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Data exchange deals with translating data structured in some source format into data structured in some
target format, given a specification of the relationship between the source and the target and possibly
constraints on the target, and answering queries over the target in a way that is semantically consistent
with the information in the source. Theoretical foundations of data exchange have been actively explored
recently. It was also noticed that the standard semantics for query answering in data exchange may lead to
counter-intuitive or anomalous answers.

In the present paper, we explain that this behavior is due to the fact that solutions can contain “invented”
information (i.e., information that is not related to the source instance), and that the presence of incomplete
information in target instances has been ignored. In particular, proper query evaluation techniques for
databases with nulls have not been used, and the distinction between closed and open world semantics has
not been made.

We present a concept of solutions, called CWA-solutions, that is based on the closed world assumption.
For data exchange settings without constraints on the target, the space of CWA-solutions has two extreme
points: the canonical universal solution (the “maximal” CWA-solution) and the core of the universal solutions
(the “minimal” CWA-solution), both of them well studied in data exchange. In the presence of constraints
on the target, the core of the universal solutions is still the “minimal” CWA-solution, but there may be
no unique “maximal” CWA-solution. We show how to define the semantics of query answering taking into
account incomplete information, and show that some of the well-known anomalies go away with the new
semantics. The paper also contains results on the complexity of query answering, upper approximations to
queries (maybe-answers), and various extensions.
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1. INTRODUCTION

1.1. Data Exchange

Data exchange deals with translating data structured in some source format into data
structured in some target format, given a specification of the relationship between the
source and the target, and possibly constraints on the target. Data exchange is an old
database problem (see, e.g., Shu et al. [1977]). In the past few years it received renewed
attention through the development of commercial strength systems like Clio [Miller
et al. 2001; Haas et al. 2005], and through the influential papers [Fagin et al. 2005a;
Fagin et al. 2005b] which laid the theoretical foundations for data exchange. A good
starting point into this area are the surveys [Kolaitis 2005; Barceló 2009; Hernich and
Schweikardt 2010] and a very recent book [Arenas et al. 2010].
We focus on relational data exchange, as described by Fagin et al. [2005a]. The basic

task in relational data exchange is: Given two disjoint (relational database) schemas
σ and τ , a finite set Σst of constraints specifying the relationship between the source
and the target, a finite set Σt of constraints on the target, and a (relational database)
instance S over σ, compute an instance T over τ such that the joint instance S ∪ T
that consists of all relations in S and T satisfies all the constraints in Σst and Σt.
We call D = (σ, τ,Σst,Σt) a data exchange setting, S a source instance for D, and T a
solution for S underD. Moreover,Σst is the set of source-to-target dependencies, and Σt
the set of target dependencies of D. As in [Fagin et al. 2005a; Fagin et al. 2005b], we
consider only data exchange settings (σ, τ,Σst,Σt), where Σst and Σt are finite sets of
tuple-generating dependencies (tgds) and equality-generating dependencies (egds).

Example 1.1. Consider a schema σ = {Submission,PC}, where relation Submis-
sion is supposed to store tuples (id, title) providing IDs and titles of papers submitted
to a conference, and relation PC is supposed to store tuples (name,affiliation,paper_id)
providing information about PC members and the conference submissions they are as-
signed to. For example, let S be an instance over σ with1

Submission
S = {(1, t1), (2, t2)},

PC
S = {(n1, a1, 1), (n1, a

′
1, 1), (n2, a2, 2), (n3, a3, 3)}.

Assume we want to translate instances over σ into instances over the schema τ =
{Paper,PC ′,Assign}, where Paper stores tuples (id,title,keywords) providing informa-
tion about the submissions, PC ′ stores tuples (id,name) providing information about
the PC members along with an ID, which is required to be a key, and Assign con-
tains tuples (paper_id,pc_id) assigning submissions to PC members by their IDs. This
translation can be described by a data exchange setting Dconf = (σ, τ,Σst,Σt), where
Σst consists of the two tgds

d1 = ∀x1∀x2
(

Submission(x1, x2) → ∃z Paper(x1, x2, z)
)

,

d2 = ∀x1∀x2∀y
(

PC(x1, y, x2) → ∃z (PC ′(z, x1) ∧ Assign(x2, z))
)

,

and Σt consists of the tgd, respectively egd,

d3 = ∀x1∀x2
(

Assign(x1, x2) → ∃z ∃z′ ∃z′′ (Paper(x1, z, z
′) ∧ PC ′(x2, z

′′))
)

,

d4 = ∀x1∀x2∀x3
(

PC ′(x1, x2) ∧ PC ′(x1, x3) → x2 = x3
)

.

1For a relation symbol R and an instance I, we write RI for the interpretation of R in I.
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Closed World Data Exchange A:3

One possible solution for S under Dconf is the instance T over τ with

Paper
T = {(1, t1,⊥1), (2, t2,⊥2), (3,⊥3,⊥4)},

PC ′T = {(⊥5, n1), (⊥6, n2), (⊥7, n3)},

Assign
T = {(1,⊥5), (2,⊥6), (3,⊥7)}.

Here, the elements ⊥1,⊥2, . . . ,⊥7 are called labeled nulls, or just nulls, in contrast
to the other elements in T that are provided by S, which are called constants. A null
serves as a placeholder for a concrete (constant) value.

Given a data exchange setting D and a source instance S for D, there may be many
different solutions for S under D. Two natural questions are therefore: Which solu-
tion should we compute? And how can we answer queries posed against the target
schema in a way that is semantically consistent with the information contained in S?
Concerning the first question, Fagin et al. [2005a] introduced the notion of universal
solutions, and argued that these should be the preferred solutions to materialize in
data exchange. Furthermore, [Fagin et al. 2005a; Fagin et al. 2005b] identified two
particular important universal solutions: the canonical universal solution (canonical
solution, for short), and the core of the universal solutions (core solution, for short),
which is the unique minimal universal solution up to renaming of nulls. Concerning
the second question, Fagin et al. [2005a] adopted the certain answers semantics for
query answering. Given a data exchange setting D, a source instance S for D, and a
query Q over τ , the certain answers of Q on S with respect to D are defined as

certainD(Q,S) :=
⋂

{Q(T ) | T is a solution for S under D}. (1.1)

It was shown that the canonical solution and the core solution are good for answering
positive queries, like unions of conjunctive queries, in the sense that the certain an-
swers of a positive query Q can be computed by evaluating Q over such a solution (and
removing all tuples with nulls from the result afterwards).
The above results provided the basis for extensions dealing, for example, with

rewritability, query answering, schema composition, schema inversion, algorithmic is-
sues, and other data models; see the papers [Mądry 2005; Arenas et al. 2004; Fagin
et al. 2005; Arenas and Libkin 2008; Kolaitis et al. 2006; Fuxman et al. 2006; Gottlob
and Nash 2008; Arenas et al. 2009] and the book [Arenas et al. 2010].

1.2. Anomalies of Query Answering in Data Exchange

It has been observed in [Fagin et al. 2005a; Arenas et al. 2004] that, on non-
positive queries, the certain answers semantics exhibits counter-intuitive behavior
– and sometimes this behavior can be described as anomalous. For instance, con-
sider the data exchange setting D∗ = ({E}, {E′},Σst, ∅), where Σst consists of the tgd
∀x1∀x2

(

E(x1, x2) → E′(x1, x2)
)

. Informally,D∗ tells us to “copy” E to E′. Given a source
instance S for D∗ and a query Q over {E′}, it therefore seems natural to expect that
the answer to Q is simply Q(S′), where S′ is the “copy” of S over {E′}, that is, the
instance S′ with (E′)S

′

= ES . For the simple existential query

Q(x) := ∃y
(

E′(x, y) ∧ ¬E′(y, x)
)

,

and the source instance S∗ with ES∗

= {(a, b)}, this means that the set of answers to
Q with respect to S∗ and D∗ is {a}. But contrary to this expectation, certainD∗

(Q,S∗)
is empty.
Two more examples, which point out more severe problems with the certain answers

semantics, were pointed out in [Fagin et al. 2005a; Arenas et al. 2004]:
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—Rewritings of first-order queries do not exist, even in copying data exchange set-
tings. Copying data exchange settings are among the simplest possible data ex-
change settings. For example, the data exchange setting D∗ from above is a copy-
ing data exchange setting. In general, a copying data exchange setting has the form
D = (σ, τ,Σst, ∅), where τ = {R′ | R ∈ σ}, R′ is a fresh relation symbol for each R ∈ σ,
and Σst = {∀x̄

(

R(x̄) → R′(x̄)
)

| R ∈ σ}. So, informally, D just tells us to “copy” the
source relations to the target relations. Therefore, as above, given a source instance
S for D and a query Q over τ , we would intuitively expect that the answer to Q
is simply Q(S′), where S′ is the copy of S over τ (i.e., the target instance S′ with
(R′)S

′

= RS for every R ∈ σ). But as shown by Arenas et al. [2004], this does not
hold for the certain answers semantics. Even more, they show that there is a copying
data exchange setting D = (σ, τ,Σst, ∅) and an existential query Q over τ such that
Q cannot be rewritten to an FO query Q′ over τ such that for all source instances S
for D we have certainD(Q,S) = Q′(T ), where T is the canonical solution or the core
solution for S under D. An analogous result for LAV data exchange settings (which
have no target dependencies, and contain only tgds with a single atom in the body)
and a conjunctive query with one inequality was proved by Fagin et al. [2005a].

—Too much uniformity in query answers. Let D = (σ, τ,Σst,Σt) be a data exchange
setting with Σt = ∅, and let Q be a non-trivial Boolean query over τ . Then we expect
the answer to Q with respect toD to be true in some source instances forD, and false
in others. But it was shown in [Arenas et al. 2004, Proposition 5.4] that either for all
source instances S the certain answers of Q on S with respect to D are empty, or for
all source instances S the certain answers of ¬Q on S with respect to D are empty.
So either Q or ¬Q has a trivial answer (the empty set) that is input-independent.

It is natural to assume that the reason for such anomalies lies in some basic prob-
lems with the definition of solutions and query answering semantics. In fact, Fagin
et al. [2005b] tried to remedy this partially by introducing a different semantics for
answering queries based on universal solutions, but this semantics is prone to the
above anomalies as well, cf. the full version of Arenas et al. [2004]. Our goal, therefore,
is twofold:

(1) we would like to understand what causes these anomalies, and
(2) we would like to find natural notions of solutions and query answering that do not

exhibit such anomalous behavior.

1.3. Reasons for Query Answering Anomalies

In our opinion, there are essentially two reasons for the anomalies of query answering
in data exchange described above.
First, the basic notions in data exchange rely on the open world assumption (OWA)

[Reiter 1978; 1984; Imielinski and Lipski, Jr. 1984; van der Meyden 1998]. The OWA
is a general principle for dealing with “negative information” (i.e., information that is
not supplied, e.g., by an instance, or by a data exchange setting and a source instance).
Intuitively, under the OWA, facts that are not explicitly stated to be true or false,
are not known to be true or false, and can therefore be either true or false. In data
exchange, the OWA amounts to the following property: Given a data exchange setting
D = (σ, τ,Σst,Σt), a source instance S forD, a solution T for S underD, and an instance
T ′ over τ with T ⊆ T ′, if T ′ satisfies all dependencies in Σt, then T ′ is a solution for S
underD (since neitherD nor S tells us that the tuples which are in T ′ and not in T are
not part of any solution). This alone causes most of the anomalies mentioned above.
For example, Proposition 5.4 in [Arenas et al. 2004] depends entirely on this property.
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Second, although solutions may well contain nulls, the definition of the certain an-
swers semantics applies a query Q to solutions as if solutions were instances without
nulls. More precisely, Q is applied as if nulls were ordinary database values. But the
dangers of treating nulls this way are very well known since the seminal paper by
Imielinski and Lipski, Jr. [1984] (see also Abiteboul et al. [1995] and Date and Darwen
[1997] for examples of anomalous behavior of the null-values semantics of SQL). Apply-
ing Q to an instance as if nulls were constants, distinct from constants that may occur
elsewhere in the instance, is known as a naive-tables, or just naive semantics [Abite-
boul et al. 1995; Imielinski and Lipski, Jr. 1984]. This semantics applies to positive
queries, but is insufficient for properly representing answers to non-positive queries.
Therefore, it should not be surprising that outside the class of positive queries, the
certain answers semantics as defined in Eq. (1.1) exhibits anomalous behavior.

1.4. Main Contributions

To overcome the problems described above, we propose new query answering seman-
tics that are based on the closed world assumption (CWA) [Reiter 1978; 1984; Imielin-
ski and Lipski, Jr. 1984; van der Meyden 1998], and employ techniques for answer-
ing queries on instances with nulls [Lipski, Jr. 1979; Imielinski and Lipski, Jr. 1984;
van der Meyden 1998]. Intuitively, the CWA here ensures that query answers depend
only on data “moved” from the source instance to the target using the tgds and egds
of the data exchange setting. This is the reason why, in our view, the CWA should be
the preferable (although not exclusively so) assumption in data exchange. Also, it en-
sures that some of the anomalies described above do not arise for the new semantics.
To obtain the new semantics, we restrict the set of solutions to those solutions that
are “valid” under the CWA, and, depending on the semantics, we basically take the
certain answers or the maybe answers (in the sense of Lipski, Jr. [1979]) with respect
to the restricted set.2 We have to be careful, though, since in general the restricted
set of solutions will contain instances with nulls. Altogether, we obtain four different
semantics.
The key step is to formalize an appropriate notion of CWA-solution that corresponds

to solutions that are “valid” under the CWA. The main idea is that each fact in a CWA-
solution must be directly justified by the source instance and the tgds and egds of the
data exchange setting. Here, a fact is a simple statement expressible by a Boolean
conjunctive query. More precisely, we have the following three informal requirements
for CWA-solutions:

(1) Every atom3 present in a CWA-solution must be “justified” by the source instance
S and the tgds and egds of the data exchange setting D. Informally, an atom is
justified if it can be inferred from S using the tgds and egds of D.

(2) Justifications for atoms should not be overused. That is, justifications for atoms do
not justify more atoms than necessary. This requirement actually prevents exces-
sive use of nulls.

(3) Each fact true in a CWA-solution logically follows from the source instance S and
the tgds and egds of the data exchange setting D. That is, CWA-solutions should
not “invent” new facts compared to what can be inferred from S using the tgds and
egds in D.

2There are also more advanced forms of approximating answers that have been proposed in [Buneman et al.
1991; Buneman et al. 1991; Gunter 1992; Libkin 1998], but in this paper we concentrate on the two basic
semantics mentioned above.
3Here we view instances as sets of atoms of the form R(ā). If an instance I contains an atom R(ā), this
means that ā ∈ RI . If I does not contain R(ā), this means that ā /∈ RI .
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We characterize CWA-solutions as particular universal solutions, with the core so-
lution being the unique minimal CWA-solution (up to renaming of nulls). In partic-
ular, CWA-solutions exist if and only if universal solutions exist. We also identify
restricted kinds of data exchange settings, where a unique “maximal” CWA-solution
is guaranteed to exist. In particular, the canonical solution is the unique “maximal”
CWA-solution under data exchange settings without target dependencies. For general
settings, however, such “maximal” CWA-solutions may not exist.
The existence of minimal and maximal CWA-solutions allows us to obtain simple

characterizations of the four semantics under data exchange settings without target
dependencies (and slight extensions thereof), namely as the certain answers or the
maybe answers over the canonical solution or the core solution, depending on the se-
mantics. Thus, for such data exchange settings, the problem of query answering is re-
duced to the well-studied problem of query answering over instances with nulls, while
these instances are the canonical solution or the core solution, which we know well
how to construct. For general data exchange settings, however, only two of the four
semantics can be characterized in such a way.
We also address the problem of computing CWA-solutions. We obtain a data ex-

change setting D = (σ, τ,Σst,Σt), where Σst ∪ Σt consists entirely of tgds such that it
is undecidable whether a given source instance S for D has a CWA-solution under D.
As a consequence, the corresponding problem for universal solutions is undecidable,
too. This also strengthens a corresponding result of Deutsch et al. [2008] on the exis-
tence of universal models. When restricting attention to the well-known class ofweakly
acyclic data exchange settings, however, known tractability results for universal so-
lutions carry over to CWA-solutions. In particular, for such data exchange settings,
CWA-solutions can be computed with polynomial time data complexity.
Finally, we consider the problem of query answering with respect to the four dif-

ferent query semantics. Considering weakly acyclic settings, we show that evaluating
unions of conjunctive queries under two of the semantics is possible with polynomial
time data complexity and can be PTIME-hard. Going beyond unions of conjunctive
queries, we obtain that evaluation of (Boolean) first-order queries under the four se-
mantics has co-NP (resp., NP) data complexity, provided that the underlying data ex-
change setting is richly acyclic (an acyclicity notion that is slightly more restrictive
than the usual notion of weak acyclicity). Furthermore, there exist conjunctive queries
with just one inequality, for which evaluating the query is co-NP-hard (resp., NP-hard).

1.5. Practical Aspects

Data exchange is an area where systems work was ahead of theoretical investigation:
data exchange systems existed for a while (and are being worked on), with theoretical
foundations arriving a few years later. In fact the main goal of early theoretical papers
on data exchange was to offer insights into the semantics of query answering, and
to justify – or suggest changes to – algorithms implemented in real-life systems. Our
investigation follows this trend, and below we offer some comments on the practical
aspects of the theoretical results shown here.
Our characterizations of the space of CWA-solutions further confirms the crucial

role that the canonical solution and the core solution play in data exchange. In fact,
we show that in many cases queries can be answered using these solutions, even when
incompleteness of these solutions is properly taken into account. The results confirm
the usual trade-off between these two solutions: while the canonical solution is prob-
ably slightly more natural for query answering under the CWA in settings without
target constrains, it does not necessarily play a similar role when target constraints
are present. All in all, the results suggest that a reasonable balance between these
two standard solutions should be used (in line, for example, with a recent investiga-
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tion of Mecca et al. [2009], which reached similar conclusions by analyzing time/space
requirements for building these solutions).
Once a query Q is issued, certain answers to Q should be computed and given to the

user. Note that the issue of non-rewritability goes away with the closed-world seman-
tics; instead, one has to use techniques for computing certain answers to queries over
database instances with incomplete information. Such instances, e.g., the core solution
and the canonical solution, are naive tables. If certain answers are not sufficient for
the user, maybe-answers should be computed to provide an upper approximation. No
new materialization of the target is required for this purpose.

1.6. Outline

The paper is structured as follows: Section 2 fixes basic notation and definitions that
are used throughout the paper. In Section 3, we introduce and illustrate the concept
of CWA-solutions; we also identify some basic properties of CWA-solutions. The com-
plexity of computing CWA-solutions is studied in Section 4. Section 5 presents the
new CWA-solution-based query answering semantics, and argues that some of the
anomalies mentioned above do not arise for the new semantics. Furthermore, Section 5
contains a comparison of the CWA-solution-based semantics with other semantics for
query answering which appeared after the conference versions [Libkin 2006; Hernich
and Schweikardt 2007] of this article. Section 6 studies the complexity of query answer-
ing under the CWA-solution-based semantics. Finally, Section 7 concludes the paper.

2. PRELIMINARIES

This section presents basic definitions that are used throughout the paper.

2.1. Database Instances

A schema σ is a finite set of relation symbols, each associated with an arity, and an
instance I over σ assigns to each relation symbol R ∈ σ a finite relation RI of the same
arity as R. We often identify I with the set {R(ū) | R ∈ σ, ū ∈ RI} of atoms R(ū) of I.
The set of all values that occur in I is denoted by dom(I). We assume that each such
value comes from one of the following two disjoint infinite sets: the set Const of constant
values, and the set Null of null values (nulls, for short). Constants are typically denoted
by lowercase letters a, b, c, . . . , and nulls by ⊥, possibly with sub/superscripts. We let
const(I) := dom(I)∩Const and null(I) := dom(I)∩Null. We also let Dom := Const∪Null.
The usual operations and notations for sets naturally carry over to instances. In

particular, given instances I and J , the union of I and J , denoted by I ∪ J , is the
instance consisting of all atoms of I and all atoms of J ; and I is contained in J , written
I ⊆ J , if every atom of I is contained in J .
Given instances I and J , a homomorphism from I to J is a mapping h : dom(I) →

dom(J) such that h is the identity on const(I), and for each atom R(ū) in I the atom
R(h(ū)) is in J . 4 Here, for ū = (u1, . . . , uk) we let h(ū) := (h(u1), . . . , h(uk)). An isomor-
phism from I and J is an injective homomorphism h such that h−1 is a homomorphism
from J to I. Usually, we identify instances which are the same up to isomorphism. We
say that I is contained in J if I is isomorphic to an instance K ⊆ J .

2.2. Queries and Dependencies

A first-order query (FO query, for short) over a schema σ is a first-order formula ϕ over
the vocabulary σ ∪ {c | c ∈ Const} (i.e., FO queries may contain constants), together

4Note the difference between this definition of homomorphism, and the one used in Libkin [2006]. Here, a
homomorphism can map a null to a constant or to a null, but a homomorphism according to the definition
in Libkin [2006] maps nulls always to nulls (and not to constants).
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with a tuple x̄ = (x1, . . . , xk) that lists the free variables of ϕ. We denote such a query by
ϕ(x̄). FO queries are evaluated using the active domain semantics (see, e.g., Abiteboul
et al. [1995]). That is, quantifiers range over the values that occur in the instance or the
query. A conjunctive query over σ is an FO query over σ built entirely from relational
atomic formulas over σ, using conjunction and existential quantification. Unions of
conjunctive queries are disjunctions of conjunctive queries. CQ and UCQ respectively
denote the set of conjunctive queries and the set of unions of conjunctive queries.
Given ϕ(x1, . . . , xk) =

∧n

i=1 Ri(ȳi) and ū = (u1, . . . , uk) ∈ Domk, we will often write
ϕ(ū) for the set of all atoms Ri(v̄i), where v̄i is obtained from ȳi by replacing each
variable xi with ui.
A tuple generating dependency (tgd, for short) is a formula of the form

∀x̄∀ȳ
(

ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)
)

, (2.1)

where ϕ(x̄, ȳ) and ψ(x̄, z̄) are conjunctions of relational atomic formulas. Full tgds are
tgds of the form (2.1), where z̄ is empty. An equality generating dependency (egd, for
short) is a formula of the form

∀x̄
(

ϕ(x̄) → xi = xj
)

, (2.2)

where ϕ is a conjunction of relational atomic formulas, x̄ = (x1, . . . , xk) for some k ≥ 1,
and i, j ∈ {1, . . . , k}. In the sequel, we omit the universal quantifiers in front of tgds
and egds, and just write ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) for (2.1), and ϕ(x̄) → xi = xj for (2.2).

2.3. Data Exchange Settings and Solutions

A data exchange setting (σ, τ,Σst,Σt) consists of disjoint schemas σ and τ , called source
schema and target schema, respectively, a finite set Σst of source-to-target dependencies,
and a finite set Σt of target dependencies. A data exchange setting (σ, τ,Σst, ∅) without
target dependencies is also denoted by (σ, τ,Σst). As source-to-target dependencies we
will use source-to-target tgds (or s-t tgds), which are tgds of the form (2.1), where ϕ is
a conjunction of relational atomic formulas over σ and ψ is a conjunction of relational
atomic formulas over τ . As target dependencies we will use tgds over τ (called target
tgds) together with egds over τ . Whenever we talk about a data exchange setting, we
mean a data exchange setting that consists of this kind of source-to-target dependen-
cies and target dependencies.
Let D = (σ, τ,Σst,Σt) be a data exchange setting. A source instance for D is an in-

stance over σ, and a target instance forD is an instance over τ . We assume that source
instances contain only constants (i.e., no nulls); target instances, on the other hand,
may also contain nulls. A solution for S under D is a target instance T for D such that
S∪T satisfies all s-t tgds in Σst, written S∪T |= Σst, and T satisfies all target tgds and
egds in Σt, written T |= Σt.

2.4. Universal Solutions, the Canonical Solution, and the Core

Universal solutions were introduced by Fagin et al. [2005a] as a formalization of “most
general solutions”. Let D be a data exchange setting, and let S be a source instance
for D. A universal solution T for S under D is a solution for S under D such that for
every solution T ′ for S under D there is a homomorphism from T to T ′. For computing
universal solutions, the well-known chase procedure [Beeri and Vardi 1984] can be
used; see [Fagin et al. 2005a, Section 3.1].
Here we give only the most essential definitions regarding the chase, a detailed

exposition can be found in Fagin et al. [2005a]. A tgd ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) can be applied
to an instance I (with tuples ū, v̄) if I |= ϕ(ū, v̄) and for every tuple w̄ we have I 6|=
ψ(ū, w̄). The result of this application is an instance J obtained from I by adding the
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atoms of ψ(ū, w̄), where w̄ is a tuple of pairwise distinct fresh nulls. An egd ϕ(x̄) →
xi = xj can be applied to I (with a tuple ū = (u1, . . . , u|x̄|)) if I |= ϕ(ū) and ui 6= uj.
If at least one of ui and uj, say ui, is a null, then the result of this application is an
instance J obtained from I by replacing every occurrence of ui with uj ; if both ui and
uj are constants, the application is said to fail. A chase sequence of I with Σ is a (finite
or infinite) sequence C = (I0, I1, . . . ) of instances such that I0 = I, and each instance
Ii+1 is the result of applying a tgd or an egd in Σ to Ii. If C is finite, its result is the last
instance in C. C is complete if it is finite, and no tgd and no egd can be (successfully)
applied to its result. C is successful if it is complete and its result satisfies Σ. Finally,
C is failing if it is finite and its result does not satisfy Σ. If D = (σ, τ,Σst,Σt) is a data
exchange setting, S is a source instance for D, and S ∪ T is the result of any successful
chase sequence of S with Σst ∪ Σt, then T is a universal solution for S under D [Fagin
et al. 2005a].
Two universal solutions play a special role in data exchange: the canonical solution

[Fagin et al. 2005a], and the core solution [Fagin et al. 2005b].
We first recall the definition of the canonical solution, for data exchange settings

without target dependencies. The following definition of the canonical solution is from
Arenas et al. [2004]. Let D = (σ, τ,Σst) be a data exchange setting without target de-
pendencies, and let S be a source instance for D. For each s-t tgd in Σst of the form
ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and for each pair of tuples ū, v̄ such that S |= ϕ(ū, v̄), let ⊥̄ be a tu-
ple of pairwise distinct fresh nulls so that |⊥̄| = |z̄|, and add the atoms of ψ(ū, ⊥̄) to the
target. (We recall that ψ is a conjunction of atomic formulas.) The result is the canon-
ical solution for S under D, denoted by CANSOLD(S). Notice that S ∪ CANSOLD(S) is
the result of the oblivious chase (see, e.g., Calì et al. [2008]) of S with Σst.
For example, given the data exchange setting D = ({E}, {R},Σst), where Σst =

{E(x, y) → ∃z R(x, z)}, and the source instance S = {E(a, b1), E(a, b2)}, we have
CANSOLD(S) = {R(a,⊥1), R(a,⊥2)}.
Next we give the definition of the core solution. A core of an instance I is an instance

J ⊆ I such that there is a homomorphism from I to J , but there is no homomorphism
from J to any instance K ( J . Some basic properties of cores are:

THEOREM 2.1 ([HELL AND NEŠETŘIL 1992; FAGIN ET AL. 2005B]).

(1) Every instance has a core.
(2) If I1 and I2 are homomorphically equivalent instances, J1 is a core of I1, and J2 is a

core of I2, then J1 and J2 are isomorphic. In particular, any two cores of an instance
are isomorphic.

(3) If J is a core of I, then there is a homomorphism from I to J that is the identity on
dom(J). In particular, J is a homomorphic image of I.

By Theorem 2.1, we can speak of the core of an instance. In Fagin et al. [2005b] it was
shown that, if universal solutions for S underD exist, then there is a universal solution
for S under D, denoted by CORED(S), that is isomorphic to the core of every universal
solution for S under D. In the previous example, both {R(a,⊥1)} and {R(a,⊥2)} are
cores of CANSOLD(S); of course they are isomorphic so we can say that {R(a,⊥)} is the
core of CANSOLD(S), or equivalently, of the universal solutions for S.

2.5. Instances with Incomplete Information

We review the most important definitions from [Imielinski and Lipski, Jr. 1984; Abite-
boul et al. 1995] on instances with incomplete information. Instances with nulls are
instances with incomplete information. Nulls are treated as “unknown” (as opposed to
“nonexistent”) values [Zaniolo 1984]: for each null, we know that there is a constant
that can be substituted for that null, but we do not know which constant. Thus, an in-
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stance I with nulls represents a number of complete instances (without nulls) obtained
from I by assigning constants to the nulls in I.
More precisely, let a valuation of I be a mapping v : null(I) → Const. Given an in-

stance I with incomplete information and a valuation v of I, let v(I) be the instance
obtained from I by replacing, for every ⊥ ∈ null(I), each occurrence of ⊥ in I by v(⊥).
We then define the set of all instances represented by I as

Rep(I) := {v(I) | v is a valuation of I}.

Note that Rep(I) is a potentially infinite object. For example, if I = {R(⊥)}, then
Rep(I) = {{R(c)} | c ∈ Const}. For a set Σ of constraints over I ’s schema, we set

RepΣ(I) := {Î ∈ Rep(I) | Î |= Σ}.

In order to evaluate a query Q on an instance I with incomplete information
(where Q comes from a language that works on instances without nulls, e.g., an FO
query), one normally considers the set {Q(Î) | Î ∈ Rep(I)} as the result of Q on I, or
{Q(Î) | Î ∈ RepΣ(I)} in the context of a set Σ of constraints on I. To represent this set
(even for an FO query Q), one needs rather complicated conditional tables [Imielinski
and Lipski, Jr. 1984]. Instead of exact representation, one often prefers to use lower
and upper approximations, namely the certain answers and the maybe answers, de-
fined as follows:

— the certain answers of Q on I w.r.t. Σ: 2ΣQ(I) :=
⋂

{Q(Î) | Î ∈ RepΣ(I)}

— the maybe answers of Q on I w.r.t. Σ: 3ΣQ(I) :=
⋃

{Q(Î) | Î ∈ RepΣ(I)}

That is, the certain answers 2ΣQ(I) contain tuples that are present in the answer to
Q no matter which values are assigned to the nulls in I. The maybe answers 3ΣQ(I)
contain tuples present in at least one answer to Q for some assignment of values to
the nulls in I. Notice that 2ΣQ(I) is a finite object (since it is contained in Q(v(I)) for
every valuation v of I with v(I) |= Σ), but 3ΣQ(I) may well be infinite, and thus some
finite representation of it needs to be found.
Note that these certain and maybe answers should not be confused with certain and

maybe answers that arise in data exchange: here our only source of incompleteness
is nulls in instances, while in data exchange the main source of incompleteness is the
existence of multiple target instances.

3. CWA-SOLUTIONS

In this section, we formalize the requirements for CWA-solutions presented in the
introduction, and identify basic properties of CWA-solutions.
Let us recall the requirements for CWA-solutions presented in Section 1:

(1) Each atom in a CWA-solution must be justified by the source instance and the tgds
and egds of the data exchange setting.

(2) Justifications for atoms should not be overused. That is, justification for atoms do
not justify more atoms than necessary.

(3) Each fact true in a CWA-solution logically follows from the source instance S and
the tgds and egds of the data exchange setting D. That is, CWA-solutions should
not “invent” new facts compared to what can be inferred from S using the tgds and
egds in D.

In Section 3.1 and Section 3.2, we formalize the first two requirements by defining
CWA-presolutions (which intuitively satisfy these requirements). Section 3.1 deals
with data exchange settings without target dependencies. It serves as a warm-up for
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Section 3.2, where we deal with the more involved case of data exchange settings with
target dependencies. CWA-solutions are introduced in Section 3.3.

3.1. CWA-Presolutions for Data Exchange Settings Without Target Dependencies

We aim to define CWA-presolutions, a formalization of solutions that satisfy the first
two requirements for CWA-solutions, for data exchange settings without target depen-
dencies.
Let D = (σ, τ,Σst) be a data exchange setting without target dependencies, and let S

be a source instance for D.
Informally, an atom in a solution for S under D is justified if it can be obtained from

S by applying an s-t tgd in Σst. Let a justification for an atom with respect to S and D
consist of

— an s-t tgd d ∈ Σst of the form ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and
— tuples ū, v̄ over Dom such that S |= ϕ(ū, v̄).

We denote such a justification by (d, ū, v̄). It tells us that ϕ(ū, v̄) is satisfied in S, so
that any solution T for S under D must satisfy ψ(ū, w̄) for some tuple w̄ over Dom.
So, intuitively, (d, ū, v̄) can be used to justify the atoms of ψ(ū, w̄) for any tuple w̄ over
Dom of the appropriate length. Let JD,S be the set of all justifications for atoms with
respect to S and D.
Let T be a solution for S under D. For T to be a CWA-presolution, we require each

atom of T to be assigned to some justification in JD,S (requirement 1). More precisely,
for each atom A ∈ T there must be a justification (d, ū, v̄) ∈ JD,S with d of the form
ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and an assignment w̄ for the variables in z̄ such that T satisfies
ψ(ū, w̄), and A is one of the atoms of ψ(ū, w̄). Concerning requirement 2, each (d, ū, v̄) ∈
JD,S must be associated to the atoms of ψ(ū, w̄) for at most one tuple w̄. So, in fact,
for each justification j = (d, ū, v̄) ∈ JD,S with d of the form ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) there
must be exactly one tuple w̄j so that j justifies the atoms of ψ(ū, w̄j). In other words,
T is the union of ψ(ū, w̄j) as j = (d, ū, v̄) ranges over all justifications in JD,S and
d = ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄).
This leads to the following definition of a CWA-presolution. Let α : J ∗

D,S → Dom,
where J ∗

D,S is the set of all pairs (j, z) consisting of a justification j = (d, ū, v̄) ∈ JD,S

with d of the form ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and a variable z in z̄. For each j = (d, ū, v̄) ∈ JD,S

with d = ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), let Aα(j) := ψ(ū, w̄j), where w̄j is obtained from z̄ by
replacing each variable z in z̄ with α(j, z).

Definition 3.1 (CWA-presolution). A CWA-presolution for S under D is a target in-
stance T for D such that there is a mapping α : J ∗

D,S → Dom with T = TD,α(S), where
TD,α(S) :=

⋃

j∈JD,S
Aα(j).

Example 3.2. Recall the data exchange settingDconf and the source instance S from
Example 1.1. Let D′

conf be Dconf without the target dependencies. Then

CORED′

conf
(S) =

{

Paper(1, t1,⊥1),Paper(2, t2,⊥2),PC
′(⊥3, n1),PC

′(⊥4, n2),

PC ′(⊥5, n3),Assign(1,⊥3),Assign(2,⊥4),Assign(3,⊥5)
}

is a CWA-presolution for S under D′
conf. It is “generated” by a mapping α with

α(d1, (i, ti), (), z) = ⊥i for each i ∈ {1, 2}, and α(d2, (ni, i), (a), z) = ⊥i+2 for each
i ∈ {1, 2, 3} and values a. That is, TD′

conf,α
(S) = CORED′

conf
(S).
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It is also easy to see that the target instance

T =
{

Paper(1, t1,⊥1),Paper(2, t2,⊥2),PC
′(⊥3, n1),PC

′(⊥3, n2),PC
′(⊥5, n3),

Assign(1,⊥3),Assign(2,⊥3),Assign(3,⊥5)
}

,

which assigns the same ID ⊥3 to PC members n1 and n2, is a CWA-presolution for S
under D′

conf.

Notice that every CWA-presolution for S under D is a solution for S under D. More-
over, as an immediate consequence of the definitions, we obtain:

PROPOSITION 3.3. Every CWA-presolution for S under D is a homomorphic image
of CANSOLD(S). More precisely, for every injective α : J ∗

D,S → Null and every α′ : J ∗
D,S →

Dom, the mapping h : dom(TD,α(S)) → dom(TD,α′(S)) with

h(u) :=

{

α′(j, z), if u = α(j, z) for some (j, z) ∈ J ∗
D,S ,

u, otherwise

is a homomorphism from TD,α(S) to TD,α′(S) with h(TD,α(S)) = TD,α′(S).

In particular, CANSOLD(S) itself is a CWA-presolution for S under D.

3.2. CWA-Presolutions for Data Exchange Settings With Target Dependencies

We now extend the definitions to deal with data exchange settings containing target
dependencies. Notice that we indeed have to do so, because a CWA-presolution for S
under the reduced data exchange settingD′ = (σ, τ,Σst)without target dependencies is
not necessarily a solution for S under D. For example, we have shown in Example 3.2
that CORED′

conf
(S) is a CWA-solution for S under D′

conf, but CORED′

conf
(S) is no solution

for S under Dconf, since it does not satisfy tgd d3 (cf., Example 1.1).
Let D = (σ, τ,Σst,Σt) be a data exchange setting with target dependencies, and let S

be a source instance for D.
The idea for the definition of CWA-presolutions is as follows. First of all, each atom in

such a solution must be justified (requirement 1). Informally, an atom in a solution for
S under D is justified if it can be obtained from S using the tgds in Σst and Σt: either
the atom can be obtained as in Section 3.1 by applying an s-t tgd to S, or it can be
obtained by applying a target tgd to already justified atoms. Note that we do not take
into account egds here; these will be incorporated later. We have to be careful, though,
to avoid “circular justifications”: we do not want a tgd ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) and tuples
ū, v̄ to justify the atoms in ψ(ū, w̄), while another tgd, applied to the atoms in ψ(ū, w̄),
justifies the atoms in ϕ(ū, v̄). Thus, we require that the atom can be obtained by a
sequence of applications of s-t tgds and target tgds, where each target tgd is applied to
atoms obtained by an earlier application of a tgd in the sequence. As in Section 3.1, to
satisfy requirement 2, each tgd ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) should be applied at most once for
each pair ū, v̄ of tuples giving values to x̄, ȳ, respectively.
To formalize this accordingly, we employ a suitably “controlled” version of the chase

procedure, which we call α-chase.
A potential justification for an atom with respect to S and D consists of

— a tgd d in Σst ∪Σt of the form ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and
— tuples ū, v̄ over Dom of length x̄ and ȳ, respectively,
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and is denoted by (d, ū, v̄).5 Intuitively, (d, ū, v̄) can be used to justify the atoms of
ψ(ū, w̄) for any tuple w̄ over Dom of the appropriate length, provided the atoms of
ϕ(ū, v̄) are already justified. Let JD be the set of all potential justifications for atoms
with respect to S and D.
Now, as in Section 3.1, we assign values to the existentially quantified variables

of tgds for each justification by a mapping α : J ∗
D → Dom, where J ∗

D is the set of all
pairs (j, z) consisting of a justification j = (d, ū, v̄) ∈ JD and an existentially quantified
variable z in d. For each j = (d, ū, v̄) ∈ JD with d of the form ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), let
Aα(j) := ψ(ū, w̄j), where w̄j is obtained from z̄ by replacing each variable z in z̄ by the
value α(j, z).

Definition 3.4 (α-chase sequence). Let α : J ∗
D → Dom.

(1) An α-chase sequence of S with D is a (finite or infinite) sequence I0, I1, I2, . . . of
instances such that I0 = S, and each Ii+1 is obtained via an α-application of a tgd
in Σst ∪ Σt to Ii as follows:

Let d be a tgd in Σst ∪Σt of the form ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and let ū, v̄ be tuples over
Dom. We say that d can be α-applied to Ii with (ū, v̄) if Ii |= ϕ(ū, v̄), and Ii does not
contain all the atoms in Aα(j) yet. The result of α-applying d to Ii with (ū, v̄) is the
instance Ii ∪ Aα(j).

(2) The result of a finite α-chase sequence C = (I0, . . . , Im) of I with D is Im.
(3) An α-chase sequence C of I with D is successful if C is finite, and no tgd d in

Σst ∪ Σt can be α-applied to the result of C for no pair (ū, v̄) of tuples over Dom of
the appropriate length.

Note that the definition of an α-chase sequence given here differs from the one in
Hernich and Schweikardt [2007]. In particular, here we do not consider egds. It is
also important to note that, unlike the notion of the chase [Beeri and Vardi 1984]
which is used in data exchange to compute universal solutions primarily, an α-chase
sequence is used to show that all the atoms in a given solution are justified according
to requirement 1 and 2.

Example 3.5. Recall the data exchange settingDconf and the source instance S from
Example 1.1. Let α′ : J ∗

D → Dom be an extension of the mapping α from Example 3.2
such that α′(d3, (i,⊥i+2), (), z

′′) = ni for each i ∈ {1, 2, 3}, α′(d3, (i,⊥i+2), (), z) = ti
and α′(d3, (i,⊥i+2), (), z

′) = ⊥i for each i ∈ {1, 2}, α′(d3, (3,⊥5), (), z) = ⊥6, and
α′(d3, (3,⊥5), (), z

′) = ⊥7 Then there is a successful α′-chase sequence of S with Dconf
whose result is S ∪ COREDconf(S), where

COREDconf(S) = {Paper(1, t1,⊥1),Paper(2, t2,⊥2),Paper(3,⊥6,⊥7),

PC ′(⊥3, n1),PC
′(⊥4, n2),PC

′(⊥5, n3),

Assign(1,⊥3),Assign(2,⊥4),Assign(3,⊥5) }.

Indeed, we can α′-apply the s-t tgds in the first five steps to generate the core of S
under the reduced data exchange settingD′

conf from Example 3.2. That is, we could first
α′-apply d1 with

(

(i, t1), ()
)

resulting in the atom Paper(1, t1,⊥1). Similarly, we could
apply the remaining s-t tgds. Finally, note that only one target tgd can be α′-applied to
CORED′

conf
(S), namely d3 with

(

(3,⊥5), ()
)

, resulting in the atoms Paper(3,⊥6,⊥7) and
PC ′(⊥5, n3).

5Note that potential justifications differ from justifications defined in Section 3.1 in that ϕ(ū, v̄) does not
need to be satisfied.
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The following lemma summarizes some basic properties of α-chase sequences. The
straightforward and easy proof is left to the reader.

PROPOSITION 3.6. Let α : J ∗
D → Dom.

(1) A successful α-chase sequence of S with D exists if and only if there is no infinite
α-chase sequence of S with D.

(2) If C1, C2 are successful α-chase sequences of S withD, then C1 and C2 have the same
result.

We are now ready to give the definition of CWA-presolution.

Definition 3.7 (CWA-presolution). A CWA-presolution for S under D is a solution
T for D such that S ∪ T is the result of a successful α-chase sequence of S with D for
some α : J ∗

D → Dom.

In Example 3.5, COREDconf(S) is a CWA-presolution for S under Dconf since it is a
solution for S underDconf, and, as shown in Example 3.5, S∪COREDconf(S) is the result
of a successful α′-chase sequence of S with D.
Note that by requiring a CWA-presolution to be a solution we insist that α is cho-

sen in such a way that the egds are not violated. Note also that CWA-presolutions as
defined in Section 3.1 and CWA-presolutions as defined here coincide with respect to
data exchange settings without target dependencies. An equivalent definition of CWA-
presolutions in terms of a game can be found in Hernich and Schweikardt [2010].

3.3. CWA-Solutions

CWA-presolutions can generate certain facts in the target which, intuitively, do not
follow from the source instance and the tgds and egds of the data exchange setting.
In Example 3.2, the CWA-presolution T tells us that the PC members n1 and n2 are
assigned to the same ID. However, the fact that those PC members have the same ID
intuitively does not follow from S and the s-t tgds in D′

conf. The third requirement for
CWA-solutions ensures that such “invented” facts do not occur in a CWA-solution.
Let D = (σ, τ,Σst,Σt) be a data exchange setting, and let S be a source instance for

D. A fact F (over D’s target schema τ ) is a Boolean conjunctive query ∃z̄ ϕ(z̄) over τ .
For example, if D is as in Example 1.1, then the fact

∃z
(

PC ′(z, n1) ∧ PC ′(z, n2)
)

(3.1)

tells us that the PC members n1 and n2 have the same ID. A fact F = ∃z̄ ϕ(z̄) is true
in a target instance T if it evaluates to true on T , i.e., if there is a tuple v̄ of values
(constants or nulls) such that T satisfies ϕ(v̄). A CWA-solution for S under D is then a
CWA-presolution in which every true fact follows from S and the tgds and egds of D.

Definition 3.8 (CWA-solution). A CWA-solution for S underD is a CWA-presolution
T for S under D such that each fact true in T is also true in every solution for S under
D. The set of all CWA-solutions for S under D is denoted by [[S]]DCWA.

We almost immediately obtain the following characterization of CWA-solutions.

THEOREM 3.9. Let D be a data exchange setting, and let S be a source instance for
D. Then for every target instance T for D, the following are equivalent:

(1) T is a CWA-solution for S under D.
(2) T is both a universal solution and a CWA-presolution for S under D.

PROOF. 1 =⇒ 2: Let T be a CWA-solution for S under D. Then T is a CWA-
presolution for S under D. In order to prove 2, it suffices therefore to show that T
is a universal solution for S under D.
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Let ⊥1, . . . ,⊥k be an enumeration of all the nulls in T (without repetition). Consider
the fact FT = ∃z̄ ϕT (z̄), where z̄ = (z1, . . . , zk), and ϕT (z̄) is the conjunction of all atoms
R(ū) that can be obtained from an atom R(t̄) ∈ T by replacing each null ⊥i in t̄ with zi.
Clearly, FT is true in T . Since T is a CWA-solution for S, FT is true in every solution
T ′ for S under D.
Now let T ′ be an arbitrary solution for S under D. Since FT is true in T ′, there

is a tuple v̄ = (v1, . . . , vk) of values such that T ′ satisfies ϕT (v̄). In other words, the
mapping h : dom(T ) → dom(T ′) given by h(⊥i) = vi for all i ∈ {1, . . . , k}, and h(a) = a
for all a ∈ const(T ) is a homomorphism from T to T ′. It follows that for every solution
T ′ for S under D there is a homomorphism from T to T ′, which shows that T is a
universal solution for S under D.

2 =⇒ 1: Suppose T is a universal solution for S under D, and that T is a CWA-
presolution for S under D. Since T is already a CWA-presolution for S under D, it
remains to show that every fact that is true in T , is true in every solution T ′ for S
underD. Let F = ∃z̄ ϕ(z̄) be a fact that is true in T , and let T ′ be an arbitrary solution
for S under D. In particular, there is a tuple v̄ such that ϕ(v̄) is true in T . Moreover,
since T is a universal solution for S underD, there is a homomorphism h from T to T ′.
Since ϕ is preserved under homomorphisms, ϕ(h(v̄)) is true in T ′. Thus, F is true in
T ′.

Theorem 3.9 will be very useful throughout this paper. For example, it can be applied
to prove that certain solutions are CWA-solutions or not:

Example 3.10. Recall the data exchange setting Dconf and the source instance S
from Example 1.1. As pointed out at the end of Section 3.2, COREDconf(S) is a CWA-
presolution for S under Dconf. Since COREDconf(S) is also a universal solution for S
under Dconf, it follows from Theorem 3.9 that COREDconf(S) is a CWA-solution for S
under Dconf.
Moreover, in Example 3.2, T is a CWA-presolution for S under the reduced data

exchange setting D′
conf. However, it is no CWA-solution for S underD′

conf, since there is
no homomorphism from T to CORED′

conf
(S). One can see this also by observing that the

fact (3.1) is true in T , but not in CORED′

conf
(S).

Finally, let T be the union of two isomorphic copies T1, T2 of CANSOLD′

conf
(S) with

null(T1) ∩ null(T2) = ∅. Then, T is a universal solution for S under D′
conf, but by Propo-

sition 3.3, no CWA-presolution for S under D′
conf.

By Theorem 3.9, CWA-solutions are particular universal solutions. The following
theorem states that the minimal universal solution – the core solution – is one of those
CWA-solutions. In particular, it shows that the core solution is the unique minimal
CWA-solution.

THEOREM 3.11. Let D be a data exchange setting, and let S be a source instance for
D such that CORED(S) exists. Then,

(1) CORED(S) is a CWA-solution for S under D.
(2) If T is a CWA-solution for S under D, then T contains CORED(S).

PROOF. It suffices to prove 1, since this immediately implies 2 using Theorem 2.1(3)
and Theorem 3.9. Since CORED(S) is a universal solution for S underD, all that is left
to show is that CORED(S) is a CWA-presolution for S under D.
As a first step, we inductively construct partial mappings αi : J ∗

D → Dom and se-
quences Ci = (I0, I1, . . . , Ii) such that Ci is an α′

i-chase sequence of S with D for every
extension α′

i of αi (i.e., α′
i coincides with αi on all elements in J ∗

D for which αi is defined)
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and Ii ⊆ S ∪ CORED(S). We let α0 be undefined on all elements in J ∗
D, and C0 := (I0),

where I0 := S.
Assume that αi is a partial mapping from J ∗

D to Dom, and Ci = (I0, . . . , Ii) is an α′
i-

chase sequence of S with D for every extension α′
i of αi such that Ii ⊆ S∪CORED(S). If

Ii satisfies all tgds and egds in Σst ∪ Σt, then the construction stops. Otherwise, there
is some d ∈ Σst ∪ Σt that is not satisfied in Ii. Note that if d is an egd, then, since
Ii ⊆ S ∪ CORED(S) and d is over the target schema of D, CORED(S) does not satisfy d.
But this is impossible, hence d is a tgd.
Say, d has the form ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) with z̄ = (z1, . . . , zk). Then there are tuples

ū, v̄ with Ii |= ϕ(ū, v̄), and Ii 6|= ψ(ū, w̄) for every tuple w̄. Since Ii ⊆ S ∪ CORED(S)
and S ∪ CORED(S) |= d, there is some w̄ with CORED(S) |= ψ(ū, w̄). Assuming w̄ =
(w1, . . . , wk), we define αi+1 : J ∗

D → Dom by

αi+1(j) :=







wi, if j = (d, ū, v̄, zi)

αi(j), if j 6= (d, ū, v̄, zi) and αi(j) is defined,
undefined, otherwise,

and we let Ci+1 := (I0, I1, . . . , Ii, Ii+1), where Ii+1 := Ii ∪ ψ(ū, w̄). Clearly, Ci+1 is an
α′
i+1-chase sequence of S with D for every extension α′

i+1 of αi+1. Furthermore, the
choice of w̄ guarantees Ii+1 ⊆ S ∪ CORED(S).
Since CORED(S) is finite, and each αi-application of a tgd produces at least one

new atom, we have Ii |= Σst ∪ Σt for some i ≤ |CORED(S)|. It is easy to extend αi

to a total mapping α : J ∗
D → Dom such that Ci is a successful α-chase sequence of

S with D.6 Thus, the target instance T with Ii = S ∪ T is a CWA-presolution for
S under D. By construction, we have T ⊆ CORED(S). On the other hand, T cannot
be a proper subinstance of CORED(S): otherwise, there would be a homomorphism
from CORED(S) to a proper subinstance of CORED(S), namely T (since CORED(S) is a
universal solution for S under D), contradicting that CORED(S) is a core. So, we have
T = CORED(S), which proves that CORED(S) is a CWA-presolution for S under D.

Together with Theorem 3.9, this immediately yields:

COROLLARY 3.12. For every data exchange setting D, and every source instance S
for D, the following statements are equivalent:

(1) There exists a CWA-solution for S under D.
(2) There exists a universal solution for S under D.
(3) CORED(S) exists.

In some cases, we even have a CWA-solution T that is maximal in the sense that
for every CWA-solution T ′ for S under D there is a homomorphism h from T to T ′

with h(T ) = T ′. This is true, for instance, if we restrict attention to data exchange
settings without target dependencies. In this case, Proposition 3.3 and Theorem 3.9
immediately yield:

PROPOSITION 3.13. Let D be a data exchange setting without target dependencies,
and let S be a source instance for D. Then, CANSOLD(S) is the unique maximal CWA-
solution for S under D.

Proposition 3.13 can be extended to a slightly larger class of data exchange settings,
namely to data exchange settings D = (σ, τ,Σst,Σt), where Σt consists of egds, or all

6If αi is undefined for (j, z) ∈ J ∗

D
, where j = (d, ū, v̄), d = ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) and Ii |= ϕ(ū, v̄), we pick a

tuple w̄ such that Ii |= ψ(ū, w̄), and let α(j, z) be the value assigned to z by w̄; for all other (j, z) ∈ J ∗

D
for

which αi is undefined, we can define α(j, z) arbitrarily.
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CANSOLD(S)

T

CORED(S)

h h′

⊆

[[S]]DCWA

(a) no target dependencies

[[S]]DCWA

CORED(S)

T

T1

T2

Tn

⊆

h

h1

h2

hn

(b) with target dependencies

Fig. 1. A representation of the set [[S]]DCWA of all CWA-solutions for S under D if D has no target dependen-
cies (a), and if D has target dependencies (b).

tgds in Σst ∪ Σt are full. Here, one first has to extend the definition of CANSOLD(S) to
such data exchange settings. The idea is to let CANSOLD(S) be the result of chasing
CANSOL(σ,τ,Σst)(S) with the dependencies in Σt (using the standard chase). Details can
be found in Appendix A.

Definition 3.14 (extended canonical solution). Let D = (σ, τ,Σst,Σt) be a data ex-
change setting such that Σt consists of egds, or all tgds in Σst ∪ Σt are full. Let S be a
source instance for D. If there is a CWA-solution for S under D, let CANSOLD(S) be
the unique CWA-solution T for S underD such that every CWA-solution T for S under
D is a homomorphic image of CANSOLD(S). Otherwise, let CANSOLD(S) be undefined.

Combining Proposition 3.3, Proposition 3.13, and Theorem 3.11, we obtain the fol-
lowing description of CWA-solutions in the case of data exchange settings that adhere
to the restriction of Definition 3.14:

THEOREM 3.15. Let D be a data exchange setting such that Σt consists of egds, or
all tgds in Σst ∪Σt are full, and let S be a source instance for D. Then a target instance
T for D is a CWA-solution for S under D if and only if the following three conditions
are satisfied:

(1) T is a homomorphic image of CANSOLD(S),
(2) there is a homomorphism from T to CANSOLD(S), and
(3) T contains CORED(S).

Thus, in this case, the space of CWA-solutions contains two unique extreme points
(see Figure 1(a)): the core solution, which is the minimal CWA-solution in the sense
that it is contained in all other CWA-solutions, and the canonical solution, which is the
maximal CWA-solution in the sense that it has every CWA-solution as a homomorphic
image.

Remark 3.16. While for every data exchange setting D without target dependen-
cies, and for every source instance S for D, the minimal CWA-solution CORED(S)
is contained in every CWA-solution for S under D, there can be CWA-solutions
for S under D that are not contained in the maximal CWA-solution CANSOLD(S).
For example, if D = ({R}, {R′},Σst), where Σst = {R(x, y) → ∃z1∃z2R′(x, z1, z2)},
and S = {R(a, b), R(a, c)}, then CANSOLD(S) = {R′(a,⊥1,⊥2), R

′(a,⊥3,⊥4)}, but
{R′(a,⊥1,⊥), R′(a,⊥3,⊥)} is a CWA-solution for S under D that is not contained in
CANSOLD(S).
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In general, however, there may be no CWA-solution that is maximal in the above
sense. Based on the data exchange setting from Remark 3.16, it is not hard to construct
a data exchange setting D and a source instance S forD where this is the case. In fact,
one can construct D in such a way that for every positive integer n there is a source
instance S for D, and 2n distinct CWA-solutions T1, . . . , T2n for S underD such that for
every CWA-solution T for S under D there is a homomorphism h from exactly one Ti
to T with h(Ti) = T . Details can be found in Appendix A. Thus, in general, the set of
all CWA-solutions is as shown in Figure 1(b).

4. THE COMPLEXITY OF COMPUTING CWA-SOLUTIONS

We now study the complexity of computing CWA-solutions. As is common in data ex-
change, we deal only with the case that the data exchange setting is fixed. That is,
we are interested in the complexity of computing CWA-solutions, given a source in-
stance for some data exchange setting D as input, where D is fixed and does not be-
long to the input. This corresponds to the data complexity [Vardi 1982] of computing
CWA-solutions. For proving complexity lower bounds, we consider the corresponding
decision problem:

EXISTENCE-OF-CWA-SOLUTIONS(D)
Input: a source instance S for D
Question: Is there a CWA-solution for S under D?

We will also consider the analogous problems EXISTENCE-OF-SOLUTIONS(D) and EX-
ISTENCE-OF-UNIVERSAL-SOLUTIONS(D), which ask for the existence of a solution, or
universal solution, respectively.
Section 4.1 presents some tractable cases, whereas Section 4.2 shows that the EXIS-

TENCE-OF-CWA-SOLUTIONS problem is undecidable in general.

4.1. Tractable Cases

In the case of data exchange settings D = (σ, τ,Σst,Σt), where Σt consists of egds only,
there are polynomial time algorithms for computing minimal CWA-solutions as well
as maximal CWA-solutions. First, it follows from results in [Fagin et al. 2005a; Arenas
et al. 2004] that there is a polynomial time algorithm that, given a source instance S
for D, computes the (extended) canonical solution for S under D: All that has to be
done is to compute the canonical solution CANSOL(σ,τ,Σst)(S) under the data exchange
setting (σ, τ,Σst), and to chase CANSOL(σ,τ,Σst)(S) with the egds in Σt. Furthermore,
the blocks algorithm by Fagin et al. [2005b] is a polynomial time algorithm that, given
a source instance S for D, computes the core solution for S under D provided it exists.
In the case that the set of target dependencies may contain target tgds, known

tractability results for universal solutions carry over to CWA-solutions. A fairly broad
class of data exchange settings for which universal solutions can be computed in poly-
nomial time (data complexity) is the class of data exchange settings whose set of target
dependencies is the union of a set of egds, and a weakly acyclic set of tgds:

Definition 4.1 ([Fagin et al. 2005a; Deutsch and Tannen 2003]). The dependency
graph of a set Σ of tgds over τ is the following directed graph. The vertices are all
pairs (R, i), called positions, where R ∈ τ and i ∈ {1, . . . , r}, with r being the arity
of R. (A variable x is said to appear at position (R, i) in some conjunction ϕ of rela-
tional atomic formulas if ϕ contains a conjunct R(t1, . . . , tr) with ti = x.) For every tgd
ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) in Σ, every variable x in x̄, and every position (R, i) at which x
appears in ϕ, there is

— a copying edge from (R, i) to every position at which x appears in ψ, and

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Closed World Data Exchange A:19

—an existential edge from (R, i) to every position at which some variable from z̄ ap-
pears in ψ.

Σ is called weakly acyclic if no cycle in the dependency graph of Σ contains an existen-
tial edge. A data exchange setting D = (σ, τ,Σst,Σt) is called weakly acyclic if Σt is the
union of a set of egds, and a weakly acyclic set of tgds.

If D = (σ, τ,Σst,Σt) is weakly acyclic, there is a polynomial time algorithm based on
the chase that, given a source instance S for D, computes a universal solution for S
underD if there is one, and outputs that there is no such universal solution otherwise
[Fagin et al. 2005a]. The algorithm computes an arbitrary complete chase sequence C
of S with Σst ∪ Σt; if C is successful and its result is S ∪ T , it outputs T , otherwise no
universal solution for S under D exists. Weak acyclicity here ensures that the length
of C is polynomial in the size of S, and that S has no solution under D if C is failing
[Fagin et al. 2005a]. Extensions of weak acyclicity which still guarantee these proper-
ties have been studied in [Deutsch et al. 2008; Lausen et al. 2009; Marnette 2009]. By
Corollary 3.12, the above algorithm immediately yields an algorithm for EXISTENCE-
OF-CWA-SOLUTIONS(D). Notice that Proposition 3.1 in Kolaitis et al. [2006] implies
a matching PTIME-completeness lower bound.
In some cases the universal solution computed by the algorithm even is a CWA-

solution. For example, this is true if Σt contains no egds: If S ∪ T is the result of any
successful chase sequence of S with Σst ∪ Σt, it is easy to verify that T is a CWA-
solution for S under D. On the other hand, it is not hard to find examples where Σt
contains egds so that S ∪ T is the result of a successful chase sequence of S with Σst ∪
Σt, but T is no CWA-solution; see Appendix B. Nevertheless, for every weakly acyclic
data exchange setting, a CWA-solution, namely the core solution, can be computed in
polynomial time:

THEOREM 4.2 ([GOTTLOB AND NASH 2008]). For every weakly acyclic data ex-
change setting D, there is a polynomial time algorithm that, given a source instance
S for D, decides whether CORED(S) exists, and if so, computes CORED(S).

4.2. An Undecidable Case

We now show that, for a particular data exchange setting D, the problem EXISTENCE-
OF-CWA-SOLUTIONS(D) is undecidable.

THEOREM 4.3. There is a data exchange setting DHALT such that EXISTENCE-OF-
CWA-SOLUTIONS(DHALT ) is undecidable.

PROOF. We first present the data exchange setting DHALT = (σ, τ,Σst,Σt), and then
show the undecidability of EXISTENCE-OF-CWA-SOLUTIONS(DHALT ) by a reduction
from the following variant of the halting problem for Turing machines:

HALT

Input: a deterministic Turing machine M = (Q,Σ, δ, q0, QF ) with one
tape which is infinite only to the right; here,Q is the set of states,
Σ is the tape alphabet, δ : (Q \ QF ) × Σ → Q × Σ × {L,R} is the
transition function (a total function), q0 ∈ Q is the start state, and
QF ⊆ Q is the set of final states.

Question: DoesM halt on the empty input?

The source schema σ ofDHALT contains a 5-ary relation symbol∆ to encode the graph
of δ (i.e., ∆(q, s, q′, s′, d) corresponds to δ(q, s) = (q′, s′, d)), and a unary relation symbol
Q0 to encode the start state q0.
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Table I. Relation symbols in the target schema τ and their intended meaning

Symbol Arity Meaning

∆′ 5 copy of ∆
Succt 2 successor relation on time points (steps) of the computation
Succp 3 successor relation on tape positions, for each step
State 3 the state and the tape position for each step
Ins 3 the inscriptions of the relevant tape cells in each step
End 2 the position of the last relevant tape cell in each step
CopyL 3 used to compute the inscriptions of tape cells to the left of a given tape position,

based on the corresponding positions from the previous step
CopyR 3 used to compute the inscriptions of tape cells to the right of a given tape position,

based on the corresponding positions from the previous step

Table I below contains the relation symbols of the target schema τ and their intended
meaning. For example,Succp(t, p, p′)means that tape position p′ is the successor of tape
position p in step t; State(t, q, p) indicates that in step t, the machine is in state q and
reads the tape cell at position p; Ins(t, p, s)means that in step t, the tape cell at position
p contains the symbol s; and End(t, p) says that p is the last position in the linear order
induced by the successor relation Succp(t, ·, ·).
The set of s-t tgds Σst of DHALT consists of a tgd

∆(q, s, q′, s′, d) → ∆′(q, s, q′, s′, d)

to copy ∆ to ∆′, and another tgd

Q0(q) → State(0, q, 1) ∧ Ins(0, 1,⊓) ∧ Ins(0, 2,⊓) ∧ Succp(0, 1, 2) ∧ End(0, 2)

to initialize the “start configuration” (here, ⊓ is the blank symbol that is assumed to
be in Σ): Thus, the latter tgd tells us that if q is the start state of M , then in step 0
of the computation of M on the empty input, M is in state q and reads the tape cell
at position 1, which contains the blank symbol; the tape cell following the tape cell at
position 1 is the tape cell at position 2, which, at the same time, is the last relevant
tape cell and contains the blank symbol.
The set Σt of target dependencies of DHALT consists of target tgds for simulating the

Turing machine as follows. There are two tgds that simulate a transition – one for a
transition where the tape head moves to the left, and one for a transition where the
tape head moves to the right:

State(t, q, p) ∧ Ins(t, p, s) ∧ Succp(t, p
′, p) ∧∆′(q, s, q′, s′,L) →

∃t′
(

Succt(t, t
′) ∧State(t′, q′, p′) ∧ Ins(t′, p, s′) ∧CopyL(t

′, t, p) ∧CopyR(t
′, t, p)

)

,
(4.1)

State(t, q, p) ∧ Ins(t, p, s) ∧ Succp(t, p, p
′) ∧∆′(q, s, q′, s′,R) →

∃t′
(

Succt(t, t
′) ∧State(t′, q′, p′) ∧ Ins(t′, p, s′) ∧CopyL(t

′, t, p) ∧CopyR(t
′, t, p)

)

.
(4.2)

There are two tgds that copy the “successor relation” on the tape positions and the
inscriptions of all unmodified tape cells:

CopyL(t
′, t, p) ∧ Succp(t, p

′, p) ∧ Ins(t, p′, s) →

CopyL(t
′, t, p′) ∧ Succp(t

′, p′, p) ∧ Ins(t′, p′, s), (4.3)

CopyR(t
′, t, p) ∧ Succp(t, p, p

′) ∧ Ins(t, p′, s) →

CopyR(t
′, t, p′) ∧ Succp(t

′, p, p′) ∧ Ins(t′, p′, s). (4.4)
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Finally, there is a tgd that adds a new tape cell to the end of the tape and marks it the
last relevant tape cell:

Succt(t, t
′) ∧ End(t, p) → ∃p′

(

Succp(t
′, p, p′) ∧ Ins(t′, p′,⊓) ∧ End(t′, p′)

)

. (4.5)

This finishes the description of the data exchange setting DHALT .
The reduction from HALT to EXISTENCE-OF-CWA-SOLUTIONS(DHALT ) is carried out

as follows. Given a Turing machineM = (Q,Σ, δ, q0, QF ) for HALT, we create the source
instance

SM := {∆(q, s, q′, s′, d) | δ(q, s) = (q′, s′, d)} ∪ {Q0(q0)}.

It remains to show that M halts on the empty input if and only if there is a CWA-
solution for SM under DHALT .
Let us first fix some basic notation on Turing machine computations. Recall that a

computation of M on the empty input is a sequence C0, C1, . . . , Cn of configurations of
M , where C0 is the start configuration of M on the empty input, and for i < n, Ci+1

is the successor configuration of Ci. We represent each configuration Ci by a triple
(qi, pi, xi), where qi ∈ Q is the state, pi ≥ 1 is the head position, and xi = xi,1xi,2 · · ·xi,li
is the inscription of the tape at positions 1 to li in step i of the computation. We can
assume without loss of generality that li = i+ 2 (sinceM can visit at most i tape cells
in i steps, all positions at positions greater than i are blanks; and we add 2 to simplify
the presentation). In particular, x0 = ⊓⊓.
We are now ready to prove that M halts on the empty input if and only if there is a

CWA-solution for SM under DHALT .

(“Only if” direction) Suppose that there is a halting computation C0, C1, . . . , Cn of M
on the empty input, where Ci = (qi, pi, xi,1 · · ·xi,i+2) for every i ≤ n. Let X0, X1, . . . , Xn

be pairwise distinct values such that X0 = 0, and X1, . . . , Xn are nulls. Moreover, let
Y1, Y2, . . . , Yn+2 be pairwise distinct values such that Y1 = 1, Y2 = 2, and Y3, . . . , Yn+2

are nulls that are distinct from X1, . . . , Xn. Then it is easy to verify that the instance
SM ∪ T with

T =
{

Succt(Xi, Xi+1) | 0 ≤ i < n
}

∪
{

State(Xi, qi, Ypi
) | 0 ≤ i ≤ n

}

∪
{

Ins(Xi, Yj , xi,j) | 0 ≤ i ≤ n, 1 ≤ j ≤ i+ 2
}

∪
{

Succp(Xi, Yj , Yj+1) | 0 ≤ i ≤ n, 1 ≤ j < i+ 2
}

∪
{

End(Xi, Yi+2) | 0 ≤ i ≤ n
}

∪
{

CopyL(Xi, Xi−1, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ pi
}

∪
{

CopyR(Xi, Xi−1, j) | 1 ≤ i ≤ n, pi ≤ j < i+ 2
}

is the result of a successful α-chase sequence of SM withDHALT for an injectivemapping
α : J ∗

DHALT
→ Null. Thus, T is a CWA-presolution for SM underDHALT . Since α is injective

and α(J ∗
DHALT

) ⊆ Null, a straightforward modification of the proof of Theorem 3.3(1)
in Fagin et al. [2005a] implies that T is a universal solution for SM under DHALT .
Consequently, T is a CWA-solution for SM under DHALT .

(“If” direction) Let T be a CWA-solution for SM under DHALT . Then there is a mapping
α : J ∗

DHALT
→ Dom such that SM ∪ T is the result of a successful α-chase sequence of SM

with DHALT . Recall from Proposition 3.6 that the results of any two successful α-chase
sequences of SM with DHALT are the same.
We want to show that there is a halting computation of M on the empty input. The

idea is to use α in order to “unravel” T to a sequence T0 ⊂ T1 ⊂ · · · ⊂ Tn = T of
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subinstances of T such that Ti encodes the first i steps of a halting computation of M
on the empty input. Let T0 be the canonical solution for SM under the data exchange
setting DHALT without the target dependencies of DHALT :

T0 = {∆′(q, s, q′, s′, d) | δ(q, s) = (q′, s′, d)}

∪ {State(0, q0, 1), Ins(0, 1,⊓), Ins(0, 2,⊓), Succp(0, 1, 2), End(0, 2)}.

For every i ≥ 0 for which Ti does not satisfy (4.1) or (4.2), let Ti+1 be the result of
first α-applying (4.1) or (4.2) to Ti, then (4.3) and (4.4) until these are satisfied (which
happens after a finite number of such applications), and finally, (4.5). If (4.1) and (4.2)
are satisfied in Ti, let Ti+1 := Ti. Since T is finite, T0 ⊆ T1 ⊆ · · · , and Ti = Ti+1 implies
Ti+1 = Ti+2 for every i ≥ 0, there is an integer n such that Tn = Tn′ for all n′ ≥ n.
We show by induction on i that for every i ∈ {0, 1, . . . , n} there are

(1) a computation C0, . . . , Ci of M on the empty input, where for every j ≤ i, the con-
figuration Cj has the form (qj , pj , xj,1 · · ·xj,j+2),

(2) pairwise distinct X0, X1, . . . , Xi ∈ Dom with X0 = 0, where X1, . . . , Xi are nulls,
and

(3) pairwise distinct Y1, Y2, . . . , Yi+2 ∈ Dom, where Y1 = 1, Y2 = 2, and Y3, . . . , Yi+2 are
nulls distinct from X1, . . . , Xi,7

such that

Ti =
{

Succt(Xj , Xj+1) | 0 ≤ j < i
}

∪
{

State(Xj , qj , Ypj
) | 0 ≤ j ≤ i

}

∪
{

Ins(Xj , Yk, xj,k) | 0 ≤ j ≤ i, 1 ≤ k ≤ j + 2
}

∪
{

Succp(Xj , Yk, Yk+1) | 0 ≤ j ≤ i, 1 ≤ k < j + 2
}

∪
{

End(Xj , Yj+2) | 0 ≤ j ≤ i
}

∪
{

CopyL(Xj , Xj−1, k) | 1 ≤ j ≤ i, 1 ≤ k ≤ pj
}

∪
{

CopyR(Xj , Xj−1, k) | 1 ≤ j ≤ i, pj ≤ k < j + 2
}

.

(4.6)

For i = 0, we let C0 be the start configuration (q0, 1,⊓⊓) of M on the empty input,
X0 := 0, Y1 := 1, and Y2 := 2. Then 1–3 are satisfied, and T0 has the required form
(4.6).
Suppose now that for some i < n, there are

—a computation C0, . . . , Ci of M on the empty input, where each Cj has the form
(qj , pj, xj,1 · · ·xj,j+2),

— pairwise distinct X0, X1, . . . , Xi ∈ Dom with X0 = 0, where X1, . . . , Xi are nulls, and
—pairwise distinct Y1, Y2, . . . , Yi+2 ∈ Dom, where Y1 = 1, Y2 = 2 and Y3, . . . , Yi+2 are

nulls,

such that Ti has the form (4.6). Recall that the first step in obtaining Ti+1 from Ti is
an α-application of (4.1) or (4.2) to Ti. In the following, we consider the case that (4.1)
is α-applied; the other case is analogous.
Using that Ti has the form (4.6), it is easy to verify that after α-applying (4.1) to Ti,

we obtain the instance

T ′
i+1 := Ti ∪

{

Succt(Xi, Xi+1),State(Xi+1, qi+1, Ypi+1
), Ins(Xi+1, Ypi

, xi+1,pi
),

CopyL(Xi+1, Xi, pi),CopyR(Xi+1, Xi, pi)
}

,
(4.7)

7For the proof we actually do not need that X1, . . . ,Xi are nulls, and that Y3, . . . , Yi+2 are nulls distinct
from X1, . . . , Xi. However, these requirements will be useful later in Remark 4.6.
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where Xi+1 ∈ Dom, δ(qi, xi,pi
) = (qi+1, xi+1,pi

,L), and pi+1 := pi − 1.
Let Ci+1 := (qi+1, pi+1, xi+1,1 · · ·xi+1,(i+1)+2), where we have xi+1,j := xi,j for all j ∈

{1, . . . , i+ 2} \ {pi}, xi+1,(i+1)+2 := ⊓, and xi+1,p as determined above by δ(qi, xi,pi
).

Then Ci+1 is a successor configuration of Ci, and consequently, C0, C1, . . . , Ci+1 is a
computation of M on the empty input. This shows that C0, C1, . . . , Ci+1 is as required
by 1. Moreover, the following claim shows that X0, X1, . . . , Xi+1 is as required by 2.

Claim (*). The values X0, X1, . . . , Xi+1 are pairwise distinct, with X0 = 0, and
X1, . . . , Xi+1 being nulls.

Proof. By the induction hypothesis, we already know that X0, X1, . . . , Xi are pairwise
distinct, X0 = 0, and X1, . . . , Xi are nulls. Therefore, it remains to prove that Xi+1 is a
null that does not occur in {X0, X1, . . . , Xi}.
Suppose, to the contrary, that Xi+1 = Xj for some j ≤ i, or that Xi+1 is not a null.

Pick X̂i+1 ∈ Null \ dom(Ti). Then it is easy to verify that

T ∗ := Ti ∪
{

Succt(Xi, X̂i+1),Succt(X̂i+1, X̂i+1)
}

∪
{

R(X̂i+1, ū) | R ∈ τ \ {∆′,Succt} and ū ∈
(

dom(Ti) ∪ {X̂i+1}
)r−1

,

where r is the arity of R
}

is a solution for SM underDHALT . Since T is a CWA-solution and T ′
i+1 ⊆ T , there is a ho-

momorphism h from T ′
i+1 to T

∗. Observe that h(X0) = X0, becauseX0 = 0 is a constant
and h is the identity on constants. Together with Succ

Ti

t = {(Xj , Xj+1) | 0 ≤ j < i}
and the fact that X0, X1, . . . , Xi are pairwise distinct, an induction on j shows that
h(Xj) = Xj for every j ≤ i. Moreover, since Succt(Xi, Xi+1) ∈ T ′

i+1, and Succt(Xi, X̂i+1)

is the only atom of the form Succt(Xi, ·) in T ∗, we have h(Xi+1) = X̂i+1.
If Xi+1 = Xj for some j ≤ i, this leads to a contradiction: h(Xi+1) = Xj 6= X̂i+1 =

h(Xi+1). Hence, by the assumption on Xi+1, we know that Xi+1 is not a null, i.e.,
Xi+1 is a constant. However, since h is the identity on constants, it is impossible that
h(Xi+1) = X̂i+1 – again, a contradiction. So, the assumption that Xi+1 = Xj for some
j ≤ i, or that Xi+1 is not a null must be false.

Note that the instance Ti+1 is obtained from T ′
i+1 by α-applying (4.3) and (4.4)

until these are satisfied, and finally (4.5). From this, together with the fact that
X0, X1, . . . , Xi+1 are pairwise distinct, we conclude that Ti+1 has the form (4.6), where
Y(i+1)+2 ∈ Dom. What remains is to prove that Y1, Y2, . . . , Y(i+1)+2 are pairwise distinct,
and that Y3, . . . , Y(i+1)+2 are nulls distinct from X1, . . . , Xi+1. This can be proven in a
similar way as Claim (*).
Finally, we show that C0, C1, . . . , Cn is a halting computation of M on the empty

input. Since C0, C1, . . . , Cn is a computation ofM on the empty input, we need to show
that qn is a final state. Let β be an assignment for the variables in the body of (4.1)
resp. (4.2) with β(t) = Xn, β(q) = qn, and β(s) = xn,pn

. If β satisfies the body of (4.1),
then there are Xn+1 ∈ Dom, a state qn+1, and a symbol xn+1,pn

with δ(qn, xn,pn
) =

(qn+1, xn+1,pn
,L) such that for pn+1 := pn − 1, the result of α-applying (4.1) to Tn has

the form (4.7) with i replaced by n. By a proof similar to the proof of Claim (*), we
obtain Xn+1 /∈ {X0, X1, . . . , Xn}. But this is impossible, because this would imply that
Tn+1 ) Tn; however, n has been chosen such that Tn+1 = Tn. Therefore, β cannot
satisfy the body of (4.1). In other words, δ(qn, xn,pn

) must be undefined. Since δ is a
total function on (Q \ QF ) × Σ, we conclude that qn is a final state. The case that β
satisfies the body of (4.2) can be handled similarly.

Altogether, the proof of Theorem 4.3 is complete.
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Note that Theorem 4.3 and Corollary 3.12 immediately lead to:

COROLLARY 4.4. There is a data exchange setting D such that EXISTENCE-OF-
UNIVERSAL-SOLUTIONS(D) is undecidable.

Remark 4.5. Even if we would allow infinite CWA-solutions, the EXISTENCE-OF-
CWA-SOLUTIONS problem – now asking for infinite CWA-solutions – would be un-
decidable in general. To see this, let us extend DHALT to a data exchange setting
D′

HALT by adding unary relation symbols F and F ′ to the source schema and the
target schema, respectively, the s-t tgd F (q) → F ′(q), and the egd State(t, q, p) ∧
F ′(q) ∧ ∆′(q′, s′, q′′, s′′, d) → q = q′. Furthermore, let M = (Q,Σ, δ, q0, QF ) be a Tur-
ing machine with Q \ QF 6= ∅ that is an admissible input for HALT. Then, for
S′
M := SM ∪ {F (q) | q ∈ QF }, it is clear that there is an (infinite) CWA-solution for
S′
M wheneverM does not reach a final state on the empty input, and the latter is the

case exactly ifM does not halt on the empty input.

Remark 4.6. As a corollary of the proof of Theorem 4.3 we obtain Theorem 1, Theo-
rem 6 and Theorem 14 of Deutsch et al. [2008]. These results are based on the following
terminology. Let Σ be a set of tgds and egds, and let I be an instance. Amodel for Σ and
I is a possibly infinite instance J such that there is a homomorphism from I to J , and
J |= Σ. Note that the first condition boils down to I ⊆ J if J contains only constants.
A strong universal model for Σ and I is a finite model for Σ and I such that for every
model K for Σ and I there is a homomorphism from J to K. A weak universal model
for Σ and I is a finite model for Σ and I such that for every finite model K for Σ and I
there is a homomorphism from J to K.

THEOREM 4.7 (DEUTSCH ET AL. [2008]). It is undecidable, given an instance I
and a set Σ of tgds and egds,

(1) whether there is some complete chase sequence of I with Σ,
(2) whether all chase sequences of I with Σ terminate (i.e., can be extended to a complete

chase sequence of I with Σ),
(3) whether a strong universal model for Σ and I exists, and
(4) whether a weak universal model for Σ and I exists.

This is even true over a fixed schema σ and for I = ∅.

The first two statements of Theorem 4.7 can be obtained from Theorem 4.3 as fol-
lows: Let DHALT = (σ, τ,Σst,Σt). Given a deterministic Turing machine M , let Σ′

st be
the set of all s-t tgds of the form → ϕ (with empty body), where ϕ is the conjunction of
all atoms in the canonical solution for SM under (σ, τ,Σst). Then, every chase sequence
of ∅ with Σ′

st ∪Σt is an α-chase sequence of ∅ with D′
HALT

:= (σ, τ,Σ′
st,Σt), where α is an

injective function from J ∗
D′

HALT

to Null. Moreover, every (successful) α-chase sequence of
∅ with D′

HALT can be turned into a (successful) α-chase sequence of SM with DHALT , and
vice versa. Finally, the proof of Theorem 4.3 shows that there is a successful α-chase
sequence of SM with DHALT , where α is an injective function from J ∗

DHALT
to Null, if and

only if there is a CWA-solution for S under DHALT . Together with Theorem 4.3 and
Proposition 3.6(1), this immediately proves the first two statements of Theorem 4.7.
To prove the remaining two statements of Theorem 4.7, note that there is a universal

solution for SM under DHALT if and only if there is a weak universal model for Σ′
st ∪ Σt

and ∅, and that every weak universal model for Σ′
st ∪Σt and ∅ is strongly universal.

Interestingly, the analogous EXISTENCE-OF-SOLUTIONS problem, asking for a so-
lution instead of a CWA-solution, is trivial for the schema mapping DHALT con-
structed in the proof of Theorem 4.3. In fact, for every source instance S for DHALT =
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(σ, τ,Σst,Σt), the target instance that interprets every relation symbol R ∈ τ by
(

const(S) ∪ {0, 1, 2,⊓}
)r
, with r being the arity of R, is a solution for S under DHALT .

On the other hand, Kolaitis et al. [2006] have established an undecidability result for
the EXISTENCE-OF-SOLUTIONS problem. They exhibit a data exchange setting Demb,
and reduce the

EMBEDDING PROBLEM FOR FINITE SEMIGROUPS (EMB)
Input: a finite set A, and a partial function p : A×A→ A
Question: Is there a finite set B ⊇ A and a total function f : B × B → B

such that f is associative, and f extends p (i.e., whenever p(a, b)
is defined, then f(a, b) = p(a, b))?

which is known to be undecidable [Kolaitis et al. 2006], to EXISTENCE-OF-SOLU-
TIONS(Demb). Demb has the source schema {R} and the target schema {R′}, where R
and R′ are ternary relation symbols. The intention is that R encodes the graph of the
input function p : A×A→ A, whereas R′ encodes the graph of a solution f : B×B → B
with respect to EMB. There is one s-t tgd R(x, y, z) → R′(x, y, z) to ensure that f is an
extension of p. Furthermore, there are the target dependencies

R′(x, y, z1) ∧R
′(x, y, z2) → z1 = z2, (4.8)

R′(x, y, u) ∧R′(y, z, v) ∧R′(u, z, w) → R′(x, v, w), (4.9)

R′(x1, x2, x3) ∧R
′(y1, y2, y3) → ∃z R′(xi, yj , z) for 1 ≤ i, j ≤ 3, (4.10)

where (4.8) ensures that f is a function, (4.9) ensures that f is associative, and
(4.10) ensures that f is total. The reduction is carried out by encoding an input
function p : A × A → A by the source instance Sp := {R(x, y, z) | p(x, y) = z}, which
has a solution under Demb if and only if the desired set B and function f exists.
However, the following example shows that this reduction does not establish that
EXISTENCE-OF-CWA-SOLUTIONS(Demb) is undecidable.

Example 4.8. The partial function p : {0, 1}2 → {0, 1} with p(0, 1) = 1 and un-
defined otherwise is clearly a “yes”-instance for EMB, since f : {0, 1}2 → {0, 1} with
f(x, y) := x + y mod 2 extends p, is associative, and total. However, we show that
Sp = {R(0, 1, 1)} is a “no”-instance for EXISTENCE-OF-CWA-SOLUTIONS(Demb), that
is, there is no CWA-solution for Sp under Demb.
Assume, to the contrary, that there is a CWA-solution T for Sp under Demb. Since

T is finite and satisfies (4.10), there are an integer k ≥ 0, pairwise distinct values
u0, u1, . . . , uk with u0 = 0, and an integer i ≤ k such that

{R′(u0, 1, u1), R
′(u1, 1, u2), . . . , R

′(uk−1, 1, uk), R
′(uk, 1, ui)} ⊆ T.

On the other hand, the target instance T ′ := {R′(u, v, w) | u+ v = w mod k + 2} is a
solution for Sp under Demb, and Theorem 3.9 implies that there is a homomorphism h
from T to T ′. In particular,

{R′
(

h(u0), 1, h(u1)
)

, R′
(

h(u1), 1, h(u2)
)

, . . . , R′
(

h(uk), 1, h(ui)
)

} ⊆ T ′.

Note that we must have h(u0) = 0, since u0 = 0 is a constant, and homomorphisms are
the identity on constants. Furthermore, we must have h(ui) = i for all i ∈ {1, . . . , k}:
if i < k and h(ui) = i, then h(ui+1) = i + 1, since T contains the atom R′(ui, 1, ui+1),
and R′(i, 1, i + 1) is the only atom of the form R′(i, 1, ·) in T ′. Hence, T ′ must contain
the atom R′(k, 1, i), where i ≤ k. But R′(k, 1, k + 1) is the only atom in T ′ of the form
R′(k, 1, ·) – a contradiction.
Clearly, there are also “yes”-instances p for EMB such that Sp is a “yes”-instance for

EXISTENCE-OF-CWA-SOLUTIONS(Demb). For example, this is true if p is empty or a to-
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tal associative function. Therefore, even “flipping” the answers, i.e., answering “yes” if
Sp is a “no”-instance for EXISTENCE-OF-CWA-SOLUTIONS(Demb), and “no” otherwise,
does not yield a reduction from EMB to EXISTENCE-OF-CWA-SOLUTIONS(Demb).

Even more, we can extend Demb to a data exchange setting D′
emb such that

EXISTENCE-OF-SOLUTIONS(D′
emb) is undecidable, but EXISTENCE-OF-CWA-SOLU-

TIONS(D′
emb) is trivial, which demonstrates once more the difference between EXIS-

TENCE-OF-SOLUTIONS on the one hand and EXISTENCE-OF-CWA-SOLUTIONS as well
as EXISTENCE-OF-UNIVERSAL-SOLUTIONS on the other hand.

Example 4.9. Construct D′
emb from Demb by adding a new binary target relation

symbol E, the s-t tgd → E(0, 1) without body (which ensures that every solution con-
tains the atom E(0, 1)), and the target tgd d := E(x, y) → ∃z E(y, z). Then for every
source instance S for D′

emb, we have:

—There is a solution for S under D′
emb if and only if there is a solution for S under

Demb. This is because d is independent of the other tgds and egds of Demb, and d is
satisfied in every solution for S under Demb containing E(0, 1).

—There is no CWA-solution for S under D′
emb. This is enforced by E(0, 1) and d.

Hence, the problem EXISTENCE-OF-SOLUTIONS(D′
emb) is undecidable, while the prob-

lem EXISTENCE-OF-CWA-SOLUTIONS(D′
emb) is trivial.

5. QUERY ANSWERING SEMANTICS

In this section, we introduce the new CWA-solution-based query answering semantics,
and argue that some of the anomalies mentioned in Section 1 do not arise for the new
semantics. In Section 6, we then study the complexity of query answering under the
new semantics.
The new semantics are basically the certain answers and the maybe answers on

CWA-solutions. That is, we take either the intersection (for the certain answers) or
the union (for the maybe answers) of the answers to a query Q(x̄) on individual CWA-
solutions T . Recall, however, that CWA-solutions are in general instances with incom-
plete information (cf., Section 2.5). Therefore, rather than answering Q(x̄) on T using
the naive semantics Q(T ), we employ techniques for answering queries on instances
with incomplete instances and return either the certain answers of Q on T , or the
maybe answers of Q on T . Of course, we have to take into account the set Σt of target
dependencies of the corresponding data exchange setting, so that we take the certain
answers and the maybe answers with respect to Σt.
To be more precise, let D = (σ, τ,Σst,Σt) be a data exchange setting, let S be a source

instance for D, and let Q(x̄) be a query over τ . Then, using the notions 2ΣtQ(T ) and
3ΣtQ(T ) introduced in Section 2.5, we define the following semantics for answering
Q(x̄):

—The certain answers semantics on CWA-solutions. The certain answers ofQ on CWA-
solutions for S underD, denoted by certainD

2
(Q,S), contains all |x̄|-tuples t̄ such that

for all CWA-solutions T for S under D we have t̄ ∈ 2ΣtQ(T ):

certainD
2
(Q,S) =

⋂

T∈[[S]]DCWA

2ΣtQ(T ).

—The potential certain answers semantics on CWA-solutions. The potential certain
answers of Q on CWA-solutions for S under D, denoted by certainD

3
(Q,S), contains
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all |x̄|-tuples t̄ such that there is a CWA-solution T for S under D with t̄ ∈ 2ΣtQ(T ):

certainD
3
(Q,S) =

⋃

T∈[[S]]DCWA

2ΣtQ(T ).

—The persistent maybe answers semantics on CWA-solutions. The persistent maybe
answers of Q on CWA-solutions for S under D, denoted by maybeD

2
(Q,S), contains

all |x̄|-tuples t̄ such that for all CWA-solutions T for S underD we have t̄ ∈ 3ΣtQ(T ):

maybeD
2
(Q,S) =

⋂

T∈[[S]]DCWA

3ΣtQ(T ).

—The maybe answers semantics on CWA-solutions. The maybe answers of Q on CWA-
solutions for S underD, denoted by maybeD

3
(Q,S), contains all |x̄|-tuples t̄ such that

there is a CWA-solution T for S under D with t̄ ∈ 3ΣtQ(T ):

maybeD
3
(Q,S) =

⋃

T∈[[S]]DCWA

3ΣtQ(T ).

Note that the above four semantics simply arise from the certain answers semantics
and the maybe answers semantics over CWA-solutions by consequential use of proper
query evaluation semantics for instances with incomplete information (as indicated
in Section 1.4, here we concentrate on the two basic semantics, the certain answers
semantics and the maybe answers semantics).

Example 5.1. Recall Example 1.1. Suppose we want to answer the query

Q(i) := ∃t ∃k Paper(i, t, k)

∧ ¬∃t ∃k ∃i′
(

Paper(i, t, k) ∧ Assign(i, i′) ∧ PC ′(i′, n1)
)

which asks for all IDs i of submissions not assigned to PC member n1. The certain
answers of Q on S with respect to Dconf are empty, because, as is easy to see, there is a
solution for S underDconf in which n1 has assigned all available submissions. However,
looking at Dconf and S, it seems natural to expect the answer to contain the entries 2
and 3, since n1 is not assigned to the submissions with IDs 2 and 3 according to the
source instance S, and Dconf intuitively does not assign n1 to those submissions. And
indeed, it is not hard to see that under each of the above semantics, the answer to Q
on S with respect to Dconf is {2, 3}.

Let us now return to the anomalies mentioned in Section 1. Each of the above se-
mantics leads to the desired result on copying data exchange settings:

Example 5.2. Consider a copying data exchange setting D (cf., Section 1.2) and a
source instance S for D. Then the “copy” S′ of S over τ (i.e., (R′)S

′

= RS for all R ∈ σ)
is the unique CWA-solution for S under D, and therefore,

certainD
2
(Q,S) = certainD

3
(Q,S) = maybeD

2
(Q,S) = maybeD

3
(Q,S) = Q(S′),

as intuitively expected. More generally, letD be a data exchange setting defined by full
tgds and egds. Then there is at most one CWA-solution for S underD (note that if there
is no CWA-solution, then there is no solution at all). If a CWA-solution exists, then this
CWA-solution, call it T , intuitively corresponds to the expected result of translating
S to the target, so that the answer to a query Q on S with respect to D should be
expected to be Q(T ); indeed, in this case each of the new semantics yields the answer
Q(T ). Otherwise, if no CWA-solution exists, then each of the new semantics yields the
empty set, as expected.
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The preceeding example demonstrates that the anomalies observed by Arenas et al.
[2004] and explained in Section 1.2 disappear with the CWA-solution-based semantics.
In addition, it shows that the rewriting of a queryQ in a copying data exchange setting
is Q itself, as it should be in such a setting. Thus, the CWA-solution-based semantics
resolve some of the most unpleasant anomalies of query answering in data exchange.

5.1. Characterizations

While the new semantics seem to be rather diverse, there are simple connections be-
tween them, and in some cases they can be characterized in terms of canonical solu-
tions, and core solutions. Theorem 5.3 below states that in order to evaluate a query
under the potential certain answers semantics or the persistent maybe answers se-
mantics, it suffices to compute the certain answers or the maybe answers, respectively,
on the core solution. A similar characterization for the certain answers semantics and
the maybe answers semantics, and with core solution replaced by canonical solution,
holds for data exchange settings without target dependencies (and slight extensions
thereof), but not in general. The problem of answering queries in data exchange can
thus often be reduced to the classical and well studied problem of answering queries
in databases with incomplete information [Abiteboul et al. 1995; Abiteboul et al. 1991;
Imielinski and Lipski, Jr. 1984].

THEOREM 5.3. Let D = (σ, τ,Σst,Σt) be a data exchange setting, let S be a source
instance for D, and let Q be a query over τ . Then we have

(1) certainD
3
(Q,S) = 2Σt

Q(CORED(S)),

(2) maybeD
2
(Q,S) = 3Σt

Q(CORED(S)).

Moreover, if Σt consists of egds, or all tgds in Σst ∪Σt are full, then

(3) certainD
2
(Q,S) = 2Σt

Q(T ∗),

(4) maybeD
3
(Q,S) = 3Σt

Q(T ∗).

For the proof, we need the following result:

PROPOSITION 5.4. Let D = (σ, τ,Σst,Σt) be a data exchange setting, and let S
be a source instance for D. Then, for every CWA-solution T for S under D, we have
RepΣt

(CORED(S)) ⊆ RepΣt
(T ).

Moreover, if Σt consists of egds, or all tgds in Σst ∪ Σt are full, then RepΣt
(T ) ⊆

RepΣt
(CANSOLD(S)).

PROOF. Let T be a CWA-solution for S under D. To prove RepΣt
(CORED(S)) ⊆

RepΣt
(T ), let T̂ ∈ RepΣt

(CORED(S)). Then there is a valuation v of CORED(S) with
v(CORED(S)) = T̂ . On the other hand, T is a universal solution for S under D,
and by Theorem 2.1(3), there is a homomorphism h from T to CORED(S) such that
h(T ) = CORED(S). It follows that the composition v′ := v ◦ h of h and v is a valuation
of T with v′(T ) = v(CORED(S)) = T̂ , and consequently, T̂ ∈ RepΣt

(T )
The proof for the other inclusion RepΣt

(T ) ⊆ RepΣt
(CANSOLD(S)) in the case that

Σt consists of egds, or all tgds in Σst ∪ Σt are full, is analogous: in this case, the (ex-
tended) canonical solution CANSOLD(S) exists, and there is a homomorphism h from
CANSOLD(S) to T with h(CANSOLD(S)) = T .

We are now ready to give the proof of Theorem 5.3:
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PROOF OF THEOREM 5.3. We first prove 1 and 2. By Proposition 5.4, every CWA-
solution T for S under D satisfies RepΣt

(CORED(S)) ⊆ RepΣt
(T ), hence

2ΣtQ(T ) =
⋂

T̂∈RepΣt
(T )

Q(T̂ ) ⊆
⋂

T̂∈RepΣt
(CORED(S))

Q(T̂ ) = 2ΣtQ(CORED(S)), (5.1)

3ΣtQ(T ) =
⋃

T̂∈RepΣt
(T )

Q(T̂ ) ⊇
⋃

T̂∈RepΣt
(CORED(S))

Q(T̂ ) = 3ΣtQ(CORED(S)). (5.2)

Consequently,

certainD
3
(Q,S) =

⋃

T∈[[S]]DCWA

2ΣtQ(T )
(5.1)
= 2ΣtQ(CORED(S)),

maybeD
2
(Q,S) =

⋂

T∈[[S]]DCWA

3ΣtQ(T )
(5.2)
= 3ΣtQ(CORED(S)).

The proof for 3 and 4 is analogous; here we use RepΣt
(T ) ⊆ RepΣt

(CANSOLD(S)) as
guaranteed by Proposition 5.4.

Furthermore, one can use Theorem 5.3 to establish the following relationship be-
tween the new semantics.

COROLLARY 5.5. For every data exchange setting D = (σ, τ,Σst,Σt), every source
instance S for D, and every query Q(x̄) over τ , we have:

certainD
2
(Q,S) ⊆ certainD

3
(Q,S) ⊆ maybeD

2
(Q,S) ⊆ maybeD

3
(Q,S).

PROOF. The first and third inclusion follow directly from the definitions. For prov-
ing certainD

3
(Q,S) ⊆ maybeD

2
(Q,S), observe that for all CWA-solutions T for S un-

der D it holds that 2ΣtQ(T ) ⊆ 3ΣtQ(T ). Therefore it follows from Theorem 5.3 that
certainD

3
(Q,S) = 2ΣtQ(CORE(S)) ⊆ 3ΣtQ(CORE(S)) = maybeD

2
(Q,S).

Note that the certain answers semantics and the certain answers semantics on uni-
versal solutions of [Fagin et al. 2005a; Fagin et al. 2005b] both produce subsets of
certainD

2
(Q,S).

5.2. Discussion and Other Semantics

Although the CWA-solution-based semantics resolve the anomalies of query answering
mentioned in Section 1.2, there are scenarios where they still give rise to unintended
answers.

Example 5.6. Consider a data exchange setting with the source schema containing
a relation Person with an attribute name, the target schema containing a relation
ParentChild with attributes parent and child, and a single tgd

∀x (Person(x) → ∃z ParentChild(x, z)).

Then, under the CWA, for each person p, a single tuple (p,⊥) will be inserted into the
target. Hence, the certain answers to a query ∀x∃!z ParentChild(x, z) stating that each
parent has exactly one child will be true, even though this was not intended.

To remedy this shortcoming, several other semantics for query answering have been
proposed [Libkin and Sirangelo 2011; Afrati and Kolaitis 2008; Hernich 2010], which
we now briefly discuss.
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Motivated by problems such as those described in Example 5.6, Libkin and Sirangelo
[2011] propose a combination of the CWA-based approach of this paper with the “clas-
sical” OWA-based approach. Rather than insisting that the values at all positions of
atoms in the target are unique (since these atoms are justified by exactly one justifica-
tion), they relax this requirement by letting the user (or more precisely, the developer
of the data exchange setting) control which positions of atoms in the target may be con-
sidered as open (not unique), and which positions are considered as closed (unique). If
a position of an atom is open, then we may instantiate that atom with a different
value at that position (so the value at that position is not unique), while positions that
are closed are not allowed to change (they are unique). Technically, this is achieved
by specifying for each position in the head of an s-t tgd whether the corresponding
value at that position should be open, or closed. We should remark that this approach
is applicable to data exchange settings without target dependencies, and it was left
open how to extend it to more general data exchange settings. Using this “mixed-world
approach”, we can solve the problem described in Example 5.6 as follows:

Example 5.7. The tgd in that example will become

∀x (Person(x) → ∃z ParentChild(xclosed, zopen)),

indicating that while only people from the source are moved to the target as first at-
tributes, the number of children associated with them is not restricted (i.e., is viewed
under the OWA).

Afrati and Kolaitis [2008] show a different version of closed-world semantics to
be useful for answering queries with aggregates. Their main point is that the CWA-
solution-based semantics of this paper are too weak in this setting, since the instances
in RepΣt

(T ) for CWA-solutions T may contain values that do not occur in the source
instance. In their semantics, aggregate queries are answered by the certain answers
over the endomorphic images of the canonical solution. That semantics, too, was devel-
oped for data exchange settings without target dependencies, and the behavior of such
semantics with target dependencies was left open.
We should remark that most of the above-mentioned semantics heavily rely on the

concrete presentation of the set of s-t tgds specifying the data exchange setting. This
is true for the certain answers semantics and the maybe answers semantics on CWA-
solutions as well as the semantics of Libkin and Sirangelo [2011] and Afrati and Ko-
laitis [2008]. The reason is that these semantics are defined in terms of the canonical
solution, which is highly sensitive to slight variations of the data exchange setting.
For example, consider the two data exchange settings D1 = ({P}, {E}, {θ1}) and D2 =
({P}, {E}, {θ2}), where θ1 and θ2 are respectively defined as ∀x(P (x) → ∃y E(x, y)) and
∀x(P (x) → ∃y∃z (E(x, y) ∧ E(x, z))). Although θ1 and θ2 are logically equivalent, the
canonical solutions of source instances under D1 and D2 differ: the source instance
{P (a)}, for example, has the canonical solution {E(a,⊥)} under D1, and the canonical
solution {E(a,⊥), E(a,⊥′)} under D2. Note that neither the potential certain answers
semantics nor the persistent maybe answers semantics have this disadvantage.
To obtain unique answers for logically equivalent8 data exchange settings, Gottlob

et al. [2009] propose to first normalize the data exchange setting as described in their
paper, and then apply the semantics. Another approach is to use the semantics de-
veloped in Hernich [2010]. That semantics does not build directly on the approach

8Fagin et al. [2008] considered different notions of equivalence between data exchange settings. Logical
equivalence is the strongest such notion. Instead of unique query answers on logically equivalent data ex-
change settings, one could also require unique query answers on data exchange settings that are equivalent
under any of the other notions of equivalence.
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presented in this work, but is inspired by the original proposal of the CWA by Reiter
[1978], and variants thereof. Furthermore, it can be applied to a broader class of data
exchange settings. A discussion including a comparison with the above-mentioned se-
mantics can be found in [Hernich 2010].

6. COMPLEXITY OF QUERY ANSWERING

Finally, we consider the complexity of answering queries under the new semantics.
More precisely, given a data exchange setting D, a query Q(x̄) over D’s target schema,
and answer ∈ {certain2, certain3,maybe

2
,maybe

3
}, we are interested in the complex-

ity of the problem

EVALanswer(D,Q)

Input: a source instance S for D, and a tuple t̄ ∈ Dom|x̄|

Question: Is t̄ ∈ answerD(Q,S)?

Thus we deal with the data complexity of query answering.
The following definitions will be convenient. Let D be a class of data exchange set-

tings, let L be a query language, and let C be a complexity class. We say that the data
complexity of L with respect to answer and D is in C if for every data exchange setting
D ∈ D and each query Q ∈ L over D’s target schema, EVALanswer(D,Q) is in C. We also
say that the data complexity of L with respect to answer and D is C-hard if there is
a data exchange setting D ∈ D and a query Q ∈ L over D’s target schema such that
EVALanswer(D,Q) is hard for C. Finally, we say that the data complexity of L with re-
spect to answer and D is C-complete if the data complexity of L with respect to answer
and D is in C, and C-hard.

6.1. Complexity of Answering FO Queries

As the next proposition shows, the EVAL-problem may be undecidable for the two se-
mantics certain2 and maybe

3
, even with respect to weakly acyclic data exchange set-

tings. For a proof see Appendix C.

PROPOSITION 6.1. There is a weakly acyclic data exchange settingD and a Boolean
FO query Q overD’s target schema such that EVALcertain2

(D,¬Q) and EVALmaybe
3
(D,Q)

are undecidable.

We remark that Proposition 6.1 is based entirely on the fact that, given a data ex-
change setting D, a source instance S for D, a mapping α : J ∗

D → Dom, and a tuple
(j, z) ∈ J ∗

D with j = (d, ū, v̄), the value α(j, z) does not only depend on d, ū and z, but
also on v̄. This makes it possible to cascade the creation of nulls even though the data
exchange setting is weakly acyclic. The following restriction of weakly acyclic data
exchange settings prohibits this.9

Definition 6.2 (richly acyclic data exchange setting).

—The extended dependency graph of a set Σ of tgds is obtained from the dependency
graph ofΣ (see Definition 4.1) as follows: for every tgd ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) in Σ, every
variable y in ȳ, and every position (R, i) at which y appears in ϕ, add an existential
edge from (R, i) to every position at which some variable from z̄ appears in ψ.

—A set Σ of tgds is richly acyclic if no cycle in the extended dependency graph of Σ
contains an existential edge.

9We remark that richly acyclic data exchange settings were considered also by Gottlob and Nash [2008], see
the remark below Definition 1 in their paper. Our notion of richly acyclic corresponds to their Definition 1a.
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(R, 1)

(R, 2)

(R, 3)

(R̃, 1)

(R̃, 2)

(R̃, 3)

(a) dependency graph

(R, 1)

(R, 2)

(R, 3)

(R̃, 1)

(R̃, 2)

(R̃, 3)

(b) extended dependency graph

Fig. 2. The dependency graph ofΣ (a), and the extended dependency graph of Σ (b). Dashed edges represent
copying edges, while solid edges represent existential edges.

—A data exchange setting D = (σ, τ,Σst,Σt) is called richly acyclic if Σt is the union of
a richly acyclic set of tgds, and a set of egds.

Note that every richly acyclic data exchange setting is weakly acyclic, but not vice
versa as illustrated by the following example:

Example 6.3. Consider the set Σ consisting of the two tgds

R(x, y, z) → R̃(x, y, z) and R̃(x, y, z) → ∃x′∃y′∃z′ R̃(x′, y′, z′),

which occur in the data exchange setting constructed in the proof of Proposition 6.1.
The dependency graph of Σ is as shown in Figure 2(a). Since this graph contains no ex-
istential edges at all, Σ is weakly acyclic. On the other hand, the extended dependency
graph of Σ, shown in Figure 2(b), contains existential edges. Moreover, it contains cy-
cles through existential edges, which implies that Σ is not richly acyclic.

Furthermore, the EVAL-problem is decidable for FO queries with respect to richly
acyclic data exchange settings. More precisely, we have the following:

THEOREM 6.4. Let answer ∈ {certain2, certain3,maybe
2
,maybe

3
}. Then the data

complexity of FO with respect to answer and the class of richly acyclic data exchange
settings as well as the class of weakly acyclic data exchange settings is as follows:

answer richly acyclic settings weakly-acyclic settings

certain2 co-NP-complete undecidable
certain3 co-NP-complete co-NP-complete
maybe

2
NP-complete NP-complete

maybe
3

NP-complete undecidable

The upper bounds of Theorem 6.4 follow from Lemma 6.6 below. The lower bounds
of Theorem 6.4 follow from Theorem 6.8 below, and Proposition 6.1.

Remark 6.5. Of course it has long been known that the data complexity of com-
puting certain (resp. maybe) answers for FO queries is coNP-complete (NP-complete,
respectively) [Abiteboul and Duschka 1998; Abiteboul et al. 1991], in the size of an
instance T . However, here we measure the complexity of answering queries on CWA-
solutions for S under D, in terms of the size of S. Thus, in the proof of Theorem 6.4,
we have to provide hardness examples that, unlike those in [Abiteboul and Duschka
1998; Abiteboul et al. 1991], arise as CWA-solutions like CANSOLD(S) or CORED(S)
for some fixed data exchange setting D.

LEMMA 6.6. Let D = (σ, τ,Σst,Σt) be a data exchange setting, and let Q(x̄) be an
FO query over D’s target schema. Then:
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(1) If the data exchange settingD is weakly acyclic, then EVALcertain3
(D,Q) ∈ co-NP and

EVALmaybe
2
(D,Q) ∈ NP.

(2) If the data exchange setting D is richly acyclic, then EVALcertain2
(D,Q) ∈ co-NP and

EVALmaybe
3
(D,Q) ∈ NP.

PROOF. Let D = (σ, τ,Σst,Σt) be a schema mapping, and let Q(x̄) be an FO query
over τ .

Ad 1: By duality (i.e., for every tuple t̄ we have t̄ ∈ certainD
3
(Q,S) precisely if t̄ /∈

maybeD
2
(¬Q,S)), it suffices to show that EVALmaybe

2
(D,Q) ∈ NP. Let S be a source

instance for D, and let t̄ ∈ Dom|x̄|. By Theorem 5.3, we have

maybeD
2
(Q,S) = 3ΣtQ(CORED(S))

if CWA-solutions for S under D exist. Note that if no CWA-solution exists, then by
Corollary 3.12, CORED(S) does not exist. In particular, the algorithm guaranteed
by Theorem 4.2 will indicate that CORED(S) does not exist, so that we can output
maybeD

2
(Q,S) = ∅. In the following we assume that CWA-solutions for S under D ex-

ist.
By Theorem 4.2, we can compute T0 := CORED(S) in time polynomial in the size of S.

Thus, it remains to show that we can nondeterministically check whether t̄ ∈ 3ΣtQ(T0)
in time polynomial in the size of T0.
We have t̄ ∈ 3ΣtQ(T0) if and only if there is an instance T̂ ∈ RepΣt

(T0) such that
t̄ ∈ Q(T̂ ). Furthermore, if there is an instance T̂ ∈ RepΣt

(T0) with t̄ ∈ Q(T̂ ), then it is
easy to see that there is such an instance T̂ with dom(T̂ ) ⊆ C ∪ f(null(T0)), where C
is the set of all constants that occur in T0, Q, and t̄, and f : null(T0) → Const \ C is an
injective mapping. Thus, we can check t̄ ∈ 3ΣtQ(T0) by the following nondeterministic
procedure:

(1) “Guess” a valuation v : dom(T0) → C ∪ f(null(T0)) of T0.
(2) Check whether T̂ := v(T0) satisfies all target tgds and egds of Σ. If not, reject the

input.
(3) If t̄ ∈ q(T̂ ), accept the input. Otherwise reject it.

Clearly, this procedure runs in time polynomial in the size of T0, which completes the
proof of 1.

Ad 2: Again, by duality (i.e., t̄ ∈ certainD
2
(Q,S) if and only if t̄ /∈ maybeD

3
(¬Q,S)), it

suffices to show that EVALmaybe
3
(D,Q) ∈ NP. Let S be a source instance for D, and

let t̄ ∈ Dom|x̄|. Then, t̄ ∈ maybeD
3
(Q,S) if and only if there are a CWA-solution T

for S under D with t̄ ∈ 3ΣtQ(T ). Therefore, the following nondeterministic algorithm
decides whether t̄ belongs to maybeD

3
(Q,S):

(1) Compute T0 := CORED(S).
(2) Generate a successful α-chase sequence C of S with D, “guessing” the relevant

values for α : J ∗
D → Dom “along the way”.10 Let S ∪ T be the result of C.

(3) If T does not satisfy the egds of Σt, reject S and t̄.
(4) Check whether there is a homomorphism from T to T0. If not, reject the input.
(5) If t̄ ∈ 3ΣtQ(T ), then accept S and t̄. Otherwise reject.

10Note that we can restrict attention to mappings α : J ∗

D
→ dom(S) ∪ C ∪ Null, where C is the set of all

constants that occur in Σst ∪Σt – all other choices do not lead to CWA-solutions for S under D.
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Note that step 2–4 guarantee that T is a CWA-solution for S under D: step 2 and 3
ensure that T is a CWA-presolution for S under D, while step 4 ensures that T is
a universal solution for S under D. Thus, the algorithm indeed checks whether t̄ ∈
maybeD

3
(Q,S). Furthermore, the algorithm runs in polynomial time: By Theorem 4.2,

we can accomplish step 1 in polynomial time. By the proof of Theorem 3.9 in Fagin
et al. [2005a], step 2 can be accomplished in polynomial time as well. It is also easy to
see that steps 3 and 4 can be accomplished in polynomial time. Finally, we have shown
in part 1 of the proof that step 5 can be accomplished in polynomial time.

Remark 6.7. Lemma 6.6 still holds if Q is a query with polynomial time data com-
plexity. Recall that a query Q has polynomial time data complexity if the language
{enc(I)#enc(t̄) | t̄ ∈ Q(I)} is in PTIME, where enc(I) and enc(t̄) are encodings of an
instance I and a tuple t̄ over dom(I), respectively.

For the hardness results of Theorem 6.4, we can use:

THEOREM 6.8 ([MĄDRY 2005]). There is a data exchange setting D without target
dependencies, and a Boolean conjunctive query Q with two inequalities such that the
following problem is co-NP-complete: given a source instance S for D, decide whether
the certain answers of Q on S with respect to D are non-empty.

Mądry’s proof is formulated for the certain answers semantics of Fagin et al. [2005a],
but it is not hard to see that it carries over to the semantics certain2 and certain3. By
duality, we then get the hardness results concerning the remaining two semantics
maybe

2
and maybe

3
.

6.2. Complexity of Answering Positive Queries

We now turn to the case of positive queries, such as unions of conjunctive queries (UCQ,
for short) or Datalog queries. This case was most heavily studied in the context of data
exchange [Fagin et al. 2005a; Fagin et al. 2005b; Mądry 2005]. We show that such
positive queries can be evaluated in polynomial time under the two certain answer-
based semantics certain2 and certain3.
First recall that [Fagin et al. 2005a; Fagin et al. 2005b] and others follow the naive

approach to evaluation of queries on target instances. In this approach, the answer to a
queryQ(x̄) on a target instance T is simply the set Q(T ) of all tuples t̄ over Const∪Null
such that T |= Q(t̄). So it is assumed that the domain of the database comes from
Const ∪ Null, and thus the equality predicate is available on the entire domain; in par-
ticular, two nulls are equal if they are just symbolically the same null. This corresponds
precisely to query evaluation over naive tables [Abiteboul et al. 1995; Imielinski and
Lipski, Jr. 1984].
Based on this naive evaluation, [Fagin et al. 2005a; Fagin et al. 2005b] proposed

a semantics for evaluating conjunctive queries with respect to weakly acyclic data
exchange settings, which happened to coincide with their notion of certain answers.
For a target instance T , define T↓ as the instance T from which all tuples containing
nulls have been removed. Then the evaluation function for conjunctive queries from
[Fagin et al. 2005a; Fagin et al. 2005b] is

CQ_evalD(Q,S) := Q(T )↓,

where D is a weakly acyclic data exchange setting, Q is a conjunctive query over D’s
target schema, S is a source instance forD, and T is an arbitrary universal solution for
S underD. It turns out that this is precisely what two of the semantics we studied here
do for the class of unions of conjunctive queries (also known as positive relational alge-
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bra queries, i.e., {σ, π,1,∪}-queries in which selection predicates are positive Boolean
combinations of equalities).
Recall that unions of conjunctive queries are preserved under homomorphisms (see,

e.g., Chandra and Merlin [1977]), i.e., if Q is a union of conjunctive queries, I, J are
instances such that there is a homomorphism h from I to J , and t̄ ∈ Q(I), then h(t̄) ∈
Q(J).

LEMMA 6.9. Let D = (σ, τ,Σst,Σt) be a data exchange setting, S a source instance
for D, and Q a query over τ that is preserved under homomorphisms. Then, for every
CWA-solution T for S under D we have

certainD
2
(Q,S) = certainD

3
(Q,S) = Q(T )↓.

PROOF. We first prove the following intermediate claim:

(*) If T and T ′ are homomorphically equivalent target instances for D with
T ′ |= Σt, then 2ΣtQ(T ′) = Q(T )↓.

Let T and T ′ be target instances for D such that T ′ |= Σt. Furthermore, let h be a
homomorphism from T ′ to T , and let h′ be a homomorphism from T to T ′.
We first show that 2ΣtQ(T ′) ⊆ Q(T )↓. Let t̄ ∈ 2ΣtQ(T ′). Then for all T̂ ∈ RepΣt

(T ′)

we have t̄ ∈ Q(T̂ ). This implies that t̄ ∈ Q(T ′) (here we need that T ′ satisfies Σt), and
that t̄ consists entirely of constants. Since h is a homomorphism from T ′ to T , and Q is
preserved under homomorphisms, this leads to h(t̄) ∈ Q(T ). Since t̄ consists entirely of
constants, and h is the identity on constants, we conclude that t̄ ∈ Q(T )↓.
The proof for Q(T )↓ ⊆ 2ΣtQ(T ′) is pretty much the same: If t̄ ∈ Q(T )↓, then we have

t̄ ∈ Q(T ), and that t̄ consists entirely of constants. The remaining part of the proof is
then the same, except that T and T ′ must be interchanged, and h must be replaced
with h′.

Now, by Theorem 3.9, every two CWA-solution for S under D are homomorphically
equivalent, and satisfy Σt. Therefore, for every CWA-solution T for S underD we have

certain
2
(Q,S) =

⋂

T ′∈[[S]]CWA

2ΣtQ(T ′)
(*)
=

⋂

T ′∈[[S]]CWA

Q(T )↓ = Q(T )↓

and

certain
3
(Q,S)

Thm. 5.3
= 2ΣtQ(CORE(S))

(*)
= Q(T )↓.

Remark 6.10. Concerning the maybe answer-based semantics, even for quantifier-
free conjunctive queries we may have maybeD

2
(Q,S) 6= maybeD

3
(Q,S). For example,

it is easy to find a data exchange setting D with a single target relation R, and a
source instance S for D so that CANSOLD(S) = {R(a,⊥1), R(a,⊥2)}. Then we have
CORED(S) = {R(a,⊥)}. Thus, if Q is defined such that Q(x, y, z) := R(x, y) ∧ R(x, z),
then maybeD

2
(Q,S) = 3Q(CORE(S)) ( 3Q(CANSOL(S)) = maybeD

3
(Q,S).

Nowwe can show that unions of conjunctive queries can be answered efficiently with
respect to the two semantics certain2 and certain3, and weakly acyclic data exchange
settings.

PROPOSITION 6.11. LetD = (σ, τ,Σst,Σt) be a weakly acyclic data exchange setting,
let Q be a union of conjunctive queries over τ , and let answer be one of certain2 and
certain3. Then there is a polynomial time algorithm that, given a source instance S for
D, computes answerD(Q,S).
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PROOF. To compute answerD(Q,S), we can proceed as follows: First, we generate
an arbitrary CWA-solution for S under D. Since D is weakly acyclic, Theorem 4.2 tells
us that this is possible in time polynomial in the size of S. By Lemma 6.9, we can now
return the set Q(T )↓ as the result of answerD(Q,S). (Recall that a fixed UCQ query
can be evaluated in time polynomial in the size of the input instance [Abiteboul et al.
1995].)

Note that Proposition 6.11 is still true if Q is not a UCQ query, but satisfies the
following two requirements instead: (1) Q is preserved under homomorphisms, and
(2) Q can be evaluated in time polynomial in the size of the input instance. So, for
example, if Q is a Datalog query, then Proposition 6.11 remains true.
The complexity bound of Proposition 6.11 is tight in the following sense; see Ap-

pendix D for a proof.

PROPOSITION 6.12. Let answer ∈ {certain2, certain3}. Then the data complexity of
unions of conjunctive queries with respect to answer and the class of weakly acyclic data
exchange settings is PTIME-hard.

A slight extension of unions of conjunctive queries, where each conjunct can contain
an inequality x 6= y between variables x and y, increases the complexity of query
evaluation. Let D be a weakly acyclic data exchange setting, and let Q be a union of
conjunctive queries with at most one inequality per disjunct. Recall from Fagin et al.
[2005a] that there is a polynomial time algorithm A that, given a source instance S
for D, computes the certain answers of Q on S with respect to D. It is easy to see
that A can also be used to compute certainD

2
(Q,S) and certainD

3
(Q,S), as long as the

target dependencies of D consist of egds, or all s-t tgds and target tgds of D are full.
However, if we do not impose this restriction on D, then Theorem 6.13 below implies
that even if D is richly acyclic, it is unlikely that there is a polynomial time algorithm
that computes certainD

2
(Q,S) or certainD

3
(Q,S) on input S.

THEOREM 6.13. There is a richly acyclic data exchange settingD and a conjunctive
query Q with one inequality such that:

(1) EVALcertain2
(D,Q) and EVALcertain3

(D,Q) are co-NP-complete.
(2) EVALmaybe

2
(D,¬Q) and EVALmaybe

3
(D,¬Q) are NP-complete.

PROOF. We prove only 1, since 2 follows by duality. Let the source schema of D
be {R,C,L}, and the target schema {R′, C′, L′}. Let the source-to-target dependencies
and target dependencies of D consist of

—R(i, j, p) → R′(i, j, p),
—C(i) → ∃t C′(i, t),
—L(j, p) → ∃t L′(j, p, t),

and let the target dependencies Σt of D consist of

—C′(i, 1) → ∃j, p
(

R′(i, j, p) ∧ L′(j, p, 1)
)

,
—L′(j, p, 1) ∧ L′(j, p′, 1) → p = p′.

Finally, let

Q := ∃i∃t (C′(i, t) ∧ t 6= 1) .

Note that D is richly acyclic. Hence, EVALcertain2
(D,Q) and EVALcertain3

(D,Q) are in
co-NP by Lemma 6.6. To prove co-NP-hardness, we give a reduction from the comple-
ment of the NP-complete SAT, the satisfiability problem for propositional formulas in
conjunctive normal form (see, e.g., [Papadimitriou 1994]).
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The reduction is carried out as follows. On input of a propositional formula

ϕ(x1, x2, . . . , xn) := C1 ∧ C2 ∧ · · · ∧ Cm

in conjunctive normal form, we construct the source instance

Sϕ := {R(i, j, 1) | xj occurs in Ci} ∪ {R(i, j, 0) | ¬xj occurs in Ci}

∪ {C(i) | 1 ≤ i ≤ m} ∪ {L(j, b) | 1 ≤ j ≤ n and b ∈ {0, 1}}.

Note that there is exactly one CWA-solution for Sϕ, denoted by Tϕ. It consists of a copy
of R, contains for each i ∈ {1, 2, . . . ,m} an atom C′(i,⊥i), and for each j ∈ {1, . . . , n}
and b ∈ {0, 1} an atom L′(j, b,⊥j,b), where the nulls ⊥i,⊥j,b introduced for each i, j and
b are pairwise distinct. Therefore, certain

2
(Q,Sϕ) = certain

3
(Q,Sϕ) = 2ΣtQ(Tϕ). We

claim that ϕ is satisfiable iff 2ΣtQ(Tϕ) = ∅.

(=⇒) Let α : {x1, x2, . . . , xn} → {0, 1} be a satisfying truth assignment for ϕ. We extend
α to negated variables by α(¬xi) = 1 − α(xi). Then, for every i ∈ {1, . . . ,m} there
is a literal ℓ in Ci such that α(ℓ) = 1. Define a valuation v of Tϕ such that for each
⊥ ∈ null(Tϕ),

v(⊥) =







1 if ⊥ = ⊥i

α(xj) if ⊥ = ⊥j,1

α(¬xj) if ⊥ = ⊥j,0.

Then, v(Tϕ) satisfies the target dependencies of D, i.e., v(Tϕ) ∈ RepΣt
(Tϕ), but v(Tϕ)

does not satisfy Q. Therefore, 2ΣtQ(Tϕ) =
⋂

T̂∈RepΣt
(Tϕ)Q(T̂ ) = ∅.

(⇐=) Assume now that 2ΣtQ(Tϕ) = ∅. Then RepΣt
(Tϕ) contains an instance T̂ that

does not satisfy Q. Define a truth assignment α : {x1, . . . , xn} → {0, 1} such that for
each j ∈ {1, . . . , n},

α(xj) =

{

1 if L′(j, 1, 1) ∈ T̂

0 otherwise,

and extend it to negated variables as above. We claim that α satisfies ϕ; i.e., for each
i ∈ {1, . . . ,m} there is a literal ℓ in Ci with α(ℓ) = 1.
Let i ∈ {1, . . . ,m}. Then C(i, 1) ∈ T̂ , because T̂ 6|= Q. Since T̂ satisfies the target

dependencies of D, there are j ∈ {1, . . . , n} and p ∈ {0, 1} such that R′(i, j, p) and
L′(j, p, 1) are in T̂ , and L′(j, 1 − p, 1) /∈ T̂ . If p = 0, then we have R′(i, j, 0) ∈ T̂ and
L′(j, 1, 1) /∈ T̂ .R′(i, j, 0) ∈ T̂ indicates that the literal ¬xj occurs in Ci, and L′(j, 1, 1) /∈ T̂
indicates that α(¬xj) = 1 − α(xj) = 1. So, if p = 0, then Ci is satisfied under α. It
remains therefore to show that Ci is satisfied under α if p = 1. If p = 1, then R′(i, j, 1)

and L′(j, 1, 1) are in T̂ . R′(i, j, 1) ∈ T̂ indicates that the literal xj occurs in Ci, and
L′(j, 1, 1) ∈ T̂ indicates that α(xj) = 1. Consequently, Ci is satisfied under α.

Table II summarizes the present section’s results on the complexity of the problems
EVALcertain2

(D,Q) and EVALcertain3
(D,Q) for various restrictions of the data exchange

setting D and the query language from which Q is chosen.

7. CONCLUDING REMARKS

In this paper, we introduced CWA-solutions as a new concept of solutions for data
exchange that is based on the closed world assumption. Using CWA-solutions, we
then developed new query answering semantics which do not suffer from some of the
known anomalies of query answering with respect to the certain answers semantics
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Table II. Complexity of EVALcertain2(D,Q) and EVALcertain3 (D,Q) for certain restrictions of D and Q.

UCQ
UCQ with at most one
inequality per disjunct FO

query language

weakly acyclic

richly acyclic

only s-t tgds, egds

only s-t tgds

only full tgds, egds

re
st
ri
ct
io
n
of

da
ta

ex
ch

an
ge

se
tt
in
g

PTIME
(Prop. 6.11)

PTIME
(Fagin et al. [2005a],

Thm. 5.12)
PTIME (folklore)

co-NP-complete
(Lem. 6.6 & Thm. 6.13)

co-NP-complete
(Lem. 6.6 &
Thm. 6.8)

co-NP-hard
(Thm. 6.13)

undecidable
(Prop. 6.1)

and the universal solution-based certain answers semantics. These semantics further
confirmed the special status of the canonical solution and the core in data exchange.
In fact, for the more common certain answers semantics, our results indicate that the
canonical solution (or a solution that behaves like the canonical solution with respect
to RepΣt

) is the preferred solution to materialize.
Nevertheless, there is still much left to do. Extensions and variations on the theme

of CWA-solutions appeared already. For example, Libkin and Sirangelo [2011] argued
that in some scenarios the closed-world semantics may be too restrictive, and showed
how to obtain solutions that combine the OWA and the CWA semantics. It was left
open however how to add target constraints to such mixed data exchange settings. In
[Afrati and Kolaitis 2008], a different version of closed-world semantics is shown to be
useful for answering queries with aggregates. In that semantics, a CWA-solution must
be contained in the canonical solution, rather than be its homomorphic image. Again,
nothing is known about the behavior of such semantics with target constraints.
The results of Libkin and Sirangelo [2011] indicate that with respect to the compo-

sition operation, the closed-world semantics behaves similarly to the open-world se-
mantics. Nothing however is known about the interaction of CWA-solutions and other
operators on schema mappings such as inverses [Fagin 2007] and recoveries [Arenas
et al. 2009].
We reduced query answering in data exchange to query answering over naive tables,

which may be intractable for queries outside of the positive fragment of relational
algebra. It would be nice to find ways to overcome this; for example, by finding easily
constructible and fairly large subsets of certain answers.
And, finally, data exchange techniques have recently been looked at in the XML con-

text [Arenas and Libkin 2008]. There is no clearly defined concept of a good solution in
that case (as the analog of the canonical solution may fail to satisfy schema specifica-
tions), nor well-defined techniques for answering queries with incomplete information.
Thus defining a proper semantics for solutions and query answering for XML remains
open.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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A. MAXIMAL CWA-SOLUTIONS

In this section we justify Definition 3.14 on extended canonical solutions, and we illus-
trate that for general data exchange settings there are no maximal CWA-solutions in
the sense of maximality of the (extended) canonical solution.
We begin by justifying Definition 3.14. Note that if D = (σ, τ,Σst,Σt) is a data ex-

change setting where all tgds that occur in Σst ∪Σt are full, then every source instance
S for D has at most one CWA-solution for S under D. If there is a CWA-solution, say
T , we can define CANSOLD(S) := T , and if there is none, then we let CANSOLD(S) be
undefined. We now turn to the case that Σt consists of egds:

PROPOSITION A.1. Let D = (σ, τ,Σst,Σt) be a data exchange setting where Σt con-
sists of egds, and let S be a source instance for D with at least one CWA-solution under
D. Then there is a unique CWA-solution T for S under D such that every CWA-solution
for S under D is a homomorphic image of T .

PROOF. Consider a complete chase sequence C = (T0, T1, . . . , Tm) of the canonical
solution CANSOL(σ,τ,Σst)(S) with Σt. Then C is successful. Otherwise, by [Fagin et al.
2005a, Theorem 3.3], there would be no solution for S under D, contradicting the as-
sumption that there is a CWA-solution for S underD. Define T := Tm, and note that T
is a CWA-solution for S under D. Moreover, T is unique up to isomorphism [Beeri and
Vardi 1984]. It remains to prove that every CWA-solution for S underD is a homomor-
phic image of T .
To this end we show by induction on s that for every s ∈ {0, 1, . . . ,m}, every CWA-

solution for S underD is a homomorphic image of Ts. For the base case, note that every
CWA-solution for S under D is a homomorphic image of T0 = CANSOL(σ,τ,Σst)(S). This
follows from Proposition 3.3 together with the fact that Σt consists of egds, and hence,
every CWA-solution for S under D is a CWA-presolution for S under (σ, τ,Σst).
Suppose now that for some s ∈ {0, . . . ,m− 1}, every CWA-solution for S under D is

a homomorphic image of Ts. Then we can argue in precisely the same way as in Case 2
of the proof of Lemma 3.4 in Fagin et al. [2005a]. In particular, let T ′ be an arbitrary
CWA-solution for S under D. By the induction hypothesis, there is a homomorphism h
from Ts to T with h(Ts) = T . Case 2 of the proof of Lemma 3.4 in Fagin et al. [2005a]
shows that h is also a homomorphism from Ts+1 to T with h(Ts+1) = h(Ts) = T , which
completes the induction step.

We now show that in general there is no CWA-solution that is maximal in the above
sense. The following example exhibits a data exchange setting D′ based on the data
exchange setting from Remark 3.16, and a source instance S where this is the case.
In fact, D′ has the property that for every positive integer n there is a source instance
S for D′, and 2n distinct CWA-solutions T1, . . . , T2n for S under D′ such that for every
CWA-solution T for S under D′ there is a homomorphism h from exactly one Ti to T
with h(Ti) = T .

c© YYYY ACM 0362-5915/YYYY/01-ARTA $10.00
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Example A.2. Recall the data exchange setting D = ({R}, {R′},Σst) from Re-
mark 3.16, where R(x, y) → ∃z1∃z2R′(x, z1, z2) is the unique tgd in Σst. Let D′ be the
data exchange setting obtained from D by adding the target tgd

R′(x, x1, y) ∧R
′(x, x2, y) → R′′(x, x1, x2).

Then, given the source instance S′ = {R(a, b), R(a, c)}, both

T1 := {R′(a,⊥1,⊥2), R
′(a,⊥3,⊥4), R

′′(a,⊥1,⊥1), R
′′(a,⊥3,⊥3)}

and

T2 := {R′(a,⊥1,⊥2), R
′(a,⊥3,⊥2),

R′′(a,⊥1,⊥1), R
′′(a,⊥3,⊥3), R

′′(a,⊥1,⊥3), R
′′(a,⊥3,⊥1)}

are CWA-solutions for S′ under D′.
Note that every CWA-solution for S′ under D′ is a homomorphic image of T1 or

T2. Indeed, let T be a CWA-solution for S′ under D′. Then there are (not necessarily
distinct) nulls ⊥′

1,⊥
′
2,⊥

′
3,⊥

′
4 such that (R′)T = {(a,⊥′

1,⊥
′
2), (a,⊥

′
3,⊥

′
4)}. If ⊥

′
2 6= ⊥′

4,
we have (R′′)T = {(a,⊥′

1,⊥
′
1), (a,⊥

′
3,⊥

′
3)}, so that T = h1(T1), where h1(a) = a, and

h1(⊥i) = ⊥′
i for every i ∈ {1, 2, 3, 4}. Furthermore, if ⊥′

2 = ⊥′
4, we have (R′′)T =

{(a,⊥′
1,⊥

′
1), (a,⊥

′
3,⊥

′
3), (a,⊥

′
1,⊥

′
3), (a,⊥

′
3,⊥

′
1)}, so that T = h2(T2), where h2(a) = a,

and h2(⊥i) = ⊥′
i for every i ∈ {1, 2, 3, 4}.

However, T1 is no homomorphic image of T2 and vice versa: If T is a CWA-solution
for S′ under D′ such that T1 is a homomorphic image of T , then T must contain atoms
of the form R′(a,⊥′

1,⊥
′
2) and R

′(a,⊥′
3,⊥

′
4), and therefore, T must be isomorphic to T1.

In particular, T1 is no homomorphic image of T2. On the other hand, if T is a CWA-
solution for S′ underD′ such that T2 is a homomorphic image of T , then T must contain
atoms of the form R′′(a,⊥′

1,⊥
′
2) and R′′(a,⊥′

2,⊥
′
1). But this implies that T contains

R′(a,⊥′
1,⊥

′) and R′(a,⊥′
2,⊥

′), and therefore, T is isomorphic to T2. In particular, T2 is
no homomorphic image of T1.
Finally, for n ≥ 1 consider the source instance Sn = {R(i, b), R(i, c) | 1 ≤ i ≤ n}. Then

for every set I ⊆ {1, . . . , n}, the target instance

TI :=
⋃

i∈I

{

R′(i,⊥i
1,⊥

i
2), R

′(i,⊥i
3,⊥

i
4), R

′′(i,⊥i
1,⊥

i
1), R

′′(i,⊥i
3,⊥

i
3)
}

∪
⋃

i∈{1,...,n}\I

({

R′(i,⊥i
1,⊥

i
2), R

′(i,⊥i
3,⊥

i
2)
}

∪
{

R′′(i,⊥i
k,⊥

i
l) | k, l ∈ {1, 3}

})

is a CWA-solution for Sn under D′. Arguing as above, it is not hard to see that for
every CWA-solution T for Sn under D′ there is exactly one I ⊆ {1, . . . , n} such that
T is a homomorphic image of TI . Furthermore, for distinct I, I ′ ⊆ {1, . . . , n}, TI is no
homomorphic image of TI′. Thus, there are 2n “maximal” CWA-solutions for Sn under
D′.

B. REMARK ON COMPUTING CWA-SOLUTIONS VIA THE CHASE

The example below exhibits a weakly acyclic data exchange setting D = (σ, τ,Σst,Σt)
with Σt containing egds, and a source instance S for D such that there is a successful
chase sequence of S with Σst ∪Σt whose result is S ∪ T , but T is no CWA-solution for S
under D.
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Example B.1. Consider the data exchange setting D = ({P}, {E,F},Σst,Σt), where
P is unary, E,F are binary, and Σst ∪Σt consists of

P (x) → ∃z1∃z2
(

E(x, z1) ∧E(x, z2)
)

E(y, x) → ∃z F (x, z)

E(y, x) ∧ E(y, x′) → x = x′.

Furthermore, consider the source instance S := {P (a)}. Then the instance S∪T , where

T := {E(a,⊥1), F (⊥1,⊥2), F (⊥1,⊥3)},

is the result of some successful chase sequence of S with Σst ∪ Σt: first apply the first
tgd, then apply the second tgd twice, and finally, apply the egd. But T is no CWA-
presolution for S under D, and therefore, T is no CWA-solution for S under D.

C. UNDECIDABILITY OF FO QUERY ANSWERING UNDER WEAKLY ACYCLIC DATA
EXCHANGE SETTINGS AND SEMANTICS CERTAIN2/MAYBE3

The goal of this section is to prove Proposition 6.1 of the main article:

PROPOSITION 6.1. There are a weakly acyclic data exchange settingD and a Boolean
FO query Q overD’s target schema such that EVALcertain2

(D,¬Q) and EVALmaybe
3
(D,Q)

are undecidable.

PROOF. Consider the data exchange setting D = ({R}, {R̃},Σst,Σt), where R and R̃
are ternary relation symbols, Σst consists of the tgd R(x, y, z) → R̃(x, y, z), and Σt con-
sists of the tgd R̃(x, y, z) → ∃x′∃y′∃z′ R̃(x′, y′, z′). Let Q be the conjunction of the target
dependencies (4.8)–(4.10) of the data exchange setting Demb introduced in Section 4.2.
That is,

Q = ∀x∀y∀z∀z′
(

R̃(x, y, z) ∧ R̃(x, y, z′) → z = z′
)

∧ ∀x∀y∀z∀u∀v∀w
(

R̃(x, y, u) ∧ R̃(y, z, v) ∧ R̃(x, v, w) → R̃(u, z, w)
)

∧ ∀x1∀x2∀x3∀y1∀y2∀y3
(

R̃(x1, x2, x3) ∧ R̃(y1, y2, y3) →
∧

1≤i,j≤3

∃zR̃(xi, yj, z)
)

.

Note that Q is true in a target instance T for D if and only if R̃T encodes the graph
of an associative (total) function. We show that EVALmaybe

3
(D,Q) is undecidable. By

duality (i.e., maybeD
3
(Q,S) 6= ∅ if and only if certainD

2
(¬Q,S) = ∅), this implies that

EVALcertain2
(D,¬Q) is undecidable.

To show that EVALmaybe
3
(D,Q) is undecidable, we give a reduction from the un-

decidable embedding problem for finite semigroups (see Section 4.2) to the problem
EVALmaybe

3
(D,Q): given an associative partial function p, we map p to the source

instance Sp = {R(x, y, z) | p(x, y) = z} and the empty tuple. It remains to show that
maybeD

3
(Q,Sp) 6= ∅ exactly if p is a “yes”-instance for the embedding problem for finite

semigroups.
If maybeD

3
(Q,Sp) 6= ∅, then there is a CWA-solution T for Sp under D and T̂ ∈

RepΣt
(T ) with T̂ |= Q. So, R̃T̂ represents the graph of a finite total associative function

f that extends p. Consequently, p is a “yes”-instance for the embedding problem for
finite semigroups.
On the other hand, suppose that p is a “yes”-instance for the embedding problem for

finite semigroups, that is, there is a finite total associative function f : B2 → B that ex-
tends p. Let (a11, a

1
2, a

1
3), . . . , (a

k
1 , a

k
2 , a

k
3) be an enumeration of all tuples (a1, a2, a3) ∈ B3

such that f(a1, a2) = a3 and p(a1, a2) is undefined. Moreover, let ⊥1
1,⊥

1
2,⊥

1
3,⊥

2
1, . . . ,⊥

k
3
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be a sequence of pairwise distinct nulls. Then the instance T with R̃T = RSp ∪
{(⊥i

1,⊥
i
2,⊥

i
3) | 1 ≤ i ≤ k} is a CWA-solution for Sp under D: (⊥1

1,⊥
1
2,⊥

1
3) can be gen-

erated from an arbitrary tuple in RSp , and (⊥i+1
1 ,⊥i+1

2 ,⊥i+1
3 ) can be generated from

(⊥i
1,⊥

i
2,⊥

i
3). Finally, consider the instance T̂ = v(T ), where v maps each ⊥i

j to a
i
j . Then

T̂ |= Q, which implies that maybeD
3
(Q,Sp) 6= ∅.

D. PROOF OF PROPOSITION 6.12

Here we prove Proposition 6.12 from the main body of this paper:

PROPOSITION 6.12. Let answer ∈ {certain2, certain3}. Then the data complexity of
unions of conjunctive queries with respect to answer and the class of weakly acyclic data
exchange settings is PTIME-hard.

PROOF. The proof is a slight modification of the proof of [Kolaitis et al. 2006, Propo-
sition 3.1], which shows that there is a data exchange setting D such that, given a
source instance for D, it is PTIME-hard to decide whether there is a solution for S
under D.
LetD = (σ, τ,Σst,Σt) be this setting. Here, σ consists of two ternary relation symbols

P,N , and a unary relation symbol V , and τ consists of two ternary relation symbols
P ′, N ′, and three unary relation symbols V ′,M ′,W ′. The tgds in Σst simply copy the
source relations to the corresponding primed target relations. Finally, Σt consists of
the following target dependencies:

d1 = W ′(u) ∧W ′(v) → u = v

d2 = P ′(x, x, x) →M ′(x)

d3 = P ′(x, y, z) ∧M ′(y) ∧M ′(z) →M ′(x)

d4 = N ′(x, y, z) ∧M ′(x) ∧M ′(y) ∧M ′(z) ∧ V ′(u) →W ′(u).

Now let D′ := (σ, τ,Σst, {d2, d3}), and let

Q := ∃x∃y∃z
(

N ′(x, y, z) ∧M ′(x) ∧M ′(y) ∧M ′(z)
)

.

Then, given a source instance S forD (resp.D′), it is easy to see that there is a solution
for S under D if and only if answerD

′

(Q,S) = ∅.
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