�nition of � and �q, weonlude that t1:S0 = t2:S0 and t1:S0 6= ?. Thus, given that T j= �, we onludethat t1:p0 = t2:p0 and, therefore, �(p0) = 1.Combining Lemmas A.1 and A.2 we obtain:Lemma A.3. Let D = (E; A; P; R; r) be a simple DTD, � a set of funtionaldependenies over D and S [ fpg � paths(D). Assume that X = fq 2 paths(D) jq is a pre�x of p and there is � 2 E suh that q = q0:� and P (last(q0)) ontains ��or �+g. Then, (D;�) 6` S ! p i� ' = Wq2X 'q is satis�able.Finally, we are ready to show that for a simple DTD D and a set of FDs �[fS ! pgover D, heking whether (D;�) ` S ! p an be done in quadrati time. The sizeof eah formula 'q in the previous Lemma is O(k�k+kSk+kpk). Thus, it is possibleto verify whether 'q is satis�able in time O(k�k + kSk+ kpk), sine satis�abilityof propositional Horn formulas an be heked in linear time [Dowling and Gallier1984℄. Hene, given that there are at most kpk of these formulas, heking whetherformulaWq2X 'q in Lemma A.3 is satis�able requires time O(kpk�(k�k+kSk+kpk)).To onstrut this formula, �rst we exeute two steps:(1) For every s 2 paths(�), �nd the longest ommon pre�x of s and a path fromS [ fpg, whih requires time O(ksk � (kSk+ kpk)). By using this pre�x verifywhether s an be nulli�ed from S [ fpg, whih requires time O(ksk � kDk).(2) For eah s 2 paths(�) and for eah pre�x q of p, verify whether q is a pre�x ofs, whih requires time O(kqk).The total time required by these steps is O(k�k � (kDk + kSk + kpk)). Let k bethe number of paths in � and l be the number of pre�xes of p. The informationgenerated by the �rst step is stored in a array with k entries, one for eah path in�, indiating whether eah of these paths an be nulli�ed from S [ fpg. Similarly,the information generated by the seond step is stored in l arrays with k entriesACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



App{4 � M. Arenas and L. Libkineah. By using these data strutures, the formula Wq2X 'q in Lemma A.3 an beonstruted in time O(kpk�(k�k+kSk+kpk)). Thus, the total time of the algorithmis O(kpk � (k�k+ kSk+ kpk) + k�k � (kDk+ kSk+ kpk)). This ompletes the proofof Theorem 7.1.A.2 Proof of Theorem 7.2To prove this theorem �rst we prove two lemmas. Let D = (E; A; P; R; r) bea disjuntive DTD and � 2 E suh that P (�) = s1; : : : ; sn. Assume that for a�xed k 2 [1; n℄, sk = s01js02, where s01, s02 are simple disjuntions over alphabetsA01, A02 and A01 \ A02 = ;. Assume that there is only one p� 2 paths(D) suh thatlast(p� ) = � . We de�ne paths i(D) (for i = 1; 2) as the set of all paths q in D suhthat one of the following statement holds: (1) p� is not a proper pre�x of q or (2)there is � 0 2 E suh that p� :� 0 is a pre�x of q and � 0 is in the alphabet of anyof the regular expressions s1, : : :, sk�1, s0i, sk+1, : : :, sn. Then we de�ne DTDsDi = (Ei; Ai; Pi; Ri; r) (for i = 1; 2) as follows. Ei = f� 0 2 E j � 0 is mentionedin some q 2 paths i(D)g, Ai = f�l j there is � 0 2 Ei suh that �l 2 R(� 0)g,Pi(�) = s1; : : : ; sk�1; s0i; sk+1; : : : ; sn, Pi(� 0) = P (� 0), for eah � 0 2 Ei � f�g, andRi = RjEi . Moreover, given a set of funtional dependenies � over D, we de�nea set of funtional dependenies �i over Di (for i = 1; 2) as follows. For eahS ! p 2 �, if S [ fpg � paths i(D), then S ! p is inluded in �i.Lemma A.4. Let D, �, � , p� , Di and �i, for i = 1; 2 be as above and let S ! pbe a funtional dependeny over D. Then(a) If S [ fpg 6� paths i(D) for every i 2 [1; 2℄, then (D;�) ` S ! p.(b) If S [ fpg � paths1(D) and S [ fpg 6� paths2(D), then (D;�) ` S ! p i�(D1;�1) ` S ! p.() If S [ fpg � paths i(D) for every i 2 [1; 2℄, then (D;�) ` S ! p i� for everyi 2 [1; 2℄, (Di;�i) ` S ! p.Proof. (a) Let pi 2 paths i(D) (i 2 [1; 2℄) suh that pi 2 S [ fpg, for everyi 2 [1; 2℄, p1 62 paths2(D) and p2 62 paths1(D). Let T be an XML tree suh thatT j= (D;�), and t1; t2 2 tuplesD(T ). Without loss of generality, assume thatp1 2 S. If t1:p1 = t2:p1 and t1:p1 6= ?, then t1:p2 = t2:p2 = ?, and, therefore,T j= S ! p. Thus, we onlude that (D;�) ` S ! p.(b) If (D;�) ` S ! p, we have to prove that (D1;�1) ` S ! p. Let T1be an XML suh that T1 j= (D1;�1). This tree onforms to D and satis�es �,sine eah onstraint ' 2 � � �1 ontains at least one path q suh that for everyt 2 tuplesD(T1), t:q = ?. Hene, T1 j= S ! p.Suppose that (D1;�1) ` S ! p. We have to prove that (D;�) ` S ! p.Let T be an XML tree suh that T j= (D;�), and t1; t2 2 tuplesD(T ). Letp1 2 paths1(D) suh that p1 2 S [ fpg and p1 62 paths2(D). By ontradition,suppose that t1:S = t2:S, t1:S 6= ? and t1:p 6= t2:p. If p1 2 S, then there isT1 2 treesD(ft1; t2g) suh that T1 j= D1, sine t1:p1 6= ? and t2:p1 6= ?. SineT j= �, T1 j= �1, and, therefore (D1;�1) 6` S ! p, a ontradition. If p1 = p,without loss of generality, we an assume that t1:p1 6= ?. If t2:p1 6= ?, then thereis T1 2 treesD(ft1; t2g) suh that T1 j= D1. But, T1 j= �1, sine T j= �, and,ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � App{5therefore (D1;�1) 6` S ! p, a ontradition. Assume that t2:p1 = ?. De�net02 2 T (D1) as follows. For eah w 2 paths1(D) \ paths2(D), t02:w = t2:w, andfor eah w 2 paths1(D) � paths2(D), if t1:w = ?, then t02:w = ?, otherwiset02:w 6= t1:w. Given that t1:p� 6= t2:p� , sine t1:p1 6= ? and t2:p1 = ?, we onludethat there is an XML tree T1 2 treesD(ft1; t02g) suh that T1 onforms to D1.But T1 j= �1, sine treesD(ft1; t2g) j= �. Thus, (D1;�1) 6` S ! p, again aontradition.() We will only prove the \if" diretion. The \only if" diretion is analo-gous to the proof of this diretion in (b). Assume that (D;�) 6` S ! p. We willshow that (D1;�1) 6` S ! p or (D2;�2) 6` S ! p.Given that every disjuntive DTD is a relational DTD (see Proposition 7.3), byLemma A.6 we onlude that (D;�) 6` S ! p if and only if there is an XML tree Tand a path q pre�x of p suh that T j= (D;�), tuplesD(T ) = ft1; t2g, t1:S = t2:S,t1:S 6= ?, t1:p 6= t2:p, t1:q 6= t2:q and for eah s 2 paths(D), if q is not a pre�x ofs, then t1:s = t2:s. We onsider three ases.(1) If q is not a pre�x of p� . Then, there is T 0 2 treesD(ft1; t2g) suh that T 0onforms to either D1 or D2. Without loss of generality, assume that T 0 j= D1.In this ase, T 0 j= �1, sine T j= �. Hene, (D1;�1) 6` S ! p.(2) If q is a pre�x of p� and there exists a01 2 A01 and a02 2 A02 suh that t1:p� :a01 6= ?and t2:p� :a02 6= ?. In this ase, we de�ne t02 2 T (D1) as follows. For eah w 2paths1(D) \ paths2(D), t02:w = t2:w, and for eah w 2 paths1(D) � paths2(D),if t1:w = ?, then t02:w = ?, otherwise t02:w 6= t1:w. Then, there exists T 0 2treesD1(ft1; t02g) suh that T 0 j= D1, T 0 j= �1 and T 0 6j= S ! p, sine T j= �and T 6j= S ! p. We onlude that (D1;�1) 6` S ! p.(3) If q is a pre�x of p� and there are no a01 2 A01 and a02 2 A02 suh that eithert1:p� :a01 6= ? and t2:p� :a02 6= ? or t2:p� :a01 6= ? and t1:p� :a02 6= ?. This ase isanalogous to the �rst one.Given a disjuntive DTD D = (E; A; P; R; r), to apply the previous lemma weneed to �nd an element type � suh that there is exatly one path in D whoselast element is � and P (�) = s1; : : : ; sk; : : : ; sn, where sk = s01js02, s01 and s02 aresimple disjuntions over alphabets A01, A02 and A01 \ A02 = ;. If there is no suhan element type and D is not a simple DTD, it is possible to reate it by usingthe following transformation. Pik � satisfying the previous onditions exept forthere is more than one path whose last element is � . Pik p 2 paths(D) suh thatlast(p) = � . De�ne a DTD Dp = (Ep; A; Pp; Rp; rp) as follows. rp = [r℄ andEp = (E �frg)[ f[q℄ j q 2 paths(D) and q is a pre�x of pg (we use square braketsto distinguish between paths and element types). The funtions Pp and Rp arede�ned as follows.|For eah q 2 paths(D) and � 0 2 E suh that q:� 0 is a pre�x of p, Pp([q℄) =f(P (last(q))), where f is a homomorphism de�ned as f(� 0) = [q:� 0℄ and f(� 00) =� 00 for eah � 00 6= � 0. Moreover, Pp([p℄) = P (last(p)) and Pp(� 0) = P (� 0), for eah� 0 2 E � frg. ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



App{6 � M. Arenas and L. Libkin|For eah [q℄ 2 Ep, Rp([q℄) = R(last(q)). Moreover, Rp(� 0) = R(� 0), for eah� 0 2 E � frg.Let � [ fS ! qg be a set of funtional dependenies over D. We de�ne a setof funtional dependenies �p [ fSp ! qpg over Dp as follows. For eah path q0mentioned in � [ fS ! qg, if q0 = q1:q2, where q1 is the longest ommon pre�x ofq0 and p, then q0 is replaed by g(q1):q2, where g is an homomorphism de�ned asg([r℄) = [r℄ and g([w:� 0℄) = g([w℄):[w:� 0 ℄, for eah w:� 0 pre�x of p. The following isstraightforward.Lemma A.5. Let D, � [ fS ! qg, Dp and �p [ fSp ! qpg be as above. Then,(D;�) ` S ! q i� (Dp;�p) ` Sp ! qp.Theorem 7.2 now follows from Lemmas A.4 and A.5.A.3 The Impliation Problem for Relational DTDs is in oNPTo prove this theorem we start with the following lemma.Lemma A.6. Given a relational DTD D, a set � of funtional dependenies overD and S[fpg � paths(D), (D;�) 6` S ! p if and only if there is an XML tree T anda path q pre�x of p suh that T onforms to D, T satis�es �, tuplesD(T ) = ft1; t2g,t1:S = t2:S, t1:S 6= ?, t1:p 6= t2:p, t1:q 6= t2:q and for eah s 2 paths(D), if q isnot a pre�x of s, then t1:s = t2:s.Proof. We will prove only the \only if" diretion, sine the \if" diretion istrivial.Suppose that (D;�) 6` S ! p. There is an XML tree T 0 onforming to D andsatisfying � suh that T 0 6j= S ! p. Then, there are tuples t01; t02 2 tuplesD(T ) suhthat t01:S = t02:S, t01:S 6= ? and t01:p 6= t02:p. Let q be the shortest pre�x of p suhthat t01:q 6= t02:q. We de�ne tree tuples t1 and t2 as follows. For eah s 2 paths(D),if q is not a pre�x of s, then t1:s = t01:s and t2:s = t01:s. Otherwise, t1:s = t01:s andt2:s = t02:s. Notie that t1; t2 2 tuplesD(T 0).Given that D is a relational DTD, it is possible to �nd T 2 treesD(ft1; t2g) suhthat T j= D. We need to prove that T satis�es the onditions of the lemma. Byde�nition of t1 and t2, tuplesD(T ) = ft1; t2g and for eah s 2 paths(D), if q is nota pre�x of s, then t1:s = t2:s. Besides, t1:S = t2:S, t1:S 6= ? and t1:p 6= t2:p, sinet01:S = t02:S, t01:S 6= ?, t01:p 6= t02:p and q is a pre�x of p. Finally, t1:q 6= t2:q, sinet01:q 6= t02:q, and T j= �, sine T 0 j= � and t1; t2 2 tuplesD(T 0).Now we are ready to prove that the impliation problem for relational DTDs is inoNP. Let D be a relational DTD, � a set of funtional dependenies over D andS[fpg � paths(D). Let pre�x(�[fS ! pg) be the set of all p0 2 paths(D) suh thatp0 is a pre�x of a path mentioned in �[fS ! pg. Notie that kpre�x(�[fS ! pg)kis O(k� [ fS ! pgk2).To hek whether (D;�) 6` S ! p, we use a nondeterministi algorithm thatguesses the tuples t1 and t2 mentioned in Lemma A.6. This algorithm does notonstrut all the values in t1 and t2, it guesses only the values of these tuplesthat are neessary to verify whether treesD(ft1; t2g) j= �. The algorithm works asfollows. For eah s 2 pre�x(� [ fS ! pg), guess the values of t1:s and t2:s. Verifywhether it is possible to onstrut an XML tree onforming to D and ontainingACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Douments � App{7t1 and t2. If this does not hold, then return \no". Otherwise, guess a pre�x qof p. Verify whether t1:S = t2:S, t1:S 6= ?, t1:p 6= t2:p, t1:q 6= t2:q and for eahs 2 paths(� [ fS ! pg), if q is not a pre�x of s, then t1:s = t2:s. If this does nothold, then return \no". Otherwise, hek whether the values in t1 and t2 satisfy �.If this is the ase, then return \yes", otherwise return \no".The previous algorithm works in nondeterministi polynomial time, sinekpre�x(� [ fS ! pg)k is O(k� [ fS ! pgk2). Therefore, we onlude that theimpliation problem for relational DTDs is in oNP.A.4 Proof of Proposition 7.7We only need to prove the \if" diretion. Suppose that for eah nontrivial FD ofthe form S ! p:�l or S ! p:S in �, S ! p 2 (D;�)+.Assume that (D;�) is not in XNF. Without loss of generality, assume that thereexists a nontrivial funtional dependeny S0 ! p0:�l0 suh that S0 ! p0:�l0 2(D;�)+ and S0 ! p0 62 (D;�)+. By Lemma A.6, there is an XML tree T and apath q pre�x of p0 suh that T onforms to D, T satis�es �, tuplesD(T ) = ft1; t2g,t1:S0 = t2:S0, t1:S0 6= ?, t1:p0 6= t2:p0, t1:q 6= t2:q and for eah s 2 paths(D), if q isnot a pre�x of s, then t1:s = t2:s. If t1:p0:�l0 6= t2:p0:�l0, then (D;�) 6` S0 ! p0:�l0,a ontradition. Thus, we an assume that t1:p0:�l0 = t2:p0:�l0. We an alsoassume t1:p0:�l0 6= ?, sine if t1:p0:�l0 = t2:p0:�l0 = ?, then t1:p0 = t2:p0 = ?and, therefore, T j= S0 ! p0. De�ne a new tree tuple t01 as follows: t01:w = t1:w,for eah w 6= p0:�l0, t01:p0:�l0 6= t1:p0:�l0 and t01:p0:�l0 6= ?. Then, there is anXML tree T 0 2 treesD(ft01; t2g) suh that T 0 j= D and T 0 6j= S0 ! p0:�l0, sinep0:�l0 62 S0 (S0 ! p0:�l0 is a nontrivial funtional dependeny). If T 0 j= �, then(D;�) 6` S0 ! p0:�l0, a ontradition. Hene T 0 6j= � and, therefore, there isS ! p00 2 � suh that T 0 6j= S ! p00. But p00 must be equal to p0:�l0, sinet1; t2 2 tuplesD(T ) and T j= �. Therefore, T 6j= S ! p0, beause t1:S = t01:S = t2:S,t01:S 6= ? and t1:p0 6= t2:p0. We onlude that (D;�) 6` S ! p0, whih ontraditsour initial assumption sine S ! p0:�l0 is a nontrivial FD in �.
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