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TriAL: A navigational algebra for RDF triplestores

Navigational queries over RDF data are viewed as one of the main applications of graph query languages,

and yet the standard model of graph databases – essentially labelled graphs – is different from the triples-

based model of RDF. While encodings of RDF databases into graph data exist, we show that even the most
natural ones are bound to lose some functionality when used in conjunction with graph query languages.

The solution is to work directly with triples, but then many properties taken for granted in the graph

database context (e.g., reachability) lose their natural meaning.
Our goal is to introduce languages that work directly over triples and are closed, i.e., they produce sets

of triples, rather than graphs. Our basic language is called TriAL, or Triple Algebra: it guarantees closure

properties by replacing the product with a family of join operations. We extend TriAL with recursion, and
explain why such an extension is more intricate for triples than for graphs. We present a declarative language,

namely a fragment of datalog, capturing the recursive algebra. For both languages, the combined complexity
of query evaluation is given by low-degree polynomials. We compare our languages with relational languages,

such as finite-variable logics, and previously studied graph query languages such as adaptations of XPath,

regular path queries, and nested regular expressions; many of these languages are subsumed by the recursive
triple algebra. We also provide an implementation of TriAL∗ on top of a relational query engine, and show

its usefulness by running a wide array of navigational queries over real world RDF data, while at the same

time testing how our implementation compares to existing RDF systems.

Categories and Subject Descriptors: F.4.1 [Mathematical logic and formal languages]: Mathematical

logic; H.2.1 [Database Management]: Logical Design—Data Models; H.2.3 [Database management]:

Languages—Query Languages

General Terms: Theory, Languages, Algorithms

Additional Key Words and Phrases: RDF, Triple Algebra, Query evaluation

1. INTRODUCTION

Graph data management is currently one of the most active research topics in the database
community, fueled by the adoption of graph models in new application domains, such as
social networks, bioinformatics and astronomic databases, and projects such as the Web of
Data and the Semantic Web. There are many proposals for graph query languages; we now
understand many issues related to query evaluation over graphs, and there are multiple
vendors offering graph database products, see [Angles and Gutierrez 2008; Angles 2012;
Cudré-Mauroux and Elnikety 2011; Wood 2012] for surveys.

The Semantic Web and its underlying data model, RDF, are usually cited as one of
the key applications of graph databases, but there is some mismatch between them. The
standard model of graph databases [Angles and Gutierrez 2008; Wood 2012] that dates back
to [Consens and Mendelzon 1990; Cruz et al. 1987], is that of directed edge-labeled graphs,
i.e., pairs G = (V,E), where V is a set of vertices (objects), and E is a set of labeled edges.
Each labeled edge is of the form (v, a, v′), where v, v′ are nodes in V , and a is a label from
some finite labeling alphabet Σ. As such, they are the same as labeled transition systems
used as a basic model in both hardware and software verification.

The model of RDF data is very similar, yet slightly different. The basic concept is a triple
(s, p, o), that consists of the subject s, the predicate p, and the object o, drawn from a
domain of uniform resource identifiers (URI’s). Thus, the middle element need not come
from a finite alphabet, and may in addition play the role of a subject or an object in another
triple. For instance, {(s, p, o), (p, s, o′)} is a valid set of RDF triples, but in graph databases,
it is impossible to have two such edges.

To understand why this mismatch is a problem, consider querying graph data. Since
graph databases and RDF are represented as relations, relational queries can be applied to
them. But crucially, we may also query the topology of a graph. For instance, many graph
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query languages have, as their basic building block, regular path queries, or RPQs [Cruz
et al. 1987], that find nodes reachable by a path whose label belongs to a regular language.

We take the notion of reachability for granted in graph databases, but what is the corre-
sponding notion for triples, where the middle element can serve as the source and the target
of an edge? Then there are multiple possibilities, two of which are illustrated below.

Query Reach→ looks for pairs (x, z) connected by paths of the following shape:

x z· · ·

and Reach1 looks for the following connection pattern:

· · ·

x

z

But can such patterns be defined by existing RDF query languages? Or can they be defined
by existing graph query languages under some graph encoding of RDF?

To answer these questions, we need to understand which navigational facilities are avail-
able for RDF data. First, one needs to consider property paths, a feature added to SPARQL
[Harris and Seaborne 2013], the standard query language for RDF data, in order to allow
navigational queries. However, one can easily see that property paths are nothing more
than regular path queries in disguise [Kostylev et al. 2015] and thus do not account for
patterns such as e.g. Reach→ above, since they view RDF triples as a graph database. A
similar attempt to add navigation to RDF languages was made in [Pérez et al. 2010], where
nSPARQL, an extension to SPARQL using a generalisation of property paths known as
nested regular expressions in order to express navigational queries, was introduced. Just as
in the case of property paths, nested regular expressions are also evaluated using a graph
encoding of RDF. As the starting point of our investigation, we show that there are natural
reachability patterns for triples, similar to those shown above, that cannot be defined in
graph encodings of RDF [Arenas and Pérez 2011] using nested regular expressions (and
therefore also property paths), nor in nSPARQL itself.

Thus, many natural navigational patterns over triples are beyond reach of both RDF
languages and graph query languages that work on encodings of RDF. The solution is
then to design languages that work directly on RDF triples, and have both relational and
navigational querying facilities, just like graph query languages. Our goal, therefore, is to
adapt graph database techniques for direct RDF querying. In order to design such a language
we need to see what types of properties are important for any querying mechanism.

A crucial property of a query language is closure: queries should return objects of the
same kind as their input. Closed languages, therefore, are compositional: their operators
can be applied to results of queries. Using graph languages for RDF suffers from non-
compositionality: for instance, RPQs return graphs rather than triples. So we start by
defining a closed language for triples. To understand its basic operations, we first look at a
language that has essentially first-order expressivity, and then add navigational features.

We take relational algebra as the basic language. Clearly projection violates closure so we
throw it away. Selection and set operations, on the other hand, are fine. The problematic
operation is Cartesian product: if T, T ′ are sets of triples, then T × T ′ is not a set of
triples but rather a set of 6-tuples. What do we do then? We shall need reachability in the
language, and for graphs, reachability is computed by iterating composition of relations.
The composition operation for binary relations preserves closure: a pair (x, y) is in the
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composition R ◦R′ of R and R′ iff (x, z) ∈ R and (z, y) ∈ R′ for some z. So this is a join of
R and R′ and it seems that what we need is it analog for triples.

But queries Reach→ and Reach1 demonstrate that there is no such thing as the reachability
for triples. In fact, we shall see that there is not even a nice analog of composition for triples.
So instead, we add all possible joins that keep the algebra closed. The resulting language
is called Triple Algebra, denoted by TriAL. We then add an iteration mechanism to it, to
enable it to express reachability queries based on different joins, and obtain Recursive Triple
Algebra TriAL∗.

The algebra TriAL∗ can express both reachability patterns above, as well as queries we
prove to be inexpressible in nSPARQL, or using SPARQL’s property paths. It has a declar-
ative language associated with it, a fragment of Datalog. It has good query evaluation
bounds: combined complexity is (low-degree) polynomial. Moreover, we exhibit a fragment
with complexity of the order O(|e| · |O| · |T |), where e is the query, O is the set of objects
in the database, and T is the set of triples. This is a very natural fragment, as it restricts
arbitrary recursive definitions to those essentially defining reachability properties.

Next, move onto the comparison of TriAL with other query languages. The first of those
comparisons is with relational querying. We show that TriAL lives between FO3 and FO6

(recall that FOk refers to the fragment of First-Order Logic using only k variables). In fact
it contains FO3, is contained in FO6, and is incomparable with FO4 and FO5. A similar
result holds for TriAL∗ and transitive closure logic. On the graph querying side, we show that
the navigational power of TriAL∗ subsumes that of both regular path queries and nested
regular expressions. In fact it subsumes a version of graph XPath recently proposed for
graph databases [Libkin et al. 2013]. We also compare it with conjunctive RPQs [Consens
and Mendelzon 1990] and some of their extensions studied in [Calvanese et al. 2000; 2002].

Of course, showing that a language has nice theoretical properties does not mean it is
feasible to have it implemented in practice. For this reason in Section 7 we describe a
proof of concept implementation of TriAL∗ on top of an existing relational database system,
and test how it performs over real world RDF datasets and over synthetic data. We also
compare this implementation with state of the art SPARQL query engines and show that
our implementation either outperforms them or is at least competitive when evaluating
navigational queries, while at the same time allowing more expressive power.

This shows that TriAL∗ is an expressive language that subsumes a number of well known
relational and graph formalisms, that permits navigational queries not expressible on graph
encodings of RDF, and that has good query evaluation properties. Furthermore, TriAL∗

permits an efficient implementation that performs at the level of modern RDF query engines,
while at the same time being capable of expressing many queries that lie outside of their
scope.
Organization In Section 2 we review graph and RDF databases, and describe our model.

We also show that some natural navigational queries over triples cannot be expressed in
languages such as nSPARQL. In Section 3 we define TriAL and TriAL∗ and study their
expressiveness. In Section 4 we give a declarative language capturing TriAL∗. In Section 5
we study query evaluation, and in Sections 6.1 and 6.2 we study our languages in connection
with relational and graph querying. Section 7 shows how an implementation of TriAL∗

performs over real world data and when compared to modern SPARQL engines. We conclude
in Section 8.

2. PRELIMINARIES AND MOTIVATION

In this section we formalise the graph and RDF data model and discuss some of the limi-
tations of using graph query languages in the RDF setting. We also introduce the notion of
a triplestore, generalising both graph and RDF databases.
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Fig. 1: A graph database showing part of a Social Network. Edge labels are on the edges,
and node names next to the nodes.

St. Andrews Edinburgh London Brussels

Bus Op 1 Train Op 1

NatExpress EastCoast

Train Op 2

Eurostar

part ofpart of
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Fig. 2: RDF graph storing information about cities and transport services between them

2.1. Basic Definitions

Graph databases. Intuitively, a graph database is nothing but a finite edge labelled graph.
Formally, let Σ be a finite alphabet. A graph database G over Σ is a pair (V,E), where V is
a finite set of nodes and E ⊆ V × Σ× V is a set of edges. That is, we view each edge as a
triple (v, a, v′) ∈ V × Σ × V , whose interpretation is an a-labelled edge from v to v′ in G.
When Σ is clear from the context, we shall simply speak of a graph database. An example
of a graph databases is shown in Figure 1. Here the nodes represent people or other entities
in a Social Network setting, and the edges the connection between two nodes.

RDF databases. RDF databases contain triples in which, unlike in graph databases, the
middle component need not come from a fixed set of labels. Formally, if U is a countably
infinite domain of uniform resource identifiers (URI’s), then an RDF triple is (s, p, o) ∈
U×U×U, where s is referred to as the subject, p as the predicate, and o as the object. An
RDF graph is just a collection of RDF triples. Here we deal with ground RDF documents
[Pérez et al. 2010], i.e., we do not consider blank nodes or literals in RDF documents
(otherwise we need to deal with disjoint domains, which complicates the presentation).

Example 2.1. The RDF database D in Figure 2 contains information about cities, modes
of transportation between them, and operators of those services. Each triple is represented
by an arrow from the subject to the object, with the arrow itself labeled with the predi-
cate. Examples of triples in D are (Edinburgh, Train Op 1, London) and (Train Op 1,
part_of, EastCoast). For simplicity, we assume from now on that we can determine im-
plicitly whether an object is a city or an operator. This can of course be modeled by adding
an additional outgoing edge labeled city from each city and operator from each service
operator.

2.2. Limitations of graph queries over RDF

Navigational properties (e.g., reachability patterns) are among the most important func-
tionalities of RDF query languages. The current recommendation for navigational querying
in RDF documents are property paths, a new addition to SPARQL, the standard query
language for RDF graphs [Harris and Seaborne 2013]. However, property paths, as well as
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their theoretical counterparts and extensions [Pérez et al. 2010; Anyanwu and Sheth 2003;
Losemann and Martens 2012] are classes of queries inspired by classical graph query lan-
guages. As hinted in the Introduction, and as we show next, taking this approach can have
certain limitations when it comes to navigational features of RDF databases.

Looking again at the database D in Figure 2, we see the main difference between graphs
and RDF: the majority of the edge labels in D are also used as subjects or objects (i.e.,
nodes) of other triples of D. For instance, one can travel from Edinburgh to London by
using a train service Train Op 1, but in this case the label itself is viewed as a node when
we express the fact that this operator is actually a part of EastCoast trains.

For RDF, one normally uses a model of triplestores that is different from graph databases.
According to it, the database from Figure 2 is viewed as a ternary relation:

St. Andrews Bus Op 1 Edinburgh

Edinburgh Train Op 1 London

London Train Op 2 Brussels

Bus Op 1 part_of NatExpress

Train Op 1 part_of EastCoast

Train Op 2 part_of Eurostar

EastCoast part_of NatExpress

Suppose one wants to answer the following query:

Find pairs of cities (x, y) such that one can

Q : travel from x to y using services operated by

the same company.

A query like this is likely to be relevant, for instance, when integrating numerous trans-
port services into a single ticketing interface. In our example, the pair (Edinburgh, London)
belongs to Q(D), and one can also check that (St. Andrews, London) is in Q(D), since re-
cursively both operators are part of NatExpress (using the transitivity of part of). However,
the pair (St. Andrews, Brussels) does not belong to Q(D), since we can only travel that
route if we change companies, from NatExpress to Eurostar.

So how do graph query languages fare when faced with a query like Q? To answer this
question we will consider the class of nested regular expressions introduced in [Pérez et al.
2010], which extend SPARQL property paths with several extra functionalities. The idea
behing nested regular expressions is to combine the usual reachability patterns of graph
query languages with the XPath mechanism of node tests1. However, nested regular expres-
sions, which we saw earlier, are defined for graphs, and not for databases storing triples.
Thus, they cannot be used directly over RDF databases; instead, one needs to transform
an RDF database D into a graph first. An example of such transformation D → σ(D) was
given in [Arenas and Pérez 2011]; it is illustrated in Figure 3.

Formally, given an RDF document D, the graph σ(D) = (V,E) is a graph database over
alphabet Σ = {next,node, edge}, where V contains all resources from D, and for each triple
(s, p, o) in D, the edge relation E contains edges (s, edge, p), (p,node, o) and (s,next, o).
This transformation scheme is important in practical RDF applications (it was shown to be
crucial for addressing the problem of interpreting RDFS features within SPARQL [Pérez
et al. 2010]). At the same time, it is not sufficient for expressing simple reachability patterns
like those in query Q:

1For a formal definition of nested regular expressions see [Pérez et al. 2010]. As the results we present do
not depend on a specific syntax, but merely on the fact that the queries operate over graph databases, we
omit this to keep the presentation concise.
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Fig. 3: Transforming part of the RDF database from Figure 2 into a graph database

Proposition 2.2. The query Q is not expressible by NREs over graph transformations
σ(·) of ternary relations.

Proof. Consider the RDF documents D1 and D2 consisting of the following triples:

Graph D1: Graph D2:

St Andrews Bus Operator 1 Edinburgh

Edinburgh Train Op 1 London

Edinburgh Train Op 3 London

Edinburgh Train Op 1 Manchester

Newcastle Train Op 1 London

London Train Op 2 Brussels

Bus Operator 1 part of NatExpress

Train Op 1 part of EastCoast

Train Op 2 part of Eurostar

EastCoast part of NatExpress

St Andrews Bus Operator 1 Edinburgh

Edinburgh Train Op 3 London

Edinburgh Train Op 1 Manchester

Newcastle Train Op 1 London

London Train Op 2 Brussels

Bus Operator 1 part of NatExpress

Train Op 1 part of EastCoast

Train Op 2 part of Eurostar

EastCoast part of NatExpress

Essentially, graph D1 is an extension of the RDF document D in Figure 2, while graph
D2 is the same as D1 except that it does not contain the triple (Edinburgh, Train Op 1 ,
London). The relevant parts of our databases are illustrated in the following image.

Edinburgh London

Train Op 1

Train Op 3

NewcastleManchester

EastCoast

Part of RDF graph D1

part of

Edinburgh London

Train Op 1

Train Op 3

NewcastleManchester

EastCoast

Part of RDF graph D2

part of
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Fig. 4: Transforming part of the RDF databases D1 and D2

The absence of this triple has severe implications with respect to the query Q of the
statement of the Proposition, since in particular the pair (St Andrews, London) belongs to
the evaluation of Q over D1, but it does not belong to the evaluation of Q over D2.

However, it is not difficult to check that the graph translations of D1 and D2 are exactly
the same graph database: σ(D1) = σ(D2). We have included the relevant part of transfor-
mations σ(D1) and σ(D2) in Figure 4. It follows that Q is not expressible in nested regular
expressions, since obviously the answer of all nested regular expressions is the same over
σ(D1) and σ(D2) (they are the same graph).

Thus, the most common RDF navigational mechanism cannot express a very natural
property, essentially due to the need to do so via a graph transformation.

One might argue that this result is due to the shortcomings of a specific transformation
(however relevant to practical tasks it might be). So we ask what happens in the native
RDF scenario. In particular, we would like to see what happens with the language nSPARQL
[Pérez et al. 2010], which is a proper RDF query language extending SPARQL with navi-
gation based on nested regular expressions. But this language falls short too, as it fails to
express the simple reachability query Q.

Theorem 2.3. The query Q above cannot be expressed in nSPARQL.

Proof. The semantics of the nested regular expressions in the RDF context (in [Pérez
et al. 2010]) is given as follows, assuming a triple representation of RDF documents. For
next, it is the set {(v, v′) | ∃zE(v, z, v′)}, the semantics of edge is {(v, v′) | ∃zE(v, v′, z)} and
node is {(v, v′) | ∃zE(z, v, v′)}; for the rest of the operators it is the same as in the graph
database case. Thus, even though stated in an RDF context, this semantics is essentially
given according to the translation σ(·), in the sense that the semantics of an NRE e is the
same for all RDF documents D and D′ such that σ(D) = σ(D′) 2. Hence the proof follows
directly from Proposition 2.2 and the easy fact that Q cannot be expressed in SPARQL.

The key reason for these limitations is that the navigation mechanisms used in RDF
languages are graph-based, when one really needs them to be triple-based.

2The NREs defined in [Pérez et al. 2010] had additional primitives, such as next :: sp. These were added
for the purpose of allowing RDFS inference with NREs, but play no role in the general expressivity of
nSPARQL in our setting since we are dealing with arbitrary objects, whereas the constructs in [Pérez et al.
2010] are limited to RDFS predicates. Here we assume that primitives such as next :: [e], with e an arbitrary
NRE, are not allowed. For a discussion on how the proof extends in the case when they are present see
[Pérez et al. 2010]
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2.3. Triplestore Databases

To introduce proper triple-based navigational languages, we first define a simple model
of triplestores, which is more general than both RDF and graph databases. Let O be a
countably infinite set of objects which can appear in our database3.

Definition 2.4. A triplestore database, or just triplestore is a tuple T = (O,E1, . . . , En),
where:

—O ⊂ O is a finite set of objects,
— each Ei ⊆ O ×O ×O is a set of triples, and
— for each o ∈ O there is i ∈ {1, . . . , n} and a triple t ∈ Ei such that o appears in t.

Note that the final condition is used in order to simulate how RDF data is structured
in practice, namely that it is presented in terms of sets of triples, so all the objects we are
interested in actually appear in one of the relations. This assumption will also allow us to
work with the active domain of our triplestore, thus enabling us to construct an algebra
that is complete in terms of first order operations.

Often we have just a single ternary relation E in a triplestore database (e.g., in the
previously seen examples of representing RDF databases), but all the languages and results
we state here apply to multiple relations. Having multiple relations can be used to model
richer scenarios (e.g. where we have more than one type of an edge), and can also be used to
model graph databases: namely, if we have a graph database G = (V,E) over an alphabet
Σ, we can use a triplestore having the relation Ea for each a ∈ Σ which simply stores all
the triples (v, a, v′) ∈ E. An alternative way of seeing graph databases as triplestores will
be explored in Section 6.2.

3. AN ALGEBRA FOR RDF

We saw that problems encountered while adapting graph languages to RDF are related
to the inherent limitations of the graph data model for representing RDF data. Thus, one
should work directly with triples. But existing languages are either based on binary relations
and fall short of the power necessary for RDF querying, or are general relational languages
which are not closed when it comes to querying RDF triples. Hence, we need a language
that works directly on triples, is closed, and has good query evaluation properties.

We now present such a language, based on relational algebra for triples. We start with
a plain version and then add recursive primitives that provide the crucial functionality for
handling reachability properties.

The operations of the usual relational algebra are selection, projection, union, difference,
and cartesian product. Our language must remain closed, i.e., the result of each operation
ought to be a valid triplestore. This clearly rules out projection. Selection and Boolean
operations are fine. Cartesian product, however, would create a relation of arity six, but
instead we use joins that only keep three positions in the result.

Triple joins. To see what kind of joins we need, let us first look at the composition of two
relations. For binary relations S and S′, their composition S ◦S′ has all pairs (x, y) so that
(x, z) ∈ S and (z, y) ∈ S′ for some z. Reachability with relation S is defined by recursively
applying composition: S ∪ S ◦S ∪ S ◦S ◦S ∪ . . .. So we need an analog of composition for
triples. To understand how it may look, we can view S ◦ S′ as the join of S and S′ on the
condition that the 2nd component of S equals the first of S′, and the output consist of the
remaining components. We can write it as

S
1,2′

1
2=1′

S′

3This is our analogue of URIs in RDF
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Here we refer to the positions in S as 1 and 2, and to the positions in S′ as 1′ and 2′, so
the join condition is 2 = 1′ (written below the join symbol), and the output has positions 1

and 2′. This suggests that our join operations on triples should be of the form R1i,j,k
condR

′,
where R and R′ are ternary relations, i, j, k ∈ {1, 2, 3, 1′, 2′, 3′}, and cond is a condition (to
be defined precisely later).

But what is the most natural analog of relational composition? Note that to keep three
indexes among {1, 2, 3, 1′, 2′, 3′}, we ought to project away three, meaning that two of them
will come from one argument, and one from the other. Any such join operation on triples
is bound to be asymmetric, and thus cannot be viewed as a full analog of relational com-
position.

So what do we do? Our solution is to add all such join operations. Formally, given two
ternary relations R and R′, join operations are of the form

R
i,j,k

1
θ
R′,

where

— i, j, k ∈ {1, 1′, 2, 2′, 3, 3′},
— θ is a set of equalities and inequalities between elements in {1, 1′, 2, 2′, 3, 3′} ∪ O.

The semantics is defined as follows: (oi, oj , ok) is in the result of the join iff there are triples
(o1, o2, o3) ∈ R and (o1′ , o2′ , o3′) ∈ R′ such that

— each condition from θ holds; that is, if l = m is in θ, then ol = om, and if l = o, where o
is an object, is in θ, then ol = o, and likewise for inequalities.

Triple Algebra. We now define the expressions of the Triple Algebra, or TriAL for short. It
is a restriction of relational algebra that guarantees closure, i.e., the result of each expression
is a triplestore.

— Every relation name in a triplestore is a TriAL expression.
— If e is a TriAL expression, θ a set of equalities and inequalities over {1, 2, 3}∪O, then σθ(e)

is a TriAL expression.
— If e1, e2 are TriAL expressions, then the following are TriAL expressions:

— e1 ∪ e2;
— e1 − e2;

— e1 1
i,j,k
θ e2, with i, j, k, θ as in the definition of the join above.

The semantics of the join operation has already been defined. The semantics of the
Boolean operations is the usual one. The semantics of the selection is defined in the same
way as the semantics of the join (in fact, the operator itself can be defined in terms of joins):
one just chooses triples (o1, o2, o3) satisfying θ.

Given a triplestore database T , we write e(T ) for the result of expression e on T .
Note that e(T ) is again a triplestore, and thus TriAL defines closed operations on triple-

stores. This is important, for instance, when we require RDF queries to produce RDF
graphs as their result (instead of arbitrary tuples of objects), as it is done in SPARQL via
the CONSTRUCT operator [Harris and Seaborne 2013].

Example 3.1. To get some intuition about the Triple Algebra consider the following
TriAL expression:

e = E
1,3′,3

1
2=1′

E

Indexes (1, 2, 3) refer to positions of the first triple, and indexes (1′, 2′, 3′) to positions of
the second triple in the join. Thus, for two triples (x1, x2, x3) and (x1′ , x2′ , x3′), such that
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x2 = x1′ , expression e outputs the triple (x1, x3′ , x3). E.g., in the triplestore of Fig. 2,
(London, Train Op 2, Brussels) is joined with (Train Op 2, part_of, Eurostar), pro-
ducing (London, Eurostar, Brussels); the full result is

St. Andrews NatExpress Edinburgh

Edinburgh EastCoast London

London Eurostar Brussels

Thus, e computes travel information for pairs of European cities together with com-
panies one can use. It fails to take into account that EastCoast is a part of
NatExpress. To add such information to query results (and produce triples such as

(Edinburgh, NatExpress, London)), we use e′ = e ∪ (e11,3′,3
2=1′ E).

Definable operations: intersection and complement. As usual, the intersection operation can
be defined as e1 ∩ e2 = e1 1

1,2,3
1=1′,2=2′,3=3′ e2. Note that using join and union, we can define

the set U of all triples (o1, o2, o3) so that each oi occurs in our triplestore database T .
For instance, to collect all such triples so that o1 occurs in the first position of R, and
o2, o3 occur in the 2nd and 3rd position of R′ respectively, we would use the expression
(R11,2′,3R′)11,2,3′

R′. Taking the union of all such expressions, gives us the relation U .
Using such U , we can define ec, the complement of e with respect to the active domain,

as U − e. In what follows, we regularly use intersection and complement in our examples.

Adding Recursion. One problem with Example 3.1 above is that it does not include
triples (city1,service,city2) so that relation R contains a triple (city1,service0,city2),
and there is a chain, of some length, indicating that service0 is a part of service. The
second expression in Example 3.1 only accounted for such paths of length 1. To deal with
paths of arbitrary length, we need reachability, which relational algebra is well known to be
incapable of expressing. Thus, we need to add recursion to our language.

To do so, we expand TriAL with right and left Kleene closure of any triple join 1i,j,k
θ

over an expression e, denoted as (e 1i,j,k
θ )∗ for right, and (1i,j,k

θ e)∗ for left. These are
defined as

(e 1)∗ = ∅ ∪ e ∪ e 1 e ∪ (e 1 e) 1 e ∪ . . . ,

(1 e)∗ = ∅ ∪ e ∪ e 1 e ∪ e 1 (e 1 e) ∪ . . .

We refer to the resulting algebra as Triple Algebra with Recursion and denote it by TriAL∗.
When dealing with binary relations we do not have to distinguish between left and right

Kleene closures, since the composition operation for binary relations is associative. However,
as the following example shows, joins over triples are not necessarily associative, which
explains the need to make this distinction.

Example 3.2. Consider a triplestore database T = (O,E), with E =
{(a, b, c), (c, d, e), (d, e, f)}. The function ρ is not relevant for this example. The ex-
pression

e1 = (E
1,2,2′

1
3=1′

)∗

computes e1(T ) = E ∪ {(a, b, d), (a, b, e)}, while

e2 = (
1,2,2′

1
3=1′

E)∗

computes e2(T ) = E ∪ {(a, b, d)}.
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Now we present several examples of queries one can ask using the Triple Algebra.

Example 3.3. We refer now to reachability queries Reach→ and Reach1 from the intro-
duction. It can easily be checked that these are defined by

(E
1,2,3′

1
3=1′

)∗ and (
1′,2′,3

1
1=2′

E)∗

respectively.

Next consider the query from Theorem 2.2, which we denote by reachTA. Graphically, it
can be represented as follows:

· ·
· · · ·· ·
·

x

y

z· · ·

That is, we are looking for pairs of cities such that one can travel from one to the other
using services operated by the same company. This query is expressed by

((E
1,3′,3

1
2=1′

)∗
1,2,3′

1
3=1′,2=2′

)∗.

Note that the interior join (E
1,3′,3

1
2=1′

)∗ computes all triples (x, y, z), such that E(x,w, z) holds

for some w, and y is reachable from w using some E-path. The outer join now simply
computes the transitive closure of this relation, taking into account that the service that
witnesses the connection between the cities is the same.

Another useful application of such a nested query can be found in workflows tracking
provenance of some document. Indeed, there we might be interested to find all versions of
a document that contain an error, but originate from an error-free version. We might also
ask if there is a path connecting those two documents where each of the versions referred to
some particular document – the likely culprit for the mistake. In the image above z would
represent version with an error, x a valid version it originates from, and y the document all
of the versions that lead to the one with an error refer to.

Remark 3.4. Here we give some remarks about notation and implicit assumptions in the
remainder of the paper.

— We will often denote conditions θ as conjunction of equalities or inequalities instead of
sets. For example we will write θ = (1 6= 3′) ∧ (2 = 2′) for θ = {1 6= 3′, 2 = 2′}.

— In the proofs we will usually handle only the case of the right Kleene closure (R1 )∗. The
proofs for the left closure are completely symmetric.

— As usual in database theory, we only consider queries that are domain-independent, and
therefore we loose no generality in assuming active domain semantics for FO formulas and
other similar formalisms.
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4. A DECLARATIVE LANGUAGE

Triple Algebra and its recursive versions are procedural languages. In databases, we are used
to dealing with declarative languages. The most common one for expressing queries that
need recursion is Datalog. It is one of the most studied database query languages, and it has
reappeared recently in numerous applications. One instance of this is its well documented
success in Web information extraction [Gottlob and Koch 2004] and there are numerous
others. So it seems natural to look for Datalog fragments to capture TriAL and its recursive
version.

Since Datalog works over relational vocabularies, we need to represent triplestores as
relational structures. This is done in a straightforward way; that is: we just define a schema
for the triplestore T to contain a ternary relation symbol E(·, ·, ·) for each triplestore name in
T , and a constant symbol o, for each o ∈ O. Each triplestore database T can be represented
as an instance IT of this schema in the standard way: the universe of our instance is the
set of all objects appearing in the relations of T , the interpretation of each relation name
E in this instance corresponds to the triples in the relation E in T , and each constant is
interpreted by itself. As is usually done in databases [Abiteboul et al. 1995], we deploy the
active domain semantics, where the universe of our model is simply the set of all objects
appearing in the database, and the constants are interpreted as themselves (even when they
do not appear in the database – note that we have one uniform universe O for all objects,
so this does not cause any issues). Whenever dealing with logical structures, or relational
representation of a triplestore we will use this convention.

We start with a Datalog fragment capturing TriAL. A TripleDatalog rule is of the form

S(x) ← S1(x1), S2(x2), u1 = v1, . . . , um = vm (1)

where

(1) S, S1 and S2 are (not necessarily distinct) predicate symbols of arity 3;
(2) x, x1 and x2 are variables;
(3) uis and vis are either variables or objects in O;
(4) all variables in x and all variables in uj , vj are contained in x1 ∪ x2.

A TripleDatalog¬ rule is like the rule (1) but all equalities and predicates, except the head
predicate S, can appear negated. A TripleDatalog¬ program Π is a finite set of TripleDatalog¬

rules. Such a program Π is non-recursive if there is an ordering r1, . . . , rk of the rules of Π
so that the relation in the head of ri does not occur in the body of any of the rules rj , with
j ≤ i.

As is common with non-recursive programs, the semantics of nonrecursive TripleDatalog¬

programs is given by evaluating each of the rules of Π, according to the order r1, . . . , rk of
its rules, and taking unions whenever two rules have the same relation in their head (see
[Abiteboul et al. 1995] for the precise definition). We are now ready to present the first
capturing result.

Proposition 4.1. TriAL is equivalent to nonrecursive TripleDatalog¬ programs.

Proof. Let us first show the containment of TriAL in non-recursive TripleDatalog¬. We
show that for every expression e one can construct a non-recursive TripleDatalog¬ program
Πe such that, e(T ) = Πe(IT ), for all triplestore databases T .

We define the translation by the following inductive construction, assuming Ans, Ans1

and Ans2 are special symbols that define the output of non-recursive TripleDatalog¬ pro-
grams.

— If e is just a triplestore name E, then Πe consists of the single rule Ans(x, y, z) ←
E(x, y, z).
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— If e is e1 ∪ e2, then Πe consists of the union of the rules of the programs Πe1 and Πe2 ,
together with the rules Ans(x) ← Ans1(x) and Ans(x) ← Ans2(x), where we assume
that Ans1 and Ans2 are the predicates that define the output of Πe1 and Πe2 , respectively.

— If e is e1 − e2, then Πe consists of the union of the rules of the programs Πe1 and Πe2 ,
together with the rule Ans(x) ← Ans1(x),¬Ans2(x), where we assume that Ans1 and
Ans2 are the predicates that define the output of Πe1 and Πe2 , respectively.

— If e is e1 1
i,j,k
θ e2, assume that θ consists of m conditions. Then Πe consists of the union

of the rules of the programs Πe1 and Πe2 , together with the rule

Ans(xi, xj , xk)← Ans1(x1, x2, x3), Ans2(x4, x5, x6), u1(=) 6= v1, . . . , um(=) 6= vm, (2)

where for each p-th condition in θ of form a = b or a 6= b, we have that up = xa and
vp = xb (or up = o if a is an object o in O, and likewise for b); and where we assume that
Ans1 and Ans2 are the predicates that define the output of Πe1 and Πe2 , respectively.

— The case of selection goes along the same lines as the join case.

Clearly, this program is nonrecursive. Moreover, it is trivial to prove that this transition
satisfies our desired property.

Next we show the containment of non-recursive TripleDatalog¬ in TriAL. We show that
for every non-recursive TripleDatalog¬ program Π one can construct an expression eΠ such
that, eΠ(T ) = Π(IT ), for all triplestore databases T .

We assume that Π contains a single predicate Ans that represents the answer of the
query. Also, without loss of generality we can assume that no rule uses predicate E, for
some triplestore name E, other than a rule of form P (x, y, z) ← E(x, y, z), for a predicate
P in the predicates of Π that does not appear in the head of any other rule in Π.

We need some notation. The dependence graph of Π is a directed graph whose nodes are
the predicates of π, and the edges capture the dependence relation of the predicates of Π,
i.e., there is an edge from predicate R to predicate S if there is a rule in Π with R in its
head and S in its body. Since Π is non-recursive, its dependency graph is acyclic. We now
define the TriAL expression in a recursive fashion, following its dependency graph:

— Assume that all the rules in Π that have predicate S in the head are of form

S(xaj , xbj , xcj ) ← Sj1(xj1, x
j
2, x

j
3), Sj2(xj4, x

j
5, x

j
6), uj1( 6=) = vj1, . . . , u

j
m(6=) = vjm (3)

for 1 ≤ j ≤ m, and where Sj1 and Sj2 are (not necessarily distinct) predicate sym-

bols of arity 3 and all variables in xaj , xbj , xcj and each of ujk, vjk are contained in

{xj1, x
j
2, x

j
3, x

j
4, x

j
5, x

j
6}.

Then the TriAL expression eS is ⋃
1≤j≤m

eSj
1
1aj ,bj ,cj

θj eSj
2
,

where θj contains an (in)equality a = b for each (in)equality xa = xb in the rule. If either

of Sj1 or Sj2 appear negated in the rule, then just replace eSj
1

for (eSj
1
)c or (eSj

2
)c.

— The TriAL expression eP (for predicate P in rule P (x, y, z) ← E(x, y, z)) is just E; if
these variables appear in different order in the rule, we permute them via the selection
operator σ.

It is now straightforward to verify that for every non-recursive TripleDatalog¬ program Π
whose answer predicate is Ans the expression eAns is such that, eAns(T ) = Π(IT ), for all
triplestore databases T .
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We next turn to the expressive power of recursive Triple Algebra TriAL∗. To capture it,
we of course add recursion to Datalog rules, and impose a restriction that was previously
used in [Consens and Mendelzon 1990]. A ReachTripleDatalog¬ program is a TripleDatalog¬

program in which each recursive predicate S is the head of exactly two rules of the form:

S(x) ← R(x)

S(x) ← S(x̄1), R(x̄2), u1(=) 6= v1, . . . , um(=) 6= vm,
(4)

where each ui and vi is contained in x1 ∪ x2, and R is a nonrecursive predicate of arity 3,
or a recursive predicate defined by a rule of the form 4 that appears before S. These rules
essentially mimic the standard reachability rules (for binary relations) in Datalog, and in
addition one can impose equality and inequality constraints.

Note that the negation in ReachTripleDatalog¬ programs is stratified. The semantics of
these programs is the standard least-fixpoint semantics [Abiteboul et al. 1995]. A simi-
larly defined syntactic class, but over graph databases, rather than triplestores, was shown
to capture the expressive power of FO with the transitive closure operator [Consens and
Mendelzon 1990]. In our case, we have a capturing result for TriAL∗.

Theorem 4.2. The expressive power of TriAL∗ and ReachTripleDatalog¬ programs is
the same.

Proof. Let us first show the containment of TriAL∗ in ReachTripleDatalog¬. The proof
goes along the same lines as the proof of containment of TriAL in TripleDatalog¬. We have
to show that for every TriAL∗ expression e there is a ReachTripleDatalog¬ program Πe such
that e(T ) = Πe(IT ), for all triplestores T .

The only difference from the construction in the proof of TriAL in TripleDatalog¬ is the

treatment of the constructs e = (e1 1
i,j,k
θ )∗ and e = (1i,j,k

θ e1)∗. For the former construct
(the other one is symmetrical), assume that θ = (

∧
1≤i≤m pi( 6=) = qi). We let Πe be the

union of all rules of Πe1 , plus rules

Ans(x, y, z) ← Ans1(x, y, z)

Ans(xi, xj , xk) ← Ans(x1, x2, x3), Ans1(x4, x5, x6), xp1(6=) = xq1 , . . . , xpm(6=) = xqm ,

where Ans1 is the answer predicate of Πe1 . Notice that we have assumed for simplicity
there are no comparison with constants; these can be included in our translation in a
straightforward way. The proof that e(T ) = Πe(IT ), for all triplestores T now follows easily.

The proof of containment of ReachTripleDatalog¬ in TriAL∗ also goes along the same lines
as the proof that TripleDatalog¬ is contained in TriAL. The only difference is when creating
expression eS , for some recursive predicate S. From the properties of ReachTripleDatalog¬

programs, we know S is the head of exactly two rules of form

S(x) ← R(x)

S(xa, xb, xc) ← S(x1, x2, x3), R(x4, x5, x6), u1( 6=) = v1, . . . , um(6=) = vm,

(1) R is a nonrecursive predicate of arity 3,
(2) variables xa, xb, xc and each uj , vj are contained in {x1, . . . , x6}.

We then let eS be (eR1
a,b,c
θ )∗, where θ contains the inequality p(6=) = q for each predicate

xp( 6=) = xq in the rule above, or the respective comparison with constant if p or q belong
to O.

Once again, it is straightforward to verify that eAns is such that, eAns(T ) = Π(IT ), for
all triplestores T .

We now give an example of a simple datalog program computing the query from Theorem
2.3.
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Example 4.3. The following ReachTripleDatalog¬ program is equivalent to query Q from
Theorem 2.3. Note that the answer is computed in the predicate Ans.

S(x1, x2, x3) ← E(x1, x2, x3)

S(x1, x
′
3, x3) ← S(x1, x2, x3), E(x2, x

′
2, x
′
3)

Ans(x1, x2, x3) ← S(x1, x2, x3)

Ans(x1, x2, x
′
3) ← Ans(x1, x2, x3), S(x3, x2, x

′
3)

Recall that this query can be written in TriAL∗ as Q = ((E11,3′,3
2=1′ )∗11,2,3′

3=1′,2=2′ )∗. The
predicate S in the program computes the inner Kleene closure of the query, while the predi-
cate Ans computes the outer closure.

5. QUERY EVALUATION

In this section we analyze two versions of the query evaluation problems related to Triple
Algebra. We start with query evaluation, redefined here for TriAL∗ queries.

Problem: QueryEvaluation

Input: A TriAL∗ expression e, a triplestore T

and a tuple (x1, x2, x3) of objects.

Question: Is (x1, x2, x3) ∈ e(T )?

Many graph query languages (e.g., RPQs, GXPath) have Ptime upper bounds for this
problem, and the data complexity (i.e., when e is assumed to be fixed) is generally in
NLogspace (which cannot be improved, since the simplest reachability problem over graphs
is already NLogspace-hard). We now show that the same upper bounds hold for our
algebra, even with recursion.

Proposition 5.1. The problem QueryEvaluation is Ptime-complete, and in
NLogspace if the algebra expression e is fixed.

Proof. The Ptime upper bound follows immediately from Theorem 5.2 below. Ptime-
hardness follows from the fact that every FO3 query can be expressed in TriAL (Theorem
??) and the known result that evaluating FOk queries is Ptime-hard already when k = 3
[Vardi 1995].

For the NLogspace upper bound, the idea is to divide the expression e into all its
subexpression, corresponding to subtrees of the parsing tree of ϕ. Starting from the leaves
until the root of the parse tree of e, one can guess the relevant triples that will be witnessing
the presence of the query triple in the answer set e(T ).

Note that for this we only need to remember O(|e|) triples – a number of fixed length.
After we have guessed a triple for each node in the parse tree for e we simply check that
they belong to the result of applying the subexpression defined by that node of the tree to
our triplestore T . Thus to check that the desired complexity bound holds we need to show
that each of the operations can be performed in NLogspace, given any of the triples. This
follows by an easy inductive argument.

For example, if e = Ei is one of the initial relations in T , we simply check that the guessed
triple is present in its table. Note that this can be done in NLogspace.

This is done in an analogous way for the expressions of the form e = e1∪e2 and e = e1−e2.
To see that the claim also holds for joins, note that one only has to check that join conditions
can be verified in NLogspace. But this is a straightforward consequence of the observation
that for conditions we use only comparisons of objects.

Finally, to see that the star operator (R1i,j,k
θ )∗ can be implemented in NLogspace

we simply do a standard reachability argument for graphs. That is, since we are trying to
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verify that a specific triple (a, b, c) is in the answer to the star-join operator, we guess the
sequence that verifies this. We begin by a single triple in R (and we can check that it is
there in NLogspace by the induction hypothesis) and guess each new triple in R, joining
it with the previous one, until we have performed at most |T | steps.

Tractable evaluation (even with respect to combined complexity) is practically a must
when dealing with very large and dynamic semi-structured databases. However, in order
to make a case for the practical applicability of our algebra, we need to give more precise
bounds for query evaluation, rather than describe complexity classes the problem belongs
to. We now show that TriAL∗ expressions can be evaluated in what is essentially cubic time
with respect to the data. Thus, in the rest of the section we focus on the problem of actually
computing the whole relation e(T ):

Problem: QueryComputation

Input: A TriAL∗ expression e and

a triplestore database T .

Output: The relation e(T )

We now analyze the complexity of QueryComputation. Following an assumption fre-
quently made in papers on graph database query evaluation (in particular, graph pattern
matching algorithms) as well as bounded variable relational languages (cf. [Fan et al. 2011;
2010; Gottlob et al. 2002]), we consider an array representation for triplestores. That is,
when representing a triplestore T = (O,E1, . . . , Em) with O = {o1, . . . , on}, we assume that
each relation El is given by a three-dimensional n× n× n matrix, so that the ijkth entry
is set to 1 iff (oi, oj , ok) is in El. Alternatively we can have a single matrix, where entries
include sets of indexes of relations El that triples belong to. Using this representation we
obtain the following bounds.

Theorem 5.2. The problem QueryComputation can be solved in time

—O(|e| · |T |2) for TriAL expressions,
—O(|e| · |T |3) for TriAL∗ expressions.

Proof. The basic outline of the algorithm is as follows:

(1) Build the parse tree for our expression.
(2) Evaluate the subexpressions bottom-up.

Now to see that the algorithm meets the desired time bounds we simply have to show
that each step of evaluating a subexpression can be performed in time O(|T |2).

We prove this inductively on the structure of subexpression e.
As stated previously, we assume that the objects are sorted and that the triplestore

is given by its adjacency matrix T with the property that T [i, j, k] = 1 if and only if
(oi, oj , ok) ∈ T . If we are dealing with a triplestore that has more than one relation we
will assume that we have access to each of the n × n × n matrices representing Ei. Our
algorithm computes, given an expression e and a triplestore T the matrix Re such that
(oi, oj , ok) ∈ e(T ) iff Re[i, j, k] = 1.

If e = Ei, the name of one of the initial triplestore matrices, we already have our answer,
so no computation is needed.

If e = R1 ∪ R2 and we are given the matrix representation of R1 and R2 (that is the
adjacency matrix of the answer of Ri on our triplestore T ) we simply compute Re as the
union of these two matrices. Note that this takes time O(|T |).

If e = R1 ∩R2 we compute Re as the intersection of these two matrices. That is, for each
triple (i, j, k) we check if R1[i, j, k] = R2[i, j, k] = 1. Note that this takes time O(|T |).
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If e = R1 − R2 we compute Re as the difference of the two matrices. That is for each
(i, j, k) we set Re[i, j, k] = 1 if and only if R1[i, j, k] = 1 and R2[i, j, k] = 0. The time
required is O(|T |).

If e = σϕR1 and we are given the matrix for R1 we can compute Re in time O(|e||T |) by
traversing each triple (i, j, k), checking that R1[i, j, k] = 1 and that the objects oi, oj and
ok satisfy the conditions specified by ϕ. Notice that each of these checks can be done in
|e| time using T , since the number of comparisons in ϕ has a fixed upper bound, modulo
comparison with constants. The comparison with constants can be done in time |e| because
we have to check (in)equality only with the constants that actually appear in e.

Finally, in the case that e = R1 1
i′,j′,k′

θ R2 we can compute Re using the following
algorithm:

Procedure 1 Computing joins

Input: Matrix representation of R1, R2

Output: Matrix Re representing e
1: Let θ′ be the conditions obtained from θ by removing comparisons with constants
2: Let α be the conditions in θ using constants
3: Filter R1 and R2 according to α
4: for i = 1→ n do
5: for j = 1→ n do
6: for k = 1→ n do
7: if R1[i, j, k] = 1 then
8: for l = 1→ n do
9: for m = 1→ n do

10: for n = 1→ n do
11: if R2[l,m, n] = 1 then
12: if (oi, oj , ok) and (ol, om, on) satisfy the conditions in θ′

then Re[i
′, j′, k′] = 1

13: else Re[i
′, j′, k′] = 0

Note that lines 1–3 correspond to computing selections operator and can therefore be
performed using the time O(|e||T |) and reusing the matrices R1 and R2. It is straightforward
to see that the remaining of the algorithm works as intended by joining the desirable triples.
This is performed in O(|T |2). Thus the whole join computation can be done in time O(|T |2).

This concludes the first part of our theorem and we thus conclude that TriAL query
computation problem can be solved in time O(|e||T |2).

For the second part of the theorem we only have to show that each star operation can be
computed in time O(|T |3). To see this we consider the algorithm in Procedure 2, computing

the answer set for e = (R1 1
i′,j′,k′

θ )∗

Procedure 2 Computing stars

Input: Matrix representation of R1

Output: Matrix Re representing e
1: Initialize Re := R1

2: for i = 1→ n3 do
3: Compute Re := Re ∪Re1i′,j′,k′

θ R1

First we note that the algorithm does indeed compute the correct answer set. This follows
because the joining in our star process has to became saturated after n3 steps, since this is
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the maximum possible number of triples in a model with n elements. Note now that each
join in step 3 can be computed in time O(|T |2), thus giving us the total running time of
O(n3 · |T |2) = O(|T |3).

Finally, left-joins can be computed in an analogous way.

Note that this immediately gives the Ptime upper bound for Proposition 5.1.
One can examine the proofs of Proposition 4.1 and Theorem 4.2 and see that transla-

tions from Datalog into algebra are linear-time. Thus, we have the same bound for the
query computation problem, when we evaluate a Datalog program Π in place of an algebra
expression.

Corollary 5.3. The problem QueryComputation for Datalog programs Π can be
solved in time

—O(|Π| · |T |2) for TripleDatalog¬ programs,
—O(|Π| · |T |3) for ReachTripleDatalog¬ programs.

5.1. Low-complexity fragments

Even though we have acceptable combined complexity of query computation, if the size of
T is very large, one may prefer to lower it even further. We now look at fragments of TriAL∗

for which this is possible.

Relational fragments of TriAL. In algorithms from Theorem 5.2, the main difficulty arises
from the presence of inequalities in join conditions. A natural restriction then is to look at
a fragment TriAL= of TriAL in which the conditions θ used in joins can only use equalities.
This fragment allows us to lower the |T |2 complexity, by replacing one of the |T | factors by
|O|, the number of distinct objects.

Proposition 5.4. The QueryComputation problem for TriAL= expressions can be
solved in time O(|e| · |O| · |T |).

Proof. To prove this we will use the close connection of positive fragment of TriAL=

with FO4. We establish this as follows. To each triplestore T = (O,E1, . . . , En) we associate
an FO structure MT = (O,E1, . . . , En), where O is the set of objects appearing in T , and
E1, . . . , En are just the representation of the triple relations. As before (see e.g. Section
4), we assume that the constants o ∈ O are present in our vocabulary and interpreted
as themselves (note that we always have that O ⊂ O), and we deploy the active domain
semantics, therefore executing all the logical operations with O as the operative domain. In
Lemma 5.5 we will then show that for each TriAL= expression e one can compute, in time
O(|e|), an equivalent FO formula ϕe true precisely for the triples in MT which satisfy e
over T .

Note that we can compute MT from T in linear time. To finish the proof we show in
Lemma 5.6 that each FO4 formula ϕ using relations that are at most ternary (in fact this
holds for relations of arity four as well, but is not relevant for our analysis) can be evaluated
in time O(|ϕ| · |O|4).

The result of Proposition 5.4 now follows, since we can take our expression e, transform
it into a formula ϕe of FO4 and evaluate it in time O(|ϕe| · |O|4) = O(|e| · |O| · |T |), since
|T | = |O|3 and |ϕe| = O(|e|).

The proof of the two lemmas follows below.

First we show that over triplestores TriAL= is contained in FO4.

Lemma 5.5. For every TriAL= expression e one can construct an FO4 formula ϕe such
that a triple (a, b, c) belongs to e(T ) if and only if MT |= ϕe(a, b, c).
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Proof. The proof is done by induction. The base case when e = Ei for some 1 ≤ i ≤ n
is trivial, and so are the cases when e = e1 ∪ e2, e = e1 − e2 and e = σθe1. The only

interesting case is when e = e1 1
i,j,k
θ e2.

As usual, we assume that e is e1 1
i,j,k
θ e2, where θ is a conjunction of equalities between

elements in {1, 1′, 2, 2′, 3, 3′} ∪ O. We need some terminology.
Let θ = θ` ∧ θr ∧ θ1 ∧ θc` ∧ θcr, where

— θ` and θr contain only equalities between indexes in {1, 2, 3} and {1′, 2′, 3′}, respectively.
— θc` and θcr contain only equalities where one element is in O and the other is in {1, 2, 3}

and {1′, 2′, 3′}, respectively.
— θ1 contains all the remaining equalities, i.e. those equalities in which one index is in
{1, 2, 3} and the other in {1′, 2′, 3′}.

Notice that any two equalities of form i = j′ and i = k′, for i ∈ {1, 2, 3} and j′, k′ ∈
{1′, 2′, 3′} can be replaced with i = j′ and j′ = k′, and likewise we can replace i = k′

and j = k′ with i = j and j = k′. For this reason we assume that θ1 contains at most 3
equalities, and no two equalities in them can mention the same element. Furthermore, if θ1
has two or more equalities, then the join can be straightforwardly expressed in FO4, since
now instead of the six possible positions we only care about four -or three-of them. For this
reason we only show how to construct the formula when θ1 has one or no equalities.

Finally, for a conjunction θ of equalities between elements in {1, 1′, 2, 2′, 3, 3′}, we let α(θ)
be the formula

∧
i=j∈θ xi = xj , and for a conjunction θc of equalities between an object in

O and an element in {1, 1′, 2, 2′, 3, 3′} we let α(θc) =
∧
o=i∈θc o = xi.

In order to construct formula ϕe, we distinguish 2 types of joins:

— Joins of form e = e1 1
i,j,k
θ e2 where all of i, j, k belong to either {1, 2, 3} or {1′, 2′, 3′}.

Assume that i, j, k belong to {1, 2, 3} (the other case is of course symmetrical). We first
consider the case in which θ1 has no equalities. We then let

ϕe(xi, xj , xk) = ϕe1(x1, x2, x3) ∧ α(θ`) ∧ α(θc`)∧

∃w
(
∃x1

(
∃x2(ϕe2(w, x1, x2) ∧ α(θr)[x1′ , x2′ , x3′ → w, x1, x2]∧

α(θcr)[x1′ , x2′ , x3′ → w, x1, x2])
))

Where a formula ψ[x, y, z → x′, y′, z′] is just the formula ψ in which we replace each
occurrence of variables x, y, z for x′, y′, z′, respectively. For the case when θ1 is nonempty,
notice here than any equality in θ1 only makes our life easier, since it eliminates one of
the existential guesses we need in the above formula. This cover all other possible cases
of θ1.
Let us illustrate this construction with an example.
Consider the expression e = e1 1

1,2,3
1=2 e2. Then θ` is 1 = 2, and all of the remaining

formulas are empty. Then we have:

ϕe(x1, x2, x3) = ϕe1(x1, x2, x3) ∧ x1 = x2 ∧ ∃w∃x1∃x2ϕe2(w, x1, x2)

— Joins of form e = e1 1
i,j,k
θ e2 where not all of i, j, k belong to either {1, 2, 3} or {1′, 2′, 3′}.

Assume for the sake of readability that i = 1, j = 2 and k = 3′ (all of other cases are
completely symmetrical). We have again two possibilities:
— There are no equalities in θ1. We then let
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ϕe(x1, x2, x3′) =
(
∃x3(ϕe1(x1, x2, x3) ∧ α(θ`) ∧ α(θc`))

)
∧

∃x3∃x1

(
ϕe2(x3, x1, x3′) ∧ α(θr)[x1′ , x2′ → x3, x1] ∧ α(θcr)[x1′ , x2′ → x3, x1]

))
— There is a single equality in θ1. Assume for the sake of readability that i = 1, j = 2

and k = 3′ (all of other cases are completely symmetrical). Notice that if θ1 has the
equality 3 = 3′, then this is equivalent to the previous case with one equality in θ1,
but with k = 3. Moreover, equalities in θ1 involving 1 or 2 just make our life easier,
so we will also not take them into account here. We are thus left with the assumption
that θ1 contains the equality 3 = 1′ (the case where it contains instead 3 = 2′ is
symmetrical). We then let

ϕe(x1, x2, x3′) =

∃x1′

(
ϕe1(x1, x2, x1′) ∧ α(θ`)[x3 → x1′ ] ∧ α(θc`)[x3 → x1′ ]∧

∃x1

(
ϕe2(x1′ , x1, x3′) ∧ x1′ = x3′ ∧ α(θr)[x2′ → x1] ∧ α(θcr)[x2′ → x1]

))
Having established how to construct ϕe, it is now straightforward to show that it sat-

isfies the property of Lemma 5.5. It is also readily observed that the size of formula ϕe
corresponding to e is O(|e|).

To finish the proof of Proposition 5.4 we show that FO4 formulas can be evaluated
efficiently.

Lemma 5.6. Let ϕ be an arbitrary formula using at most four variables. Then the set
of all tuples that make ϕ true in M, with M as above (we omit the subscript T for the sake
of readability, since it is now clear), can be computed in time O(|ϕ| · |O|4).

Proof. To see that this holds note that we can assume that our formulas only use the
connectives ¬,∨ and the quantifier ∃. Indeed, we can assume this since any formula using
other quantifiers can be rewritten using the ones above with a constant blow-up in the size
of formula. In particular, our formulas in Lemma 5.5 use only ∧ in addition to these three
logical connectives, and ∧ can be rewritten in terms of ∨ and ¬.

The desired algorithm works as follows.

(1) Build a parse tree for the formula ϕ.
(2) Compute the output relation(s) bottom-up using the tree.

To see that the algorithm works within the desired time bound we only have to make
sure that each of the computation steps in 2 can be performed in time O(|O|4). We have
three cases to consider, based on whether we are using negation, disjunction, or existential
quantification. Here we assume that we compute a matrix ψ(M), for each subformula ψ of
ϕ. Note that, since we use formulas with at most four free variables each matrix can be of
size at most |O|4 (i.e. we are working with a four dimensional matrix). If the (sub)formula
has only two free variables the resulting matrix will, of course, be two dimensional.

First we consider the case of negation. That is, assume that we have a matrix ψ(M)
and we are evaluating a formula ϕ = ¬ψ. Then we simply build a matrix for the ϕ(M)
by flipping each bit in the matrix for ψ(M). This can clearly be done in time O(|O|4) by
traversing the entire matrix.

Next, consider the case when ϕ = ∃xψ(x, y, z, w) and assume that we have the matrix
for ψ(x, y, z, w). The existing matrix is now reduced to a three dimensional matrix with the
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value 1 in position i, j, k if and only if there is an l such that ψ(M)[l, i, j, k] = 1. Note that
computing this amounts to scanning the entire matrix for ψ. In the case when ψ case only
three free variables we will need only O(|O|3) time to compute ϕ(M).

Finally, let ϕ = ψ1(x, y, w) ∨ ψ2(x, y, z, w). The cases when ψ1 and ψ2 have a different
number of free variables follows by symmetry. What we do first is to compute a 4-D matrix
ψ′1(M) by setting ψ′1(M)[i, j, k, l] = 1 iff ψ1(M)[i, j, l] = 1. Note that this matrix can be
computed in time O(|O|4). Next we compute the output matrix by putting 1 in each cell
where either ψ′1(M) or ψ2(M) have 1. All the other cases can be performed symmetrically
by using the appropriate matrices and their projections.

This completes the proof of Lemma 5.6.

Navigational fragments. To pose navigational queries, one needs the recursive algebra, so
the question is whether similar bounds can be obtained for meaningful fragments of TriAL∗.
Using the ideas from the proof of Theorem 5.2 we immediately get an O(|e| · |O| · |T |2) upper
bound for TriAL= with recursion. However, we can improve this result for the fragment
reachTA= that extends TriAL= with essentially reachability properties, such as those used
in RPQs and similar query languages for graph databases.

To define it, we restrict the star operator to mimic the following graph database reacha-
bility queries:

— the query “reachable by an arbitrary path”, expressed by (R11,2,3′

3=1′ )∗; and
— the query “reachable by a path labeled with the same element”, expressed by

(R11,2,3′

3=1′,2=2′ )∗.

These are the only applications of the Kleene star permitted in reachTA=. For this fragment,
we have the same lower complexity bound.

Proposition 5.7. The problem QueryComputation for reachTA= can be solved in
time O(|e| · |O| · |T |).

Proof. To show this we will use the algorithm presented in Proposition 5.4. All of the
operations except the evaluation of Kleene star will be preformed in a same way as there.
Note that we can assume this since the algorithm in Lemma 5.6 computes the subexpressions
bottom up using the matrices representing the output. Thus we can use it to compute
answers to subformulas, compose it with the method presented here to evaluate Kleene
stars and proceed with the algorithm from Lemma 5.6. To obtain the desired complexity
bound we only have to show how to compute navigational operations in time O(|O| · |T |).

That is, we show how to, given a matrix representation for a relation R we compute

matrix representation for (R11,2,3′

3=1′ )∗ and (R11,2,3′

3=1′,2=2′ )∗, respectively.

Let O = {o1, . . . , on} be the set of object appearing in our triplestore T . (The assumption
that they are ordered is standard when considering matrix representations). As input, we
are given a three dimensional matrix R representing the output of relation R when evaluated
over T . That is we have (oi, oj , ok) ∈ R(T ) if and only if R[i, j, k] = 1. (Here we use R both
to denote the relation R and its matrix representation).

First, in Procedure 3, we give a procedure that computes the matrix Me for the expression

e = (R11,2,3′

3=1′ )∗.

To show that the algorithm works correctly notice that steps 1 to 6 precompute the
matrix Rreach such that Rreach[i, j] = 1 if and only if oi has and out edge ending in oj
(or equivalently (oi, o, ok) ∈ T for some o). After this in step 7 we compute the transitive
closure R∗reach thus obtaining all pairs of nodes reachable one from another using path of
arbitrary label in the graph representing T . Next in steps 8 to 15 we simply compute all
the triples in the output matrix Me. To do so we observe that a pair (oi, ok) will belong to
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Procedure 3 Computing e = (R11,2,3′

3=1′ )∗

Input: Matrix representation of R
Output: Matrix Me representing e

1: Precomputing the reachability matrix Rreach:
2: for i = 1→ n do
3: for j = 1→ n do
4: for k = 1→ n do
5: if R[i, k, j] = 1 then
6: Rreach[i, j] = 1

7: Compute the transitive closure R∗reach
8: Compute the output matrix Me:
9: for i = 1→ n do

10: for j = 1→ n do
11: for k = 1→ n do
12: if R[i, k, j] = 1 then
13: for l = 1→ n do
14: if R∗reach[j, l] = 1 then
15: Me[i, k, l] = 1

Procedure 4 Computing e = (R11,2,3′

3=1′,2=2′ )∗

Input: Matrix representation of R
Output: Matrix Me representing e

1: for k = 1→ n do
2: Precomputing the reachability matrix Rkreach:
3: for i = 1→ n do
4: for j = 1→ n do
5: if R[i, k, j] = 1 then
6: Rreach[i, j] = 1

7: Compute the transitive closure Rkreach
∗

8: Compute the output matrix Me:
9: for i = 1→ n do

10: for j = 1→ n do
11: if R[i, k, j] = 1 then
12: for l = 1→ n do
13: if Rkreach

∗
[j, l] = 1 then

14: Me[i, k, l] = 1

some triple (oi, ok, ol) of the output, if there is j such that (oi, ok, oj) ∈ T (line 12) and ol
is reachable from oj (line 14).

To determine the complexity of the algorithm notice that steps 1 to 6 take time
O(|O|3) = O(|T |), while computing the transitive closure in step 7 can be done using
Warshall’s algorithm (see T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Intro-
duction to Algorithms, The MIT Press, 2003.) in time O(|O|3) = O(|T |). Finally steps 8 to
15 take time O(|O| · |T |), thus giving us the desired time bound.
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Next, in Procedure 4, we show how to compute joins of the form (R11,2,3′

3=1′,2=2′ )∗ using a
slight modification of the algorithm above.

It is straightforward to see that the algorithm uses the same time to compute the output
as the algorithm in Procedure 3.

To show that it works correctly observe that we precompute matrix Rkreach for each k,
thus checking reachability only for triples whose second node is ok. Since the rest of the
algorithm works in the same way as the one in Procedure 3, we conclude that the computed
answer Me represents e correctly.

6. TRIPLE ALGEBRA AND OTHER LANGUAGES

We have provided a declarative specification for TriAL and TriAL∗, but so far we do not know
how our algebras compare with other popular languages for relational databases, RDF or
graph databases.

The goal of this section is to compare the expressive power of TriAL and TriAL∗ with other
popular languages for relational databases, RDF or graph databases. In order to be able to
perform this comparison we first need a common yardstick for all of these formalisms. We
use First–Order Logic (FO) to gauge TriAL in terms of relational query languages and the
infinitary logic Lw∞,w to compare TriAL∗ with graph query languages that are also equipped
with a star operator. As usual, we say that a language L1 is contained in a language L2 if
for every query in L1 there is an equivalent query in L2. If in addition L2 has a query not
expressible in L1, then L1 is strictly contained in L2. The languages are equivalent if each
is contained in the other. They are incomparable if none is contained in the other.

Since TriAL is a restriction of relational algebra, of course it is contained in FO, and sim-
ilarly TriAL∗ is contained in Lw∞,w. But several querying formalisms for graph or semistruc-
tured data have been shown to be equivalent to fragments of these logics with restricted
variables, such as XPath and FO with only 3 variables (FO3) over trees [Marx 2005] or
navigational graph query languages and FO3 over graphs [Fletcher et al. 2011]. Thus, to
begin our study, we show that the expressive power of TriAL is strictly between that of the
fragments of FO using 3 and 6 variables, and that TriAL∗ lies strictly between the fragments
of Lw∞,w using 3 and 6 variables. To show these results we need to develop a good deal of
technical machinery, including a notion of games characterizing expressivity in TriAL and
TriAL∗. We then use our machinery to compare the expressive power of our algebras with
several established formalisms. Most notably, we show that TriAL∗ strictly contains Graph
XPath, the graph database adaptation of navigational XPath for XML databases [Libkin
et al. 2013], and that it is incomparable with register automata and other graph query
languages supporting data values from [Libkin and Vrgoč 2012].

6.1. Triple Algebra and First–Order Logic

We use exactly the same relational representation of triplestores as we did when we found
Datalog fragments capturing TriAL and TriAL∗. That is, we compare the expressive power
of TriAL with that of First–Order Logic (FO) over vocabulary 〈E1, . . . , En,∼〉.

As we have mentioned, TriAL is trivially contained in FO, and we do a more detailed
analysis based on the number of variables. Recall that FOk stands for FO restricted to k
variables only. To give an intuition why such restrictions are relevant for us, consider, for

instance, the join operation e = E11,3′,3
2=2′ E. It can be expressed by the following FO6 for-

mula: ϕ(x1, x3′ , x3) = ∃x2∃x1′∃x2′
(
E(x1, x2, x3)∧E(x1′ , x2′ , x3′)∧x2 = x2′

)
. This suggests

that we can simulate joins using only six variables, and this extends rather easily to the
whole algebra.

Proposition 6.1. TriAL is contained in FO6.
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Proof. Let e be a TriAL expression. We construct an FO6 formula ϕe such that e(T ) =
ϕe(IT ), for each triplestore T . The proof is by induction.

— For the base case, if e corresponds to a triplestore name E, then ϕe is E(x, y, z).
— If e = e1 ∪ e2, then ϕe(x, y, z) = ϕe1(x, y, z) ∨ ϕe2(x, y, z), which clearly is in FO6 since

existential variables within ϕe1 and ϕe2 can be renamed and reused.
— If e = e1 − e2, then ϕe(x, y, z) = ϕe1(x, y, z) ∧ ¬ϕe2(x, y, z)

— If e = e1 1
i,j,k
θ,η e2, then ϕe(xi, xj , xk) = ∃xu∃xv∃xwϕe1(x1, x2, x3) ∧ ϕe2(x1′ , x2′ , x3′) ∧

α(θ) ∧ β(η), where u, v, w are the remaining elements that together with i, j, k complete
{1, 1′, 2, 2′, 3, 3′}, α(θ) is a conjunction of one equality xp = xq or xp = o for each equality
p = q or p = o in θ, and one inequality xp 6= xq or xp 6= o for each inequality p 6= q
or p 6= o in θ, for o ∈ O and p, q ∈ {1, 1′, 2, 2′, 3, 3′}; and β(η) is a conjuntion of atoms
∼(xp, xq) for each equality ρ(p) = ρ(q) in η, and atoms ¬∼(xp, xq) for each inequality
ρ(p) 6= ρ(q) in η.

— Similarly, if e = σθ,ηe1 then ϕe(x, y, z) = ϕe1(x, y, z) ∧ α(θ) ∧ β(η), where α(θ) and β(η)
are defined as in the previous bullet.

It is now straightforward to check the desired properties for e and ϕe.

All the subformulas used in this construction have just three free variables, so it seems
plausible to believe that the containment shown above is strict. At the same time, one could
ask what happens with fragments of FO using fewer variables. It is not difficult to show
that TriAL simulates FO3, but the relationship with the 4 and 5 variable formalisms appears
much more intricate, and its study requires more involved techniques. As it turns our, the
expressive power of TriAL lies strictly between FO3 and FO6.

Theorem 6.2.

— FO3 is strictly contained in TriAL.
— TriAL is strictly contained in FO6.
— TriAL is incomparable with FO4 and FO5.

We prove this theorem by showing that TriAL is equivalent to a fragment of FO whose
expressive power is also as in the above theorem. We denote this fragment as FO3-join, and
we define it next.

Consider first the following extension of FO with a join operator, that we denote by
FO-join. If ϕ1 and ϕ2 are formulas in FO-join formulas with free variables x1, x2, x3 and
x1′ , x2′ , x3′ respectively, θ is a conjunction of equalities and inequalities between indexes
in {1, 1′, 2, 2′, 3, 3′} and η is a conjunction of equalities and inequalities between indexes

in ρ(1), . . . , ρ(3′), then the formula ϕ(xi, xj , xk) = ϕ1(x1, x2, x3)1i,j,k
θ,η ϕ2(x1′ , x2′ , x3′) is

also an FO-join formula. The semantics of the join construct is defined in the same
way as for Triple Algebra: a structure I and an assignment σ : {xi, xj , xk} → U

satisfy ϕ1(x1, x2, x3)1i,j,k
θ,η ϕ2(x1′ , x2′ , x3′) if σ can be extended to an assignment σ′ :

{x1, x2, x3, x1′ , x2′ , x3′} → U such that (1) (I, σ′) |= ϕ1 and (I, σ′) |= ϕ2; (2) σ(xp) = σ(xq)
for every p = q in θ and σ(xp) 6= σ(xq) for every p 6= q in θ; and (3) ρ(σ(xp)) ∼ ρ(σ(xq))
for every ρ(p) = ρ(q) in η and ρ(σ(xp)) 6=∼ ρ(σ(xq)) for every ρ(p) 6= ρ(q) in η.

To define the language FO3-join we restrict the variables used in the formulas of this
language; the intuition is that we want to restrict formulas to use just three variables in all
cases except when a join is defined. To formalize this we define the set var(ϕ) of variables
used by ϕ by induction: the variables used by E(x, y, z) are {x, y, z} and the variables
used by x = y are {x, y}; the variables used by ϕ1 ∨ ϕ2 or ϕ1 ∧ ϕ2 is the union of the
set of variables used in ϕ1 and the set of variables used in ϕ2; the variables used in ∀xϕ,
∃xϕ and ¬ϕ are the same as the variables used in ϕ, and finally the variables used in
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ϕ(xi, xj , xk) = ϕ1(x1, x2, x3)1i,j,k
θ,η ϕ2(x1′ , x2′ , x3′) are just {xi, xj , xk}. Then FO3-join is

defined as the fragment of all FO-join formulas that use only three variables.
As promised, we show that FO3-join captures Triple Algebra.

Lemma 6.3. TriAL is equivalent to FO3-join.

Proof. The proof that TriAL is contained in FO3-join resembles the proof of Proposition
6.1, as most of the translation from TriAL to FO6 in this proof uses just three variables.
The only exception is the join operator, that we can instead simulate with the join operator
of our logic. Let e be a TriAL expression. We construct an FO3-join formula ϕe such that
e(T ) = ϕe(IT ), for each triplestore T , exactly as in the proof of Proposition 6.1, with the

exemption of the inductive case when e = e1 1
i,j,k
θ,η e2. In this case, ϕe(xi, xj , xk) corresponds

to ϕe1(x1, x2, x3)1i,j,k
θ,η ϕe2(x1′ , x2′ , x3), where i, j, k ∈ {x1, x2, x3, x1′ , x2′ , x3′} using the

appropriate renaming of variables for ϕe1 and ϕe2 . It is once again straightforward to check
the desired properties for e and ϕe.

To show that FO3-join is contained in TriAL, one needs to show how to construct, for
every FO3-join formula ϕ, an equivalent TriAL expression eϕ such that eϕ(T ) = ϕ(IT ), for
all triplestores T . Once again, the construction is done by induction on the formula. During
the induction case we assume that the variables used in e are x1, x2 and x3. Furthermore,
recall that U is just a shorthand for the relation that contains O3.

— For the base case, if ϕ = E(x1, x2, x3) for some triplestore name E, then eϕ is just
E. However, in general case when ϕ = E(xi, xj , xk), with each of xi, xj , xk are (not
necessarily distinct) variables in {x1, x2, x3}, we let eϕ = E1i,j,k E. For the other base

case when ϕ is xi = xj , then eϕ = U 11,2,3
i=j U .

— If ϕ = ¬ϕ1, then eϕ = U − eϕ1
(recall that we assume active domain semantics for FO

formulas in general).

— If ϕ = ∃xiϕ1, then eϕ = eϕ1
1d̄ U , where d̄ depends xi: d̄ is 1′, 2, 3 if i = 1, 1, 2′, 3 if

i = 2 and 1, 2, 3′ if i = 3. Intuitively, when quantifying xi we do a projection on the i-th
attribute of the computed relation. Since we cannot deal with relations of less arity, we
put instead all possible values from O.

— If ϕ = ϕ1 ∨ϕ2, then eϕ = eϕ1
∪ eϕ2

(again, this works because we assume active domain
semantics for FO formulas).

— If ϕ = ϕ1(y1, y2, y3)1i,j,k
θ,η ϕ2(y1′ , y2′ , y3′), then eϕ = eϕ1

1i,j,k
θ,η eϕ2

.

It is also a straightforward task to check that ϕ and eϕ satisfy our desired properties.

Clearly FO3-join lies between FO3 and FO6: by definition it can express all FO3 queries,
and as we saw in Proposition 6.1 any FO3-join query can be expressed in FO6. The next
theorem shows that TriAL is incomparable with these fragments, which concludes the proof
of Theorem 6.2.

Proposition 6.4. FO3-join is incomparable with FO4 and FO5.

Proof. We divide this proof into two parts: first we construct an FO3-join formula that
cannot be expressed in FO5 and then we construct an FO4 formula that cannot be expressed
in FO3-join. We focus on the simplest

For the first part we show that the following FO3-join formula cannot be expressed in
FO5 (and thus not in FO4):

e6 := ∃x1∃x2∃x3

(
E(x1, x2, x3)

1,2,3

1
θ
E(x1′ , x2′ , x3′)

)
, with θ =

∧
i,j∈{1,2,3,1′,2′,3′},i6=j

i 6= j,
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This query states that our triplestore has two tuples in E where all objects are different.
Now take T5 = (O5, E5, ρ5) with O5 = {a, b, c, d, e}, and E5 = O5 × O5 × O5, where ρ5

assigns the same data value to all elements of O5, and define T6 in an analogous way, but
with six elements. It is a well known fact [Libkin 2004] that the duplicator has a winning
strategy in a 5-pebble game on these two structures, so they can not be distinguished by an
FO5 formula. On the other hand our expression e6 does distinguish them and is thus not
expressible in FO5.

Before showing the FO4 formula for the first part we need to develop some technical
machinery that allows us to show inexpressibility over FO3-join.

Let J be the set of all the join symbols that we allow in TriAL, and ¬J be the set

{¬
|
1
∈
1J }. A recipe p for FO3-join is a tree where each node is labeled with symbols from

the alphabet J ∪ ¬J ∪ {∃,∀}, each node can have at most two children, and such that
the following holds: If a node n of p has two children, then it is labeled with a symbol in
J ∪ ¬J , and if a node n of p has one child, then it is labeled with ∃ or ∀.

For every such recipe p, define the quantifier class L(p) inductively as follows:

—L(ε) contains quantifier and join free formulae.
— If the root of p is labeled with Q ∈ {∃,∀}, then L(p) is the closure under conjunctions

and disjunctions of the class L(p′)∪{Qxϕ | ϕ ∈ L(p′)}, where p′ is the subtree of p whose
root is the only child of p.

— If the root of p is labeled with a symbol 1 in J , let p1 and p2 be the subtrees of p whose
roots are the first and the second child of p, respectively. Then L(p) is the closure under
conjunctions and disjunctions and of the class of all formulae ϕ 1 ψ, where ϕ ∈ L(p1)
and ψ ∈ L(p2).

— If the root of p is labeled with a symbol ¬ 1 in ¬J , let p1 and p2 be the subtrees of p
whose roots are the first and the second child of p, respectively. Then L(p) is the closure
under conjunctions and disjunctions and of the class of all formulae ¬(ϕ 1 ψ), where
ϕ ∈ L(p1) and ψ ∈ L(p2).

We now define the join game between two structures A and B. The games is played
between two players, the spoiler and the duplicator. It proceeds as in a typical 3-pebble
game (see [Libkin 2004] for a precise explanation), except that now the spoiler has two extra
moves avaliable. For ease of exposition we only deal with vocabularies without constants,
although the game can be modified to allow for constants as well.

There are nine pairs of pebbles: three main pairs (x1, y1), (x2, y2), (x3, y3), and size aux-
iliary pebbles (u1, v1), (u2, v2), (u3, v3), (u1′ , v1′), (u2′ , v2′), (u3, v4′). In every round of the
game the spoiler starts by choosing and performing one of the following moves, to which
the duplicator must respond.

(1) The existential move: The spoiler picks a pebble xi from the main three pairs and locates
this pebble on an element of A. Duplicator must respond by locating the corresponding
pebble yi on an element of B.

(2) The universal move: The spoiler picks a pebble yi from the main three pairs and locates
this pebble on an element of B. Duplicator must respond by locating the corresponding
pebble xi on an element of A.

(3) The positive join 1i,j,k
θ,η move:

This move can only be performed when all 3 pebbles from the main set have al-
ready been placed on both structures. Assume that pebbles x1, x2 and x3 are placed
on elements a1, a2, a3 in A, respectively. The spoiler picks all six auxiliary peb-
bles u1, u2, u3, u1′ , u2′ , u3′ , and locate all of them in elements p1, p2, p3, p1′ , p2′ , p3′ of
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A, respectively, with the condition that all pebbled elements satisfy (a1, a2, a3) =

(p1, p2, p3)1i,j,k
θ,η (p1′ , p2′ , p3′). The spoiler then removes pebbles (x1, x2, x3) from A.

The duplicator must then place the corresponding pebbles v1, v2, v3, v1′ , v2′ , v3′ B, in the
same fashion as the spoiler, also satisfying the join, and then remove from B pebbles
y1, y2, y3.
Spoiler then has two choices: either remove pebbles u1, u2, u3 fromA and replace pebbles
u1′ , u2′ , u3′ with x1, x2, x3, respectively, in A, or instead remove u1′ , u2′ , u3′ and replace
u1, u2, u3 with x1, x2, x3. In the first case the duplicator removes pebbles v1, v2, v3 from
B and replaces pebbles v1′ , v2′ , v3′ with y1, y2, y3, respectively, in B; and in the second
case the duplicator removes v1′ , v2′ , v3′ and replaces v1, v2, v3 with y1, y2, y3

(4) The negative join 1i,j,k
θ,η move:

This move goes in the same fashion as the positive version, except that A and B are
interchanged. Assume that pebbles y1, y2 and y3 are placed on elements b1, b2, b3 in B,
respectively. The spoiler picks all six auxiliary pebbles v1, v2, v3, v1′ , v2′ , v3′ , and locate
all of them in elements p1, p2, p3, p1′ , p2′ , p3′ of B, respectively, with the condition that

all pebbled elements satisfy (b1, b2, b3) = (p1, p2, p3)1i,j,k
θ,η (p1′ , p2′ , p3′). The spoiler then

removes pebbles (y1, y2, y3) from B.
The duplicator must then place the corresponding pebbles u1, u2, u3, u1′ , u2′ , u3′ A, in
the same fashion as the spoiler, also satisfying the join, and then remove from B pebbles
x1, x2, x3.
Spoiler then has two choices: either remove pebbles v1, v2, v3 from B and replace pebbles
v1′ , v2′ , v3′ with y1, y2, y3, respectively, in B, or instead remove v1′ , v2′ , v3′ and replace
v1, v2, v3 with y1, y2, y3. duplicator must follow with the corresponding actions on A.

After each round, another round is played if the main pebbles determine a local isomor-
phism from A to B. Formally, let a1, a2, a3 and b1, b2, b3 be the elements carrying pebbles
x1, x2, x3 and y1, y2, y3, respectively, and consider the mapping f that maps each ai to bi.
Then we say that there is a local isomorphism from A to B if f defines an isomorphism
on the substructures of A and B generated by the pebbled elements. The spoiler wins the
game if at the end of any round the main pebbles do not determine a local isomorphism
from A to B. The duplicator wins the game if the spoiler is not capable of finding a winning
strategy after any number of rounds. For every recipe p of FO3-join we also define the set
of L(p)-join games. It contains all join games in which the sequence of moves performed by
the spoiler are described by a path from the root of p to one of its leaves.

Let L be a class of FO3-join formulae and A and B structures of vocabulary
〈E1, . . . , En,∼, ā〉. We write A �L B if A |= ϕ implies B |= ϕ, for every sentence ϕ ∈ L.

Lemma 6.5. If the duplicator wins on all L(p)-join games, then A �L(p) B.

Before we prove this Lemma, we make two observations. We have included a tuple of
constants in our vocabulary. This is to allow the use of sentences that start with a join
operator, since we need this for the inductive case. Moreover, note that If, in a join game
a pebble has already been placed on element a ∈ A, then the remainder of the game can
be considered as a game with two pebbles on (A, a), and the same holds when a greater
number of pebbles has already been placed.

Proof. We prove the contrary: If there is a sentence ϕ of class L(p) such that A |= ϕ
but B 6|= ϕ, then the spoiler has a winning strategy for the L(p)-join game. We prove this
by induction on the height of p.

The case when p is empty is trivial.
For the inductive case, assume that Lemma holds for all recipes of height k, and let p be a

recipe of height k+1. Furthermore, assume that there is a sentence ϕ such that A |= ϕ, but
B 6|= ϕ. We will construct a winning strategy for the spoiler. If ϕ is a boolean combinations
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of formulas, then the two structures are distinguished by at least one of them. We are thus
left with the following cases:

— The case when ϕ is of form ∃ψ(x̄), where x̄ is a tuple of at most two variables, and ψ
has depth at most k − 1 and belongs to L(q), where q is the subtree whose root is the
single child of p. In this case the spoiler can win as follows. In his first move he places
one main pebble in an element a such that (A, a) |= ψ. Since by hypothesis we have that
B 6|= ϕ, then no matter in which element b ∈ B the duplicator places its pebble, we know
that (B, b) 6|= ψ, and thus the spoiler has a winning strategy for the remainder of the
truncated game.

— ϕ is of form ∀ψ(x̄), in which case the strategy is analogous to the previous one, but with
A and B interchanged.

— ϕ(a, b, c) is of form ϕ1 1 ϕ2, for some 1 in J , and where a, b and c are constants in
our vocabulary. Then p has two children p1 and p2, both of height ≤ k, and ϕ1 ∈ L(p1),
ϕ2 ∈ L(p2). Since A |= ϕ(a, b, c), yet B 6|= ϕ(a, b, c), spoiler can win by first placing
pebbles on the interpretation of elements a, b, c over A, and splitting pebbles, placing
them into sets (a1, b1, c1) and (a2, b2, c2) of elements inA such that (a, b, c) = (a1, b1, c1) 1
(a2, b2, c2). Given that B 6|= ϕ(a, b, c), then for every pair (d1, e1, f1) and (d2, e2, f2) of
elements in B such that (a, b, c) = (d1, e1, f1) 1 (d2, e2, f2), it must be the case that either
(B 6|= ϕ1(d1, e1, f1) or (B 6|= ϕ(d2, e2, f2). Depending on the move of the duplicator, spoiler
chooses the set accordingly, and continues to win the truncated game on (A, ai, bi, ci) and
(B, di, ei, fi), for i = 1 or i = 2.

— ϕ(a, b, c) is of form ¬(ϕ1 1 ϕ2), for some 1 in J , and where a, b and c are constants
in our vocabulary. Then p has two children p1 and p2, both of height ≤ k, and ϕ1 ∈
L(p1), ϕ2 ∈ L(p2). In this case, since A |= ϕ(a, b, c), yet B 6|= ϕ(a, b, c), we have that
A 6|= (ϕ1 1 ϕ2), but B |= (ϕ1 1 ϕ2). the spoiler can then use the same strategy outlined
in the previous case, except with A and B interchanged.

We now continue with the proof of the Theorem. Due to Lemma 6.5, all that is
left to do is to show structures A and B such that the duplicator can win any join
game, and yet they are distinguished by an FO4 formula. For simplicity we use the sim-
pler vocabulary 〈E〉. Structures A and B are defined over the same domain of elements
D = {a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3, e}.

++++++ falta la nueva parte con las nuevas estructuras, hay que mejorar y hay que
mostrar este lemma! +++++++++

Lemma 6.6. Consider a set S ⊆ D of three elements and a partial isomorphism f :
S → D from A to B. Then for every pair (P, P ′) of subsets of D of three elements one
can find subsets R and R′ of D, of three elements each and functions h : R ∪ S → D and
h′ : R′ ∪ S → D that extend f , and such that both h and h′ are partial isomorphisms from
A to B. The same holds when interchanging A for B.

Note that the above lema guarantees that every join move can be continued: every time
the spoiler places the additional pebbles, the duplicator respond by selecting the elements
that correspond to the image of h and h′.

From Lemma 6.5 we obtain that A and B agree on all FO3-join formulas. However, it is
not difficult to see that they do not agree to the following FO4 formula (which asks for a
4-clique and thus is only true in B).

+++ revisar +++
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ϕ(x, y, z) = ∃x∃y∃z∃w∃u
(
ψ(x, u, y) ∧ ψ(x, u, z) ∧ ψ(x, u, w) ∧ ψ(y, u, z)∧

ψ(y, u, w) ∧ ψ(z, u, w)
)
,

where ψ(x, u, y) = E(x, u, y) ∧ E(y, u, x) This finishes the proof of the Theorem.

Expressivity of TriAL=. The TriAL queries we used to separate it from FO5 or FO4 make
use of inequalities in the join conditions. Thus, it is natural to ask what happens when
we restrict our attention to TriAL=, the fragment that disallows inequalities in selections
and joins. We saw in Section 5 that this fragment appears to be more manageable in terms
of query answering. This suggests that fewer variables may be enough, as the number of
variables is often indicative of the complexity of query evaluation [Immerman and Kozen
1989; Vardi 1995]. This is indeed the case.

Theorem 6.7.

— FO3 is strictly contained in TriAL=.
— TriAL= is strictly contained in FO4.

Proof. The containment of TriAL= in FO4 was shown in the proof of Proposition 5.4,
and that TriAL= contains FO3 was already showed in the second part of the proof of Theorem
??, since the translation used there does not make use of inequalities in joins.

That the containments are strict follows from the proof of Theorem ??.

Expressivity of the recursive algebra. Next, we turn to the expressive power of TriAL∗.
Since the Kleene star essentially defines the transitive closure of join operators, it seems
natural for our study to compare TriAL∗ with Transitive Closure Logic, or TrCl.

Formally, TrCl is defined as an extension of FO with the following operator. If ϕ(x̄, ȳ, z̄)
is a formula, where |x̄| = |ȳ| = n, and ū, v̄ are tuples of variables of the same length n,
then [trclx̄,ȳϕ(x̄, ȳ, z̄)](ū, v̄) is a formula whose free variables are those in z̄, ū and v̄. The
semantics is as follows. For an instance I and an assignment c̄ for variables z̄, construct a
graph G whose nodes are elements of In and edges contain pairs (ū1, ū2) so that ϕ(ū1, ū2, c̄)
holds in I. Then I |= [trclx̄,ȳϕ(x̄, ȳ, c̄)](ā, b̄) iff (ā, b̄) is in the transitive closure of this graph
G.

It is fairly easy to show that TriAL∗ is contained in TrCl; the question is whether one
can find analogs of Theorem ?? for fragments of TrCl using a limited number of variables.
We denote by TrClk the restriction of TrCl to k variables. Note that constructs of form
[trclx̄,ȳϕ(x̄, ȳ, z̄)](t̄1, t̄2) can be defined using |t̄1|+ |t̄2|+ |z̄| variables, by reusing t̄1 and t̄2
in ϕ.

Then we can show that the relationship between TriAL∗ and TrCl mimics the results of
Theorem ?? for the case of TriAL and FO.

Theorem 6.8.

— TriAL∗ is strictly contained in TrCl6.
— TrCl3 is strictly contained in TriAL∗.
— TriAL∗ is incomparable with TrCl4 and TrCl5.

Proof. We split the proof into three parts, one for each of the claims.

Part 1. We begin by proving that TriAL∗ is strictly contained in TrCl6. To see that TriAL∗

is contained in TrCl6 we use induction on the structure of TriAL∗ expressions. Note that
all the cases, except for the Kleene closure of various joins we use, are precisely the same
translation as in the proof of Theorem ??. What remains to prove is that expressions of the
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form

e′ := (e
i,j,k

1
θ,η

)∗

can be translated into TrCl6 expressions (the other join being completely symmetrical).
To see this, let ψe(x, y, z) be a TrCl6 formula equivalent to e. That is we have that

IT |= ψe(a, b, c) if and only if (a, b, c) ∈ R(T ), for any triplestore T , with IT the FO-
structure representing T . We define the following formula ψe′(x

′, y′, z′) in TrCl6:

ψe(x
′, y′, z′) ∨ ∃x, y, z

(
ψe(x, y, z) ∧ [trclx,y,z,x′,y′,z′ϕ(x, y, z, x′, y′, z′)](x, y, z, x′, y′, z′)

)
Where ϕ(x, y, z, x′, y′, z′) is a formula such that ϕ(a, b, c, a′, b′, c′) holds in IT iff there

exists a triple (a′′, b′′, c′′) such that ψe(a
′′, b′′, c′′) holds and the join of (a, b, c) and (a′′, b′′, c′′)

produces triple (a′, b′, c′). The definition of this formula in TrCl6 is rather cumbersome,
since it depends on the positions i, j, k of the join in question. We just give two examples,
the rest are treated in the same way: For the expression e′ = (e11,2,3′

)∗, we have that
ϕ(x, y, z, x′, y′, z′) is x = x′∧y = y′∧∃x′∃y′

(
ψe(x, y, z)∧ψe(x′, y′, z′)

)
. As another example,

if e′ = (e11′,2′,3′
)∗, then ϕ is just ψe(x, y, z) ∧ ψe(x′, y′, z′).

Next we prove that ψe′ is equivalent to expression e′ over all triplestores. For one direction,
let T be a triplestore database using a set O of objects, and assume that triple (a, b, c) belong
to e′(T ). Then from the semantics of the recursive operator, there are sequences t1, . . . , tm

of triples in O3 and p1, . . . , pm of triples in e(T ) such that t1 ∈ e(T ), and tm+1 = tm
i,j,k

1
θ,η

pm.

If m = 1 this follows from the first part of ψe′ . If m > 1, notice that, by definition,
IT |= ϕ(tj , tj+1) for each 1 ≤ j < m. It follows that IT |= ψe′ . The other direction is
analogous.

The fact that the containment is strict follows from Part 3 of the proof.

Part 2. Next we prove that TrCl3 is contained in TriAL∗. We do this by induction on
TrCl3 formulas. Note that all the cases, except for the case of transitive closure operator,
are exactly the same as in the proof of Theorem ??. Next we show how to translate formulas
of the form

ψ(x, y, z) := [trclx,yϕ(x, y, z)](u1, u2).

By the induction hypothesis there exists a TriAL∗ expression Rϕ such that for any triple-
store T we have IT |= ϕ(a, b, c) iff (a, b, c) ∈ Rϕ(T ).

Consider now the following expression Rψ:

R := (Rϕ

1,2′,3

1
3=3′∧2=1′

)∗.

Observe now that a triple (a, b, c) will be contained in R(T ) iff there is a sequence of
triples (a, b1, c), (b1, b2, c), (b2, b3, c), . . . (bk, b, c) with the property that they all belong to
Rϕ(T ). But this then means that the pair (a, b) belongs to the transitive closure of the
relation defined by ϕ(x, y, c). That is we have that (a, b, c) ∈ R(T ) iff b is reachable from a
using only edges defined by ϕ(x, y, c).

We now proceed case by case, depending on the structure of terms u1 and u2. Since our
terms are only variables we have a total of nine cases.

— If u1 = x and u2 = y we define Rψ := R. It is straightforward to see that (a, b, c) ∈ Rψ(T )
iff IT |= ψ(a, b, c).
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— If u1 = y and u2 = x we define Rψ := R.
— If u1 = x and u2 = z we define Rψ := σ2=3R.
— If u1 = z and u2 = x we define Rψ := σ1=3R.
— If u1 = x and u2 = x we define Rψ := σ1=2R.
— All of the other cases are symmetric.

This concludes the proof in the case when ϕ above uses x, y, z as variables. All of the
other cases are similar, e.g. when we have the formula [trclx,yϕ(x, y, x)](x, y) the expression

(σ1=3Rϕ1
1,2′,3
2=1′ )∗ in place of R will suffice (note that now we have only two free variables).

That the containment is strict follows from the comments at the beginning of the proof
of Part 3 below.

Part 3. We begin by showing that TriAL∗ is not contained in TrCl4 or TrCl5. In the proof
of Theorem ?? we show that TriAL, and thus TriAL∗ contain an expression e such that
e(T ) is nonempty if and only if T has 6 different objects. The proof then follows by two
classical results in finite model theory [Libkin 2004]: (1) e cannot be expressed by neither
L4
∞ω not L5

∞ω, the infinitary logic restricted to 4 and 5 variables, respectively, and (2) TrClk

is contained in Lk∞ω
To see that TrCl4 is not contained in TriAL (and thus that neither TrCl5 not TrCl6 are

contained in TriAL), we define an analog of the logic FO3-join used in the proof of Theorem
??. The logic FO3

∞-join extends FO3-join with countably infinite disjunctions and conjunc-
tions of formulas in FO3-join (of course the restriction on the variables still holds). Formally,
every FO3-join formula is in FO3

∞-join, and if all ϕi are formulas in FO3
∞-join using the

same set of at most 3 variables, for i ∈ S, where S is not necessarily finite, then
∧
i∈S ϕi

and
∨
i∈S ϕi are formulas in FO3

∞-join.
Notice that, by using these disjunctions, it is trivial to express the recursive star operator

of TriAL∗ with FO3
∞-join. Thus, if two structures A and B are indistinguishable by FO3

∞-
join, then so are they by TriAL∗.

On the other hand, using the techniques in [Libkin 2004] it is not difficult to see that, if
two structures A and B are indistinguishable by FO3

∞-join iff they are indistinguishable by
FO3-join (if the spoiler can win the join game on A and B, then it can win the infinitary
join game that characterizes FO3

∞-join).
It follows from the above observations, and the proof of Theorem ??, that TriAL∗ cannot

express the query

ϕ(x, y, z) = ∃x∃y∃z∃w
(
ψ(x, y, w) ∧ ψ(x,w, z) ∧ ψ(w, y, z) ∧ ψ(x, y, z)∧

x 6= y ∧ x 6= z ∧ x 6= w ∧ y 6= z ∧ y 6= w ∧ z 6= w
)
,

where

ψ(x, y, z) = ∃w
(
E(x,w, y) ∧ E(y, w, x) ∧ E(y, w, z) ∧ E(x,w, y) ∧ E(x,w, z) ∧ E(z, w, x)∧

x 6= z ∧ x 6= y ∧ y 6= z
)
.

used in the proof of Theorem ??.

6.2. Triple Algebra as a Graph Language

The goal of this section is to demonstrate the usefulness of TriAL∗ in the context of graph
databases. In particular we show how to use TriAL∗ for querying graph databases, and
compare it in terms of expressiveness with several well established graph database query
languages such as NREs, RPQs and conjunctive regular path queries (CRPQs). As our
yardstick language for comparison we use a recently proposed version of XPath, adapted for
graph querying [Libkin et al. 2013] which subsumes both NREs and RPQs. Its navigational
fragment, presented next, is essentially Propositional Dynamic Logic (PDL) [Harel et al.
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2000] with negation on paths. These languages are designed to query the topology of a
graph database and specify various reachability patterns between nodes. As such, they are
naturally equipped with the star operator and to make our comparison fair we will compare
them with TriAL∗.

The navigational language that we use is called GXPath; its formulae are split into node
tests, returning sets of nodes and path expressions, returning sets of pairs of nodes.

Node tests are given by the following grammar:

ϕ,ψ := > | ¬ϕ | ϕ ∧ ψ |ϕ ∨ ψ | 〈α〉

where α is a path expression.
Path formulae of GXPath are given below. Here a ranges over a finite alphabet Σ.

α, β := ε | a | a− | [ϕ] | α · β | α ∪ β | α | α∗.

The semantics is standard, and follows the usual semantics of PDL or XPath languages.
Given an edge labelled graph G = (V,E) over the labelling alphabet Σ, > returns V , and
〈α〉 returns all v ∈ V so that (v, v′) is in the semantics of α for some v′ ∈ V . The semantics
of Boolean operators is standard. For path formulae, ε returns {(v, v) | v ∈ V }, a returns
{(v, v′) | (v, a, v′) ∈ E} and a− returns {(v′, v) | (v, a, v′) ∈ E}. Expressions α · β, α ∪ β, α,
and α∗ denote relation composition, union, complement (with respect to V 2), and transitive
closure. Finally [ϕ] denotes the set of pairs (v, v) such that v is in the semantics of ϕ.

Since TriAL∗ is designed to query triplestores, we need to explain how to compare its power
with that of graph query languages. Given a graph database G = (V,E) over the alphabet
Σ, we define a triplestore TG as follows. First, let no edge be a new label not appearing in Σ
and define Σ′ = Σ∪{no edge}. Next, let E′ = E∪{(v, no edge, v′)|(v, v′) /∈ π1,3(E)}, where
π1,3 denotes the projecting the first and the third element of each triple in E ⊆ V ×Σ×V .
Finally, we define TG = (O,E′), with O = V ∪Σ′. Note that the extra label is used in order
allow each element of the triplestore domain to appear in the relation E, as per Definition
A.1. This does not cause any issues, since the extended edge relation can be computed in
polynomial time.

When dealing with the triplestore representation TG of a graph database G we will often
use relation E that contains only the edges of the original graph G. In order to avoid
confusing where the relation is coming from, when working inside TG we will use the notation
EG for E. Note that EG can be defined as E′11,2,3

2 6=no edgeE
′. Similarly, instead of working

with the universal relation over TG which contains all the triples of elements in O, we
will make use of the relation UG = {(s, p, o)|s, p, o ∈ V } which contains all the triples of
elements of V . The relation UG is easily defined as U 11,2,3

ϕ U , with ϕ containing conjuncts
1 6= a ∧ 2 6= a ∧ 3 6= a, for each a ∈ Σ′ and U being the universal relation over O as defined
in Section 3.

To compare TriAL∗ with binary graph queries in a graph query language L, we turn TriAL∗

ternary queries Q into binary by applying the π1,3(Q), i.e., keeping (s, o) from every triple
(s, p, o) returned by Q. Under these conventions, we say that a graph query language L is
contained in TriAL∗ if for every binary query α ∈ L there is a TriAL∗ expression eα such that
for every graph database G we get the same answer when applying eα to G as when applying
π1,3(eα) to TG (we say that the two queries are equivalent over graph databases). Likewise,
TriAL∗ is contained in a graph query language L if for every expression e in TriAL∗ there
is a binary query αe ∈ L that is equivalent to π1,3(e) over graph databases. The notions of
being strictly contained and incomparable extend in the same way.

Alternatively, one can do comparisons using triplestores represented as graph databases,
as in Proposition 2.2. Since here we study the ability of TriAL∗ to serve as a graph query
language, the comparison explained above looks more natural, but in fact all the results
remain true even if we do the comparison over triplestores represented as graph databases.
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We now show that all GXPath queries can be defined in TriAL∗, but that there are certain
properties that TriAL∗ can define that lie beyond the reach of GXPath.

Theorem 6.9. GXPath is strictly contained in TriAL∗.

Proof. Assume that GXPath uses a finite alphabet Σ of labels. We show that GXPath
is contained in TriAL∗ by simultaneous induction on the structure of GXPath expressions.
If we are dealing with a path expression α we will denote the TriAL∗ expression equivalent
to α by Eα. Similarly when dealing with a node expression ϕ, the corresponding TriAL∗

expression will be denoted Eϕ. Note that for the node expression ϕ of GXPath we consider
the TriAL∗ expression Eϕ to be its equivalent if the answer set of ϕ is the same as the answer
of π1(Eϕ) over all graph databases and their triplestore representations, respectively.

Through the proof we will make use of the relation UG defined above. We will also make
use of the diagonal relation D = UG1

1,1,1
1=1 UG selecting all the triples (a, a, a) with a ∈ V .

Basis:
— α = a then Eα = EG1

1,1,3
2=a EG

— α = a− then Eα = EG1
3,3,1
2=a EG

— α = ε then Eα = UG1
1,1,1
1=1 UG

— ϕ = > then Eϕ = UG1
1,1,1
1=1 UG

Inductive step:

— α′ = [ϕ] then Eα′ = Eϕ1
1,1,1
1=1 Eϕ

— α′ = α · β then Eα′ = Eα1
1,1,3′

3=1′ Eβ
— α′ = α ∪ β then Eα′ = Eα ∪ Eβ
— α′ = α∗ then Eα′ = (Eα1

1,1,3′

3=1′ )∗

— α′ = α then Eα′ = (UG − Eα)11,1,3
1=2 UG

— ϕ′ = ¬ϕ then Eϕ′ = D − Eϕ
— ϕ′ = ϕ ∧ ψ then Eϕ′ = Eϕ ∩ Eψ
— ϕ′ = 〈α〉 then Eϕ′ = Eα1

1,1,1
1=1 Eα.

In order to make complementation easier we make the answer set of all of our expressions
consist only of elements of V . Furthermore, for path formulas the first element of the answer
is repeated in the triple, while for node formulas the triple has the answer node repeated
three times. It is straightforward to check that this translation works as intended. For
illustration, consider the case when α′ = α · β. Our induction hypothesis is that we have
two expressions, Eα and Eβ such that (a, b) is in the answer to α on G iff (a, a, b) ∈ Eα(TG)
and similarly for β. Assume now that (a, b) is in the answer to α′ on G. Then there is c such
that (a, c) is in the answer to α and (c, b) in the answer to β. But then (a, a, c) ∈ Eα(TG)
and (c, c, b) ∈ Eβ(TG). By the definition of join, we conclude that (a, a, b) ∈ Eα′(TG). Note
that all the implications above were in fact equivalences, so we get the opposite direction
as well. All of the other cases follow similarly.

To show that the containment is strict we use the fact that GXPath is contained in L3
∞,ω

[Vrgoč 2014]. Consider now the following TriAL expression:

UG

1,2,3

1
ϕ
UG,

where ϕ = (1 6= 2) ∧ (1 6= 3) ∧ (1 6= 1′) ∧ (2 6= 3) ∧ (2 6= 1′) ∧ (3 6= 1′). It follows easily that
this expression has an nonempty answer set if and only if the original graph database had
at least four different nodes. It is well known that this query is not expressible in L3

∞,ω,
thus implying that the containment is indeed strict.
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Note that this also implies a strict containment of languages presented in [Fletcher et al.
2011; 2012] in TriAL∗, since it is easy to show that they are subsumed by GXPath.

To compare TriAL∗ with common graph languages such as NREs and RPQs we observe
that NREs can be thought of as path expressions of GXPath that do not use complement
and where nesting is replaced with [〈α〉]. RPQs do not even have nesting. Thus:

Corollary 6.10.

— NREs are strictly contained in TriAL∗.
— RPQs are strictly contained in TriAL∗.

Noting that SPARQL property paths are just a syntactic variant o two-way RPQs4

[Kostylev et al. 2015], Theorem 6.9 also gives us the following:

Corollary 6.11.

— SPARQL property paths are strictly contained in TriAL∗.

Next we move to comparison with conjunctive queries. Here, instead of usual CRPQs
we will consider slightly more expressive conjunctive NREs (CNREs) [Barceló et al. 2013].

Formally, these are expressions of the form ϕ(x) = ∃y
∧n
i=1(xi

ei−→ yi), where all variables
xi, yi come from x̄, ȳ and each ei is a NRE. The semantics extends that of NREs, with each

xi
ei−→ yi interpreted as the existence of a pattern between them that is denoted by ei.

We compare TriAL∗ with these queries, and also with unions of CNREs that use bounded
number of variables.

In order to do these comparisons we will rely on the fact that TriAL∗ is subsumed by
infinitary logic with six variables.

Lemma 6.12. TriAL∗ is contained in the infinitary logic L6
∞,ω.

Proof. REPHRASE THIS PARAGRAPH ONCE THE REFERENCES SETTLE;
THIS IS NOW LEMMA 6.4? What we mean by this is along the lines of the proof of Propo-
sition 6.1, where we compare TriAL with FO6 over the vocabulary (E1, . . . , El, {o ∈ O}). As
before we always interpret the constants o ∈ O as themselves, but deploy the active domain
semantics, which considers only the objects appearing in the triplestore relations E1, . . . En
to form the operational domain for our model.

That is to prove the lemma, we only have to show that the ∗ operator can be simulated
in this logic. To see this consider an arbitrary star-join of the form

R′ = (R
i,j,k

1
θ

)∗.

Assume that we have an L6
∞,ω formula FR(xi, xj , xk) such that T |= FR(a, b, c) if and only

if (a, b, c) ∈ R(T ) (we obtain this from Proposition 6.1, possibly renaming the variables).
We first define a formula α based on θ. We let α be the conjunctions of formulas xi = xj ,
whenever i = j is a conjunct in θ and xi 6= xj , whenever i 6= j is a conjunct in θ. Constants
are treated analogously, e.g. a comparison of the form 2 = a would be handled by adding
the clause x2 = a.

We now define the following formulas:

—R1(xi, xj , xk) := FR(xi, xj , xk)
—Rn+1(xi, xj , xk) := ∃xu, xv, xw(Rn(x1, x2, x3)∧α∧∃xi, xj , xk(xi = x1′ ∧xj = x2′ ∧xk =
x3′ ∧ FR(x′1, x

′
2, x
′
3))

4There are some subtle differences with respect to negated property sets though, however, these can be
easily expressed using TriAL∗, since we allow comparison with an arbitrary constant.
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Here we have {i, j, k, u, v, w} = {1, 1′, 2, 2′, 3, 3′}.
Finally set FR′(xi, xj , xk) :=

∨
n∈ω Rn(xi, xj , xk).

It is straightforward to check that this formula defines the desired relation over T . A
similar formula can be defined for left-joins.

When comparing TriAL∗ with CNREs we obtain the following.

Theorem 6.13.

— CNREs and TriAL∗ are incomparable in terms of expressive power.
— Unions of CNREs that use only three variables are strictly contained in TriAL∗.

Proof. We begin by proving that full CNREs and TriAL∗ are incomparable in terms of
expressive power.

The existence of a CNRE query not expressible by TriAL∗ simply follows from the fact
that TriAL∗ is contained in L6

∞,ω. The reason for this is that CNREs can ask for a 7-clique,

a property not expressible in L6
∞,ω.

To see the reverse we will use a well know fact that CNREs are a monotonic class of
queries. That is for any two graph databases G and G′ such that G ⊆ G′ (that is G′

contains all the nodes and edges of G) and any CNRE q we have that (u, v) is in the answer
to q on G implies that (u, v) is in the answer to q on G′ as well.

Next consider the following TriAL expressions

Ea := EG

1,2,3

1
2=a

EG Eaux := EG

1,2,3

1
1=1′,3=3′

Ea.

The expression Ea, when evaluated over TG (for some graph database G = (V,E)), returns
all triples (v, a, v′) such that (v, a, v′) ∈ E. On the other hand Eaux finds all (v, b, v′) ∈ E,
for some b ∈ Σ, such that (v, a, v′) also belongs to E. We now define

e := E′ − (Ea ∪ Eaux).

It is straightforward to see that, when interpreted over TG, this expression returns all pairs
of nodes that are not connected by an a-labelled edge. (Formally we will return all the
triples (v, b, v′) such that v and v′ are not connected by an a-labelled edge in G and b is
either from Σ, in which case (v, b, v′) ∈ E, or b = no edge.) Suppose now that there is a
CNRE q defining the aforementioned query.

Consider the following two graphs.

b
v v′

G

a

b
v v′

G′

The nodes (v, v′) will be in the answer to our query over the graph G. Using the mono-
tonicity of CNREs and the fact that G is contained in G′ we conclude that (v, v′) is also in
the answer to our query over G′. Note that this is a contradiction since we assumed that q
extracts all pairs of nodes not connected by an a-labeled path.

This concludes the proof of part one of our Theorem.
Next we show that UCNREs using only three distinct variables are contained in TriAL∗.

Observe first that for any NRE e there is a TriAL∗ expression Ee equivalent to e over all
data graphs (Corollary 6.10). We will now show that any CNRE that uses precisely three
variables is definable using TriAL∗. To see this, consider the following example. Let Q be
the following CNRE:
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Q(x, y, z) := (x, e1, y) ∧ (z, e2, y) ∧ (y, e3, y) ∧ (y, e4, x).

Assume now that for each NRE ei we construct an equivalent TriAL∗ expression Tei as
in the proof of Theorem 6.9. In particular this means that (a, b) belongs to the answer of ei
over G = (V,E) if and only if (a, a, b) belongs to the answer of Tei over TG. In the expression
equivalent to Q we will keep the variables x, y and z in that precise order in our triples;
that is, x will appear only in the first place, y in the second and z in the third. Using this
convention for each conjunct we define a TriAL∗ expression that will keep the variables used
in this conjunct in the correct place, while the other values in the triple are arbitrary nodes

from V . In particular, for (x, e1, y) we use T1 = Te1 1
1,3,1′

1=1 UG. Note that the evaluation of
T1 will contain all the triples (a, b, o), where (a, b) belong to the answer of e1 over G and

o ∈ V . Similarly we define T2 = Te2 1
1′,3,1
1=1 UG for the conjunct (z, e2, y). In the case of

(y, e3, y) we use T3 = Te3 1
1′,1,2′

1=3 UG, which now contains all the triples (o, a, o′) with (o, o)

in the answer of e3. Lastly, to cover the conjunct (y, e4, x) we use T4 = Te4 1
3,1,1′

1=1 UG. We
can now define TQ = T1 ∩ T2 ∩ T3 ∩ T4. It is easy to check that TQ and Q are equivalent.

Extending this construction to the most general case of an arbitrary number of conjuncts
with various arrangement of variables is straightforward.

Finally, since TriAL expressions are closed under union we get that UCNREs with only
three variables are contained in TriAL∗. That the containment is proper follows from the
first part of the proof.

One of the most fundamental classes of queries over graph databases appearing in the
literature are conjunctive regular path queries, or CRPQs [Consens and Mendelzon 1990;
Calvanese et al. 2003]. These can be seen as conjunctive NREs that do not use the nest-
ing operator in their expressions. By observing that the expressions separating CNREs
from TriAL∗ are CRPQs, and that CNREs are more expressive than CRPQs and C2RPQS
[Barceló et al. 2012] we obtain:

Corollary 6.14.

— CRPQs and TriAL∗ are incomparable in terms of expressive power.
— Unions of C2RPQs that use only three variables and unions of CRPQs that use only

three variables are strictly contained in TriAL∗.

Similarly, one can reason that full SPARQL is not comparable in terms of expressive
power with TriAL∗, since it allows an arbitrary number of variables. On the other hand,
it is also easy to see that SELECT-FROM-WHERE SPARQL queries with property paths
which use only three variables are strictly contained in TriAL∗.

7. TRIAL IN PRACTICE

Thus far we have demonstrated that TriAL and TriAL∗ have good theoretical properties and
are able to express a wide range of navigational queries over triplestores. However, this does
still not guarantee that having such expressive languages is feasible in practice. Therefore,
in this section we describe an implementation of TriAL∗ on top of an existing relational
system and test its efficiency over real world and synthetic RDF data. To do so, we check
how TriAL∗ copes with computationally expensive queries introduced in our examples, and
also compare its performance on property path queries with two popular SPARQL engines.

We would like to state up front that our implementation is meant to serve as a proof
of concept, and not as a standalone system. The main reason for this is the fact that the
main focus of this paper is not the development of a working tool, but describing a plausible
conceptual framework for expressing navigational queries over RDF triplestores. It is also for
this reason that we opted to implement TriAL∗ on top of an existing system, and not provide
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an independent implementation, as this would require us to deal with aspects outside of the
scope of this work (e.g. data storage and retrieval, access methods, etc.).

To allow for reproducibility of the experiments we have made our implementation, to-
gether with a brief user guide, the queries used for testing, and the scripts used to generate
the synthetic data available at an anonymous DropBox folder at https://bla.bla.bla.

Implementing TriAL∗

Our implementation is designed to work on top of any relational database system which
supports the WITH RECURSIVE operator. The main idea behind our implementation is to
build a query tree for a TriAL∗ expression, which then uses the relational database as a
“black-box” for evaluating joins and the Kleene star (it is for this reason that we use
systems supporting recursion). In our experiments we used Postgre SQL v.9.5.3., so we will
consider this engine as our reference point; however, the user is free to chose a relational
database as desired. The triplestore is considered to be stored as one big ternary table.

The implementation consists of two modules. The first module is a parser which takes a
TriAL∗ expression5 and creates a query tree consisting of standard SQL commands. Here, all
of the standard joins are rewritten as SELECT-FROM-WHERE SQL queries, where we assume
that all selections (i.e. the operators σθ(e)) are pushed into the joins. As far as the left and
the right Kleene closure of a ternary relation is concerned, this is rewritten into a WITH
RECURSIVE query which takes into account if the joins should be evaluated from the left
or from the right. Once the query tree is constructed, it is passed to the second module,
which connects to the database, and upon parsing the tree top-down, begins to evaluate the
expression by executing SQL commands (therefore the evaluation is done bottom-up and
needs to materialize all of the intermediate results). Once the root of the tree is evaluated,
the result is returned to the user6.

Although this type of implementation fully supports the algebra presented in the pa-
per, one might be concerned about the efficiency of recursive operations, as these are the
computationally most expensive part of our evaluation. Because of this we also extend the
language in order to support specifying the starting point of the reachability pattern we
want to compute, as is often the case in practice. Consider for example a pattern such as
Reach→ from the Introduction. Instead of knowing all possible pairs of nodes connected by
such reachability pattern, in practice one is often only interested in finding all nodes reach-
able from one particular starting point (i.e. the leftmost point in the graphical depiction of
that pattern in the Introduction). Indeed, when considering navigational RDF queries in
practice, this is almost always the case [Gubichev et al. 2013; Reutter et al. 2015], and in
fact, many RDF engines such as e.g. Virtuoso, only consider path queries which have an
explicit starting point. Furthermore, specifying a starting point is equivalent to providing a
base for the linear recursion in the WITH RECURSIVE operator, and is known to significantly
speed up the query evaluation (in fact, we will soon see that the savings can be almost an
order of magnitude). For these reasons, we include recursive queries which can explicitly
specify their starting point in our implementation.

Next, we move onto empirical evaluation of our implementation which is meant to show-
case that TriAL∗ queries have the potential to be used in practice. We divide our experiments
into two parts. First, we consider real world RDF data from YAGO [Suchanek et al. 2007],
a huge knowledge base containing information from Wikipedia, WordNet and GeoNames.
Here we design several property path queries and nested regular expressions which test var-
ious aspects of navigational querying over this dataset. In the second part we take the three

5For the implementation we provide a keyboard friendly syntax resembling SQL’s SELECT-FROM-WHERE com-
mands. More details can be found at the repository https://myanonurl.com.
6We would like to note that since our experiments do not use the difference operator, we currently do not
support it in the implementation. However, adding it is simply a matter of extending the parser.
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TriAL∗ specific queries introduced in this paper: Reach→, Reach1 and the query reachTA from
Example 3.3, and design several synthetic datasets intended to push their performance, and
see how they scale.

Real world RDF data and a comparison with SPARQL engines

Here we test how our implementation copes with real world RDF data and queries which are
used in practice. We also compare the evaluation times of TriAL∗ with that of two popular
SPARQL query engines, and test some queries which lie outside the scope of SPARQL or
even nested regular expressions.
The dataset. As our dataset we use YAGO [Suchanek et al. 2007], a huge RDF database
which contains information extracted from Wikipedia, WordNet and GeoNames. More pre-
cisely, we use a piece of YAGO known as YAGOFacts7, which contains the core information
available in the YAGO database. The dataset contains information about famous people,
movies, geographical entities, etc. and shows how such entities are connected. For instance,
some triples state that a particular actor acted in some movie (e.g. (Kevin Bacon, actsIn,
Unforgiven)), others that a city is located in a particular region or country (e.g. (Berlin,
isLocatedIn, Germany)), etc. When loaded into Postgre SQL, the dataset was of size
2.4GB and it contains 5.6 million triples.
Queries. For testing our implementation we selected five navigational queries which ap-
peared in previous literature on RDF querying [Gubichev et al. 2013; Reutter et al. 2015].
We would like to stress here that we only evaluate navigational queries (i.e. the ones using
Kleene star ∗). Doing a comparison with purely relational queries (such as the ones available
in TriAL) would only amount to testing the performance of Postgre SQL (and comparing
it to SPARQL engines), which was previously done in e.g. [Angles et al. 2013; Hernández
et al. 2016]. We therefore focus solely on queries which use non trivial reachability patterns
under the Kleene star. The queries are as follows:

(1) Q1: This query finds all actors which have a finite Bacon number8. On can view this as
needing to navigate from Kevin Bacon to a movie he starred in (i.e. traversing a triple
(Kevin Bacon, actedIn, movieX)), obtaining the actors who starred in this movie
(that is, examining all other triples (actorY, actedIn, movieX)), and remembering
the triple (Kevin Bacon, actedIn, actorY). The procedure is then repeated starting
from actorY until no further answers are found. Formally, we return the triple (Kevin
Bacon, actedIn, actor), where actor has a finite Bacon number.

(2) Q2: This query retrieves all types of geographic entities that have something to do with
Berlin, or some other entity that Berlin is a part of. Here we start from a triple (Berlin,
isLocatedIn, X), and perform a join with triples of the form (X, isLocatedIn, Y),
remembering (Berlin, isLocatedIn, Y). The process is then repeated, but now start-
ing in Y. Once this recursive query is completed, we do a join with triples of the form
(Y, dealsWith, Z).

(3) Q3: Here we look for all the people who are married to a person who owns a property
which is located in the United Sates (here the “located in” part is taken transitively).
The query is similar to Q2.

(4) Q4: In this query we return all people with a finite Bacon number, but such that in the
witnessing path the director of the movie is also an actor (not necessarily in the same
movie).

7See http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/
yago/downloads/ for more details.
8A person has Bacon number one if she or he co-starred with Kevin Bacon in the same movie. A person
has Bacon number n+ 1 if she co-starred in the same movie with someone with a Bacon number n.
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Q1 Q2 Q3 Q4 Q5

TriAL∗ 60 0.025 739 (5)† 136 265

Virtuoso M 0.015 3.5 N/S N/S

Jena M 0.9 T N/S N/S

Table I: Execution times for queries Q1 through Q5 over the YAGO dataset. The abbrevi-
ation N/S stands for not supported, M for a memory error, and T for timeout. All times
are in seconds. Here † stands for the running time of the optimised version of the query.

(5) Q5: In this query we test a pattern similar to the one from Example 3.3. Namely, we
look for all people with a finite Bacon number, but such that the connection is made
through movies which all have the same director.

Please note that the queries Q1, Q2 and Q3 are in fact property path queries, and are
therefore supported by the current SPARQL standard. The query Q4 is a nested regular
expression, while Q5 is only expressible using TriAL∗. The queries Q2 and Q3 were taken
from [Gubichev et al. 2013], while Q1, Q4 and Q5 come from [Reutter et al. 2015].

Another interesting observation is that all of these queries do have an implicit anchor
where the evaluation can start: in the case of Q3 this is the final element we are trying to
reach (United States), while in the other queries this is the first element (Kevin Bacon, or
Berlin). When thinking of RDF as a format for data on the Web this actually makes a lot
of sense, because we do not want to search the entire Web graph, but we wish to start the
search from some fixed location (e.g. Kevin Bacon, Berlin, etc.).
Experimental setup. The queries were executed three times and the average running time
is reported. In the case of queries Q1, Q2 and Q3, we also ran them over the same dataset
using two popular SPARQl engines: Open Link Virtuoso9 version 7.2.1.3214-pthreads (open
source edition) and Apache Jena10 version 3.1.0. We would like to note that due to the
internal storage mechanisms, the YAGOFacts dataset weighs only 1.1GB in both Virtuoso
and Jena. Since queries Q4 and Q5 are not supported in SPARQL we ran them only on our
implementation of TriAL∗. All of the experiments were ran using a MacBook Pro with 8GB
RAM and an Intel Core i5 2.6GHz processor running OS X El Capitan.
Results and discussion. We present the execution times of our queries in Table I. As we
can see, our implementation of TriAL∗ manages to compute all the queries in a reasonable
time. One can also notice the stark difference between Q2 and Q3. Although these queries
are similar in structure, the execution times are very different. Upon analysing the actual
computation one can see that this is due to the size of the base relation used in the recursive
part of the query. In the case of Q2 we only want the triples stating that Berlin is located
in some entity, which is a relatively small set of triples, while for Q3 we want all entities
located in the United States, which is a very large set of triples that is then being used
to perform joins repeatedly. However, one can further optimise Q3 by allowing arbitrary
queries as the base relation in the recursive part (this is roughly equivalent to having a sub
query as a base of linear recursion in SQL). Namely, if we start computing Q3 by taking
as the base only people married to someone who owns a property (and the location of the
property), and then compute the transitive closure of “located in” using this relation as a
base (and checking that we reach United States), we get an execution time of only 5 seconds.
This shows us that simply specifying the starting point is sometimes not the best speed-up
technique for TriAL∗ queries, and that proper query planning (with estimating the size of
intermediate results), seems to hold a lot of promise for optimising navigational queries in

9http://virtuoso.openlinksw.com/
10https://jena.apache.org/
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practice. As the main focus of this paper is conceptual, rather than practical, we plan to
address this issue in future work.

Comparing the execution times to SPARQL engines, one can see that TriAL∗ shows much
more stable performance. In particular, for the query Q1 which requires a large part of
the RDF dataset to be traversed repeatedly, it is the only engine capable of executing the
query. On the other hand, in the case of Q2, Virtuoso shows slightly better performance
than TriAL∗, while Jena is slower. The query Q3 reveals the type of features Virtuoso is
optimised to work with, as it recognizes automatically that the query has a goal to reach,
and therefore executes it from this end. When the query is appropriately optimised in
TriAL∗ we again see similar execution times. It is worthwhile noting that Virtuoso executes
navigational queries in main memory, so it is prone to run into memory limits quite fast
for more complex questions, while TriAL∗ runs all the computations on disk, thus making
it more reliable. Note that the queries Q4 and Q5 are not supported in current SPARQL
engines, so we could not test against them.

Overall, we can see that our implementation of TriAL∗ shows good performance over
real world data, and is comparable with current state of the art systems when it comes to
navigational queries over RDF, while at the same time being capable of expressing many
more queries. As the results show, there is a lot of room for improvement when it comes to
optimising query execution, but overall, TriAL∗ seems to cope well with property paths.

Synthetic data and TriAL∗ queries

The main objective of this subsection is to demonstrate how the navigational queries pre-
sented throughout the paper perform on triplestores of realistic size, and how the simple
optimisation of specifying the starting point can speed-up the evaluation by an order of
magnitude for these queries.
Queries. We take three queries illustrating the types of navigational patterns which can
occur in RDF: Reach→ and Reach1 presented in the Introduction and reachTA (the TriAL∗

expression specifying each one of these queries can be found in Example 3.3).
Datasets. The RDF datasets used for testing these queries were generated in such a way
that the number of patterns which get returned as the query answer for each of the queries
forms around 2% of the total data. For each of the three queries we created three triplestores
of sizes 500MB, 1.2GB and 1.7GB respectively. The number of triples in these datasets
was around 7 million, 15 million, and 21 million, respectively. For the query Reach→ each
datasets contained paths of length up to 20, with the number of such paths being 7, 15
and 20 thousand, respectively. Analogously, for the query Reach1 each datasets contained
patterns of height up to 20, with the number of such patterns being 7, 15 and 20 thousand,
respectively. Finally, the number of patterns for the query reachTA was set at 2.4, 5 and 7.5
thousands respectively, with the horizontal length being 20, and the height of the pattern
3. A summary is available in Table II, columns 1 through 5.
Experimental setup. Each query was ran against the appropriate datasets in two modes.
First, we ran the unrestricted version of the query as specified in Example 3.3. Next, we
fixed the starting point of the query (i.e. the leftmost point in the graphical representation
of each query) and tested the running times with this modification. All of the experiments
were ran using a MacBook Pro with 8GB RAM and an Intel Core i5 2.6GHz processor
running OS X El Capitan. The timeout for the queries was set at 4 hours.
Results and discussion. The evaluation results are presented in Table II. As we can
see, when the unrestricted version of the query is ran over larger datasets one can run
into some issues. In particular, the queries Reach→ and Reach1 time out on the largest
dataset, although they perform reasonably well over the smaller ones. On the other hand,
the computationally more expensive query reachTA times out on D8 and D9, since it is based
on nested recursion, which requires computing joins with the entire database multiple times.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:41

dataset size triples patterns time-u (sec) time-sp (sec)

Reach→

D1 572MB 7.14mil 7000 181 43

D2 1.2GB 15.3mil 15000 1061 96

D3 1.7GB 21.4mil 20000 X 131

Reach1

D4 565MB 7.14mil 7000 228 43

D5 1.2GB 15.3mil 15000 795 93

D6 1.7GB 21.4mil 20000 X 131

reachTA

D7 567MB 7.19mil 2400 7097 564

D8 1.2GB 15.4mil 5000 X 13354

D9 1.7GB 21.6mil 7500 X X

Table II: Datasets and running times for TriAL∗ queries over synthetic data. All patterns
have maximal length of 20, and the height of the pattern in datsest D7, D8 and D9 is 3. The
abbreviation time-u stands for the running time of the unrestricted version of each query,
and time-sp, for the versions which has the staring point specified. The symbol X marks an
execution timeout.

It is important to note that all of the computation is done on disk and is not evaluated in
main memory, and would eventually terminate if the result is really needed.

Although some of the results of the unrestricted version of the queries show that further
improvements are needed, when we specify the starting point of a query (as discussed
above, this is often the case one wants to consider in practice), the results are much faster.
In particular, we witness almost an order of magnitude improvement in the running times,
and in the case of Reach→ and Reach1 all the runs execute efficiently. There are still some
issues with reachTA on larger datasets, which suggests that in order to have a full scale
implementation of TriAL∗, it might be better to build a stand alone system based on the
algorithms from Section 5, rather than using the existing relational architecture.

Overall, the results here fall in line with the complexity analysis from Section 5, which
shows that simple navigational patterns can be evaluated efficiently, but that the full lan-
guage of TriAL∗ might cause some issues when evaluating queries over large datasets. Fur-
thermore, when we know the starting point of our reachability query, the evaluation times
are really efficient if we do not nest the star operator.

Practical lessons

In conclusion, we can see that although some TriAL∗ queries are intrinsically difficult to
compute (as demonstrated by the theoretical part of the paper), it is still possible to execute
many such queries over real world datasets. Indeed, our experimental results show that for
queries used in e.g. RDF, this can often be the case, any that the queries can be answered
within a reasonable time limit. Pushing the performance over synthetic data also shows
that the “well-behaved” queries pose no significant evaluation problems when a starting
point is known, although there are some queries which run slow (but given enough time do
terminate). In particular, our results suggest that there is a lot of room for improvement
when it comes to query planning, and we hope to address this issue in future work.

8. CONCLUSIONS AND FUTURE WORK

As the current approaches for extracting navigational patterns from RDF data are primarily
based on graph query languages, in this paper we explore if this tells the whole story. In
particular, we identify several types of reachability patterns supported by RDF which lie
outside of the scope of graph-based approaches and discuss some fundamental issues when
using graph languages for querying RDF: namely, that they do not allow the queries to
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be composed, since the result of a graph query is no longer an RDF database. To remedy
this issue, we propose a simple algebra which can be used for navigating RDF triples. The
language we propose, called TriAL∗, is designed with the RDF data model in mind; that is,
it works with triples, and the result of each query in the language is a set of triples. We also
provide a Datalog characterisation of TriAL∗, thus making the language more user-friendly.

As our results show, the TriAL∗ algebra has good query evaluation properties: in particu-
lar, the answers to the queries can be computed in polynomial time. Next, we also compare
TriAL∗ with other well established formalisms for querying navigational properties such as
fragments of first order logic which support recursion, and also with established query lan-
guages for graph databases. Finally, we provide an implementation of our algebra on top of
an existing open source relational database system and do extensive testing on real world
RDF data. Here our empirical results show that the theoretical ideas we present indeed have
the potential to be used in practice, since our non optimised implementation is competitive
against popular RDF querying engines, while still being able to express many queries they
do not support.

In future work we would like to see how TriAL∗ can be extended even further to support
different scenarios such as e.g. data graphs [Libkin et al. 2016], or property graphs, which
are the data model used in current graph database systems (see e.g. the popular Neo4j graph
engine [Neo4j 2013]). We present some initial results on this in the on-line appendix in order
to show that this is a viable direction for future research. Another important direction is
also implementing TriAL∗ as a stand alone system using algorithms from Section 5. As we
have seen in Section 7, although using a relation system as a base is viable, some issues
do exist and a full scale implementation which includes data structures that support fast
evaluation of navigational queries might be preferred.
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Online Appendix to:
TriAL: A navigational algebra for RDF triplestores

A. TRIAL FOR PROPERTY GRAPHS

In this appendix we show how the TriAL algebra can be extended to work over more ex-
pressive models underlying modern commercial graph database engines. We begin by in-
troducing the model of data graphs which are a theoretical precursor to property graphs,
and explaining what property graphs are. We then extend the model of triplestores to cover
both these models, as well as extending our algebra in order to fully exploit the data they
contain. Finally, we discuss evaluation issues and connections with logic and established
data graph languages.

Data graphs and property graphs

Note that by the definition from Section 2, graph databases capture only the navigational
aspect of the graph data model and do not permit us to store attribute values. To remedy
this issue, the model of data graphs has been introduced in e.g. [Libkin and Vrgoč 2012],
allowing to store data values coming from a potentially infinite alphabet in graph nodes.
Formally, for a finite labelling alphabet Σ and a countably infinite set of data values D, a
data graph is defined as a triple (V,E, ρ), where (V,E) is a graph database over Σ, and
ρ : V → D is a function assigning a data value from D to each node. For instance, in the
graph database from Figure 1, we could use the function ρ to assign the age to each person,
or some other value. Supporting multiple attributes is done by extending the range of the
function ρ to Dk, where k is the number of attributes that will be used.

Data graphs are a theoretical precursor to a formalisation of the actual data model used
in practical graph database systems: property graphs. Indeed, property graphs abound in
systems supporting the graph data model (see e.g. by the popular Neo4j graph engine
[Neo4j 2013]), and have been recently standardized by a working group of the Linked Data
Benchmark Council (LDBC) formed by members of academia and industry [LDBC 2015].
The main difference between data graph and property graphs is that the latter allow data
values in the edges as well, and they also allow multiple data values per node/edge. We will
give an example of a property graph latter in this section.

Triplestores with attribute values

Here we extend the notion of a triplestore to include RDF databases, graph databases, data
graphs and property graphs at once. Let O be a countably infinite set of objects, and D be
a countably infinite set of data values.

Definition A.1. A triplestore database, or just triplestore over D is a tuple T =
(O,E1, . . . , En, ρ), where:

—O ⊂ O is a finite set of objects,
— each Ei ⊆ O ×O ×O is a set of triples,
— ρ : O → D is a function that assigns a data value to each object, and
— for each o ∈ O there is i ∈ {1, . . . , n} and a triple t ∈ Ei such that o appears in t.

Note that the final condition is used in order to simulate how RDF data is structured
in practice, namely that it is presented in terms of sets of triples, so all the objects we are
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name = Julie

type = person

age = 32

name = Simon

type = person

age = 29

name = REM

type = group

label = knows

status = active

label = knows

status = active

label = likes

status = active

n1 n2
n3

e1

e2

e3

Fig. 5: A property graph storing Social Network data.

interested in actually appear in one of the relations. This assumption will also allow us to
work with the active domain of our triplestore, thus enabling us to construct an algebra
that is complete in terms of first order operations.

Often we have just a single ternary relation E in a triplestore database (e.g., in the
previously seen examples of representing RDF databases), but all the languages and results
we state here apply to multiple relations. The function ρ could also map O to tuples over
D, and all results remain true (one just uses Dk as the range of ρ, as in the example below).
We use the function ρ : O → D just to simplify notations.

The generality of this definition of triplestores allows us to cover more use scenarios than
previously. In particular, the new model of triplestores subsumes the following:

(1) RDF databases: An RDF database fits into the triplestore model rather naturally:
we simply use a single ternary relation E containing all the triples in the database.

(2) Graph databases and data graphs: A graph database G = (V,E) can be seen as a
triplestore where the set of objects are all the nodes and labels, while the set of edges
E is used as the ternary relation. When dealing with a data graph G = (V,E, ρ), the
situation is analogous, but now we also include ρ in our triplestore (for completion we
also define ρ(a) = ⊥, for each label a appearing in G, and ⊥ a designated data value).

(3) Property graphs: These are the model used in practical graph database systems. We
illustrate how property graphs can be seen as triplestores in Example A.2.

Example A.2. In property graphs both the nodes and the edges are allowed to have
attributes attached to them. To see why this might be useful consider again the graph
database from Figure 1 presenting a part of a Social Network. Here we have the users
and connections between them, but we can not specify any extra data, such as their age,
their name, the time when the connection between two nodes was created, status of the
connection, etc. To remedy this we use property graphs, and one such extension to our
graph database is presented in Figure 5. Here we have three nodes and three edges in our
property graph. The nodes are denoted n1, n2, n3 and the edges e1, e2, e3. All of these objects
then have attributes and their appropriate values. For instance, the node n1 represents a
person, the person’s name is Julie, as denoted by the value of the attribute name. Similarly,
the age of this person is 32, and the type of the node (denoted by the attribute type) is person.
Other nodes and edges have similar values.

To represent this property graph as a triplestore, we take the set of objects O to con-
tain all the nodes n1, n2, n3 and all the edges e1, e2, e3. Here each edge is identified with an
object labelling it, and the endpoints of the edge are reflected in the triple relation defin-
ing our triplestore. In particular, for the property graph in Figure 5 the set of triples is:
{(n1, e1, n2), (n2, e2, n1), (n2, e3, n3)}, therefore telling us that e.g. e1 has n1 and n2 as its endpoints.
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To represent the attribute values our function ρ will assign to each object in O a quintuple
(name, type, age, label, status) of values. We use quintuples to represent data values and
assume that each node will have null values for the last two attributes, while an edge will
have nulls in the first three. Another way to go around this would be to have two different
data value assignments to the object attributes, one for nodes and another for edges. To
keep our language one sorted and compact we opt for the option presented here. Therefore
in our example we will have that ρ(n1) = (Julie, person, 32,⊥,⊥), ρ(e1) = (⊥,⊥,⊥, likes, active),
etc.

Extending TriAL to include data values

An extension of TriAL which also handles data values has to redefine the joins in order to
make use of the attribute values defined by the function ρ. Formally, given two ternary
relations R and R′, join operations are now of the form

R
i,j,k

1
θ,η

R′,

where

— i, j, k ∈ {1, 1′, 2, 2′, 3, 3′},
— θ is a set of equalities and inequalities between elements in {1, 1′, 2, 2′, 3, 3′} ∪ O,
— η is a set of equalities and inequalities between elements in
{ρ(1), ρ(1′), ρ(2), ρ(2′), ρ(3), ρ(3′)} ∪ D.

The semantics is defined as follows: (oi, oj , ok) is in the result of the join iff there are triples
(o1, o2, o3) ∈ R and (o1′ , o2′ , o3′) ∈ R′ such that

— each condition from θ holds; that is, if l = m is in θ, then ol = om, and if l = o, where o
is an object, is in θ, then ol = o, and likewise for inequalities;

— each condition from η holds; that is, if ρ(l) = ρ(m) is in η, then ρ(ol) = ρ(om), and if
ρ(l) = d, where d is a data value, is in η, then ρ(ol) = d, and likewise for inequalities.

Triple Algebra with data values. We now define the expressions of the Triple Algebra with
data values, or d-TriAL for short. As before, d-TriAL is a restriction of relational algebra
that guarantees closure, i.e., the result of each expression is a triplestore.

— Every relation name in a triplestore is a d-TriAL expression.
— If e is a d-TriAL expression, θ a set of equalities and inequalities over {1, 2, 3} ∪O, and η

is a set of equalities and inequalities over {ρ(1), ρ(2), ρ(3)} ∪D, then σθ,η(e) is a d-TriAL
expression.

— If e1, e2 are d-TriAL expressions, then the following are d-TriAL expressions:
— e1 ∪ e2;
— e1 − e2;

— e1 1
i,j,k
θ,η e2, where i, j, k, θ, η as in the definition of the join above.

The semantics of the join operation has already been defined. The semantics of the
Boolean operations is as before. The semantics of the selection is defined in the same way
as the semantics of the join: one just chooses triples (o1, o2, o3) satisfying both θ and η.

Given a triplestore database T , we write e(T ) for the result of expression e on T .
For the purposes of navigation we again define the right and left Kleene closure of any

triple join 1i,j,k
θ,η over an expression e, denoted as (e 1i,j,k

θ,η )∗ for right, and (1i,j,k
θ,η e)∗ for

left. The semantics are precisely the same as in the case of TriAL∗. We refer to the resulting
algebra as Triple Algebra with data values and recursion and denote it by d-TriAL∗.
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Example A.3. To see what type of properties the extended algebra can express consider
again the property graph from Figure 5, but imagine now that we have many more people
connected by knows links. In such a social network we might want to find all friends of friends
of Julie; that is, people who she knows, or whom are known by another person she knows.
This query can be easily expressed using TriAL∗ (without data values), but in some cases,
we might want to also know Julie’s friends-of-a-friend which are witnessed by knows relations
which are currently active. For this we need to check that each link in the path connecting
said person to Julie is active, for which we need to check the value of its status attribute: an
operation not available in ordinary TriAL. However, in d-TriAL∗ we can express this query
as follows:

(σρ(2)=activeE1
1,2′,3
1=3′∧ρ(2′)=active

)∗.

Datalog for d-TriAL

In order to deal with data values the relational vocabulary from Section 4 has to be extended
with an additional binary symbol ∼, which holds true for two nodes n and n′ if and only if
ρ(n) = ρ(n′). Furthermore, since we want to allow comparing data values in the database
with a constant data value, we also need to make our language two sorted, with the second
sort having the set of all data values D as the domain. Since we are not doing any comple-
mentation with respect to this particular domain (we only work with the object present in
the triplestore anyway), we can simply have the all data values present in the logical model
of our triplestore and interpret constants as themselves. With this representation we can
now define a fragment of Datalog capturing the triple algebra with data values.

Here we describe a Datalog fragment capturing d-TriAL. A d− TripleDatalog rule is of the
form

S(x) ← S1(x1), S2(x2),∼(y1, z1), . . . ,∼(yn, zn), u1 = v1, . . . , um = vm (5)

where

(1) S, S1 and S2 are (not necessarily distinct) predicate symbols of arity 3;
(2) x, x1 and x2 are variables;
(3) uis and vis are either variables or objects in O;
(4) yis and zis are either variables or data values in D;
(5) all variables in x and all variables in uj , vj , yj , zj are contained in x1 ∪ x2.

The newly added predicate ∼ (yi, zi) compares the data values of the nodes yi and zi (or
compares them to a constant data value), and can be seen as the equality relation over our
second domain D. As before, a d− TripleDatalog¬ rule is like the rule (1) but all equalities
and predicates, except the head predicate S, can appear negated. A d− TripleDatalog¬

program Π is a finite set of d− TripleDatalog¬ rules. Such a program Π is non-recursive if
there is an ordering r1, . . . , rk of the rules of Π so that the relation in the head of ri does
not occur in the body of any of the rules rj , with j ≤ i. An analogous proof to that of the
Proposition 4.1 gives us the following.

Proposition A.4. d-TriAL is equivalent to nonrecursive d− TripleDatalog¬ programs.

To cover d-TriAL∗ we add the same type of recursion as with TriAL∗. A
d− ReachTripleDatalog¬ program is a d− TripleDatalog¬ program in which each recursive
predicate S is the head of exactly two rules of the form:

S(x) ← R(x)

S(x) ← S(x̄1), R(x̄2), V (y1, z1), . . . , V (yk, zk)
(6)

where each V (yi, zi) is one of the following: yi = zi, or yi 6= zi, or ∼(yi, zi), or ¬∼(yi, zi),
and R is a nonrecursive predicate of arity 3, or a recursive predicate defined by a rule of the
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form 6 that appears before S. These rules essentially mimic the standard reachability rules
(for binary relation) in Datalog, and in addition one can impose equality and inequality
constraints, as well as data equality and inequality constraints, along the paths.

Again, the negation in d− ReachTripleDatalog¬ programs is stratified and the semantics
is defined as before, but now taking into the account that we have data values as well.
With this, we have the following d-TriAL∗ capture result, whose proof is analogous to that
of Theorem 4.2.

Theorem A.5. The expressive power of d-TriAL∗ and d− ReachTripleDatalog¬ pro-
grams is the same.

Complexity and comparison with logic

When it comes to complexity of evaluating TriAL with data values, there is no difference to
the case where data values are not present. In particular, one can easily prove that:

Theorem A.6. The problem QueryComputation can be solved in time

—O(|e| · |T |2) for d-TriAL expressions,
—O(|e| · |T |3) for d-TriAL∗ expressions.

Similarly, when it comes to comparison with logic, one can again draw the same con-
clusions as in Section 6, but now using the variant of first order logic which includes data
values (denoted here by d − FO) in the same way that datalog programs of Subsection A.
Namely, reusing the same techniques as in Section 6, we can prove the following:

Theorem A.7.

— d− FO3 is strictly contained in d-TriAL.
— d-TriAL is strictly contained in d− FO6.
— d-TriAL is incomparable with d− FO4 and d− FO5; and
— The same set of conclusions holds for d-TriAL∗ and the transitive closure logic with data

value comparisons.

Comparison with languages for data graphs

Here we show how d-TriAL compares to languages for querying data graphs. Next we for-
malise how we treat data graphs as triplestores. Take any data graph G = (V,E, ρ) over
the alphabet Σ and with ρ : V → D assigning a data value from an infinite domain D to
each node of V . For this graph we define the corresponding triplestore TG = (O,E′, ρ) over
Σ′, where Σ′, the domain O and the relation E′ are as in the case of graphs with no data
values. We use the same function ρ to assign data values in G and TG. Note that nodes
corresponding to labels have no data values assigned in our model. This is not an obstacle
and can in fact be used to model graph databases that have data values on both the nodes
and the edges.

We provide a comparison to an extension of GXPath with data value comparisons. The
language, denoted by GXPath(=), presented first in [Libkin et al. 2013], is given by the
following grammars for node and path formulae:

ϕ,ψ := >|〈α = β〉 | 〈α 6= β〉 | ¬ϕ | ϕ ∧ ψ |ϕ ∨ ψ | 〈α〉

α, β := ε | a | a− | [ϕ] | α · β | α ∪ β | α | α∗ | α= | α6=.
The interpretation of standard operators is as in Section 6.2, and the semantics of the
equality expressions is as follows: αθ returns those pairs (v, v′) returned by α for which
ρ(v) θ ρ(v′), for θ ∈ {=, 6=}, and 〈α θ β〉 returns nodes v such that there are pairs (v, vα)
and (v, vβ) returned by α and β, respectively, and ρ(vα) θ ρ(vβ). The former addition
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corresponds to the notion of regular expressions with equality [Libkin and Vrgoč 2012], and
the latter to standard XPath data-value comparisons.

To compare GXPath(=) with d-TriAL∗, we use the same convention as for navigational
languages.

Proposition A.8. GXPath(=) is strictly contained in d-TriAL∗.

Proof. The proof here follows the same lines as the one of Theorem 6.9. Because of
this we only have to show how to define an equivalent d-TriAL∗ expression for any of the
newly added data operators in GXPath(=).

— For ϕ = 〈α = β〉 we define Eϕ = Eα1
1,1,1
1=1′,ρ(3)=ρ(3′)Eβ

— For ϕ = 〈α 6= β〉 we define Eϕ = Eα1
1,1,1
1=1′,ρ(3) 6=ρ(3′)Eβ

— For α′ = α= we define Eα′ = Eα1
1,1,3
ρ(1)=ρ(3)Eα

— For α′ = α6= we define Eα′ = Eα1
1,1,3
ρ(1) 6=ρ(3)Eα

It is again straightforward to see that the described translations works as desired.
To show that the containment is strict we use a similar approach as when proving Theorem

6.9. We first notice that the fact that GXPath is contained in L3
∞,ω [Vrgoč 2014] can easily

be extended to show that GXPath(=) is subsumed by L3
∞,ω(∼), the infinitary three variable

logic with data value tests. Here the only addition to the logic is the ability to use formulas
of the form x ∼ y that are true if and only if x and y have the same data value (since we
do not use comparisons with constants we do not have to worry about the language being
two sorted).

More formally, we will represent a data graph G = (V,E, ρ) as a FO structure G =
(V, (Ea : a ∈ Σ),∼) with Ea = {(v, v′) : (v, a, v′) ∈ E} and v ∼ v′ if and only if ρ(v) = ρ(v′).
It is straightforward to see that with this interpretation we have GXPath(=) ⊆ L3

∞,ω(∼).

It is also easy to see that the 3-pebble game [Libkin 2004] for L3
∞,ω(∼) follows the intended

semantics when interpreted over data graphs. (Note that the game works over any class
of structures, but over data graphs only relations are edge relations and the data value
comparison.)

We can now play the 3-pebble game over the 3-clique graph and the 4-clique graph [Libkin
2004] where all data values are the same. The same winning strategy for the duplicator as
in the game with no data values will still work, so we conclude that L3

∞,ω(∼) can not
distinguish the two models.

Consider now the following TriAL expression:

UG

1,2,3

1
ϕ
UG,

where ϕ = (1 6= 2) ∧ (1 6= 3) ∧ (1 6= 1′) ∧ (2 6= 3) ∧ (2 6= 1′) ∧ (3 6= 1′) with UG as
defined previously. It follows easily that this expression has different answer on the two
models (since it asks for four different nodes in the original graph database). This finishes
our proof.

This also implies that d-TriAL∗ subsumes an extension of RPQs based on regular expres-
sions with equality [Libkin and Vrgoč 2012], which can test for (in)equality of data values
at the beginning and the end of paths.

Another formalism proposed for querying graph databases with data values is that of
register automata [Kaminski and Francez 1994]. In general, these work over data words,
i.e., words over both a finite alphabet and an infinite set of data values. RPQs defined by
register automata find pairs of nodes connected by a path accepted by such automata. We
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refer to [Libkin and Vrgoč 2012; Kaminski and Francez 1994] for precise definitions, and
state the comparison result below.

Proposition A.9. d-TriAL∗ is incomparable in terms of expressive power with register
automata.

Proof. We begin by showing that register automata are not contained in d-TriAL∗.
To see this recall from Lemma 6.12 that TriAL∗ is subsumed by infinitary logic L6

∞,ω (an
extension to include data value comparisons is straightforward).

Next we observe that for any number n, register automata can define a property not
expressible in Ln∞,ω. For this consider the following regular expression with memory, shown
in [Libkin and Vrgoč 2012] to be equivalent to register automata:

e2 :=↓ x1a[x 6=1 ] ↓ x2

en+1 := en · a[x 6=1 ∧ x
6=
2 ∧ · · · ∧ x 6=n ] ↓ xn+1.

Since no node can have more than one data value attached it follows that the answer to
the query posted by the expression en is nonempty if and only if the graph database has at
least n different elements.

It is well known [Libkin 2004] that Ln∞,ω can not define a query stating that the model

has at least n+ 1 element. Since TriAL∗ is contained in L6
∞,ω the desired result follows from

the fact that e7 is nonempty only on the graphs with at least 7 elements.
To show that there are d-TriAL∗ queries outside of reach of register automata, recall

that d-TriAL∗ subsumes GXPath(=) (Theorem A.8) and the later already has the required
property [Vrgoč 2014].
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