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The term näıve evaluation refers to evaluating queries over incomplete databases as if nulls were usual data

values, i.e., to using the standard database query evaluation engine. Since the semantics of query answering
over incomplete databases is that of certain answers, we would like to know when näıve evaluation computes
them: i.e., when certain answers can be found without inventing new specialized algorithms. For relational
databases it is well known that unions of conjunctive queries possess this desirable property, and results on
preservation of formulae under homomorphisms tell us that within relational calculus, this class cannot be
extended under the open-world assumption.

Our goal here is twofold. First, we develop a general framework that allows us to determine, for a given
semantics of incompleteness, classes of queries for which näıve evaluation computes certain answers. Second,
we apply this approach to a variety of semantics, showing that for many classes of queries beyond unions
of conjunctive queries, näıve evaluation makes perfect sense under assumptions different from open-world.
Our key observations are: (1) näıve evaluation is equivalent to monotonicity of queries with respect to a
semantics-induced ordering, and (2) for most reasonable semantics of incompleteness, such monotonicity
is captured by preservation under various types of homomorphisms. Using these results we find classes of
queries for which näıve evaluation works, e.g., positive first-order formulae for the closed-world semantics.
Even more, we introduce a general relation-based framework for defining semantics of incompleteness, show
how it can be used to capture many known semantics and to introduce new ones, and describe classes of
first-order queries for which näıve evaluation works under such semantics.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—Data Models; H.2.1
[Database Management]: Languages—Query Languages; H.2.4 [Database Management]: Systems—
Query Processing

General Terms: Theory, Languages, Algorithms

Additional Key Words and Phrases: Incompleteness, naive tables/evaluation, certain answers, orderings,
homomorphisms

1. INTRODUCTION

Database applications need to handle incomplete data; this is especially true these
days due to the proliferation of data obtained as the result of integrating or exchanging
data sets, or data found on the Web. At the same time, there is a huge gap between our
theoretical knowledge and the handling of incompleteness in practice:
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— In SQL, the design of null-related features is one of the most criticized aspects of
the language [Date and Darwin 1996], due to the oversimplification of the model.
This even leads to paradoxical behavior: it is consistent with SQL’s semantics that
|X | ą |Y | and X ´ Y “ H, if the set Y contains nulls. Indeed, this is what happens
with queries like select R.A from R where R.A not in (select S.A from S) due
to the 3-valued semantics of SQL.

— In theory, we understand that the proper way of evaluating queries on incomplete
databases is to find certain answers to them [Imielinski and Lipski 1984]. Unfortu-
nately, for many classes of queries, even within first-order logic, this is an intractable
problem [Abiteboul et al. 1991], and even when it is tractable, there is no guarantee
the algorithms can be easily implementable on top of commercial DBMSs [Gheer-
brant et al. 2012].

Despite this seemingly enormous gap, there is one instance when theoretical ap-
proaches and functionalities of practical systems converge nicely. For some types of
queries, evaluating them on the incomplete database itself (i.e. as if nulls were the
usual data values) does produce certain answers. This is usually referred to as naı̈ve
evaluation [Abiteboul et al. 1995; Imielinski and Lipski 1984]. To give an example,
consider databases with naı̈ve nulls (also called marked nulls), that appear most com-
monly in integration and exchange scenarios, and that can very easily be supported by
commercial RDBMSs. Two such relations are shown below, with nulls indicated by the
symbol K with subscripts:

R:
A B

1 K1

K2 K3

S:
B C

K1 4

K3 5

Suppose we have a conjunctive (i.e., select-project-join) query πACpR ’ Sq or, equiv-
alently, ϕpx, yq “ Dz

`

Rpx, zq ^ Spz, yq
˘

. Naı̈ve evaluation says: evaluate the query
directly on R and S, proceed as if nulls were usual values; they are equal only if they
are syntactically the same (for instance K1 “ K1 but K1 ‰ K2). Then evaluating the
above query results in two tuples: p1, 4q, and pK2, 5q. Tuples with nulls cannot be cer-
tain answers, so we only keep the tuple p1, 4q.

One does not need any new functionalities of the DBMS to find the result of naı̈ve
evaluation (in fact most implementations of marked nulls are such that equality tests
for them are really the syntactic equality). This is good, but in general, naı̈ve eval-
uation need not compute certain answers, depending on the semantics of incomplete-
ness. A semantics of incompleteness establishes the possible complete databases rep-
resented by an incomplete one, and certain answers are answers which hold true in all
such complete databases.

For the query above, the tuple p1, 4q is however the certain answer, under the com-
mon open-world semantics (to be properly defined later). This is true because [Imielin-
ski and Lipski 1984] showed that if Q is a union of conjunctive queries, then naı̈ve
evaluation works for it (i.e., computes certain answers). This result is not so easy to
extend: for instance, [Libkin 2011] showed that under the open-world semantics, if
naı̈ve evaluation works for a Boolean FO query Q, then Q must be equivalent to a
union of conjunctive queries. That result crucially relied on a preservation theorem
from mathematical logic [Chang and Keisler 2012], and in particular on its version
over finite structures [Rossman 2008].

This observation suggests that the limits of naı̈ve evaluation depend on the seman-
tics of incompleteness, and that syntactic restrictions on queries admitting such evalu-
ation might be obtained from preservation theorems in logic. This is the starting point
of our investigation. In general we would like to understand how, for a given semantics
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of incompleteness, we can find the class of queries for which certain answers will be
found naı̈vely.

In slightly more detail, we would like to answer the following three questions:

(1) What are the most general conditions on queries guaranteeing naı̈ve evaluation,
under different semantics of incompleteness?

(2) When can naı̈ve evaluation be characterized by preservation results?
(3) Most general conditions for naı̈ve evaluation need not translate into interest-

ing/relevant classes of queries, but can we provide concrete examples of interesting
classes of queries admitting naı̈ve evaluation?

We answer these three questions, by clarifying the relationship between semantics
of incompleteness, naı̈ve evaluation, preservation, and syntactic classes. Roughly, our
results can be seen as establishing the following equivalences:

Naı̈ve evaluation works for a query Q
}

Q is monotone with respect to the semantic ordering
}

Q is preserved under a class of homomorphisms

together with syntactic classes of queries guaranteeing preservation under homomor-
phisms (and thus naı̈ve evaluation).

We now explain the key ideas behind the main equivalences and the terminology we
use.

Naı̈ve evaluation and monotonicity. For the first group of results, we deal with a
very abstract setting that can be applied to many data models (relational, XML, etc)
under different semantics of incompleteness. We introduce the notion of database
domain, i.e. a set of incomplete database objects. Each object x of the domain comes
with a notion of semantics rrxss, which is the set of complete objects they describe.
We define the semantic ordering in the standard way: x ĺ y ô rryss Ď rrxss (that is,
x is less informative if it describes more objects, i.e., has more incompleteness in it).
In this setting we define queries, naı̈ve evaluation, and certain answers and prove
that under very mild conditions, naı̈ve evaluation works for a query iff it is monotone
with respect to the semantic ordering. In fact, under even milder conditions, naı̈ve
evaluation corresponds to a weak notion of monotonicity, that only considers going
from an object x to a more informative object y P rrxss.

Monotonicity and preservation. We next connect monotonicity with preservation. To
start, we analyze multiple semantics of incompleteness, and come up with a uniform
scheme for generating them. The key observation is that each semantics is obtained in
two steps. In step one, common to all interpretations, we substitute constant values for
nulls. Step two, that essentially defines the semantics, is given by a relation R showing
how the result of the substitution can be modified. For instance, under the open-world
semantics, tuples can be added; under the strictest form of the closed-world semantics,
nothing can be changed at all.

Having done that, we prove that under some very mild condition, monotonicity of
a generic query Q corresponds to preservation under homomorphisms that respect
relationR: that is, ifQ is true inD (say, for a BooleanQ), and we have a homomorphism
respecting R from D to D1, then Q is true in D1. Instances of such homomorphisms are
the usual homomorphisms, under the open-world semantics, or onto homomorphisms,
under (a version of) the closed-world semantics.
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Preservation and syntactic classes. We have so far established that naı̈ve evaluation
is captured by preservation under a class of homomorphisms. Such preservation re-
sults are classical in mathematical logic [Chang and Keisler 2012], and thus we would
like to use them to find syntactic classes of queries for which naı̈ve evaluation works.

One immediate difficulty is that classical logic results are proved for infinite struc-
tures, and they tend to fail in the finite [Ajtai and Gurevich 1987; Stolboushkin 1995],
or are notoriously hard to establish (a well-known example is Rossman’s theorem
[Rossman 2008], which answered a question opened for many years). Thus, we are
in general happy with good sufficient conditions for preservation, especially if they
are given by nice syntactic classes corresponding to meaningful classes of database
queries. The key ideas behind the classes we use are restrictions to positive formulae
(admitting @ but disallowing  ) or existential positive formulae (i.e., unions of con-
junctive queries), and extending some of them with universally quantified guarded
formulae.

This gives us a good understanding of what is required to make naı̈ve evaluation
work. In Sections 3–5 we carry out the program outlined above and obtain classes
of FO queries for which naı̈ve evaluation works under standard relational semantics
of incompleteness. Also, to keep notations simple initially, in these early sections we
deal with Boolean queries (all results extend to arbitrary queries easily, as we show in
Section 6). In Section 7 we conclude this basic study by providing characterizations of
the semantic orderings, and giving their justification in terms of elementary updates
increasing informativeness of the database.

Sections 3–7 constitute the first half of the paper, in which we present the gen-
eral methodology for achieving naı̈ve evaluation, and show how it works for relational
queries under the standard open and closed world semantics.

In the second half of the paper, we show that the techniques extend to several others,
more complex semantics. These fall into two categories. The first one puts restrictions
on valuations of nulls, i.e., mappings assigning constants to nulls. The second one
allows the use of multiple valuations to define semantics.

The key property of the semantics of incompleteness considered up to that point is
what we call the saturation property: for each incomplete object, there is an isomorphic
complete one in its semantics. For most standard semantics, this is trivially so, sim-
ply by substituting distinct constants for nulls. However, this assumes that arbitrary
valuations of nulls are allowed, and there is a class of semantics, that originated in AI
and found applications in data exchange (see [Minker 1982; Hernich 2011]) for which
this property fails.

To deal with them, we present a general tool for handling such non-saturated se-
mantics in Section 8. It shows that the previous results apply as long as the database
domain has a subdomain that possesses the saturation property, and for queries that
do not distinguish database objects from objects of that subdomain. Then, in Section
9, we look at a concrete examples of non-saturated semantics: the minimal semantics
that finds its justification in the study of various forms of the closed world assumption.
We show that the database domain consisting of all possibly incomplete relational in-
stances under this semantics has a saturated subdomain; it consists of all instances
which are cores (i.e. instances having no homomorphism to a proper subinstance, see
[Hell and Nes̆etr̆il 1992]). In particular, previous results do apply, but only over cores.

We then turn our attention to semantics that can use multiple valuations; we refer to
them as powerset semantics. We explain their justification via updates that incremen-
tally improve informativeness of a database, and compare them with known orderings
on Codd databases that model SQL’s null features, showing that one particular pow-
erset semantics fits in well with previously studied orderings for Codd databases. We
then show how the methodology of obtaining naı̈ve evaluation extends for powerset
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semantics, even including semantics that combine both multiple valuations and re-
strictions on such valuations (minimal powerset semantics).

Again, in Sections 8–10 we present results for Boolean queries; Section 11 shows
how to adjust the lifting tool of Section 6 to obtain results for non-Boolean queries
under non-saturated semantics and powerset semantics.

This article is an extended version of [Gheerbrant et al. 2013].

Organization. In Section 2, we give the main definitions. In Section 3, we explain
the connection between naı̈ve evaluation and monotonicity, and in Section 4 we re-
late monotonicity to preservation. In Section 5 we deal with Boolean FO queries and
provide sufficient conditions for naı̈ve evaluation. In Section 6 we show how to lift
results to arbitrary (non-Boolean) queries. Section 7 studies semantic orderings on in-
complete databases. Section 8 deals with non-saturated semantics in general, and a
concrete case of it, the minimal semantics, is handled in Section 9. In Section 10 we
study semantics resulting from multiple valuations of nulls. Finally, Section 11 shows
how to lift results to non-Boolean queries in non-saturated and powerset semantics.

2. PRELIMINARIES

2.1. Incomplete databases

We begin with some standard definitions. In incomplete databases there are two types
of values: constants and nulls. The set of constants is denoted by Const and the set of
nulls by Null. These are countably infinite sets. Nulls will normally be denoted by K,
sometimes with sub- or superscripts.

A relational schema (vocabulary) is a set of relation names with associated arities.
An incomplete relational instance (or incomplete database) D assigns to each k-ary
relation symbol S from the vocabulary a k-ary relation over Const Y Null, i.e., a finite
subset of pConstY Nullqk. There are two types of such incomplete relational instances:

— In naı̈ve databases, there are no restrictions on the appearance of nulls; in particular,
a null K P Null can appear multiple times in such an instance.

— In Codd databases, each null K P Null appears at most once, i.e., repetitions are not
allowed.

If we talk about single relations, it is common to refer to them as naı̈ve tables and
Codd tables.

We write ConstpDq and NullpDq for the sets of constants and nulls that occur in a
database D. The active domain of D is adompDq “ ConstpDq Y NullpDq.

We called databases that contain no nulls complete, i.e., for such a database D we
have adompDq Ď Const. In particular, these are special cases of what we called incom-
plete databases earlier, and indeed incompleteness may manifest itself not only by the
presence of nulls but also, for instance, by missing tuples.

In the remainder of the paper, we always assume that the schema is fixed and arbi-
trary.

2.2. Homomorphisms

Homomorphisms are crucial for us in two contexts: to define the semantics of incom-
plete databases, and to define the notion of preservation of logical formulae as a condi-
tion for naı̈ve evaluation to work.

Given two relational instances D and D1, a homomorphism h : D Ñ D1 is a map from
the active domain of D to the active domain of D1 so that for every relation symbol S,
if a tuple ū is in relation S in D, then the tuple hpūq is in the relation S in D1.

In database literature, it is common to require that homomorphisms preserve ele-
ments of Const, i.e., the map h is also required to satisfy hpcq “ c for every c P Const. Of
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course this can easily be cast as a special instance of the general notion of homomor-
phism, simply by extending the vocabulary with a constant symbol for each c P Const.
In this article we shall refer to homomorphisms which are the identity on Const as
database homomorphisms (whenever there is ambiguity). We will only deal with such
homomorphisms to characterize semantic orderings and to work with a suitable notion
of the core.

Given a homomorphism h and a database D, by hpDq we mean the image of D, i.e.,
the set of all tuples Sphpūqq where Spūq is in D. If h : D Ñ D1 is a homomorphism, then
hpDq is a subinstance of D1.

2.3. Semantics and valuations

We shall see many possible semantics for incomplete information, but first we review
two common ones: open-world and closed-world semantics. We need the notion of a
valuation, which assigns a constant to each null. That is, a valuation is a database
homomorphism whose image contains only values in Const.

In general, the semantics rrDss of an incomplete database is a set of complete
databases D1, i.e., databases D1 with adompD1q Ď Const. The semantics under the
closed-world assumption (or CWA semantics) is defined as

rrDss
CWA

“ thpDq | h is a valuationu.

The semantics under the open-world assumption (or OWA semantics) is defined as

rrDss
OWA

“ tD1 | D1 is complete and there is a valuation h : D Ñ D1u.

Alternatively, D1 P rrDss
OWA

iff D1 is complete and contains a database D2 P rrDss
CWA

as
a subinstance.

Example 2.1. As an example, consider D0 “ tpK,K1q, pK1,Kqu. Then rrD0ssCWA
con-

sists of all instances tpc, c1q, pc1, cqu with c, c1 P Const (and possibly c “ c1), and rrD0ssOWA

has all complete instances containing tpc, c1q, pc1, cqu, for c, c1 P Const.

2.4. Certain answers and naı̈ve evaluation

Relational query languages considered in this article are fragments of FO (first-order
logic). The syntax of FO formulae is as follows:

ϕ :“ Rpx̄q | x “ y | ϕ_ ϕ | ϕ^ ϕ |  ϕ | Dxϕ | @xϕ ,

where R ranges over relational symbol, x̄ refers to a tuple of variables and x and y
to individual variables. The D,^-fragment of FO is known as conjunctive queries (i.e.,
_, ,@ are omitted). In terms of their expresiveness, they correspond to select-project-
join queries of relational algebra. Unions of conjunctive queries have the same power
as the D,^,_-fragment of FO, or the select-project-join-union fragment of relational
algebra.

Note that for the sake of presentation, for now we deal with queries without con-
stants. However our results can be easily extended to queries that can refer to finitely
many constants, as will be explained in Section 11. Note also that in this article we
assume the active domain semantics for relational first-order queries. That is, the se-
mantics of quantification is with respect to the active domain: given a tuple ā over
adompDq, the formula Dx ϕpx, āq holds in D iff ϕpa, āq holds in D for some a P adompDq,
and @x ϕpx, āq holds in D iff ϕpa, āq holds in D for all a P adompDq.

It is important to note that this is the semantics of FO queries also in the case
that adompDq contains nulls: nulls are just considered as additional (pairwise distinct)
domain elements, other than the constant elements.
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Given an incomplete database D, a semantics of incompleteness rr ss, and a query Q,
one normally computes certain answers under the rr ss semantics:

certainpQ,Dq “
č

tQpD1q | D1 P rrDssu,

i.e., answers that are true regardless of the interpretation of nulls under the given
semantics. When rr ss is rr ss

OWA
or rr ss

CWA
, we write certainOWApQ,Dq or certainCWApQ,Dq.

Even for first-order queries, the standard semantics of incompleteness are problem-
atic in general: finding certain answers under the OWA semantics may be undecidable,
and finding them under the CWA semantics may be CONP-hard [Abiteboul et al. 1991].

Definition 2.2 pNaı̈ve evaluation for relational instancesq. Naı̈ve evaluation of a
query Q over an incomplete relational instance refers to a two-step procedure: first,
evaluate Q on the incomplete instance itself, as if nulls were values (i.e., equal iff they
are syntactically the same: e.g., K1 “ K1, K1 ‰ K2, K1 ‰ c for every c P Const), and
then eliminate tuples with nulls from the result. Note that if Q is a Boolean query, the
second step is unnecessary.

We say that naı̈ve evaluation works for Q (under semantics rr ss) if its result is exactly
the certain answers under rr ss, for every D.

FACT 1. (see [Imielinski and Lipski 1984; Libkin 2011]) LetQ be a union of conjunc-
tive queries. Then naı̈ve evaluation works for Q under both OWA and CWA. Moreover,
if Q is a Boolean FO query and naı̈ve evaluation works for Q under OWA, then Q is
equivalent to a union of conjunctive queries.

The last equivalence result only works under the OWA semantics, as discussed in the
following example

Example 2.3. Consider again the instance D0 defined in Example 2.1 and a query
Dx, y pDpx, yq ^Dpy, xqq. The certain answer to this query is true under both OWA and
CWA, and indeed it evaluates to true naı̈vely over D0. On the other hand, a query
Q given by @xDy Dpx, yq (not equivalent to a union of conjunctive queries) evaluated
naı̈vely, returns true on D0. In fact recall that x and y range over the active domain
of D0, and it is true that every domain element of D0 occurs in the first column. But
under OWA the certain answer to Q is false. In fact Q evaluates to false for example
over the complete instance tpc, cq, pc, dqu which belongs to rrD0ssOWA

. This shows that
naı̈ve evaluation does not work for Q under the OWA.

However note that, under CWA, the certain answer to Q is true, and therefore coin-
cides with the result of Q naı̈vely evaluated overD. IndeedQ evaluates to true over all
instances in rrD0ssCWA

, since these can only be of the form tpc, c1q, pc1, cquwith c, c1 P Const,
and possibly c “ c1.

The case shown in Example 2.3 is not an isolated phenomenon: we will later see that
the query Q of Example 2.3 belongs to a class, extending unions of conjunctive queries,
for which naı̈ve evaluation works under CWA on all databases.

3. NAÏVE EVALUATION AND MONOTONICITY

The goal of this section is twofold. First we present a very general setting for talking
about incompleteness and its semantics, as well as orderings representing the notion of
“having more information”. We formulate the notion of naı̈ve evaluation in this setting,
and show that it guarantees to compute certain answers for monotone queries.
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3.1. Database domains, semantics, and ordering

We now define a simple abstract setting for handling incompleteness. We operate with
just four basic concepts: the set of instances, the set of complete instances, their iso-
morphism, and their semantics.

Definition 3.1 pDatabase domainq. A database domain is a structure D “
xD, C, rr ss,«y, where D is a set, C is a subset of D, the function rr ss is from D to nonempty
subsets of C, and « is an equivalence relation on D.

The interpretation is as follows:

— D is a set of database objects
— C is the set of complete objects
— rrxss Ď C is the semantics of an incomplete database object x, i.e., the set of all com-

plete objects that x can represent; and
—« is the structural equivalence relation, that we need to describe the notion of generic

queries;

For instance in the relational setting, D represents the set of all possible incomplete
relational databases, C the ones without nulls, the semantics rr ss could be for instance
rr ss

OWA
or rr ss

CWA
, and « is the isomorphism relation of relational instances. More pre-

cisely we define:

Definition 3.2 pRelational database domainq. We say that D is a relational database
domain if D “ xD, C, rr ss,«y, where D is the set of (possibly incomplete) relational
instances over some schema, C is the set of complete relational instances over this
schema, and « is the isomorphism relation between instances (i.e. D « D1 iff there
exists an injective mapping π on adompDq such that πpDq “ D1).

Of course there could be many non-relational database domains of interest, for in-
stance, all XML documents of a given schema or all graph databases over a fixed la-
beling alphabet.

The semantic function of a database domain lets us describe the degree of incom-
pleteness via an ordering defined as

x ĺ y ô rryss Ď rrxss.

Indeed, the less we know about an object, the more other objects it can potentially
describe. As an example, if D0 “ tpK,K1q, pK1,Kqu and D1 “ tpK,Kqu, then D0 ĺ D1

under both OWA and CWA, since D1 describes fewer instances than D0. This setting is
reminiscent of the ideas in programming semantics, where partial functions are simi-
larly ordered [Gunter 1992], and such orderings have been used to provide semantics
of incompleteness in the past [Buneman et al. 1991; Libkin 1995; 2011; Ohori 1990;
Rounds 1991]. Note that ĺ is a preorder.

Queries and certain answers. For now we look at Boolean queries in the most ab-
stract setting (we will generalize them later). Outputs of Boolean queries are 0 or 1,
with 0 representing false and 1 representing true. Note that in the relational setting
Boolean queries are queries of arity 0, where we associate the value 0 to the empty set
and the value 1 to the query result tpqu, containing a single tuple.

Definition 3.3 pQueries, certain answers, and naı̈ve evaluationq. For a database do-
main D “ xD, C, rr ss,«y, a query is a mapping Q : D Ñ t0, 1u.

A query is generic if Qpxq “ Qpyq whenever x « y.
For each x P D, the certain answer under the semantics rr ss is

certainpQ, xq “
ľ

tQpcq | c P rrxssu
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We say that naı̈ve evaluation works for Q if Qpxq “ certainpQ, xq for every x. We say
that naı̈ve evaluation works over D1 Ď D if Qpxq “ certainpQ, xq for every x P D1.

We remark that for a relational database domain and a Boolean relational query,
the above definition of certain answers coincides with the usual intersection-based
relational definition of certain answers given in Section 2.4.

Note also that in this abstract setting queries are defined on all database objects,
both complete and possibly incomplete. We have already remarked in Section 2.4 that
an FO query is evaluated over a relational instance with nulls by considering nulls
as additional (pairwise distinct) domain elements. Thus if Q is an FO Boolean query
and D is an incomplete relational instance, QpDq is precisely the result of evaluating
Q naı̈vely over D in the sense of Definition 2.2. Therefore when considering relational
database domains, Definition 3.3, specifying when naı̈ve evaluation works, coincides
with Definition 2.2.

Saturation property. We now impose an additional property on database domains
saying, essentially, that there are enough complete objects.

Definition 3.4 pSaturationq. A database domain D “ xD, C, rr ss,«y is saturated if
every object has in its semantics a complete object that is isomorphic to it: that is, for
each x P D there is y P rrxss such that x « y.

In the case of the usual relational semantics of incompleteness, this property triv-
ially holds: if we have an instance D with nulls K1, . . . ,Kn, we simply replace them
with distinct constants c1, . . . , cn that do not occur elsewhere inD, to obtain a complete
database isomorphic toD. Nonetheless, there are other semantics, primarily motivated
by AI considerations, that are not saturated; we shall deal with them in Section 8.

3.2. Naı̈ve evaluation and monotonicity

We now relate naı̈ve evaluation to some monotonicity properties of queries in the most
general setting of arbitrary database domains.

We say that a query Q over a database domain is weakly monotone if for all x P D

and y P C

y P rrxss ñ Qpxq ď Qpyq.

That is, if y is a complete object representing x, andQ is already true on x, thenQ must
be true on y. This property characterizes naı̈ve evaluation over saturated database
domains.

THEOREM 3.5. Let D be a database domain with the saturation property, and Q a
generic Boolean query. Then naı̈ve evaluation works for Q iff Q is weakly monotone.

PROOF. The statement follows immediately from the more general Theorem 8.2
which will be proved in Section 8. However we provide a direct simple proof here for
completeness.

Let Q be a Boolean generic query. Assume that naı̈ve evaluation works for Q over D;
i.e., Qpxq “

Ź

tQpcq | c P rrxssu for all x. Now let Qpxq “ 1 and let y P rrxss. If Qpyq “ 0,
then

Ź

tQpcq | c P rrxssu “ 0, and by the assumption Qpxq is 0 as well. This contradiction
shows that Qpyq “ 1 and thus Q is weakly monotone.

Conversely assume that Q is weakly monotone, and let x P D. By weak mono-
tonicity we have Qpxq ď certainpQ, xq. To prove that certainpQ, xq ď Qpxq, assume
certainpQ, xq “ 1. By the saturation property there exists c P rrxss such that c « x.
We know Qpcq “ 1; then by genericity Qpxq “ 1. Hence certainpQ, xq “ Qpxq for all
x P D, i.e. naı̈ve evaluation works for Q.
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Of course one can also look at the natural definition of monotonicity: a query Q is
monotone if x ĺ y implies Qpxq ď Qpyq. Recall that x ĺ y means that rryss Ď rrxss. This
condition turns out to be equivalent to weak monotonicity in database domains that
satisfy one additional property. To state it, note that there is a natural duality between
preorders (i.e., transitive reflexive binary relations) and semantics: each semantics rr ss
gives rise to the ordering x ĺ y ô rryss Ď rrxss, and conversely any preorder ď on D

gives a semantics rrxss
ď
“ ty P C | x ď yu. We say that a database domain is fair if rr ss

and its ordering ĺ agree: that is, the semantics that the ordering ĺ gives rise to is rr ss
itself. Fair domains can be easily characterized:

PROPOSITION 3.6. A database domain D is fair iff the following conditions hold:

(1) c P rrcss for each c P C;
(2) if c P rrxss, then rrcss Ď rrxss.

PROOF. Let D “ xD, C, rr ss,«y be a database domain and let ĺ be the preorder ob-
tained from it.

First assume that (1) and (2) hold of D. Recall that by definition for all x, y P D, x ĺ y
iff rryss Ď rrxss and so rrxss

ĺ
“ tc P C | rrcss Ď rrxssu. We want to show that D is fair, i.e.,

for all x P D, rrxss “ rrxss
ĺ

. So let x P D and c P C such that c P rrxss. By condition 2,
rrcss Ď rrxss. But then c P rrxss

ĺ
and so for all x, rrxss Ď rrxss

ĺ
. Now let x P D, c P C such

that c P rrxss
ĺ

. So rrcss ĺ rrxss. By condition 1, c P rrcss, which yields c P rrxss and so for all
x, we have rrxss

ĺ
Ď rrxss.

Conversely assume D is fair, i.e., for all x P D, rrxss “ rrxss
ĺ
“ tc P C | rrcss Ď rrxssu. So in

particular for all c P C, rrcss “ tc1 P C | rrc1ss Ď rrcssu. As rrcss Ď rrcss, it follows that c P rrcss,
that is, condition (1) holds. Condition (2) follows immediately from rrxss “ tc P C | rrcss Ď
rrxssu.

The standard relational semantics of incompleteness – including all those seen in
the previous section – satisfy these conditions. The first condition says that the se-
mantics of a complete object should contain at least that object. The second says that
by removing incompleteness from an object, we cannot get one that denotes more ob-
jects. Note also that in a fair domain, y P rrxss implies x ĺ y, so weak monotonicity is
indeed weaker than monotonicity.

In fair database domains, we can extend Theorem 3.5:

PROPOSITION 3.7. Let D be a fair database domain with the saturation property,
and Q a generic Boolean query. Then the following are equivalent:

(1) Naı̈ve evaluation works for Q;
(2) Q is monotone;
(3) Q is weakly monotone.

PROOF. We need to prove that in a fair database domain naive evaluation works
for Q iff Q is monotone. Assume that naı̈ve evaluation works for Q, and consider
objects x, y P D such that x ĺ y and Qpxq “ 1. We prove Qpyq “ 1. We have
Qpxq “ certainpQ, xq “ 1 and rryss Ď rrxss, therefore certainpQ, yq “ Qpyq “ 1.

Conversely assume that Q is monotone. Let x be in D, we prove that Qpxq “
certainpQ, xq. Let c P rrxss. Since the database domain is fair, x ĺ c. Then the mono-
tonicity of Q implies Qpxq ď Qpcq, and therefore Qpxq ď certainpQ, xq. In order to prove
certainpQ, xq ď Qpxq, assume certainpQ, xq “ 1; by the saturation property there exists
c1 P rrxss such that c1 « x. We know Qpc1q “ 1, then by genericity, Qpxq “ 1.

This shows Qpxq “ certainpQ, xq – i. e. naı̈ve evaluation works for Q – and concludes
the proof of the proposition.
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Theorem 3.5 and Proposition 3.7 establish the promised connection between mono-
tonicity and naı̈ve evaluation. Extension to non-Boolean queries is given in Section
6.

4. SEMANTICS, RELATIONS, AND HOMOMORPHISMS

We have seen that characterizing cases in which naı̈ve evaluation work, at least for
Boolean queries, is equivalent to requiring (weak) monotonicity of queries. To apply
this strategy to concrete semantics of incompleteness, we need to understand how dif-
ferent semantics can be defined. In the most general setting we explain that most of
them are obtained by composing two types of relations between database objects. In
the relational setting the first relation corresponds to applying valuations to nulls, and
the other to specific semantic assumptions such as open or closed-world. After we clar-
ify this point, we then move to relational database domains and we show a connection
between naı̈ve evaluation and preservation under a class of homomorphisms.

4.1. Semantics via relations

We have already seen two concrete relational semantics: the OWA semantics rrDss
OWA

and the CWA semantics rrDss
CWA

. What is common to them is that they are all defined
in two steps. First, valuations are applied to nulls (i.e., nulls are replaced by values).
Second, the resulting database may be modified in some way (left as it was for CWA, or
expanded arbitrarily for OWA). Our idea is then to capture this via two relations. We
now define them in the setting of arbitrary database domains and then show how they
behave in concrete cases.

Given a database domain D “ xD, C, rr ss,«y, we consider a pair R “ pRval,Rsemq of
relations:

— The valuation relation Rval Ď D ˆ C between arbitrary databases and complete
databases. Intuitively, a pair px, cq is in Rval if c is obtained from x by replacing nulls
by constants. The restriction of Rval to C is the identity: RvalXpCˆ Cq “ tpc, cq | c P Cu
(if there are no nulls, there is no substitution). And since for every object there is
some way to replace nulls by constants, Rval is total.

— The semantic relation Rsem is a reflexive binary relation on C (i.e., Rsem Ď C ˆ C).
Intuitively, this corresponds to the modification step such as extending complete re-
lations by new tuples. Since, at the very least, one can do nothing with the result of
the substitution of nulls by constants, such a relation must be reflexive.

Definition 4.1 pSemantics given by Rq. For R “ pRval,Rsemq satisfying the above
conditions, we say that rr ss is given by R if

y P rrxss ô px, yq P Rval ˝Rsem

for every x P D and y P C. In other words, y P rrxss iff for some z P C we have px, zq P Rval

and pz, yq P Rsem.

PROPOSITION 4.2. Let D be a database domain whose semantics rr ss is given by a
pair R “ pRval,Rsemq. Then D is fair iff Rsem is transitive.

PROOF. Assume first that Rsem is transitive, and take arbitrary x P D and c P C. We
have

(1) c P rrcss.
Indeed we know pc, cq P Rval and pc, cq P Rsem (recall from Definition 4.1 that Rsem is
always reflexive), then c P rrcss.

(2) c P rrxss implies rrcss Ď rrxss.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12

Indeed if c P rrxss then there exists y P C such that px, yq P Rval and py, cq P Rsem.
Moreover if c1 P rrcss then pc, c1q P Rsem (because Rval is the identity when restricted
to C). By transitivity of Rsem we then have py, c1q P Rsem. This implies px, c1q P Rval ˝
Rsem, and therefore c1 P rrxss.

By Proposition 3.6, D is fair.
Conversely assume that D is fair, and assume there exist pc, dq and pd, eq in Rsem.

Now recall that pc, cq and pd, dq are in Rval, thus pc, dq and pd, eq are in Rval ˝Rsem, i.e.,
d P rrcss and e P rrdss. By item (2) of Proposition 3.6, e P rrcss. Then pc, eq P Rsem. This
proves that Rsem is transitive.

Relational databases. When we deal with relational database domains, the most
natural valuation relation is Rrdb

val
defined as follows:

pD,D1q P Rrdb

val ô D1 “ vpDq for some valuation v.

So we assume, for now, that in relational semantics of incompleteness, the valuation
relation is Rrdb

val
. Thus such semantics are completely specified by relation Rsem. More

precisely, we define them as follows.

Definition 4.3 pRelational semantics given by Rsemq. We say that a relational se-
mantics rr ss is given by relation Rsem if it is given by the pair pRrdb

val
,Rsemq. That is,

for all databases D,D1

D1 P rrDss ô there is a valuation v such that pvpDq, D1q P Rsem.

The OWA and CWA semantics are given by particularly easy relations Rsem:

— For CWA, Rsem is the identity (i.e., “);
— For OWA, Rsem is the subset relation (i.e., Ď).

The special form of relation Rrdb

val
, and the reflexivity of Rsem, imply the saturation

property. Indeed Rrdb

val
does allow us to replace nulls by distinct constants that do not

occur elsewhere in the instance. Therefore, by Theorem 3.5 we have:

PROPOSITION 4.4. For an arbitrary relational semantics given by relation Rsem,
and an arbitrary generic Boolean query Q, naı̈ve evaluation works for Q iff Q is weakly
monotone.

4.2. Naı̈ve evaluation over relational databases via homomorphism preservation

We shall now relate weak monotonicity and preservation under homomorphisms for
relational semantics. We deal with general relational semantics given by relations
Rsem.

Definition 4.5 pRsem-homomorphism and preservationq. For complete databases D
and D1, a mapping h defined on the active domain adompDq of D is an Rsem-
homomorphism from D to D1 if phpDq, D1q P Rsem.

A query Q is preserved under Rsem-homomorphisms if for every pair of databases
D,D1 and every Rsem-homomorphism h from D to D1, if Q is true in D, then Q is true
in D1.

PROPOSITION 4.6. If a relational semantics is given by a relation Rsem and Q is
a generic Boolean query, then Q is weakly monotone iff it is preserved under Rsem-
homomorphisms.

Although the proposition deals with relational semantics given by Rsem, we will
prove a slightly more general result (namely Corollary 4.11 below) holding for arbi-
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trary relational semantics given by a pair pRval,Rsemq, and will obtain Proposition 4.6
as a special case where Rval “ Rrdb

val
.

Moreover some of the intermediate results needed to prove Proposition 4.6 hold for
arbitrary database domains (not necessarily relational) and will therefore be stated in
their full generality.

For stating these general results we need the following additional definitions on
arbitrary database domains.

Definition 4.7. If D “ xD, C, rr ss,«y is a database domain, Q : D Ñ t0, 1u is a query,
and R Ď D ˆ D, we say that Q is preserved under R if Qpxq “ 1 implies Qpyq “ 1

whenever px, yq P R.

Definition 4.8 p«-equivalenceq. If D “ xD, C, rr ss,«y is a database domain and R

and R1 are subsets of D ˆ C, we say that R1 is «-equivalent to R if the following two
conditions are satisfied:

(1) if px, cq P R then there exists x1 P D such that x1 « x and px1, cq P R1;
(2) if px, cq P R1 then there exists x1 P D such that x1 « x and px1, cq P R.

We say that R1 is strongly «-equivalent to R if moreover x1 in the definition of «-
equivalence only depends on x (and not on c).

PROOF OF PROPOSITION 4.6. We first relate weak monotonicity and preservation
for arbitrary database domains. Intuitively weak monotonicity corresponds to preser-
vation under any relation which is «-equivalent to the semantics :

LEMMA 4.9. Let D “ xD, C, rr ss,«y be an arbitrary database domain and let R1 Ď
DˆC be «-equivalent to the graph of rr ss. Then a generic Boolean query over D is weakly
monotone iff it is preserved under R1.

PROOF. Assume that Q is a generic Boolean query over D, and Q is weakly mono-
tone. Consider a pair px, cq P R1 and assume that Qpxq “ 1. By the fact that R1 is
«-equivalent to the graph of rr ss, there exists y P D, such that y « x and c P rryss. Since
Q is generic Qpyq “ 1, and since Q is weakly monotone Qpcq “ 1. This proves that Q is
preserved under R1. The converse is proved symmetrically.

In particular, when the semantics of the arbitrary database domain is given by a
pair pRval,Rsemq, we have:

LEMMA 4.10. Let D “ xD, C, rr ss,«y be a database domain whose semantics rr ss is
given by a pair pRval,Rsemq and let R1 Ď D ˆ C be «-equivalent to Rval, then R1 ˝Rsem

is «-equivalent to the graph of rr ss (i.e. to Rval ˝Rsem). In particular, a generic Boolean
query over D is weakly monotone iff it is preserved under R1 ˝Rsem.

PROOF. Assume that px, cq P Rval ˝ Rsem. Then there exists e P C such that px, eq P
Rval and pe, cq P Rsem. We know that there exists x1 P D such that x1 « x and px1, eq P R1.
Then px1, cq P R1 ˝ Rsem. Symmetrically we prove that for all px1, cq P R1 ˝ Rsem there
exists x P D such that x1 « x and such that px, cq P Rval ˝Rsem. We conclude by Lemma
4.9.

We are now ready to move to relational database domains and finish the proof of the
proposition.

If M is a function associating to each complete relational instance D a class of map-
pings adompDq Ñ Const, we say that M is a mapping type. If M is a mapping type, we
denote by RM the set of pairs tpD,hpDqq | D is a complete relational instance and h P
MpDqu. Given two complete relational instancesD andD1, an M-Rsem-homomorphism
from D to D1 is an Rsem-homomorphism h from D to D1 such that h PMpDq.
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The following claim follows directly from definitions:

CLAIM 1. If M is a mapping type then pD,D1q P RM ˝ Rsem iff there exists an
M-Rsem-homomorphism from D to D1.

By combining the above claim with Lemma 4.10 we have:

COROLLARY 4.11. Let D “ xD, C, rr ss,«y be a relational database domain whose
semantics rr ss is given by a pair pRval,Rsemq and let M be a mapping type. Assume that
RM is «-equivalent to Rval. Then a generic Boolean query over D is weakly monotone
iff it is preserved under M-Rsem-homomorphisms.

Proposition 4.6 will be obtained as a special case of Corollary 4.11. To prove it, we
consider the mapping type M “ all, associating with each complete relational instance
D the set of all mappings adompDq Ñ Const, and we prove the following lemma:

LEMMA 4.12. If M “ all and « is the isomorphism relation between relational
instances, then RM is strongly «-equivalent to Rrdb

val
.

PROOF. Let D be a (possibly incomplete) relational instance. We prove that there
exists a complete relational instance E such that 1) D « E and 2) pD,D1q P Rrdb

val

implies pE,D1q P RM.
The instance E is obtained from D by replacing nulls of D with new distinct con-

stants not occurring in ConstpDq. Clearly there exists an isomorphism i : E Ñ D, thus
E « D. Now let pD,D1q P Rrdb

val
. Then D1 “ vpDq for some valuation v. Let h “ v ˝ i; then

hpEq “ vpDq “ D1 and hence pE,D1q P RM (because M “ all). This proves 1) and 2)
above.

Conversely let E be a complete relational instance. We prove that there exists a
relational instance D such that 1) D « E and 2) pE,D1q P RM implies pD,D1q P Rrdb

val
.

The instance D is obtained from E by replacing each element of adompEq with a
new distinct null. Clearly this replacement defines an isomorphism i : D Ñ E and
therefore E « D. Now let pE,D1q P RM. We know that D1 “ hpEq where h is an
arbitrary mapping adompEq Ñ Const. Let v “ h˝ i. Then v is a valuation on D (because
adompDq contains no constants, and D1 is complete) and hence pD,D1q P Rrdb

val
.

Now remark that with M “ all, M-Rsem-homomorphisms coincide with Rsem-
homomorphisms. Then Proposition 4.6 follows immediately from Corollary 4.11 with
M “ all. l

Putting together Proposition 4.4 and Proposition 4.6, we have our first key result for
naı̈ve evaluation over incomplete databases.

THEOREM 4.13. For a relational incompleteness semantics given by a semantic re-
lation Rsem, and a generic Boolean query Q, naı̈ve evaluation works for Q iff Q is pre-
served under Rsem-homomorphisms.

4.3. Homomorphisms for specific relational semantics

Theorem 4.13 connects naı̈ve evaluation with homomorphism preservation. We now
investigate what these Rsem-homomorphisms are in some specific cases.

— CWA semantics. In this case Rsem is the identity, and the definition states that h
is an Rsem-homomorphism from D to D1 if D1 “ hpDq. That is, under CWA, Rsem-
homomorphisms are the strong onto homomorphisms, i.e., homomorphisms from D
to hpDq.

— OWA semantics. In this case Rsem is Ď, and the definition states that h is an Rsem-
homomorphism fromD toD1 if hpDq Ď D1. That is, under OWA, Rsem-homomorphisms
are just the usual homomorphisms.
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Another well known notion of homomorphisms is that of onto homomorphisms.
When used in the database context, an onto homomorphism h from D to D1 is a ho-
momorphism between D and D1 so that hpadompDqq “ adompD1q. For instance, if
D “ tp1, 2qu, and hp1q “ 3, hp2q “ 4, then h is a strong onto homomorphism from D
to D1 “ tp3, 4qu, and an onto homomorphism from D to D2 “ tp3, 4q, p4, 3qu. Note that
while D2 contains more than hpDq, all the tuples in D2 only use elements that occur in
hpDq. However h is only a usual homomorphism from D to D3 “ tp3, 4q, p3, 5qu.

A semantics of incompleteness that corresponds to the notion of onto homomor-
phism, that we refer to as weak CWA, or WCWA semantics, was actually previously
studied [Reiter 1977] (in a slightly different, deductive-database context). We define it
as follows:

rrDss
WCWA

“

"

D1

ˇ

ˇ

ˇ

ˇ

D1 is complete and there is a valuation h : D Ñ D1

so that adompD1q “ adomphpDqq

*

.

In other words, it is not completely closed world: a database can be extended, but still
in a rather limited fashion, only with the tuples that use values already stored in the
database.

For this semantics, Rsem contains all pairs pD,D1q so that D Ď D1 and adompDq “
adompD1q. That is, D can be expanded only within its active domain. Thus, Rsem-
homomorphisms are exactly onto homomorphisms.

For this relation Rsem, the notion of preservation under Rsem-homomorphisms is
exactly the notion of preservation under onto homomorphisms. Thus, the WCWA se-
mantics, defined long time ago, also corresponds to a very natural logical notion of
preservation.

Note that rrDss
CWA

Ď rrDss
WCWA

Ď rrDss
OWA

, and in general inclusions can be strict. For
instance, if D “ tpK,K1qu, then tp1, 2qu is in rrDss

CWA
, while tp1, 2q, p2, 1qu is not in rrDss

CWA

but is in rrDss
WCWA

, since it added a tuple p2, 1q that uses elements already present in
t1, 2u.

Naı̈ve evaluation and relational semantics. We can finally state the equivalence of
naı̈ve evaluation and homomorphism preservation for three concrete semantics of in-
complete relational databases:

COROLLARY 4.14. Let Q be a Boolean generic query. Then:

— Under OWA, naı̈ve evaluation works for Q iff Q is preserved under homomorphisms.
— Under CWA, naı̈ve evaluation works for Q iff Q is preserved under strong onto homo-

morphisms.
— Under WCWA, naı̈ve evaluation works for Q iff Q is preserved under onto homomor-

phisms.

5. NAÏVE EVALUATION AND PRESERVATION FOR FIRST-ORDER QUERIES

Corollary 4.14 reduces the problem of checking whether naı̈ve evaluation works under
the most common relational semantics to preservation under homomorphisms. Thus,
for FO queries, we deal with a very well known notion in logic [Chang and Keisler
2012]. However, what we need is preservation on finite structures, and those notions
are well known to behave differently from their infinite counterpart. In fact, it was only
proved recently by Rossman that for FO sentences, preservation under arbitrary ho-
momorphisms in the finite is equivalent to being an existential positive formula [Ross-
man 2008]. In database language, this means being a union of conjunctive queries,
which led to an observation [Libkin 2011] that naı̈ve evaluation works for a Boolean
FO query Q iff Q is equivalent to a union of conjunctive queries.
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The difficulty in establishing preservation results in the finite is due to losing access
to classical logical tools such as compactness. Rossman’s theorem, for instance, was
a major open problem for many years. To make matters worse, even some existing
infinite preservation results [Keisler 1965b] have holes in their proofs.

Thus, it is unrealistic for a single paper to settle several very hard problems con-
cerning preservation results in the finite (sometimes even without infinite analogs!).
What we shall do instead is settle for classes of queries that imply preservation under
different notions of homomorphism, and at the same time are easy to describe syntac-
tically.

Positive and existential positive formulae. Recall that positive formulae use all the
FO connectives except negation (i.e., ^,_,@, D). Formally, the class Pos of positive for-
mulae is defined inductively as follows:

— true and false are in Pos;
— every positive atomic formula (i.e., Rpx̄q or x “ y) is in Pos;
— if ϕ, ψ P Pos, then ϕ_ ψ and ϕ^ ψ are in Pos;
— if ϕ is in Pos, then Dxϕ and @xϕ are in Pos.

If only Dxϕ remains in the class, we obtain the class DPos of existential positive formu-
lae. Formulae from DPos, as was mentioned earlier, have the same power as unions of
conjunctive queries.

Observe that the Pos fragment disallows logical implication as well, since it hides a
form of negation. Extensions of Pos which will be introduced later will allow a limited
form of implication.

Rossman’s theorem [Rossman 2008] says that an FO sentence ϕ is preserved un-
der homomorphisms over finite structures iff ϕ is equivalent to a sentence from DPos.
Lyndon’s theorem [Chang and Keisler 2012] says that an FO sentence ϕ is preserved
under onto homomorphisms (over arbitrary structures) iff ϕ is equivalent to a sentence
from Pos. Lyndon’s theorem fails in the finite [Ajtai and Gurevich 1987; Stolboushkin
1995] but the implication from being positive to preservation is still valid.

A characterization of preservation under strong onto homomorphisms was stated
in [Keisler 1965a; 1965b], but the syntactic class had a rather messy definition and
was limited to a single binary relation. Even worse, we discovered a gap in one of the
key lemmas in [Keisler 1965b]. So instead we propose a simple extension of positive
formulae that gives preservation under strong onto homomorphisms.

The class Pos is a very natural logical class, and indeed it has been studied exten-
sively by logicians. From the database perspective, however, unrestricted universal
quantification is not that common: indeed, most of universal queries say “for every
tuple in a relation” or “for every value appearing as a value of an attribute”. We now
define an extension of Pos capturing such queries. It turns out that this extension
matches the commonly used closed-world semantics.

Extensions with universal guards. The fragment Pos ` @G, whose definition is in-
spired by [Compton 1983], extends Pos with universal guards. It is defined as follows:

— true and false are in Pos ` @G;
— every positive atomic formula (i.e., Rpx̄q or x “ y) is in Pos ` @G;
— if ϕ, ψ P Pos` @G, then ϕ_ ψ and ϕ^ ψ are in Pos` @G;
— if ϕ is in Pos, then Dxϕ and @xϕ are in Pos ` @G.
— if ϕpx̄, ȳq is in Pos ` @G, and R is an n-ary relation symbol, then the formula
@x1, . . . , xn

`

Rpx1, . . . , xnq Ñ ϕpx1, . . . , xn, ȳq
˘

is in Pos` @G if x1, . . . , xn are pairwise
distinct variables;
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— if ϕpx, z, ȳq is in Pos ` @G, and x, z are distinct variables, then the formula
@x, z

`

x “ z Ñ ϕpx, z, ȳq
˘

is in Pos ` @G.

Note that the last rule is redundant, since the formula is equivalent to @x
`

ϕpx, x, ȳq
˘

which is already expressible in the fragment (the fragment allows arbitrary universal
quantification). However it will be useful later for defining restrictions of Pos ` @G.

Note also that the first four rules are the same as for Pos, so we have DPos Ĺ Pos Ĺ
Pos` @G.

The difference between Pos and Pos ` @G is emphasized in the following example,
which also witnesses the strict inclusions DPos Ĺ Pos Ĺ Pos ` @G.

Example 5.1. Consider a relational schema consisting of a binary relation R and
a unary relation S, and sentences ϕ “ @x Spxq and ψ “ @x, y pRpx, yq Ñ Spxqq. Clearly
ϕ is both in Pos and Pos ` @G, while ψ is in Pos ` @G. First remark that ϕ is not in
DPos because it is clearly not preserved under homomorphisms (it is non-monotone
w.r.t inclusion). We now show that ψ is not in Pos, since it is not preserved under onto
homomorphisms (while all formulae of Pos are). In fact consider databases D and D1

so that R is interpreted as tp1, 2qu in D, as tp1, 2q, p2, 1qu in D1, and S is interpreted as
tp1qu in both. Clearly D has an onto homomorphism h to D1 (which is the identity) and
D |ù ψ. However D1 |ù  ψ because Sp2q does not hold in D1.

Intuitively this is due to the fact that an onto homomorphism from D to D1 “pre-
serves” the domain of D but not its facts: new facts (such as Rp2, 1q) can be present in
D1. Thus if the guard is satisfied in D1, it need not be satisfied in D, and this is why
satisfaction of ψ may fail in D1. Indeed observe that if the fact Rp2, 1q were in D then
Sp2q would hold in D as well (by satisfaction of ψ) and therefore in D1 (since D1 Ě hpDq
and h is the identity).

In view of this example, the fact that strong onto homomorphisms disallow new facts
in the target instance intuitively explains the following proposition.

PROPOSITION 5.2. Sentences in Pos ` @G are preserved under strong onto homo-
morphisms.

In order to prove preservation for sentences, we need to prove it for arbitrary formu-
las of the fragment and then proceed by structural induction. To this end we need first
to define what it means for a formula with free variables to be preserved under (strong
onto) homomorphisms.

Definition 5.3. If Q is a k-ary relational query over complete instances (i.e. a map-
ping associating to each complete relational instance D a k-ary relation over adompDq),
we say that Q is preserved under (strong onto) homomorphisms if, whenever h is a
(strong onto) homomorphism from an instance D to an instance D1, and ā P QpDq then
hpāq P QpD1q.

Proposition 5.2 is a corollary of the following lemma (which incidentally will be cru-
cial when extending all our results to the case of non-Boolean queries)

LEMMA 5.4. Formulas in Pos ` @G are preserved under strong onto homomor-
phisms.

PROOF.
We proceed by structural induction on the formula ϕ. If ϕ “false or ϕ “true, it is

clearly preserved under strong onto homomorphisms.
Assume now that ϕpx̄q is a positive atom Rpȳq (including the case of an equality

atom), where variables occurring in ȳ are precisely x̄. It follows from the definition of
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homomorphism that if an instance D |ù ϕpāq then hpDq |ù ϕphpāqq, for every homomor-
phism h.

It is also easy to verify that if ϕ1 and ϕ2 are preserved under strong onto homomor-
phisms, so are ϕ1 ^ ϕ2 and ϕ1 _ ϕ2.

Now assume ϕpx̄q “ Dyϕ1py, x̄q, where ϕ1 is preserved under strong onto homomor-
phisms. Assume that an instance D |ù ϕpāq, and that h is a strong onto homomorphism
from D to D1 “ hpDq. Then D |ù ϕ1pb, āq for some value b P adompDq. Since ϕ1 is pre-
served under strong onto homomorphisms,D1 |ù ϕ1phpbq, hpāqq. ThusD1 |ù Dyϕ1py, hpāqq,
i.e. D1 |ù ϕphpāqq.

Assume now that ϕpx̄q “ @yϕ1py, x̄q. Assume that an instance D |ù ϕpāq and D has
a strong onto homomorphism h to D1. We prove D1 |ù ϕphpāqq. Let b P adompD1q, we
have to prove D1 |ù ϕ1pb, hpāqq. Since D1 “ hpDq, there exists a P adompDq such that
hpaq “ b; moreover D |ù ϕ1pa, āq. Now, by the induction hypothesis ϕ1py, x̄q is preserved
under strong onto homomorphism, therefore D1 |ù ϕ1phpaq, hpāqq “ ϕ1pb, hpāqq.

We next assume that ϕpx̄, ȳq P Pos ` @G is preserved under strong onto homomor-
phisms and show that @x̄ pRpx̄q Ñ ϕq is, where x̄ “ px1, . . . , xnq is a tuple of pairwise
distinct variables. Let D |ù @x̄pRpx1, . . . , xnq Ñ ϕpx̄, āqq and let D1 “ hpDq where h is a
homomorphism. We must show D1 |ù @x̄pRpx1, . . . , xnq Ñ ϕpx̄, hpāqq. Let b̄ “ pb1, . . . , bnq
be a tuple such that D1 |ù Rpb̄q. As D1 “ hpDq, there are c1, . . . , cn in adompDq such
that b̄ “ hpc̄q (i.e., bi “ hpciq for each i P t1, . . . , nu) and D |ù Rpc1, . . . , cnq. Since the
xis are pairwise distinct, this means that D |ù Rpx1, . . . , xnq under any valuation send-
ing xi to ci for each i ď n. By D |ù @x̄pRpx1, . . . , xnq Ñ ϕpx̄, āqq, we conclude that
D |ù ϕpc̄, āq and so, by the inductive hypothesis, D1 |ù ϕphpc̄q, hpāqq, which implies
D1 |ù @x̄pRpx1, . . . , xnq Ñ ϕpx̄, hpāqq.

The case of the equality atom in the guarded formula is exactly the same as the
above case of the relational atom. This concludes the proof of Proposition 5.2.

By Proposition 4.6 sentences of Pos`@G define weakly monotone queries under CWA.
We remark that this notion of weak monotonicity is different from the usual notion of
monotonicity of relational queries, as witnessed by the sentence ϕ P Pos ` @G defined
in Example 5.1, which is clearly non-monotone.

Note that the condition that the variables xis of guards be pairwise distinct in the
syntax of Pos` @G is essential, as shown by the following example.

Example 5.5. Consider a formula ϕ “ @x pRpx, xq Ñ Spxqq, and databases D and D1

so that R is interpreted as tp1, 2qu in D, as tp3, 3qu in D1, and S is empty in both. Then
D |ù ϕ, while D1 |ù  ϕ, even though D1 “ hpDq under the homomorphism h that sends
both 1 and 2 to 3.

The following example witnesses that the condition that variables of guards are all
universally quantified is also essential in the syntax of Pos ` @G.

Example 5.6. Consider a formula ϕ “ Dx@y pRpx, yq Ñ Spyqq. It does not conform
to the syntax of Pos ` @G since the variable x of the guard Rpx, yq is not universally
quantified. We show that ϕ is not preserved under strong onto homomorphisms (and
therefore naı̈ve evaluation does not work for ϕ under the CWA).

Consider databases D and D1 so that R is interpreted as tp1, 2q, p3, 4qu in D, as
tp1, 2q, p1, 4qu in D1, and S is interpreted as tp2qu in both. Clearly D |ù ϕ; moreover
D1 “ hpDq where hp3q “ 1 and h is the identity elsewhere, so h is a strong onto homo-
morphism from D to D1. However D1 |ù  ϕ since Sp4q does not hold in D1.

This problem is avoided if all variables of guards are universally quantified, as for
instances in the sentence Dx@ypSpyq Ñ Rpx, yqq which is in Pos ` @G, and is satisfied
both in D and D1.
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We now combine all the previous implications (preservationÑmonotonicityÑ naı̈ve
evaluation) to show that naı̈ve evaluation can work beyond unions of conjunctive
queries under realistic semantic assumptions.

THEOREM 5.7. Let Q be a Boolean FO query. Then:

— If Q is in DPos, then naı̈ve evaluation works for Q under OWA.
— If Q is in Pos, then naı̈ve evaluation works for Q under WCWA.
— If Q is in Pos` @G, then naı̈ve evaluation works for Q under CWA.

Contrast this with the result of [Libkin 2011] saying that under OWA, the first state-
ment is ‘if and only if ’, i.e., one cannot go beyond DPos. Now we see that, under other
semantics of incompleteness, one can indeed go well beyond that class, essentially lim-
iting only unrestricted negation, and still use naı̈ve evaluation.

One immediate question is what happens with non-Boolean queries. There is a sim-
ple answer: all results extend to non-Boolean queries. This is what we show next.

6. LIFTING TO NON-BOOLEAN QUERIES

As promised, we now show how to lift our results to the setting of arbitrary k-ary
relational queries. We do it for relational database domains, and then apply results
to specific relational semantics. The basic idea is to consider a new database domain
where objects are pairs consisting of a database and a k-tuple of constants. This turns
queries into Boolean, and we apply our results. This requires more technical develop-
ment than seems to be implied by the simple idea, but it can be carried out for all the
semantics. We explain now how the extension works.

A k-ary query Q maps a database D to a subset of adompDqk. It is generic if, for each
one-to-one map f : adompDq Ñ ConstY Null, we have QpfpDqq “ fpQpDqq.

Given a semantics rr ss, certain answers to Q are defined as certainpQ,Dq “
Ş

tQpD1q |
D1 P rrDssu. Naı̈ve evaluation works for Q if certainpQ,Dq is precisely the set

QCpDq “ QpDq X Const
k

of tuples in QpDq that do not have nulls.
As before, Q is weakly monotone if QCpDq Ď QCpD1q whenever D1 P rrDss.
We will need a stronger form of saturation property. A relational database domain is

strongly saturated if every database has “sufficiently” many complete instances in its
semantics that are isomorphic to it. More precisely,

Definition 6.1. A relational database domain is strongly saturated if for each
database D, and each finite set C Ă Const, there is an isomorphic instance D1 P rrDss
such that both the isomorphism from D to D1 and its inverse are the identity on C.

We also need a “weak” notion of preservation:

Definition 6.2. We say that a k-ary query is weakly preserved under a class of
Rsem-homomorphisms if for every database D, a k-tuple t of constants, and an Rsem-
homomorphism h : D Ñ D1 from the class that is the identity on t, the condition
t P QpDq implies t P QpD1q.

Note that for Boolean queries this is the same as preservation under Rsem-
homomorphisms.

Then the main connections continue to hold.

LEMMA 6.3. Let D be a relational database domain with the strong saturation prop-
erty, and Q a k-ary generic query. Then the following are equivalent:

(1) naı̈ve evaluation works for Q;

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20

(2) Q is weakly monotone; and
(3) (if the semantics is given by a relation Rsem): Q is weakly preserved under Rsem-

homomorphisms.

We postpone the proof of Lemma 6.3 until Section 11 where it will be proved together
with its analog for minimal semantics.

In addition, for all the classes of FO formulae considered here, preservation results
hold when extended to formulae with free variables. One can then conclude that all
the results remain true for non-Boolean queries.

THEOREM 6.4. Let Q be a k-ary FO query, k ě 0. Then:

— If Q is in DPos, then naı̈ve evaluation works for Q under OWA.
— If Q is in Pos, then naı̈ve evaluation works for Q under WCWA.
— If Q is in Pos` @G, then naı̈ve evaluation works for Q under CWA.

PROOF. One can easily verify that all relational semantics given by a relation Rsem

have the strong saturation property. Moreover every k-ary FO query is generic. Then
using Lemma 6.3 we have:

CLAIM 2. If Q is a k-ary FO query, naı̈ve evaluation works for Q iff Q is weakly
preserved under

— homomorphisms, under OWA,
— strong onto homomorphisms, under CWA,
— onto homomorphisms, under WCWA.

By Lemma 5.4 k-ary formulae of Pos ` @G are preserved under strong onto homo-
morphisms. Moreover it is known that k-ary formulae of DPos (respectively Pos) are
preserved under homomorphisms (respectively onto homomorphisms) in the sense of
Definition 5.3, see [Chang and Keisler 2012].

Now notice that, for all these notions of homomorphism, preservation of k-ary for-
mulae implies weak preservation. Then the statement of Theorem 6.4 immediately
follows.

7. SEMANTIC ORDERINGS

In this section we study semantic orderings arising from the usual relational semantics
of incompleteness. Firstly we show what the semantic orderings ĺOWA,ĺCWA, and ĺWCWA

are. It turns out they are characterized via database homomorphisms as follows (the
first item was already shown in [Libkin 2011]).

PROPOSITION 7.1. D ĺOWA D
1 (respectively D ĺCWA D1 or D ĺWCWA D1) iff there is

a database homomorphism (respectively, strong onto, or onto database homomorphism)
from D to D1.

PROOF. Let Rsem belong to one of the following semantic relations

— OWA: tpD,D1q | D is a complete relational instance and D Ď D1u;
— CWA: tpD,Dq | D is a complete relational instanceu;
— WCWA: tpD,D1q | D is a complete relational instance, D Ď D1 and adompDq “

adompD1qu.

Let rr ss be the semantics given by the pair pRrdb

val
,Rsemq (this semantics is OWA, CWA,

and WCWA, respectively), and let ĺrr ss be the ordering arising from rr ss.
Assume D and D1 are two relational instances and D ĺrr ss D

1. Let E P rrD1ss be an
instance having a bijection i : adompEq Ñ adompD1q which is the identity on ConstpDq
and such that ipEq “ D1. We know E P rrDss therefore pE,Dq P Rrdb

val
˝Rsem, or in other
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words there exists a valuation h : adompDq Ñ Const such that phpDq, Eq P Rsem. Let
h1 “ i ˝ h. We prove that h1pDq and D1 are in the same relationship as hpDq and E, i.e.,

— Under OWA: hpDq Ď E, therefore h1pDq “ iphpDqq Ď ipEq “ D1;
— Under CWA: hpDq “ E, therefore h1pDq “ iphpDqq “ ipEq “ D1;
— Under WCWA: hpDq Ď E and adomphpDqq “ adompEq, therefore h1pDq “ iphpDqq Ď
ipEq “ D1 and adomph1pDqq “ ipadomphpDqqq “ ipadompEqq “ adompD1q.

Moreover h1 is the identity on ConstpDq, because both h and i are, and h1pDq and D1 are
related according to Rsem.

This implies that:

— Under OWA, h1 is a database homomorphism D Ñ D1;
— Under CWA, h1 is a database strong onto homomorphism D Ñ D1;
— Under WCWA, h1 is a database onto homomorphism D Ñ D1.

Conversely assume that there exists a database ˚-homomorphismD Ñ D1, where by
˚-homomorphism we mean

— arbitrary homomorphism, if rr ss “ rr ss
OWA

;
— strong onto homomorphism, if rr ss “ rr ss

CWA
;

— onto homomorphism, if rr ss “ rr ss
WCWA

.

Note that database ˚-homomorphisms compose, i.e. if there exists a database ˚-
homomorphism from D to D1 and a database ˚-homomorphism from D1 to D2, then
there composition is a database ˚-homomorphism from D to D2. Note also that rrD1ss
is precisely the set of complete relational instance E such that there exists a database
˚-homomorphism from D1 to E.

Then, by transitivity, there exists a database ˚-homomorphism from D to each E P
rrD1ss. Hence E P rrDss for all E P rrD1ss. In other words, rrD1ss Ď rrDss, and therefore
D ĺrr ss D

1.

Codd databases and update justification. Orderings capturing the degree of incom-
pleteness were studied in the context of Codd databases about two decades ago [Bune-
man et al. 1991; Libkin 1995; Ohori 1990; Rounds 1991]. Results about such orderings
are often of two kinds: they connect orderings based on incompleteness with well-
known orderings from the field of programming semantics, and they describe those
via elementary updates that increase the information content of an instance. We now
review them briefly.

Recall that SQL uses a single value null for missing information. As comparisons of
a null with other values in SQL do not evaluate to true (technically, they evaluate to
unknown, as SQL uses three-valued logic), this is properly modeled by a special kind
of naı̈ve databases, called Codd databases, in which nulls do not repeat.

For tuples t “ pa1, . . . , anq and t1 “ pa1
1, . . . , a

1
nq over Const Y Null in which no null

occurs more than once, we write t Ď t1 if ai P Const implies a1
i “ ai. The meaning is that

t1 is at least as informative as t. There are two standard ways of lifting Ď to sets:

D ĎH D1 ô @t P D Dt1 P D1 : t Ď t1

D ĎP D1 ô @t1 P D1 Dt P D : t Ď t1 and D ĎH D1

Superscripts H and P stand for Hoare and Plotkin, who first studied these orderings
in the context of the semantics of concurrent processes, cf. [Gunter 1992].

These had been previously accepted as the correct orderings to represent the OWA

and the CWA semantics over Codd databases [Buneman et al. 1991; Libkin 1995; Ohori
1990; Rounds 1991]. This can be justified by considering updates that affect informa-
tiveness of incomplete databases. Consider, for example, two tuples p1, 2q and p2, 2q,
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and assume that we somehow lose the value of the first attribute. SQL has a unique
null value, so both tuples become pnull, 2q, which thus must represent the instance
tp1, 2q, p2, 2qu even under CWA, since no tuples were lost, only individual values. Al-
ternatively, one can view this as an allowed update, under CWA, from pnull, 2q, that
produces a more informative instance tp1, 2q, p2, 2qu by replacing the null twice. In the
case of OWA, one can have updates that add arbitrary new tuples.

Let D be a database, R a relation in it, t a tuple, and i a position in that tuple that
contains a null K. Then by Drv{Rpt.iqs we mean D in which that occurrence of K is
replaced by v P ConstYNull, and by D`rv{Rpt.iqs we mean D to which a tuple obtained
from t by replacing the occurrence of K in the ith position with v is added (i.e., the
original t is retained). Now we consider updates D 

codd D1 of two kinds:

— Codd CWA updates: D 
codd
CWA Drv{Rpt.iqs and D 

codd
CWA D`rv{Rpt.iqs;

— OWA update: D 
codd
OWA DYRptq adds a tuple to a relation in a database; here DYRptq

stands for D in which tuple t was added to relation R.

It is known [Libkin 1995] that the reflexive-transitive closure

— of codd
CWA Y

codd
OWA is exactly ĎH; and

— of codd
CWA is exactly ĎP,

over Codd databases. In other words, two Codd databases are in the ĎP relation iff one
can be obtained from the other by a finite sequence of Codd CWA updates, and they are
in the ĎH relation iff one can be obtained from the other by a finite sequence of Codd
CWA and OWA updates.

Update justification for naı̈ve databases. Using Codd database results as a moti-
vation, we now provide update justification for OWA and CWA orderings on naı̈ve
databases. OWA updates just add tuples as before; we denote them by OWA . CWA

updates are different, to account for repetition of nulls. In particular, once a null is
replaced by some value v, all its occurrences must be replaced. Formally, if K is a null
that occurs in D, then Drv{Ks is D in which v P Const Y Null replaces K everywhere.
The CWA update is now an update D CWA Drv{Ks.

THEOREM 7.2. The transitive-reflexive closure of CWA is ĺCWA; and the transitive-
reflexive closure of CWA YOWA is ĺOWA.

In other words, D is less informative than D1 iff D1 is obtained from D by a sequence
of CWA updates, under CWA, and both CWA and OWA updates, under OWA.

Theorem 7.2 will be shown inside the proof of Theorem 10.1 in Section 10 which
shows a more general result subsuming Theorem 7.2.

What are the orderings ĺOWA and ĺCWA when we restrict them to Codd databases?
One would expect them to be ĎH and ĎP, corresponding to OWA and CWA for the Codd
semantics, but this is only partly true. In fact, [Libkin 2011] proved that over Codd
databases,

— ĺOWA and ĎH coincide;
—D ĺCWA D

1 iff D ĎP D1 and relation Ď, viewed as a bipartite graph between the tuples
of D and the tuples of D1, has a perfect matching (in the standard graph-theoretic
sense) from D1 to D.

So this leads to a question: is there a “natural” semantic ordering over naı̈ve
databases that, when restricted to Codd databases, coincides precisely with ĎP? We
shall give such an ordering, when we study more complex “powerset” semantics of
incompleteness in Section 10.
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8. MOVING BEYOND THE STANDARD SEMANTICS: GIVING UP SATURATION

In the previous sections we have developed our approach to naı̈ve evaluation for stan-
dard semantics such as OWA and CWA. While these are the most common semantics
of incompleteness, they are not the only ones, and in the second half of the paper, we
show that there are many other possible semantics for which the approach works. Such
semantics, in general, are obtained by using (separately, or together) two ideas.

(1) The first idea is giving up saturation, i.e., the condition that every object x must
have an isomorphic object y in its semantics: y P rrxss and y « x. Since the standard
semantics allow arbitrary valuations of nulls, we can view giving up saturation as
restricting valuations of nulls which are allowed.

(2) The second idea is giving up uniqueness of valuation of nulls. Thus, multiple valu-
ations can be applied to an incomplete object, and complete objects are obtained by
combining outcomes of such multiple valuations.

In this section we start the first line of investigation, by showing that, even with
restricted sets of valuations applied to nulls, there is a way to recover results, under
some extra conditions. Here we present results in the abstract model, that is, the case
of arbitrary database domains, and in the next section we study a concrete relational
case, namely a minimal semantics of incompleteness.

The key idea for working with non-saturated domains is to impose two conditions:

— the existence of a saturated subdomain, which we shall call a representative set, and
— the existence of a canonical function selecting a representative for each element of

the domain.

Jumping ahead a little bit, we shall see that for some of the natural non-saturated se-
mantics the canonical transformation will be the one that associates with an instance
its core [Hell and Nes̆etr̆il 1992]: a construction used in various subfields of database
theory such as optimization of conjunctive queries [Chandra and Merlin 1977] and
constructing small instances in data exchange [Fagin et al. 2005].

Recall that a database domain was defined as a structure D “ xD, C, rr ss,«y, where D

is a set and C one of its subsets, rr ss is a function from D to nonempty subsets of C, and
« is an equivalence relation on D.

Definition 8.1. If D “ xD, C, rr ss,«y is a database domain, a set S Ď D is representa-
tive if

— C Ď S (it contains all complete objects);
— S is saturated, i.e., for each x P S there is y P rrxss such that x « y (every object in S

has a complete object in its semantics that is isomorphic to it); and
— there is a function χS : D Ñ S such that rrxss “ rrχSpxqss for every x P D (each object

has a representation in S with the identical semantics).

Over relational database domains, if moreover S is strongly saturated, we say that
S is a strong representative set.

In all the examples encountered so far we had S “ D, but as we just said (and will
study in detail in the following section) this need not always be the case.

If S ‰ D, the equivalence between naı̈ve evaluation and weak monotonicity need not
work any more. However, we have the following generalization.

THEOREM 8.2. Let D be a database domain with a representative set S, and Q a
generic Boolean query. Then naı̈ve evaluation works for Q iff Q is weakly monotone and
Qpxq “ QpχSpxqq for every x P D.
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PROOF. Theorem 8.2 follows immediately from the lemma below.

LEMMA 8.3. Let D “ xD, C, rr ss,«y be a database domain, and Q a generic Boolean
query. Assume that D has a representative set S, and let D1 be a set S Ď D1 Ď D. Then
naı̈ve evaluation works for Q over D1 iff Q is weakly monotone over D1 and Qpxq “
QpχSpxqq for every x P D1.
In particular if S “ D (i.e. if D is saturated) then naı̈ve evaluation works for Q iff Q is
weakly monotone.

PROOF. Let Q be a Boolean generic query. Assume that naı̈ve evaluation works for
Q over D1; then weak monotonicity of Q over D1 immediately follows.

For all x P D1, we have rrxss “ rrχSpxqss; moreover naı̈ve evaluation works forQ on both
x and χSpxq (because D1 Ě S). Then we have Qpxq “ certainpQ, xq “ certainpQ,χSpxqq “
QpχSpxqq.

Conversely assume that Q is weakly monotone over D1 and Qpxq “ QpχSpxqq for all
x P D1. Let x P D1. By weak monotonicity over D1 (and because D1 Ě S Ě C) we have
Qpxq ď certainpQ, xq. To prove certainpQ, xq ď Qpxq, assume certainpQ, xq “ 1. Recall
that rrxss “ rrχSpxqss and χSpxq P S. Therefore there exists c P rrxss such that c « χSpxq.
We know Qpcq “ 1; then by genericity QpχSpxqq “ 1 “ Qpxq. Hence certainpQ, xq “ Qpxq
for all x P D1.

We have thus proved that naı̈ve evaluation works for Q over D1 if and only if Q is
weakly monotone over D1 and Qpxq “ QpχSpxqq for all x P D1. Now if in particular
S “ D we can always assume χS to be the identity mapping D Ñ D. In this case then
naı̈ve evaluation works for Q if and only if Q is weakly monotone.

This ends the proof of Theorem 8.2. l

Thus, our recipe for finding out when naı̈ve evaluation works continues to apply,
but with one extra condition: the query (Boolean, in this case), should not distinguish
between an object x and its representative χSpxq in S.

Immediately from the above theorem, we have:

COROLLARY 8.4. Let D be a database domain with a representative set S, and Q
a generic Boolean query. Then naı̈ve evaluation works for Q over S iff Q is weakly
monotone over S.

Thus, for instances restricted to those in the representative set, our previous recipe
applies without any changes.

9. MINIMAL VALUATIONS SEMANTICS

We now look at a concrete relational semantics of incompleteness that restricts the set
of valuations. Essentially, the idea is to look at valuations that produce the smallest
possible instances. Consider, for instance, an incomplete table D “ tpK,Kq, pK,K1qu and
a valuation vpKq “ 1, vpK1q “ 2. The result vpDq is not the smallest possible: take for
instance v1pKq “ v1pK1q “ 1 and we have v1pDq Ĺ vpDq. The set v1pDq is minimal, i.e.,
not a proper subset of any other valuation.

This can be viewed as a very strong form of the closed-world assumption. Alterna-
tively, it can be viewed as a building block of a more relaxed notion of closed world,
in which different minimal valuations can be combined. Such semantics, in fact, was
used in the data exchange scenario [Hernich 2011], and it was based on earlier work
in the area of logic programming [Minker 1982]. In data exchange, it appeared in the
context of searching for the right balance between open and closed world assumptions,
so as to avoid anomalies that the OWA may lead to, without restricting the setting too
much.
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We now give formal definitions. For now we deal with database homomorphisms, i.e.,
hpcq “ c for each c P Const. We say that a homomorphism h defined on an instance D is
D-minimal if no proper subinstance of hpDq is a homomorphic image ofD; equivalently,
there is no other homomorphism h1 so that h1pDq Ĺ hpDq. If h is a valuation, then we
talk about a D-minimal valuation.

The semantics we deal with now is

rrDss
min

CWA
“ thpDq | h is a D-minimal valuationu.

It can be viewed as the semantics given by a pair pRmin

val
,Rsemq, where

R
min

val “ tpD,hpDqq | h is a D-minimal valuationu Ĺ R
rdb

val .

and Rsem is the identity relation. Note that combining Rmin

val
with the subset relation

(playing the role of Rsem for OWA) gives us the usual OWA semantics.

We start studying the rr ssmin

CWA
semantics by looking at the connection between mini-

mal homomorphisms and the closely related notion of cores.
The fact that we no longer allow all valuations makes the equivalence of naı̈ve eval-

uation and preservation of Rsem-homomorphisms invalid. However, we can apply the
results of the previous section to recover results on naı̈ve evaluation. The main goal is
then to find out what the representative sets are. This is what we do next.

9.1. Minimal homomorphisms and cores

Recall that a core of a structure D (in our case, a relational database of vocabulary σ)
is a substructure D1 Ď D such that D1 is a homomorphic image of D but no proper
subinstance of D1 is. In other words, there is a homomorphism h : D Ñ D1 but there
is no homomorphism g : D Ñ D2 for D2 Ĺ D1. It is known that a core is unique up
to isomorphism, so we can talk of the core of D, and denote it by corepDq. A structure
is called a core if D “ corepDq. The cores are commonly used over graphs [Hell and
Nešetřil 2004]; here we use them with the database notion of homomorphism that
preserves constants (for which all results about cores remain true [Fagin et al. 2005]).

Even if minimal homomorphisms are related to cores, their images cannot be de-
scribed precisely in terms of cores, as shown next. We strengthen results given in sev-
eral examples in [Hernich 2011] (where constants were used in an essential way):

PROPOSITION 9.1. If h is D-minimal, then hpDq is a core and hpDq “ hpcorepDqq.
However, there is a core D and a homomorphism h defined on it so that hpDq is a core,
but h is not D-minimal. This also holds if both D and hpDq contain only nulls, and if
D is a graph.

PROOF. Let D be a relational instance and let h be aD-minimal database homomor-
phism. Assume by contradiction that hpDq is not a core. Then there exists a database
homomorphism h1 on hpDq such that h1phpDqq Ĺ hpDq. Clearly h1 ˝ h is a database
homomorphism on D, then this contradicts the D-minimality of h.

Now assume by contradiction that hpcorepDqq Ĺ hpDq, and let hcore be the database
homomorphism from D onto corepDq. Clearly h ˝ hcore is a database homomorphism on
D and hcorephpDqq “ hpcorepDqq Ĺ hpDq. Again this contradicts the D-minimality of h.

We now prove that there exists a core D and a database homomorphism
h : adompDq Ñ Null such that hpDq is a core, but h is not D-minimal.

Fix a schema with a single 4-ary relation, and consider instances

D
K1 K1 K2 K3

K4 K5 K2 K2

hpDq
K6 K6 K7 K7

K6 K7 K7 K7

where h : K1 Ñ K6, K2 Ñ K7, K3 Ñ K7, K4 Ñ K6, K5 Ñ K7
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It is easy to check that both D and hpDq are cores. However h is not D-minimal. In
fact there exists a mapping h1

: K1 Ñ K6, K2 Ñ K7, K3 Ñ K7, K4 Ñ K6, K5 Ñ K6

such that h1pDq Ĺ hpDq.
In fact one can produce a pure graph example (below, we shall assume that the nodes

in graphs are distinct nulls, so we use the standard graph homomorphisms).
Let Cn be the directed cycle on n vertices. Let G “ C4 ` C6, where ` stands for

disjoint union. Note that each Cn is a core. Moreover, G is a core, since there is no
homomorphism from C6 to C4. Let H “ C3 ` C2. Likewise, it is a core, and there is a
strong onto homomorphism h : GÑ H that sends C4 to C2 and C6 to C3 (as in general
we have C2n Ñ Cn). Hence, H,G are cores, but h is not G-minimal since GÑ C2, as G
is 2-colorable.

This also provides an example ofD such that rrDss
min

CWA
‰ rrcorepDqss

CWA
. Indeed, take D

to be C6`C4 consisting of all nulls; note that corepDq “ D. Let CC
n be the cycle Cn whose

nodes are distinct constants. Then CC
3 ` C

C
2 is in rrDss

CWA
. However, it is not in rrDss

min

CWA
.

Indeed, if it were, there would be an onto homomorphism h : C6 ` C4 Ñ CC
3 ` CC

2 .
Since we have no homomorphism C4 Ñ C3, then C4 ought to be mapped by h to CC

2 ,
and hence C6 will be mapped by h to CC

3 as h is onto. But we already saw that such a
homomorphism cannot be minimal, since we have a homomorphism g : C6 ` C4 Ñ CC

2 .

Thus, CC
3 ` C

C
2 R rrDss

min

CWA
.

Proposition 9.1 also shows that rrDss
min

CWA
need not be the same as rrcorepDqss

CWA
. Nev-

ertheless, cores do play a crucial role in the study of minimal semantics.

THEOREM 9.2. For the semantics rr ss
min

CWA
, the set of cores is a representative set. In

fact, this is true for every semantics given by R “ pRmin

val
,Rsemq.

PROOF. In order to easily work with minimal homomorphisms we extend the D-
minimality notion to arbitrary mappings, and prove some technical facts about D-
minimal mappings.

For an arbitrary mapping h : adompDq Ñ Const Y Null we define, fixph,Dq “ tc P
ConstpDq | hpcq “ cu.

Given a relational instance D and a mapping h : adompDq Ñ Const Y Null we say
that h is D-minimal if there is no mapping g : adompDq Ñ ConstYNull with fixph,Dq Ď
fixpg,Dq and gpDq Ĺ hpDq.

Notice that a D-minimal database homomorphism (D-minimal valuation, resp.) is a
database homomorphism (valuation, resp.) which is also a D-minimal mapping.

We now prove a technical lemma about minimal mappings.

LEMMA 9.3. Let D and D1 be relational instances and assume there exists a D-
minimal mapping h : adompDq Ñ Const Y Null with D1 “ hpDq. Let E and E1 be rela-
tional instances with isomorphisms µ : E Ñ D and µ1 : D1 Ñ E1, such that µ, µ1 and
their inverses are the identity on fixph,Dq. Then the mapping µ1 ˝ h ˝ µ is E-minimal.

PROOF. Let h1 “ µ1 ˝ h ˝ µ. First notice that h1 is a mapping over adompEq such that
h1pEq “ E1, and h1 is the identity on fixph,Dq.

Now assume by contradiction that there exists a mapping g : adompEq Ñ ConstYNull

such that fixph1, Eq Ď fixpg, Eq and gpEq Ĺ h1pEq. Then gpEq Ĺ E1 and g is the identity on
fixph,Dq. Let g1 “ µ1´ ˝ g ˝ µ´; clearly g1 is a mapping over adompDq and is the identity
on fixph,Dq; therefore fixph,Dq Ď fixpg1, Dq. We now show that g1pDq Ĺ hpDq. In fact
g1pDq “ µ1´pgpEqq. Recall that gpEq Ĺ E1, therefore µ1´pgpEqq Ĺ µ1´pE1q “ D1 “ hpDq

This contradicts the assumption that h is D-minimal.
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We are now ready to prove the theorem. More precisely we prove the following propo-
sition :

PROPOSITION 9.4. If a relational semantics is given by a pair pRmin

val
,Rsemq, the set

S of cores is a strong representative set, and χSpDq “ corepDq for every instance D.

PROOF. Let rr ss be given by pRmin

val
,Rsemq. Clearly the set of cores contains all com-

plete instances (recall that cores are defined w.r.t. database homomorphisms here).
We now prove that if D is a core and K Ď Const, there exists a D-minimal valuation

v such that D and vpDq are isomorphic in the way required by the definition of strong
representative set. We observe that this property indeed follows from [Hernich 2011]
(Proposition 6.11 (1) and (2)), but we prove it here directly for completeness.

If D is a core and K Ď Const, let v be an arbitrary injective valuation adompDq Ñ
ConstzK. Clearly v is an isomorphism between D and vpDq and both v and v´ are the
identity on ConstpDqYK, and therefore the identity on K, as required by the definition
of strong representative set. We need to prove that vpDq P rrDss. Now notice that the
identity mapping over adompDq is D-minimal, because D is a core. Moreover v and
v´ are the identity on ConstpDq, which is precisely the set of constants fixed by the
identity mapping on D. Then we can apply Lemma 9.3 with D “ D1 “ E and conclude
that v is D-minimal.

Thus pD, vpDqq P Rmin

val
and, since Rsem contains the identity, vpDq P rrDss.

It remains to prove that rrDss “ rrcorepDqss. This will show that one can define
χSpDq “ corepDq for every instance D.

Let D be a relational instance. We prove that D and corepDq have the same minimal
images, i.e. pD,D1q P Rmin

val
iff pcorepDq, D1q P Rmin

val
, for all D1. This will imply rrDss “

rrcorepDqss. We observe that this property has been proved in [Hernich 2011] (Lemma
6.9) restricted to the canonical solution in data exchange and its core.

Assume first that pD,D1q P Rmin

val
, then there exists a D-minimal valuation h such

that D1 “ hpDq. We know by Proposition 9.1 that hpcorepDqq “ hpDq “ D1. Moreover
h has to be a corepDq-minimal valuation. In fact assume by contradiction that there
exists a valuation h1 on corepDq such that h1pcorepDqq Ĺ hpcorepDqq “ D1. Let hcore be
the database homomorphism from D to corepDq. Then h1 ˝hcore is a valuation on D and
h1 ˝ hcorepDq “ h1pcorepDqq Ĺ D1. This contradicts the assumption that h is D-minimal.
Then h is a corepDq-minimal valuation and thus pcorepDq, D1q P Rmin

val
.

Conversely assume that pcorepDq, D1q P Rmin

val
, then there exists a corepDq-minimal

valuation h such that hpcorepDqq “ D1. Therefore h ˝ hcore is a valuation and
hphcorepDqq “ hpcorepDqq “ D1. We prove that h ˝ hcore is D-minimal. Assume by con-
tradiction that there exists a valuation h1 on D such that h1pDq Ĺ D1. Then, since
corepDq Ď D1 we have h1pcorepDqq Ď h1pDq Ĺ D1, contradicting the fact that h is corepDq-
minimal.

We have thus shown that the set S of cores is a representative set and χSpDq “
corepDq for all relational instances D.

This ends the proof of Proposition 9.4 and of Theorem 9.2.

Recall that a generic Boolean query Q is weakly monotone under rr ss
min

CWA
if QpDq “ 1

and D1 P rrDssmin

CWA
imply QpD1q “ 1. Immediately from Theorem 9.2 and Theorem 8.2,

we obtain:

COROLLARY 9.5. Let Q be a generic Boolean relational query. Then naı̈ve evalu-

ation works for Q under the rr ss
min

CWA
semantics iff Q is weakly monotone and QpDq “

QpcorepDqq for every D.
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Hence, the crucial new condition for minimal semantics is that Q cannot distinguish
a database from its core.

9.2. Preservation and naı̈ve evaluation

We now relate weak monotonicity to homomorphism preservation for the minimal val-
uations semantics. For this, we consider minimality for instances D over Const. For
such an instance, and a homomorphism h, we let fixph,Dq “ tc P ConstpDq | hpcq “ cu.
In the same way as for arbitrary mappings, h is called D-minimal if there is no homo-
morphism g with fixph,Dq Ď fixpg,Dq and gpDq Ĺ hpDq. Note that database homomor-
phisms fix precisely the set of constants in D, so the first condition was not necessary.

Given a Boolean queryQ, we say that it is preserved under minimal homomorphisms
if, whenever D is a database over Const and h is a D-minimal homomorphism, then
QpDq “ 1 implies QphpDqq “ 1.

PROPOSITION 9.6. Let Q be a Boolean generic query. Then it is weakly monotone

under rr ssmin

CWA
iff it is preserved under minimal homomorphisms.

PROOF. We derive the relationship between weak monotonicity and preservation
for general semantics based on Rmin

val
. The proposition will follow as a special case.

Recall the notion of mapping type and «-equivalence used to prove Proposition 4.6.
We now consider the mapping type M “ min which associates to each complete rela-
tional instance D the set of all D-minimal mappings adompDq Ñ Const.

We prove the following lemma:

LEMMA 9.7. If M “ min and « is the isomorphism relation between relational
instances, then RM is «-equivalent to Rmin

val
.

PROOF. Let pD, vpDqq P Rmin

val
, where v is a D-minimal valuation; we prove that

there exists a complete relational instance E « D such that pE, vpDqq P RM.
The instance E is obtained from D by replacing nulls of D with new distinct con-

stants not occurring in ConstpDq. Clearly there exists an isomorphism i : E Ñ D,
thus E « D. Note that both i and i´ are the identity on ConstpDq. Let h “ v ˝ i, then
hpEq “ vpDq. Note that i and i´ are the identity on fixpv,Dq “ ConstpDq. Hence by
Lemma 9.3 h is an E-minimal mapping. As a consequence pE, vpDqq P RM (because
M “ min). This proves one direction.

Conversely assume pE, hpEqq P RM, where h is an E-minimal mapping; we prove
that there exists a relational instance D « E such that pD,hpEqq P Rmin

val
.

The instance D is obtained from E by replacing each element of adompEqzfixph,Eq
with a new distinct null. Clearly this replacement defines an isomorphism i : D Ñ E
and therefore E « D. Note that both i and i´ are the identity on fixph,Eq. Then the
mapping v “ h˝i is also the identity on fixph,Eq; moreover vpDq “ hpEq. But ConstpDq “
fixph,Eq, then v is a valuation on D. Moreover by Lemma 9.3, v is D-minimal, and
hence pD,hpEqq P Rmin

val
.

M-Rsem-homomorphisms with M “ min will be also referred to as minimal Rsem-
homomorphisms. Notice that minimal homomorphisms are precisely minimal Rsem-
homomorphisms where Rsem is the identity.

Using Corollary 4.11 with M “ min we then have:

COROLLARY 9.8. If a relational semantics is given by a pair pRmin

val
,Rsemq and Q is

a generic Boolean relational query, then Q is weakly monotone iff it is preserved under
minimal Rsem-homomorphisms.

Moreover naı̈ve evaluation works for Q iff Q is preserved under minimal Rsem-
homomorphisms and QpDq “ QpcorepDqq for every D.
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Proposition 9.6 is a special case of Corollary 9.8 where Rsem is the identity.

Combining this with Corollary 9.5 and results in Section 5, and observing that min-
imal homomorphisms are a special case of strong onto homomorphisms, we obtain:

COROLLARY 9.9. Let Q be a Boolean Pos ` @G query such that QpDq “ QpcorepDqq

for all D. Then naı̈ve evaluation works for Q under the rr ss
min

CWA
semantics.

The precondition QpDq “ QpcorepDqq is essential for the result to work. To see this,
consider an incomplete instance D “ tpK,Kq, pK,K1qu. Every D-minimal valuation h
must satisfy hpKq “ hpK1q, i.e., their images are precisely the instances tpc, cqu for

c P Const. Hence, under rr ss
min

CWA
, the certain answer to @x Dpx, xq is true, while evaluating

this formula on D produces false. The reason naı̈ve evaluation does not return certain
answers is that QpDq ‰ QpcorepDqq, since corepDq “ tpK,Kqu.

Thus, the extra condition is essential, but it is not fully satisfactory, as we do not
know how to check for this condition in relevant FO fragments. We present two ways
to deal with this issue.

First, by Corollary 8.4, if we only need to compute queries on cores, then the condi-
tion is not necessary. More precisely, recall that we say that naı̈ve evaluation works for
Q over a class K of instances, under a given semantics of incompleteness, if for each
D P K, certain answer to Q over D is the same as QpDq. Then

COROLLARY 9.10. Let Q be a Boolean Pos`@G query. Then naı̈ve evaluation works

for Q over cores under the rr ss
min

CWA
semantics.

A second corollary states that for the above classes of queries, even without the extra
condition we can conclude that if naı̈ve evaluation returns true, then so will the certain
answer. In other words, we can run Q naı̈vely onD, not on corepDq. If the result is true,
then the certain answer is true; but if the result is false, we cannot conclude anything.
That is, naı̈ve evaluation provides an approximation of certain answers.

PROPOSITION 9.11. Let Q be a Boolean Pos ` @G query. If QpDq “ 1, then the

certain answer to Q over D under the rr ssmin

CWA
semantics is true.

PROOF. From Proposition 5.2 and the fact that minimal homomorphisms are a spe-
cial case of strong onto homomorphisms, we have that queries in Pos` @G are weakly

monotone under the rr ss
min

CWA
semantics. By definition of weak monotonicity , if QpDq “ 1

then QpD1q “ 1 for all D1 in the semantics of D. Therefore the certain answer to Q over
D is true.

10. POWERSET SEMANTICS

So far all our relational semantics of incompleteness were based on applying a single
valuation to an incomplete database. This need not always be the case however. For ex-
ample, minimal valuations and homomorphisms, studied in the previous section, were
used in the context of the following semantics in data exchange applications [Hernich
2011]:

`

|D|
˘min

CWA
“ th1pDq Y . . .Y hnpDq | h1, . . . , hn are D-minimal valuations, n ě 1u.u.

That is, not one, but multiple valuations can be applied to a database, and then the
results are combined, in this case by the union operation.

Semantics obtained from several valuations will be referred to as powerset seman-
tics, since they start with producing a set of instances, and then combine them into a
single one. Notationally, we distinguish them by using

`

| |
˘

brackets.
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If we do not restrict valuations to be minimal, we obtain the following powerset
semantics:

`

|D|
˘

CWA
“ th1pDq Y . . .Y hnpDq | h1, . . . , hn are valuations, n ě 1u.

That is, D1 P
`

|D|
˘

CWA
iff there exists a set of valuations h1, . . . , hn on D so that D1 “

Ť

thipDq | 1 ď i ď nu.
Note that in both cases we use the CWA subscript, as no tuples can be added to

the result of the union (under such an addition, we would have gotten the usual OWA

semantics).
Our study of powerset semantics proceeds as follows.

(1) We start by looking at the semantic ordering associated with
`

| |
˘

CWA
and show that

it comes from very natural updates; besides, it happens to coincide with the Plotkin
ordering ĎP when restricted to Codd databases, thus filling the gap from Section 7.

(2) We then study naı̈ve evaluation under
`

| |
˘

CWA
and show that, with appropriate

adjustment, the approach of the earlier sections applies, and produces a class of
queries that extends DPos for which naı̈ve evaluation works.

(3) After that we provide a similar study for the minimal semantics
`

| |
˘min

CWA
, using re-

sults from the previous section to show that all the results extend to cores, rather
than arbitrary databases.

10.1. Powerset semantics and orderings

We now describe the ordering ŤCWA induced by the
`

| |
˘

CWA
semantics: that is,

D ŤCWA D
1 ô

`

|D1|
˘

CWA
Ď

`

|D|
˘

CWA
.

We describe it, as in Section 7, using the idea of updates that increase informative-
ness of objects. We now take updates from Section 7, and add a new type of an update
to them. A copying CWA update is of the form

D ։CWA Drv{Ks YD
fresh,

where Dfresh is a copy of D in which all nulls are replaced by fresh ones. This is a
relaxation of CWA: we can add tuples in an update, but only in a very limited way,
if they mimic the original database. For instance, if D contains one tuple p1,Kq, the
result of such an update could be tp1, 2q, p1,K1qu, which evaluates K to 2, and adds a
copy p1,K1q of p1,Kq with the null replaced.

It turns out that the ordering ŤCWA can be seen as a sequence of regular and copying
CWA updates, and that when restricted to Codd databases, it coincides precisely with
ĎP, which was traditionally used as the CWA ordering on Codd databases. That is, we
have the following.

THEOREM 10.1.

—D ŤCWA D
1 iff there exists a set of database homomorphisms h1, . . . , hn defined on D

so that D1 “
Ť

thipDq | 1 ď i ď nu.
— The transitive-reflexive closure of CWA Y։CWA is ŤCWA.
— Over Codd databases, ŤCWA and ĎP coincide.

PROOF. We first show the first item of the Theorem. Let D and D1 be two relational
instances such that D ŤCWA D

1, i.e.,
`

|D1|
˘

CWA
Ď

`

|D|
˘

CWA
. Let E P

`

|D1|
˘

CWA
be an instance

having a bijection b : adompEq Ñ adompD1q which is the identity on ConstpDq and

such that bpEq “ D1. By E P
`

|D|
˘1

CWA
, also E P

`

|D|
˘

CWA
and so there exists a set of
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valuations h1, . . . , hn with n ě 1 such that E “
Ť

thipDq | 1 ď i ď nu. It follows that
D1 “

Ť

tb ˝ hipDq | 1 ď i ď nu where the b ˝ hi’s are database homomorphisms.
Conversely assume that there exists a set of database homomorphisms h1, . . . , hn

defined on D so that D1 “
Ť

thipDq | 1 ď i ď nu. Note that database homomorphisms
compose, and that

`

|D1|
˘

CWA
is precisely the set of complete relational instances E such

that there exists a set of database homomorphisms from D1 to E. Then, by transitivity,
there exists a set of database homomorphisms from D to each E P

`

|D1|
˘

CWA
. Hence

E P
`

|D|
˘

CWA
for all E P

`

|D1|
˘

CWA
. In other words,

`

|D1|
˘

CWA
Ď

`

|D1|
˘

CWA
, and therefore

D ŤCWA D
1.

We will show the second item of the Theorem last and so we show now its last item.
Let D and D1 be two Codd databases. Assume D ŤCWA D1, i.e., there exists a set of
homomorphisms h1, . . . , hn from D so that D1 “

Ť

thipDq | 1 ď i ď nu. So for every
tuple pa1, . . . , amq P D, there is some 1 ď i ď n such that phipa1q, . . . , hipamqq P D

1, i.e.,
pa1, . . . , amq Ď phipa1q, . . . , hipamqq. It follows that D ĎH D1. Similarly for every tuple
pb1, . . . , bmq P D

1, there exists i such that pb1, . . . , bmq P hipDq, which entails that there
is pa1, . . . , amq P D such that for every 1 ď j ď m, hipajq “ bj and so pa1, . . . , amq Ď

pb1, . . . , bmq. It follows that D ĎP D1.
Conversely, assume D ĎP D1. For every tuple t P D, consider the set tt1 P D1 | t Ď t1u

and observe that it is both finite and non empty. Now for every tuple t P D, let Ht “
t11, . . . , t

1
k be a finite arbitrarily ordered sequence of tuples such that for every 1 ď i ď k:

t1i P Ht iff t1i P tt
1 P D1 | t Ď t1u.

Note that nothing prevents tuples to be repeated in the Ht’s. So without loss of gen-
erality we can assume that there is some m big enough so that for every t P D,
Ht “ t11, . . . , t

1
m for some t11, . . . , t

1
m P D

1. For every 1 ď i ď m, we can now put:

D1
i “ tt

1 P D1 | Dt P D such that Ht “ t11, . . . , t
1
i, . . . , t

1
m and t1 “ t1iu.

Observe that by D ĎP D1,
Ť

1ďiďmD1
i “ D1. Now for every 1 ď i ď m let hi : D Ñ Di be

as follows. For every x P NullYConst occurring as the jth component in a tuple t P D, we
define hipxq as the jth component of the ith tuple in Ht. As nulls are repeated neither
in D nor in D1 and by D ĎP D1, hi is a homomorphism and moreover hipDq “ Di. It
follows that D ŤCWA D

1.
We finally show the last item of the Theorem. We first show ։

˚
CWA “ ŤCWA.

ñ Let D ŤCWA D
1, i.e., there exists a set of homomorphisms h1, . . . , hn from D so that

D1 “
Ť

1ďjďn hjpDq. Now let tK1, . . . ,Kku be the set of nulls occurring in D. We

inductively define a sequence D0 ։CWA D1 ։CWA . . . ։CWA Dk of ։CWA-updates of
length k where D0 “ D and for all 1 ď i ď k:

Di “
ď

1ďjďn

Di´1rhjpKiq{Kis

Observe that Dk “ D1 entails D ։
˚
CWA D1 and assume as inductive hypothesis

that Dk “ D1 whenever k ď m. Now let k “ m ` 1 be the number of nulls oc-
curring in D. Let also Dc “ Drc{Km`1s be the result of substituting a fresh con-

stant c for Km`1 everywhere in D and let Dc1

“
Ť

1ďjďn hjpD
cq. Homomorphisms

being always the identity on constants, each hj : Dc Ñ hjpD
cq is also a homomor-

phism and so Dc ŤCWA Dc1

. Now by inductive hypothesis, Dc1

“ Dc
m, where Dc

m “
Ť

1ďjďnD
c
m´1rhjpKmq{Kms. It follows immediately that

Ť

1ďjďn hjpD
crKm`1{csq “

Ť

1ďjďnD
c
mrhjpKm`1q{cs. Finally, as

Ť

1ďjďn hjpD
crKm`1{csq “

Ť

1ďjďn hjpDq “ D1

and as
Ť

1ďjďnD
c
mrhjpKm`1q{cs “ Dm`1, it follows that Dm`1 “ D1.
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ð AssumeD ։
˚
CWA D

1. So there is a set of nulls tK1, . . . ,Kku, a set of ordered sequences
of constants and nulls tS1, . . . , Sku (i.e., sequences over ConstYNull) and a sequence
D0 ։CWA D1 ։CWA . . . ։CWA Dk of ։CWA-updates of length k where D0 “ D,
D1 “ Dk and for all 1 ď i ď k:

Di “
ď

xPSi

Di´1rx{Kis.

Without loss of generality we can assume that there is somem big enough so that for
every 1 ď i ď k there exist some xi1, . . . , x

i
m such that Si “ xi1, . . . , x

i
m. Indeed, take

m to be the length of the longest Si sequence. If there is some Sj “ x
j
1
, . . . , xjn with

n ă m, then we can simply add to Sj a sequence of identical elements xjn`1
, . . . , xjm

all equal to xjn without altering the construction, i.e., we will obtain exactly the same
database Dj by replacing multiple times the null Kj by the same element xjn. The
reason for that is simply that Dj´1rx

j
n{Kjs YDj´1rx

j
n{Kjs “ Dj´1rx

j
n{Kjs.

Out of this sequence of ։CWA-updates of length k, we will now construct for every
0 ď i ď k and for every 1 ď j ď mi a family of homomorphisms hij ’s from D to Di so

that Di “
Ť

1ďjďmi h
i
jpDq, which will entail in particular that D1 “

Ť

1ďjďmk h
k
j pDq,

i.e., D ŤCWA D
1 and will achieve the proof of ։˚

CWA “ ŤCWA.
We construct the hij ’s by induction on k, first ordering them in a sibling-ordered

tree of depth k and rank m to ease the construction. We start by defining h01 and
use it to label the root of the tree. We then label the rest of the nodes so that each
homomorphism hij lies at depth i and labels the jth node according to the left to right

ordering in the tree. This will conveniently allow us to define each hij in function of

some previously defined homomorphism lying at depth i ´ 1. Now for each hij with

i ‰ 0, observe that there is a unique r and a unique s such that hij is the rth child of

hi´1
s . We can now proceed to defining the hij ’s. We let h01 be the identity and for all

i ‰ 0 we let hij be exactly as its parent hi´1
s , except that it assigns the value xir to all

the preimages of Ki by hi´1
s .

We now show the correctness of the construction. Assume as inductive hypothesis
that for all i ă k, the following property holds:
— for every 1 ď j ď mi, hij : D Ñ Di is a homomorphism and moreover Di “

Ť

1ďjďmi hijpDq.

(Notice in particular that the property holds trivially for i “ 0.) We now derive
that it also holds for i “ k. For each 1 ď j ď mk, the fact that hkj : D Ñ Dk is

a homomorphism follows from the fact that hk´1
s : D Ñ Dk´1 is a homomorphism

(recall that hkj is the rth child of hk´1
s ). Indeed, hkj is exactly as its parent hk´1

s ,

except that it assigns the value xkr to all the preimages of Kk by hk´1
s . So hkj pDq “

Dk´1rx
k
r{Kks, which by assumption is a subinstance of Dk. But given that Dk´1 “

Ť

1ďjďmk´1 h
k´1

j pDq, this also implies that Dk “
Ť

1ďjďmk h
k
j pDq.

Observe now that a CWA update D CWA Drv{Ks can be seen as a special case of
multiple CWA update D։CWA

Ť

tDrv{Ks | v P Su where S is a singleton. The proof of
։

˚
CWA “ ŤCWA then adapts immediately to a proof of ˚

CWA “ ĺCWA. Showing 
˚
CWA Ě

ĺCWA amounts to restricting in the first direction of the proof to the special case where
n “ 1 for every Di “

Ť

1ďjďnDi´1rhjpKiq{Kis, while showing 
˚
CWA Ď ĺCWA amounts to

restricting in the second direction to the special case where the length of the longest
Si sequence is m “ 1.
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The fact that pOWA Y CWAq
˚ “ ĺOWA now follows from 

˚
CWA “ ĺCWA. Consider

indeed D ĺOWA D1. So there is a homomorphism h such that hpDq is a subinstance of
D1 and D 

˚
CWA hpDq. But then there is also a sequence of OWA updates hpDq OWA

. . . OWA D1 and so DpOWA Y CWAq
˚D1. Conversely let DpOWA Y CWAq

˚D1. So
there is a homomorphism h from D and a sequence of pOWA Y CWAq

˚ updates
D CWA . . . CWA hpDq OWA . . . OWA D1 where all the OWA updates are performed
last. Adding new tuples to hpDq does not alter the tuples in it and so hpDq is a subin-
stance of D1, i.e., D ĺOWA D1. Finally it can be shown using a similar reasoning that
pOWA YCWAq

˚ “ pOWA Y։CWAq
˚, which achieves the proof of the Theorem.

10.2. Naı̈ve evaluation for the powerset semantics

We now explain how to achieve naı̈ve evaluation under powerset semantics. The ideas
are the same as before: we relate naı̈ve evaluation to monotonicity and preservation.
However, semantics are no longer given by pairs pRval,Rsemq, so we need to reconsider
the framework of abstract database domains in order to define proper analogs of Rsem-
homomorphisms and formulate an appropriate notion of preservation. This is what we
do now.

Abstract framework for powerset semantics. We now cast the powerset semantics
in our general relation-based framework, which enables us to establish when naı̈ve
evaluation works for it. For a set D of database objects and a set C of complete objects,
we have a pair R “ pRval,Rsemq of relations with Rval Ď Dˆ2C and Rsem Ď 2CˆC. The
first relation corresponds to applying multiple valuations (e.g., relating D with sets
th1pDq, . . . , hnpDqu). The second relation, in our example, is RY “ tpX , Xq | X “

Ť

X u.
The semantics given by R is again the composition of two relations: D1 P rrDss

R
iff

D1pRval ˝RsemqD.
The basic conditions on these relations are essentially the same as we used before

for non-powerset semantics except that we need to deal with relations between C and
2C. Let idℓ Ď Cˆ 2C contain precisely all pairs pc, tcuq and idr Ď 2C ˆ C contain precisely
all pairs ptcu, cq for c P C. We say that a semantics rr ss

R
is given by R if both relations

are total, relation Rval equals idℓ when restricted to C, relation Rsem contains idr, and
D1 P rrDss

R
iff DpRval ˝RsemqD

1. Previously we just used identity instead of idℓ and idr.
We say that Rsem is transitive if Rsem˝ idℓ˝Rsem ĎRsem. Note that RY is transitive.

Now we have an analog of Proposition 4.2.

PROPOSITION 10.2. A pair R “ pRval,Rsemq gives rise to a fair database domain
if Rsem is transitive.

PROOF. We prove a more general necessary and sufficient condition for fairness:

LEMMA 10.3. A powerset semantics given by R “ pRval,Rsemq gives rise to a fair
database domain iff Rval ˝Rsem ˝ idℓ ˝Rsem Ď Rval ˝Rsem. In particular if Rsem is
transitive then the database domain is fair.

PROOF. Assume first that Rval˝Rsem˝idℓ˝Rsem ĎRval˝Rsem, and take an arbitrary
x P D and c P C. We have

(1) c P rrcss
R

.
Indeed we know pc, tcuq PRval and ptcu, cq PRsem, then c P rrcss

R
.

(2) c P rrxss
R

implies rrcss
R
Ď rrxss

R
.

Indeed if c P rrxss
R

there exists y Ď C such that px, yq P Rval and py, cq P Rsem.
Moreover if c1 P rrcss

R
then pc, c1q P idℓ ˝Rsem (because Rval is idℓ when restricted

to C). Hence px, c1q P Rval ˝Rsem ˝ idℓ ˝Rsem. This implies px, c1q P Rval ˝Rsem, and
therefore c1 P rrxss

R
.
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By Proposition 3.6, the database domain is fair.
Conversely assume that the database domain is fair, and px, cq P Rval ˝Rsem ˝ idℓ ˝

Rsem, then there exist c1 such that px, c1q P Rval ˝Rsem and pc1, cq P idℓ ˝Rsem. Then
c1 P rrxss

R
and c P rrc1ss

R
(because Rval coincides with idℓ over C). Then by fairness,

c P rrxss
R

, and hence px, cq PRval ˝Rsem.

Proposition 10.2 immediately follows from the lemma above. l

Preservation for powerset semantics. Our next goal is to understand how we can
make naı̈ve evaluation work under the powerset semantics. For this we go back to
relational database domains. For the standard semantics of incompleteness, we related
naı̈ve evaluation to preservation of queries under homomorphisms in the relational
setting. We shall do the same here, but the setting for homomorphisms will be a bit
different.

Recall that before we looked at relational semantics defined by two relations, re-
lation Rrdb

val
“ tpD, vpDqq | v is a valuationu and relation Rsem between complete

databases. Now we deal with relations Rval and Rsem. The natural powerset-based
analog of Rrdb

val
is the relation

R
rdb

val “ tpD, tv1pDq, . . . , vnpDquq | vi’s are valuationsu.

Hence, we now look at the semantics where the valuation relations are R
rdb

val , and thus
the semantics is determined by Rsem (e.g., by RY “ tpX , Xq | X “

Ť

X u). In this case,
as we did before for relations Rsem, we shall refer to semantics given by relation Rsem.

Definition 10.4 pRsem-homomorphisms and preservationq. An Rsem-
homomorphism between complete databases D and D1 is a set th1, . . . , hnu of
mappings defined on adompDq so that th1pDq, . . . , hnpDquRsemD

1.
A Boolean query Q is preserved under Rsem-homomorphisms if QpDq “ 1 and the

existence of an Rsem-homomorphism between D and D1 implies QpD1q “ 1.

Note that if n “ 1, this is exactly the notion of Rsem-homomorphisms seen earlier.
The connection between naı̈ve evaluation and homomorphism preservation now ex-
tends to powerset semantics.

PROPOSITION 10.5. For every relational powerset semantics given by a relation
Rsem, naı̈ve evaluation works for a generic Boolean query Q iff Q is preserved under
Rsem-homomorphisms.

PROOF. We prove the proposition by proving some slightly more general results
which will be useful later, when dealing with other forms of powerset semantics. These
intermediate results hold for powerset semantics on arbitrary database domains, and
will therefore be stated in their full generality. Later on in the proof we will restrict
our attention to relational database domains.

We start by defining a notion of«-equivalence for powerset semantics over arbitrary
database domains. This is the analog of the notion of «-equivalence (and strong «-
equivalence) introduced for proving Proposition 4.6.

If D “ xD, C, rr ss,«y is a database domain, R and R
1 are subsets of D ˆ 2C , we say

that R1 is «-equivalent to R if the following two conditions are satisfied:

(1) if px,X q PR then there exists x1 P D such that x1 « x and px1,X q PR1;
(2) if px,X q PR1 then there exists x1 P D such that x1 « x and px1,X q PR.

When the semantics is given by a pair pRval,Rsemq, we have the exact analog of
Lemma 4.10:
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LEMMA 10.6. Let D “ xD, C, rr ss,«y be a database domain whose semantics rr ss is
given by a pair pRval,Rsemq and let R1 Ď Dˆ2

C be «-equivalent to Rval, then R
1 ˝Rsem

is «-equivalent to the graph of rr ss (i.e. to Rval ˝Rsemq. In particular a generic Boolean
query over D is weakly monotone iff it is preserved under R

1 ˝Rsem.

We can now move to relational database domains. A powerset mapping type
M is a function which associates to each complete relational instance D a class
tH1, . . .Hn, . . . u, where each Hi is a finite non-empty set of mappings adompDq Ñ
Const.

If M is a powerset mapping type, we denote by RM the set of pairs
pD, th1pDq, . . . hkpDquq such that D is a complete instance and th1, . . . hku P MpDq.
Given two complete relational instances D and D1, an M-Rsem-homomorphism from
D to D1 is an Rsem-homomorphism th1, . . . hku from D to D1 which belongs to MpDq.

The following claim follows directly from definitions:

CLAIM 3. If M is a powerset mapping type then pD,D1q PRM˝Rsem iff there exists
an M-Rsem-homomorphism from D to D1

By combining the above claim with Lemma 10.6 we have:

COROLLARY 10.7. Let D “ xD, C, rr ss,«y be a relational database domain whose
semantics rr ss is given by a pair pRval,Rsemq and let M be a powerset mapping type.
Assume that RM is«-equivalent to Rval. Then a generic Boolean query is weakly mono-
tone iff it is preserved under M-Rsem-homomorphisms.

We say that R “ PpRq if R consists of precisely the pairs px,X q such that X ‰ H
and px, yq P R for all y P X .

Similarly if M is a mapping type, we denote as PpMq the powerset mapping type
associating to each instance D the set consisting of all possible finite non-empty H Ď
MpDq. It is easy to check that if M “ PpMq then RM “ PpRMq.

We now consider a special case when Rval “ PpRvalq.

LEMMA 10.8. On an arbitrary database domain, assume R Ď DˆC and R “ PpRq.
If R1 Ď D ˆ C is strongly «-equivalent to R, then PpR1q is «-equivalent to R.

If a powerset relational semantics rr ss is based on Rval “ PpRvalq and RM is strongly
«-equivalent to Rval, for some mapping type M, then a generic Boolean query is weakly
monotone iff it is preserved under M-Rsem-homomorphisms, where M “ PpMq.

PROOF. Assume R1 is strongly «-equivalent to R. Let px,X q be in R. Note that
px, cq P R for all c P X . Since R1 is strongly «-equivalent to R, there exists y « x such
that py, cq P R1 for all c P X . Thus py,X q P PpR1q. Symmetrically we prove that if py,X q
is in PpR1q then there exists x « y such that px,X q P R. This proves that PpR1q is
«-equivalent to R.

Now assume a powerset relational semantics is based on Rval “ PpRvalq, and RM is
strongly «-equivalent to Rval. The PpRMq is «-equivalent to Rval. But PpRMq “RM

for M “ PpMq. Then by Corollary 10.7, a generic Boolean query is weakly monotone
iff it is preserved under M-Rsem-homomorphisms.

We are now ready to prove Proposition 10.5. Remark that Rrdb

val “ PpRrdb

val
q. Moreover

by Lemma 4.12, if M “ all, then RM is strongly «-equivalent to Rrdb

val
. Remark also

that for M “ all, PpMq-Rsem-homomorphisms are precisely Rsem-homomorphisms.
It follows then from Lemma 10.8 that, for every powerset semantics given by a re-
lation Rsem, a generic Boolean query is weakly monotone iff it is preserved under
Rsem-homomorphisms. Now note that, under all relational semantics given by a re-
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lation Rsem the database domain has the saturation property. Then the statement of
Proposition 10.5 follows from Theorem 3.5. l

Let us now look at the semantics
`

| |
˘

CWA
given by relation RY. The notion of preser-

vation under RY-homomorphisms is preservation under union of strong onto homo-
morphisms: if Q is true in D, and h1, . . . , hn are homomorphisms defined on D, then Q
is true in h1pDq Y . . .Y hnpDq.

For previous preservation results among FO queries, we looked at classes Pos and
DPos of positive and existential positive queries, and the class Pos ` @G of positive
queries with universal guards. We now give a fragment of FO preserved under unions
of strong onto homomorphisms.

Definition 10.9 pClass DPos` @G
boolq. DPos ` @G

bool is defined as the class of ex-
istential positive queries extended with Boolean universal guards, i.e., universally
guarded formulae which are sentences. More precisely, the class contains atomic for-
mulae Rpx̄q and x “ y, and is closed under:

— conjunction, disjunction, existential quantification, and
— the following rule: if x̄ is a tuple of distinct variables, ϕpȳq is a formula in DPos `

@G
bool, where all ȳ variables are contained in x̄, and R is a relation symbol (possibly

the equality relation), then @x̄ pRpx̄q Ñ ϕpȳqq is in DPos` @G
bool.

Note that the formula @x̄ pRpx̄q Ñ ϕpȳqq in the last rule is a sentence, i.e., it has no free
variables.

PROPOSITION 10.10. Sentences in DPos ` @G
bool

are preserved under unions of
strong onto homomorphisms.

In order to prove the proposition we first define the notion of preservation under unions
of strong onto homomorphisms for non-Boolean queries. This will allow us to prove the

preservation property by structural induction on formulas in DPos` @G
bool.

Definition 10.11. If Q is a k-ary query over complete relational instances (i.e. Q
associates to each complete relational instance D a k-ary relation over adompDqq, we
say thatQ is preserved under unions of strong onto homomorphisms if, whenever there
exists a union of strong onto homomorphisms th1 . . . hnu from an instance D to an
instance D1, and ā P QpDq, then hipāq P QpD

1q, for all i P 1, . . . , k.

Proposition 10.10 immediately derives from the following lemma:

LEMMA 10.12. Formulas in DPos`@G
bool

are preserved under unions of strong onto
homomorphisms.

PROOF. We proceed by structural induction on the formula ϕ. If ϕ “false or ϕ “true,
it is clearly preserved under unions of strong onto homomorphisms.

Assume now that ϕpx̄q is a positive atom Rpȳq (including the case of an equality
atom), where variables occurring in ȳ are precisely x̄. It follows from the definition
of homomorphism that if an instance D |ù ϕpāq then hpDq |ù ϕphpāqq, for every ho-
momorphism h. Then if D1 “ h1pDq Y ¨ ¨ ¨ Y hkpDq one has that D1 |ù ϕphipāqq for all
i “ 1, . . . , k.

It is also easy to verify that if ϕ1 and ϕ2 are preserved under unions of strong onto
homomorphisms, so are ϕ1 ^ ϕ2 and ϕ1 _ ϕ2.

Now assume ϕpx̄q “ Dyϕ1py, x̄q, where ϕ1 is preserved under unions of strong onto
homomorphisms. Assume that an instance D |ù ϕpāq, and thatD1 “ h1pDqY¨ ¨ ¨YhkpDq.
Then D |ù ϕ1pb, āq for some value b P adompDq. Since ϕ1 is preserved under unions of
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strong onto homomorphisms, D1 |ù ϕ1phipbq, hipāqq for each i P 1, . . . , k. Thus D1 |ù
Dyϕ1py, hipāqq, i.e. D1 |ù ϕphipāqq, for each i P 1, . . . , k.

Now assume that ϕ is a sentence of the form @x̄pRpx̄q Ñ ϕ1px̄qq where variables x̄ are
pairwise distinct. Assume that an instance D |ù ϕ and that D1 “ h1pDq Y ¨ ¨ ¨ Y hkpDq.
We prove D1 |ù ϕ. Assume that D1 |ù Rpb̄q for some tuple b̄; then hipDq |ù Rpb̄q for
some i P 1, . . . , k. Thus there exists a tuple ā over adompDq such that D |ù Rpāq and
hipāq “ b̄. Since D |ù ϕ one has that D |ù ϕ1pāq. Now, by the induction hypothesis, ϕ1px̄q
is preserved under union of strong onto homomorphisms, therefore D1 |ù ϕ1phipāqq “
ϕ1pb̄q. Since this holds for all b̄ such that D1 |ù Rpb̄q, we have that D1 |ù ϕ.

This concludes the proof of Lemma 10.12.

Combining with Proposition 10.5, we get the following result.

COROLLARY 10.13. If Q is a Boolean query from the class DPos`@G
bool

, then naı̈ve
evaluation works for Q under the

`

| |
˘

CWA
semantics.

10.3. Naı̈ve evaluation for the minimal powerset semantics

Recall that the semantics we are considering (that was previously used in

data exchange applications [Hernich 2011]) is
`

|D|
˘min

CWA
“ t

Ť

hPH hpDq |
H is a nonempty set of D-minimal valuationsu.

This is a powerset-based semantics, and the semantic relation it uses is the union
relation RY, the same as in subsection 10.2. However the valuation relation is no
longer R

rdb

val , allowing all valuations, but rather R
min

val containing all pairs pD, thpDq |
h P Huq with H ranging over nonempty sets of D-minimal valuations.

Similarly to Theorem 9.2, we can show the following.

THEOREM 10.14. For the semantics
`

| |
˘min

CWA
, the set of cores is a representative set.

In fact, this is true for every semantics given by pairs R “ pRmin

val ,Rsemq.

PROOF. As in the proof of Theorem 9.2, we establish a slightly stronger result.
Namely, we show that for a relational semantics is given by a pair pRmin

val ,Rsemq, the
set S of cores is a strong representative set, and χSpDq “ corepDq for every instance D.

Recall that we write R “ PpRq if R consists of precisely the pairs px,X q such that

X ‰ H and px, yq P R for all y P X . Note that Rmin

val “ PpRmin

val
q. We then have:

CLAIM 4. If a powerset semantics rr ss
R

is given by a pair pRval,Rsemq where Rval “
PpRvalq. The following holds:

— For all x, x1 P D, if x and x1 are related by Rval to the same set of instances (i.e px, cq P
Rval iff px1, cq P Rval for all c P C) then rrxss

R
“ rrx1ss

R
.

—Rval ˝Rsem Ě Rval

PROOF. The first item immediately follows from the fact that Rval “ PpRvalq.
As for the second item, assume px, cq P Rval then px, tcuq PRval. Since Rsem contains

idr, we have that ptcu, cq PRsem. Hence px, cq PRval ˝Rsem.

The following lemma easily follows:

LEMMA 10.15. Let id be the identity relation over complete relational instances.
Assume that S is a strong representative set under a relational semantics given by a
pair pRval, idq. Then S is a strong representative set also under any powerset semantics
given by pPpRvalq,Rsemq.

PROOF. Since S is a strong representative set under a semantics, S Ě C. Moreover
there exists a function χS : D Ñ S, such that D and χSpDq are related by Rval to
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precisely the same instances. Then by Claim 4, D and χSpDq have the same semantics
under pPpRvalq,Rsemq.

We further know that for all D P S and for all K Ď Const there exists D1 with
pD,D1q P Rval and a bijection i : adompDq Ñ adompD1q with ipDq “ D1 such that i and
i´ are the identity on K. Again by Claim 4, pD,D1q P PpRvalq ˝Rsem.

This proves that S is a strong representative set under the semantics
pPpRvalq,Rsemq.

This lemma, together with Theorem 9.2, implies that the set of cores is a strong
representative set also under any powerset semantics given by pRmin

val ,Rsemq, proving
Theorem 10.14. l

Then, just as for Corollary 9.5, we obtain:

COROLLARY 10.16. Let Q be a generic Boolean relational query. Then naı̈ve eval-

uation works for Q under the
`

| |
˘min

CWA
semantics iff Q is weakly monotone and QpDq “

QpcorepDqq for every D.

Preservation and naı̈ve evaluation. We now relate weak monotonicity to homomorphism
preservation. Recall that for an instance D over Const and a homomorphism h, we
write fixph,Dq for tc P ConstpDq | hpcq “ cu, and say that h is D-minimal if there is no
homomorphism g with fixph,Dq Ď fixpg,Dq and gpDq Ĺ hpDq.

Given a Boolean query Q, we say that it is preserved under unions of minimal ho-
momorphisms, if for any nonempty set H of D-minimal homomorphisms such that
fixph,Dq “ fixpg,Dq whenever f, g P H, we have that QpDq “ 1 implies Qp

Ť

thpDq | h P
Huq “ 1.

We then have an analog of Proposition 9.6.

PROPOSITION 10.17. Let Q be a Boolean generic query. Then it is weakly monotone

under
`

| |
˘min

CWA
iff it is preserved under unions of minimal homomorphisms.

PROOF. Recall the notion of mapping type and «-equivalence from the proof of
Proposition 10.5. We say that a set H “ th1, . . . hku of mappings over adompDq is D-
minimal if each hi is D-minimal and fixphi, Dq “ fixphj , Dq for all i, j P t1, . . . , ku. We
now consider the powerset mapping type M “ min which associates to each D the
class consisting of all non-empty finite D-minimal sets of mappings adompDq Ñ Const.

LEMMA 10.18. If M “ min and « is relational isomorphism, then RM is «-

equivalent to R
min

val

PROOF. Let pD,X q PRmin

val ; we prove that there exists a complete relational instance
E « D such that pE,X q P RM. Let ConstpX q be the union of ConstpD1q, for all D1 P X .
The instance E is obtained from D by replacing nulls of D with new distinct constants
not occurring in ConstpDq Y ConstpX q. Clearly there exists an isomorphism i : E Ñ D,
thus E « D. Note that both i and i´ are the identity on ConstpDq Y ConstpX q.

For each D1 P X there exists a D-minimal valuation v such that vpDq “ D1. Let
h “ v ˝ i, then hpEq “ D1 and, by Lemma 9.3 h is E-minimal. Note also that fixph,Eq “
ConstpDq. Since such an h exists for all D1 P X , we have pE,X q PRM. This proves one
direction.

Conversely assume pE,X q P RM, then X “ th1pEq, . . . hkpEqu where where
th1, . . . hku is E-minimal; we prove that there exists a relational instance D « E such

that pD,X q PRmin

val . Let K “ fixphi, Eq (which is the same for all i P t1, . . . , ku).
The instance D is obtained from E by replacing each element of adompEqzK with

a new distinct null. Clearly this replacement defines an isomorphism i : D Ñ E and
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therefore E « D. Note that both i and i´ are the identity on K. Then the mappings
vj “ hj ˝ i, for j P t1, . . . , ku are all D-minimal, by Lemma 9.3. Moreover notice that
ConstpDq “ K, then vj is a D-minimal valuation on D, and vjpDq “ hjpEq, for all

j “ t1, . . . , ku. It follows that pD,X q PRmin

val .

M-Rsem-homomorphisms with M “min will be also referred to as minimal Rsem-
homomorphisms. Notice that unions of minimal homomorphisms are precisely mini-
mal Rsem-homomorphisms where Rsem “RY.

Using Corollary 10.7 with M “min we then have:

COROLLARY 10.19. If a relational semantics is given by a pair pRmin

val ,Rsemq and
Q is a generic Boolean relational query, then Q is weakly monotone iff it is preserved
under minimal Rsem-homomorphisms.

Moreover naı̈ve evaluation works for Q iff Q is preserved under minimal Rsem-
homomorphisms, and QpDq “ QpcorepDqq for every D.

The proposition is now a special case of Corollary 10.19 where Rsem “RY. l

This gives us the following corollaries, in exactly the same way as they were obtained
in Section 9.

COROLLARY 10.20. Let Q be a Boolean FO query in DPos` @G
bool

.

— Naı̈ve evaluation works for Q over cores under the
`

| |
˘min

CWA
semantics.

— If QpDq “ QpcorepDqq for all D, then naı̈ve evaluation works for Q under the
`

| |
˘min

CWA

semantics.
— If QpDq “ 1, then the certain answer to Q over D under the

`

| |
˘min

CWA
semantics is true.

11. LIFTING TO NON-BOOLEAN QUERIES FOR MINIMAL AND POWERSET SEMANTICS

In this section we lift results to non-Boolean queries for powerset as well as non-
saturated (e.g., minimal) relational semantics. We use a uniform technique which also
proves Lemma 6.3 from Section 6.

For the saturated powerset semantics
`

| |
˘

CWA
, we can show that the third item in

Lemma 6.3 can be replaced by weak preservation under Rsem-homomorphisms, i.e.

LEMMA 11.1. Let D be a relational database domain with the strong saturation
property, and Q a k-ary generic query. Then the following are equivalent:

(1) naı̈ve evaluation works for Q;
(2) Q is weakly monotone; and
(3) (if the semantics is given by a relation Rsem): Q is weakly preserved under Rsem-

homomorphisms.

Recall from Definition 8.1 that, over a relational database domain, a representative
set S is called strong if S is also strongly saturated.

For minimal semantics we have a similar lifting result:

LEMMA 11.2. Let D be a relational database domain, and Q a k-ary generic query.
If D has a strong representative set, then the following are equivalent:

(1) Naı̈ve evaluation works for Q;
(2) Q is weakly monotone and QCpxq “ QCpχSpxqq for every x P D.

Furthermore, for semantics given by pRmin

val
,Rsemq (respectively, pRmin

val ,Rsemq), naı̈ve
evaluation works for Q iff Q is weakly preserved under minimal Rsem-homomorphisms
(respectively, minimal Rsem-homomorphisms) and QCpDq “ QCpcorepDqq for each D.
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Semantics symbol Naı̈ve evaluation works for

open world rr ss
OWA

DPos “ unions of CQs
weak closed-world rr ss

WCWA
Pos

closed world: rr ss
CWA

Pos` @G

powerset closed-world
`

| |
˘

CWA
DPos` @G

bool

minimal closed-world rr ssmin

CWA
Pos` @G, over cores;

result always contained in certain answers

minimal, powerset closed-world
`

| |
˘min

CWA
DPos` @G

bool, over cores;
result always contained in certain answers

Fig. 1. Summary of naı̈ve evaluation results for FO queries

The proofs of these two lemmas, together with Lemma 6.3, are in the electronic
appendix.

Using Lemma 11.1 we can prove the desired result for saturated powerset semantics.

THEOREM 11.3. If Q is a k-ary query in DPos`@G
bool

, then naı̈ve evaluation works
for Q under the

`

| |
˘

CWA
semantics.

PROOF. Under
`

| |
˘

CWA
we know that preservation under Rsem-homomorphisms is

preservation under unions of strong onto homomorphisms. Now observe that by

Lemma 10.12, DPos ` @G
bool

k-ary queries are preserved, and therefore weakly pre-
served, under unions of strong onto homomorphisms. We conclude using Lemma
11.1.

Using Lemma 11.2, we can achieve the desired lifting result for minimal semantics,
i.e. we can show that Corollary 9.9 continues to hold for k-ary FO queries.

THEOREM 11.4. Let Q be a k-ary FO query such that QCpDq “ QCpcorepDqq for all
D.

— If Q is in Pos` @G, then naı̈ve evaluation works for Q under the rr ssmin

CWA
semantics.

— If Q is in DPos`@G
bool

, then naı̈ve evaluation works for Q under the
`

| |
˘min

CWA
semantics.

PROOF. The statement follows directly from Lemma 11.2, by recalling that Rsem

is the identity for rr ss
min

CWA
and therefore minimal Rsem-homomorphisms are just usual

minimal homomorphisms. Similarly Rsem is RY for
`

| |
˘min

CWA
, and minimal Rsem-

homomorphisms are unions of minimal homomorphisms. By Lemma 5.4 and Lemma
10.12 the above fragments guarantee these preservation properties, and therefore the
corresponding weak preservation properties.

12. SUMMARY AND FUTURE WORK

The table in Figure 1 summarizes results on naı̈ve evaluation for fragments of FO
queries. The first line of course is the classical result of [Imielinski and Lipski 1984],
proved to be optimal in [Libkin 2011]. Other results were shown using the methodol-
ogy established here, that reduced naı̈ve evaluation to monotonicity and preservation
under homomorphisms.

There are several directions in which we would like to extend this work.

Other data models. So far we looked at either a very general setting, which can
subsume practically every data model, or at relational databases. We would like to
get concrete results for other data models. For two of them we actually know quite

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:41

a bit about the semantics of incompleteness and the complexity of queries: these are
nested relations [Levene and Loizou 1993] and XML [Abiteboul et al. 2006; Barceló
et al. 2010; Gheerbrant et al. 2012]; these papers can serve as a good starting point.
For others, e.g., graph databases and RDF, we know much less, but some initial work
in understanding incompleteness has been done [Barceló et al. 2014; Nikolaou and
Koubarakis 2013].

Other languages. When we dealt with relations, we studied FO as the main query
language. However, our structural results are in no way limited to FO. In fact it is
known that naı̈ve evaluation works for datalog (without negation). Given the toolkit
of this paper, we would like to consider queries in languages that go beyond FO and
admit naı̈ve evaluation.

Preservation results. There are open questions related to preservation results in both
finite and infinite model theory. We already mentioned that the results of [Keisler
1965b] about preservation under strong onto homomorphisms are limited to a sim-
ple vocabulary, and even then appear to be problematic. We would like to establish a
precise characterization in the infinite case, and see whether it holds or fails in the fi-
nite. We also want to look at preservation on restricted classes of structures, following
[Atserias et al. 2006] which looked at bounded treewidth (but does not capture XML
with data). We note in passing that [Atserias et al. 2006] does not apply directly to the
study of XML since models of documents with data generate relational structures of
arbitrary treewidth.

The impact of constraints. Constraints (e.g., keys and foreign keys) have a huge im-
pact on the complexity of finding certain answers [Calı̀ et al. 2003; Vardi 1986], so it is
thus natural to ask how they affect good classes we described in this paper. Constraints
appear in another model of incompleteness – conditional tables [Imielinski and Lipski
1984] – that in general have higher complexity of query evaluation [Abiteboul et al.
1991] but are nonetheless useful in several applications [Arenas et al. 2011].

Applications. In applications such as data integration and exchange, finding certain
answers is the standard query answering semantics [Arenas et al. 2010; Lenzerini
2002]. In fact one of our semantics of incompleteness came from data exchange litera-
ture [Hernich 2011]. We would like to see whether our techniques help find classes of
queries for which query answering becomes easy in exchange and integration scenar-
ios.

Bringing back the infinite. We have used a number of results from infinite model
theory to get our syntactic classes. Another way of appealing to logic over infinite
structures to handle incompleteness was advocated by Reiter [Reiter 1977; 1982] three
decades ago. In that approach, an incomplete database D is viewed as a logical theory
TD, and finding certain answers to Q amounts to checking whether TD entails Q. This
is in general an undecidable problem, and entailment in the finite is known to be more
problematic than unrestricted one. This is reminiscent of the situation with homomor-
phism preservation results, but we saw that we can use infinite results to obtain useful
sufficient conditions. Motivated by this, we would like to revisit Reiter’s proof-theoretic
approach and connect it with our semantic approach.

New approaches to certainty. Recently the traditional approach to defining certainty
by means of intersecting query answers has been criticized and shown to lead to some
inconsistencies [Libkin 2014a; 2014b]. Alternatives proposed [Libkin 2014a; 2014b]
expand applicability of naı̈ve evaluation to different classes of queries as long as some
semantic conditions are met. It is still open how to handle these conditions for full
relational algebra/calculus though.
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A. PROOFS OF LEMMA 11.2, LEMMA 11.1 AND LEMMA 6.3

We prove a more general version of these results, also accounting for the possible
presence of constants in queries. To this end we use the notion of C-genericity (in-
stead of the stronger notion of genericity). If C Ď Const, a relational k-ary query is C-
generic if for all relational instances D and all one-to-one mappings i : adompDqYC Ñ
ConstY Null which are the identity on C, one has QpipDqq “ ipQpDqq.

Clearly if C “ H the notion of C-genericity coincides with the usual notion of gener-
icity for k-ary relational queries.

In order to relate the notions of naı̈ve evaluation, weak monotonicity and preserva-
tion for k-ary queries, we proceed as follows. For each relational database domain D

and k-ary query Q over D, we define a new database domain D
˚ and a Boolean query

Q˚ over D
˚. These are defined so that the “Boolean” notions of certain answers , naı̈ve

evaluation and weak monotonicity for Q˚ over D
˚ are precisely equivalent to the cor-

responding notions for Q over D. We then apply results from the Boolean case to Q˚

over D
˚, and so derive corresponding results for Q over D.

In what follows, if t is a tuple over Const, with a little abuse of notation, we denote
as t also the set of constants occurring in the tuple t

Given a relational database domain D “ xD, C, rr ss,«y, and a C-generic k-ary query
Q over D, we define D

˚ “ xD˚, C˚, rr ss
˚
,«˚y, and Q˚ over D

˚ as follows:

—D˚ is the set of pairs pD, tq where D P D and t is a k-tuple over Const;
— C˚ is the set of pairs of D˚ where the instance D is in C

— for all pairs pD, tq P D˚ the semantics rrpD, tqss
˚

is defined as the set of pairs pD1, tq
such that D1 P rrDss.

— pD, tq «˚ pD1, t1q iff there exists a bijection i : adompDq Y tÑ adompD1q Y t1 such that
D1 “ ipDq and t1 “ iptq (as tuples), and both i and i´ are the identity on C.

—Q˚pD, tq “ 1 iff t P QpDq.

Note that D˚ and Q˚ depend on D and Q.
The following claim easily follows from definitions:

CLAIM 5.

1) If D is fair, D˚ is also fair;
2) Q˚ is generic (i.e. it does not distinguish «˚-equivalent objects);
3) certainpQ˚, D, tq “ 1 iff t P certainpQ,Dq, for every pD, tq P D˚ ;
4) Naı̈ve-evaluation works for Q˚ iff naı̈ve-evaluation works for Q ;
5) Q˚ is weakly monotone iff Q is weakly monotone;
6) QCpDq “ QCpD1q iff for every k-tuple t over Const one has Q˚pD, tq “ Q˚pD1, tq;
7) If D has a strong representative set S, then D

˚ has a representative set S˚ with
χS˚pD, tq “ pχSpDq, tq.

c© YYYY ACM 0362-5915/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000
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PROOF. 1). Assume D is fair and consider pD, tq P C˚. Since D is fair, D P rrDss.
Then pD, tq P rrpD, tqss

˚
. Assume now that pD, tq P rrpD1, tqss

˚
. Then D P rrD1ss. We also

have rrpD, tqss˚ “ tpE, tq | E P rrDssu, and since D is fair rrDss Ď rrD1ss. Thus rrpD, tqss˚ Ď
tpE, tq | E P rrD1ssu “ rrpD1, tqss

˚
. By Proposition 3.6, D˚ is fair.

2). We know Q is C-generic. Consider two objects pD, tq, pD1, t1q P D˚ such that
pD, tq «˚ pD1, t1q. We prove Q˚pD, tq “ Q˚pD1, t1q, i.e. t1 P QpD1q iff t P QpDq.

We know there exists an bijection i : adompDq Y tÑ adompD1q Y t1 such that ipDq “
D1, iptq “ t1 , and both i and i´ are the identity on C. Note that i can be extended to a
bijection f : adompDq Y tYC Ñ adompD1q Y t1 YC which is the identity on C and such
that fpDq “ D1 and fptq “ t1.

Since f is injective on adompDq Y C, it is the identity on C, and Q is C-generic,
QpD1q “ fpQpDqq. Thus t1 P QpD1q iff t1 P fpQpDqq. Since f is injective over adompDqY t
and fptq “ t1, we have that t1 P fpQpDqq iff t P QpDq. Then t1 P QpD1q iff t P QpDq.

3). Consider D P D˚ and a k-tuple t over Const. We have certainpQ˚, D, tq “ 1 iff
Q˚pD1, tq “ 1 for all pD1, tq P rrpD, tqss

˚
. This is equivalent to saying that t P QpD1q for

all D1 P rrDss, i.e that t P certainpQ,Dq.
4). We recall that naı̈ve evaluation works forQ˚ iff certainpQ˚, D, tq “ Q˚pD, tq for ev-

eryD P D and every k-tuple t over Const. By using the previous item, certainpQ˚, D, tq “
Q˚pD, tq is equivalent to say that t P certainpQ,Dq iff t P QpDq. In other words naı̈ve
evaluation works for Q˚ iff certainpQ,Dq “ QCpDq, for every D P D iff naı̈ve evaluation
works for Q.

5). Assume that Q˚ is weakly monotone and consider D,D1 P D such that D1 P rrDss.
We prove that QCpDq Ď QCpD1q. By definition of rr ss

˚
we know that pD1, tq P rrpD, tqss

˚
,

for all k-tuples t over Const. Since Q˚ is weakly monotone, Q˚pD, tq ď Q˚pD1, tq, i.e.
t P QpDq implies t P QpD1q for all k-tuples t over Const. Then QCpDq Ď QCpD1q.

Assume now that Q is weakly monotone and consider pD, tq and pD1, t1q in D˚ such
that pD1, t1q P rrpD, tqss

˚
. Then t1 “ t and D1 P rrDss. Since Q is monotone, QCpDq Ď

QCpD1q; then Q˚pD, tq ď Q˚pD1, tq “ Q˚pD1, t1q.
6). It immediately follows from the definition of Q˚.
7). Assume D has a strong representative set S, and take S˚ “ tpD, tq|D P

S and t is a k-tuple over Constu. We prove that S˚ is representative for D
˚.

Notice that for all pD, tq P C˚ we have that D P C, therefore D P S. Thus pD, tq P S˚.
Now consider pD, tq P S˚, then D P S; therefore for K “ C Y t there exists D1 P rrDss

and a bijection i : adompDq Ñ adompD1q such that ipDq “ D1 and both i and i´ are the
identity on K. Then pD1, tq P rrpD, tqss

˚
. We let i1 be the mapping obtained by extending

i with the identity mapping on t. It is easy to see that i1 is a bijection adompDq Y t Ñ

adompD1qYt, such that i1pEq “ D and i1ptq “ t. Moreover both i1 and i1
´

are the identity
on C. Therefore pD, tq «˚ pD1, tq.

Now we define χS˚pD, tq “ pχSpDq, tq, for all pD, tq P D˚. Clearly rrχS˚pD, tqss
˚
“

tpD1, tq | D1 P rrχSpDqssu, for all pD, tq P D˚. Therefore rrχS˚pD, tqss
˚
“ tpD1, tq | D1 P

rrDssu “ rrpD, tqss
˚
.

Using this claim in addition to the known relationship between naı̈ve evaluation and
weak monotonicity over D

˚ and Q˚, we immediately get the following corollaries.
From Theorem 8.2 on D

˚ and Q˚, we have:

COROLLARY A.1. Let D be a relational database domain that has a strong repre-
sentative set S and let Q be a C-generic k-ary query. Then naı̈ve evaluation works for Q
if and only if

—Q is weakly monotone and
—QCpDq “ QCpχSpDqq for all D P D
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In particular if the whole set D is strongly saturated, then naı̈ve evaluation works for
Q if and only if Q is weakly monotone.

This proves that (1) ô (2) in Lemma 11.2, as well as in Lemma 6.3. We now need
to prove the relationship between weak monotonicity and preservation for relational
semantics based on Rrdb

val
and on Rmin

val
(as well as their powerset versions).

In the sequel we use the following additional notation.
If H “ th1, . . . hnu is a set of mappings over adompDq, we say that H is the identity

on a set of constants K if hi is the identity on K for all i P 1, . . . , n. Moreover we let
HpDq denote the set th1pDq, . . . hnpDqu.

If t is a tuple over Const and X “ tD1 . . . Dnu is a set of instances we let pX , tq denote
the set tpD1, tq, . . . pDn, tqu.

Let D “ xD, C, rr ss,«y be a relational database domain where rr ss is given by a pair
pRval,Rsemq (respectively pRval,Rsemq), and let Q be a C-generic k-ary query over D.

Recall the definition of D˚ and Q˚ based on D and Q. Recall that Q˚ is generic over
D

˚ and remark that rr ss
˚

is given by the pair pR˚
val
,R˚

semq (respectively pR˚
val,R

˚
semq)

where

R
˚
val
“ tppD, tq, pD1, tqq | pD,D1q P Rval and t is a k-tuple over Constu

R
˚
sem “ tppD, tq, pD

1, tqq | pD,D1q P Rsem and t is a k-tuple over Constu

Similarly R
˚
val “ tp pD, tq, pX , tq q | pD,X q P Rval and t is a k-tuple over Constu and

R
˚
sem “ tp pX , tq, pD, tq q | pX , Dq PRsem and t is a k-tuple over Constu.
Recall now the notions of mapping type and M-Rsem-homomorphism, as well as the

notions of powerset mapping type, and M-Rsem-homomorphism, already used in the
proofs of Proposition 4.6 and Proposition 10.5.

If M is a mapping type, we let R˚
M

“ tpx, yq P C˚ ˆ C˚ | x “ pD, tq, y “
phpDq, tq, the mapping h PMpDq and h is the identity on C Y tu.

Similarly if M is a powerset mapping type, we let R
˚
M “ tpx,X q P C˚ ˆ 2C

˚

| x “
pD, tq, X “ pHpDq, tq, the set of mappings H PMpDq and H is the identity on C Y tu.

The above notion of R˚
M

(respectively R
˚
M) is easily related to M-Rsem-

homomorphisms (respectively M-Rsem-homomorphisms):

CLAIM 6. ppD, tq, pD1, tqq P R˚
M
˝ R˚

sem (respectively ppD, tq, pD1, tqq P R
˚
M ˝ R˚

sem)
if and only if there exists an M-Rsem-homomorphism (respectively an M-Rsem-
homomorphism) from D to D1 which is the identity on C Y t.

Recall that given a class T of Rsem-homomorphisms (respectively Rsem-
homomorphisms), we say that a k-ary query Q̃ over D is weakly preserved under T

if t P Q̃pDq implies t P Q̃pD1q whenever t is a k-tuple over Const, and in T there exists
an Rsem-homomorphism (respectively an Rsem-homomorphism) from D to D1 which is
the identity on t.

From the above claim it follows that weak preservation of Q can be characterized as
follows:

CLAIM 7. Q˚ is preserved under R˚
M
˝R˚

sem (respectively under under R
˚
M ˝R˚

sem)
iff Q is weakly preserved under M-Rsem-homomorphisms (respectively under M-Rsem-
homomorphisms) which are the identity on C.

We now use the above claim and apply Lemma 4.10 and Lemma 10.6 to the database
domain D

˚ and the generic query Q˚. We obtain the following corollary

CLAIM 8. If the semantics rr ss in D is given by pRval,Rsemq and R˚
M

is «˚-
equivalent to R˚

val
, then Q is weakly monotone iff it is weakly preserved under M-Rsem-

homomorphisms which are the identity on C.
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If rr ss is given by pRval,Rsemq and R
˚
M is «˚-equivalent to R

˚
val, then Q is weakly

monotone iff it is weakly preserved under M-Rsem-homomorphisms which are the iden-
tity on C.

We now consider mapping types M “ all and M “ min, as well as M “ all (defined
as Ppall)) and M “min for powerset semantics.

CLAIM 9.

1) If rr ss is based on Rval “ Rrdb

val
then R˚

M
is strongly «˚-equivalent to R˚

val
for M “ all ;

2) If rr ss is based on Rval “ Rmin

val
then R˚

M
is «˚-equivalent to R˚

val
for M “ min ;

3) If rr ss is based on Rval “R
rdb

val (respectively Rval “R
min

val ) then R
˚
M is «˚-equivalent

to R
˚
val for M “ all (respectively M “min).

PROOF.
We first prove 1). Consider a pair ppD, tq, pD1, tqq where pD,D1q P Rrdb

val
and t is a

k-tuple over Const. We prove that there exists pE, tq P C˚ such that pD, tq «˚ pE, tq
and ppE, tq, pD1, tqq P R˚

M
. The instance E is obtained from D by replacing nulls of D

with new distinct constants not occurring in ConstpDq Y C Y t. Clearly there exists an
isomorphism i : E Ñ D such that both i and i´ are the identity on C Y t. We let i1 be
the mapping obtained by extending i with the identity mapping on t. It is easy to see
that i1 is a bijection adompEq Y t Ñ adompDq Y t, such that i1pEq “ D and i1ptq “ t.

Moreover both i1 and i1
´

are the identity on C. Therefore pE, tq «˚ pD, tq.
We know that there exists a valuation v on D such that vpDq “ D1. Let h “ v ˝ i; then

hpEq “ vpDq “ D1 and h is the identity on CY t (because both v and i are). This implies
ppE, tq, pD1, tqq P R˚

M
, for M “ all. Remark that pE, tq only depends on pD, tq (and not

on v).
Conversely consider a pair ppE, tq, pD1, tqq P R˚

M
. Let D1 “ hpEq where h is the

identity on C Y t. We prove that there exists pD, tq P D˚ such that pD, tq «˚ pE, tq
and pD,D1q P Rrdb

val
. The instance D is obtained from E by replacing each element of

adompEq not occurring in C Y t with a new distinct null. Clearly this replacement de-
fines an isomorphism i : D Ñ E such that both i and i´ are the identity on C Y t. As in
the previous case i can be extended to show pE, tq «˚ pD, tq.

Let v “ h ˝ i. Remark that v is the identity on ConstpDq (because ConstpDq Ď C Y t
and both i and h are the identity on C Y t). Then v is a valuation on D, and hence
pD,D1q P Rrdb

val
. Note that D depends only on pE, tq (and not on h).

Thus R˚
M

is strongly «-equivalent to pRrdb

val
q˚, for M “ all.

Next we prove 2). Consider a pair ppD, tq, pD1, tqq where pD,D1q P Rmin

val
and t is a k-

tuple over Const. We then know that D1 “ hpDq where h is a D-minimal valuation. We
prove that there exists pE, tq P C˚ such that pD, tq «˚ pE, tq and ppE, tq, pD1, tqq P R˚

M
.

The instance E is obtained from D by replacing nulls of D with new distinct constants
not occurring in ConstpDq Y C Y t. Clearly there exists an isomorphism i : E Ñ D such
that both i and i´ are the identity on ConstpDq YC Y t. It is easy to check that i can be
extended over t to show pE, tq «˚ pD, tq.

Now using Lemma 9.3, the mapping h1 “ h ˝ i is E-minimal. Moreover h1pEq “ D1

and h1 is the identity on C Y t. It follows that ppE, tq, pD1, tqq P R˚
M

for M “ min.
Conversely consider a pair ppE, tq, pD1, tqq P R˚

M
(where M “ min). Let D1 “ hpEq,

where h is E-minimal and h is the identity on C Y t. We prove that there exists pD, tq P
D˚ such that pD, tq «˚ pE, tq and pD,D1q P Rmin

val
. The instance D is obtained from E by

replacing each element of adompEq not occurring in fixph,Eq with a new distinct null.
Clearly this replacement defines an isomorphism i : D Ñ E such that both i and i´ are
the identity on fixph,Eq. Remark that i and i´ are also the identity on CY t. Indeed i is
the identity on all constants, and i´ is the identity on CYt because pCYtqXadompEq Ď
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fixph,Eq. Thus as in the previous case, i can be extended to show pE, tq «˚ pD, tq. Now
let h1 “ h˝ i. By Lemma 9.3 h1 is D-minimal. Moreover h1pDq “ hpEq “ D1, and h1 is the
identity on fixph,Eq. Now remark that ConstpDq “ fixph,Eq, therefore h1 is a valuation
on D. We then conclude that pD,D1q “ pD,h1pDqq P Rmin

val
.

Finally we prove 3). We fist prove that if rr ss is based on Rval “ R
rdb

val then R
˚
M is

«˚-equivalent to R
˚
val for M “ all.

Recall the notation Pp q for powerset semantics. Notice that pRrdb

val q
˚ “ PppRrdb

val
q˚q.

We also know by the first item that R˚
M

is strongly «˚-equivalent to pRrdb

val
q˚ for

M “ all. Then by Lemma 10.8, PpR˚
M
q, for M “ all, is «˚-equivalent to pRrdb

val q
˚.

Now remark that for M “ all we have PpR˚
M
q “R

˚
M, where M “ all.

We now prove that If rr ss is based on Rval “R
min

val , then R
˚
M is «˚-equivalent to R

˚
val

for M “min.
Let ppD, tq, pX , tqq P pRmin

val q
˚; then pD,X q P R

min

val . We prove that there exists a com-
plete relational instance E such that pE, tq «˚ pD, tq and ppE, tq, pX , tqq P R

˚
M (where

M “ min). Let ConstpX q be the union of ConstpD1q, for all D1 P X . The instance E
is obtained from D by replacing nulls of D with new distinct constants not occurring
in ConstpDq Y ConstpX q Y C Y t. Clearly there exists an isomorphism i : E Ñ D. Note
that both i and i´ are the identity on ConstpDq Y ConstpX q Y C Y t. Therefore i can be
extended to show pE, tq «˚ pD, tq.

For each D1 P X there exists a D-minimal valuation v such that vpDq “ D1. Let
h “ v ˝ i, then hpEq “ D1 and, by Lemma 9.3, h is E-minimal. Note also that fixph,Eq “
ConstpDq, and h is the identity on C Y t. Since such an h exists for all D1 P X , the set of
all h mappings, when D1 ranges over X , is E-minimal, as well as the identity on C Y t.
Then ppE, tq, pX , tqq PR˚

M (for M “min).
pE,X q PRM. This proves one direction.
Conversely assume ppE, tq, pX , tqq P R

˚
M for M “ min, then X “ th1pEq, . . . hnpEqu

where th1, . . . hnu is E-minimal and the identity on C Y t. We prove that there exists a

relational instance D such that pD, tq «˚ pE, tq and pD,X q P R
min

val . Let K “ fixphi, Eq
(which is the same for all i P 1, . . . , n).

The instance D is obtained from E by replacing each element of adompEqzK with a
new distinct null. Clearly this replacement defines an isomorphism i : D Ñ E. Note
that both i and i´ are the identity on K; thus they are the identity on CY t. Indeed i is
the identity on all constants; moreover pC Y tq X adompEq Ď K, then i´ is the identity
on C Y t. Then we can extend i to show pD, tq «˚ pE, tq.

The mappings vj “ hj ˝ i, for j P 1, . . . , n are all D-minimal, by Lemma 9.3. Moreover
notice that ConstpDq “ K, then vj is the identity on ConstpDq, and therefore a D-
minimal valuation on D. Moreover vjpDq “ hjpEq, for all j “ 1, . . . , n. It follows that

pD,X q PRmin

val .

We now combine the above two claims and get a characterization of weak monotonic-
ity under both standard an minimal semantics:

COROLLARY A.2. Assume that a relational semantics is given by a pair

pRrdb

val
,Rsemq, (respectively pRrdb

val ,Rsemq) and let Q be a C-generic k-ary relational query.
Then Q is weakly monotone iff Q is weakly preserved under Rsem-homomorphisms (re-
spectively Rsem-homomorphisms) which are the identity on C.

Moreover naı̈ve evaluation works for Q iff Q is weakly preserved under Rsem-
homomorphisms (respectively Rsem-homomorphisms) which are the identity on C.

COROLLARY A.3. Assume that a relational semantics is given by a pair

pRmin

val
,Rsemq, (respectively pRmin

val ,Rsemq) and let Q be a C-generic k-ary relational
query. Then Q is weakly monotone iff Q is weakly preserved under minimal Rsem-
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homomorphisms (respectively minimal Rsem-homomorphisms) which are the identity
on C.

Moreover naı̈ve evaluation works forQ iffQ is weakly preserved under minimal Rsem-
homomorphisms (respectively minimal Rsem-homomorphisms) which are the identity
on C, and QCpDq “ QCpcorepDqq for all relational instances D.

The characterization of naı̈ve evaluation in the above two corollaries is obtained by
using Corollary A.1 and the fact that semantics based on Rrdb

val
as well as on R

rdb

val are
strongly saturated. Similarly semantics based on minimal valuations have a repre-
sentative set, which is the set of cores (Proposition 9.4). The proof of that proposition
applies even if we fix a finite set of constants, meaning that it is also a strong repre-
sentative set.

Corollary A.2 with C “ H completes the proof of Lemma 6.3 and of Lemma 11.1.
Similarly Corollary A.3 with C “ H completes the proof of Lemma 11.2. l
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