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Abstract

Locality is a standard notion of finite model theory. There are two well known
flavors of it, based on Hanf’s and Gaifman’s theorems. Essentially they say that
structures that locally look alike cannot be distinguished by first-order sentences.
Very recently these standard notions have been generalized in two ways. The first
extension makes the notion of “looking alike” depend on logical indistinguishability,
rather than isomorphism, of local neighborhoods. The second extension considers
transformations defined by FO formulae, and requires that small neighborhoods be
preserved by those transformations. In this survey we explain these new notions –
as well as the standard ones – and show how they behave with respect to Hanf’s
and Gaifman’s conditions.

Key words: First-order logic, finite models, locality, Hanf’s
theorem, Gaifman’s theorem, local consistency, locality under
logical equivalence

1 Introduction

Locality is a property of logics that finds its origins in the work by Hanf [12]
and Gaifman [10], and that was shown to be very useful in the context of
finite model theory. Locality is useful for proving inexpressibility results, and
for establishing normal forms for logical formulae. It has found applications
in various areas of computer science including: complexity theory (e.g., the
study of monadic NP and monadic coNP [8], or circuit complexity classes
[5,20]), databases (e.g., expressiveness of aggregate query languages [14], and –
more recently – query answering and rewriting in data exchange [6,1]), formal
languages (e.g., locally threshold-testable languages [24]), algorithm design
(e.g. low-complexity model-checking algorithms [9,11,23]), automata theory
(e.g., the normal form of [22]), etc.
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There are two closely related ways of stating locality of logical formulae.
One, originating in Hanf’s work [12], says that if two structures A and B

realize the same multiset of types of neighborhoods of radius d, then they
agree on a given sentence Φ. Here d depends only on Φ.

The notion of locality inspired by Gaifman’s theorem [10] says that if the
d-neighborhoods of two tuples ā1 and ā2 in a structure A are isomorphic, then
A |= ϕ(ā1) ↔ ϕ(ā2). Again, d depends on ϕ, and not on A.

Recently these notions have been extended in two ways. The first way has
to deal with the underlying assumptions on locality. Namely, the standard
notions of locality refer to isomorphism of neighborhoods, which is a strong
property that is often not expressible in a logic that satisfies one of the locality
properties. Intuitively, it seems that instead of isomorphism, one can require
that neighborhoods be indistinguishable in a logic whose locality we want to
establish. This direction was pursued in [2], where it was shown that this
simple intuition works for some logics of interest but fails for others.

A different direction has to do with viewing logical formulae as defining
not queries (where we are simply interested in knowing whether a tuple ā is
in the result) but rather transformations, where we are interested in a whole
structure that results by applying a formula. This was largely motivated by
database applications, specifically by data exchange [6]. Data exchange is the
problem of transforming an instance of a database schema (that can be viewed
as a finite relational structure) into an instance of another schema. Rules
specifying such transformations are often given by means of logical formulae.

While the basic locality notions are now found in texts (see, e.g., [4,15,19]),
the extensions mentioned above are quite recent. Here I survey them, concen-
trating on the case of first-order logic (FO).

2 Notations

In this paper we work with finite structures, whose vocabularies are relational,
that is, finite sequences of relation symbols σ = 〈R1, . . . , Rl〉. A σ-structure
A consists of a finite universe A and an interpretation of each pi-ary relation
symbol Ri in σ as RA

i ⊆ Api . We adopt the convention that the universe of a
structure is denoted by the corresponding Roman letter, that is, the universe
of A is A, the universe of B is B, etc. Isomorphism of structures will be
denoted by ∼=. We shall use the notation σn for σ expanded with n constant
symbols.

Given a structure A, its Gaifman graph [19,10,8] G(A) is defined as 〈A,E〉
where (a, b) is in E iff there is a tuple c̄ ∈ RA

i for some i such that both a

and b are in c̄. The distance d(a, b) is defined as the length of the shortest
path from a to b in G(A); we assume d(a, a) = 0. If ā = (a1, . . . , an), then
d(ā, b) = mini d(ai, b). Given ā over A, its r-ball BA

r (ā) is {b ∈ A | d(ā, b) ≤ r}.
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If |ā| = n, its r-neighborhood NA

r (ā) is defined as a σn structure

〈BA

r (ā), RA

1 ∩ BA

r (ā)p1, . . . , RA

l ∩ BA

r (ā)pl, a1, . . . , an〉.

That is, the carrier of NA

r (ā) is BA

r (ā), the interpretation of the σ-relations is
inherited from A, and the n extra constants are the elements of ā.

If NA

r (ā) and NB

r (b̄) are isomorphic, we write NA

r (ā) ∼= NB

r (b̄). Note that
for any isomorphism h : NA

r (ā) → NB

r (b̄) it must be the case that h(ā) = b̄.

Given a tuple ā = (a1, . . . , an) and an element c, we write āc for the tuple
(a1, . . . , an, c).

An m-ary query is a mapping Q : A → Am that is closed under isomor-
phism (that is, if h : A → B is an isomorphism, then Q(B) = h(Q(A))). A
logical formula ϕ(x̄), with |x̄| = m, defines an m-ary query Q by ā ∈ Q(A) ⇔
A |= ϕ(ā). A query also gives us a transformation of structures that sends A

into 〈A,Q(A)〉.

We write A ≡k B if A and B agree on all FO sentences of quantifier rank
up to k, and (A, ā) ≡k (B, b̄) if A |= ϕ(ā) ⇔ B |= ϕ(b̄) for every FO formula
ϕ(x̄) of quantifier rank up to k. It is well known (see [4,15,19]) that A ≡k B iff
the duplicator has a winning strategy in the k-round Ehrenfeucht-Fräıssé game
on A and B, and (A, ā) ≡k (B, b̄) iff the duplicator has a winning strategy in
the k-round Ehrenfeucht-Fräıssé game on A and B starting in position (ā, b̄).

3 Locality: Hanf and Gaifman conditions

Hanf’s locality condition essentially says that if two structures realize the same
multiset of neighborhood types of points, then they cannot be distinguished
in a logic. It was presented in [12] for infinite structures and modified for the
finite case in [8]. A slight generalization presented in [13] allows one to deal
with free variables, and this is the definition we use here.

If A and B are σ-structures, and ā ∈ An, b̄ ∈ Bn, then we write

(A, ā) ⇆d (B, b̄)

if there exists a bijection f : A→ B such that for every c ∈ A,

NA

d (āc) ∼= NB

d (b̄f(c)).

In the case of n = 0, A⇆dB means that NA

d (c) ∼= NB

d (f(c)) for some bijection
f : A→ B.

The ⇆d relation says, in a sense, that locally two structures look the same,
with respect to a certain bijection f ; that is, f sends each element c into f(c)
that has the same neighborhood.

Definition 3.1 [Hanf-locality] An m-ary query Q, for m ≥ 0, on σ-structures
is Hanf-local if there exists a number d ≥ 0 such that for two every σ-structures

3



Libkin

d

A B

f

f

A |= Q⇔ B |= Q

•

• •

•

Fig. 1. Hanf-locality

...

... ...

...
G1

G2⇆d

Fig. 2. Connectivity is not Hanf-local

A and B, and for ā ∈ Am, b̄ ∈ Bm,

(A, ā) ⇆d (B, b̄) implies
(

ā ∈ Q(A) ⇔ b̄ ∈ Q(B)
)

.

This is illustrated in Fig. 1 for Boolean (0-ary) query Q.

The “canonical” example of using Hanf-locality is proving that connectivity
is not expressible in a logic that is Hanf-local. This is illustrated in Fig. 2:
suppose connectivity were Hanf-local, with d witnessing Hanf-locality. Then
pick two graphs: G1 is a union of two cycles of length d′ > 2d + 1 and G2 is
one cycle of length 2d′. Then every d-neighborhood is a chain of length of 2d,
and thus any bijection f : G1 → G2 witnesses G1 ⇆d G2, and yet G1 and G2

disagree on the connectivity query.

So the question is which logics define Hanf-local queries. This was answered
in [12,8]:

Theorem 3.2 Every FO-definable query is Hanf-local.

While Hanf-locality is a useful criterion, it is often easier to work with one
structure than with two. This is achieved by using a different locality notion.

Definition 3.3 [Gaifman-locality] An m-ary query Q, for m > 0, on σ-
structures, is called Gaifman-local if there exists a number d ≥ 0 such that for
every σ-structure A and every ā1, ā2 ∈ Am,

NA

d (ā1) ∼= NA

d (ā2) implies
(

ā1 ∈ Q(A) ⇔ ā2 ∈ Q(A)
)

.

This notion is illustrated in Fig. 3.

The “canonical” example of using Gaifman-locality is showing that any
logic that defines only Gaifman-local queries is incapable of expressing the
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A

a b
∼=d d

A |= ϕ(a) ↔ ϕ(b)• •

Fig. 3. Gaifman-locality

... ... ... ... ... ... ... ...
a b

2d 2d

Fig. 4. A local formula cannot distinguish (a, b) from (b, a)

transitive closure of a graph. This is illustrated in Fig. 4: in a long enough
chain, we can find two points a and b such that Nd(a, b) ∼= Nd(b, a) and yet
the transitive closure query distinguishes these pairs.

It follows immediately from [10] that all FO-definable queries are Gaifman-
local. In fact there is a close connection between the two notions of locality:

Theorem 3.4 (see [13]) Every Hanf-local query is Gaifman-local.

4 Locality based on logical equivalence

Intuitively, the notion of isomorphism of neighborhoods seems to be too strong
an assumption for concluding that formulae of a logic cannot distinguish cer-
tain tuples, if a logic itself cannot describe neighborhoods up to isomorphism.
So it seems natural to weaken the requirement that neighborhoods be isomor-
phic and instead require that they be indistinguishable in a logic. That is,
instead of requiring Nd(ā) ∼= Nd(b̄), we now require that Nd(ā) ≡k Nd(b̄) for
some k ≥ 0. Before defining these notions formally, we need a new version of
the ⇆d relation. We write

(A, ā) ⇆
≡
d,k (B, b̄)

iff there is a bijection f : A → B such that NA

d (āc) ≡k NB

d (b̄f(c)) for all
c ∈ A.

Definition 4.1 [Locality under logical equivalence] a) An m-ary query Q,
m ≥ 0, on σ-structures, is called Hanf-local under logical equivalence if there
exists numbers d, k ≥ 0 such that for every two σ-structures A and B, and
ā ∈ Am, b̄ ∈ Bm, if (A, ā) ⇆

≡
d,k (B, b̄) then ā ∈ Q(A) iff b̄ ∈ Q(B).

b) An m-ary query Q, m > 0, on σ-structures, is called Gaifman-local
under logical equivalence if there exists numbers d, k ≥ 0 such that for every
σ-structure A and every ā1, ā2 ∈ Am,

NA

d (ā1) ≡k NA

d (ā2) implies
(

ā1 ∈ Q(A) ⇔ ā2 ∈ Q(A)
)

.
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What can be said about these notions? First, from [10] we get:

Theorem 4.2 Every FO-definable query is Gaifman-local under logical equiv-
alence.

However, Hanf-locality is lost with this new notion, as noticed in [22].
Indeed, consider an FO sentence ϕ in the vocabulary of one binary predicate
E saying that E is a total relation (that is, ∀x∀y E(x, y)). Suppose this ϕ
is Hanf-local under logical equivalence, with d and k witnessing it. Consider
two graphs: G1 is a clique with 2k vertices, and G2 is a disjoint union of two
cliques having k vertices each. Then for an arbitrary bijection f : G1 → G2

we have NG1

d (c) = NG1

1 (c) ≡k N
G2

1 (f(c)) = NG2

d (f(c)) for all c and d ≥ 1, and
yet G1 |= ϕ and G2 |= ¬ϕ.

Furthermore, the implication Hanf-locality ⇒ Gaifman-locality fails for the
notions of locality based on logical equivalence. Of course a counterexample
query Q cannot be FO-definable, by Theorem 4.2. The query Q works on
graphs G with the edge relation E and additional binary relation R and unary
relation C. If G is a union of two E-connected components of different sizes,
each containing one element in C from which there is an E-edge to all other
elements of the component, and R-edges between the two elements in C, then
Q selects the C-element of the largest component. Otherwise, the output of
Q is empty. It is not hard to see that d = k = 1 witness Hanf-locality under
logical equivalence for Q. On the other hand, if both connected components
are large enough, they cannot be distinguished in FO, and yet only in one of
them an element is selected.

5 Locally consistent transformation

We now move from queries – where we are interested in knowing whether ā ∈
Q(A) – to transformations that associate to a structure A another structure
〈A,Q(A)〉. A natural extension of the notion of locality is to require that
isomorphic neighborhoods be sent to isomorphic neighborhoods. We first make
it precise in the setting of one structure, following the definition of [1].

Definition 5.1 [Locally consistent transformation] A transformationQ : A →
〈A,Q(A)〉 is Gaifman-locally consistent if for every d ≥ 0, one can find r ≥ 0
such that for every A and every a, b ∈ A we have

NA

r (a) ∼= NA

r (b) ⇒ N
〈A,Q(A)〉
d (a) ∼= N

〈A,Q(A)〉
d (b).

This notion is illustrated in Fig. 5.

A natural question is whether all FO-definable transformations are locally
consistent. The answer is negative in general.

Proposition 5.2 There are transformations definable by quantifier-free FO
formulae that are not Gaifman-locally consistent.
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A 〈A,Q(A)〉

a b a b

r r
d d

∼= ∼=• • • •

Fig. 5. Locally consistent transformation

C1 C1 C1 C1

C0C0

... ...

Fig. 6. Failure of local consistency

An example is given in Figure 6. Suppose we have a graph with edge
relation E whose nodes may be colored C0 and C1, and an FO formula

ϕ(x, y) ≡ E(x, y) ∨
(

C0(x) ∧ C1(y)
)

. (1)

Then, given the graph G in Figure 6, with a, b being the nodes in C0, if G′ is
the graph obtained by applying ϕ to G, then NG′

1 (a) 6∼= NG′

1 (b) as long as the
two C1-chains are of different length (note that nodes to which a and b are
connected belong to neither C0 nor C1). But for any fixed d we can pick them
to be long enough so that NG

d (a) ∼= NG
d (b).

But there are cases when local consistency can be ensured for FO-definable
transformations. The problem with the previous example is that in ϕ(G),
there are edges between elements that are very far apart in G. We exclude
this type of situations by means of the following definition. We say that an
FO formula ϕ(x̄) is d-bounded if, for every structure A and every tuple ā such
that A |= ϕ(ā), the distance between any two components of ā in A itself does
not exceed d.

Proposition 5.3 (see [1]) If ϕ is a d-bounded FO formula for d ≥ 0, then
it defines a Gaifman-locally consistent transformation.

While for general FO formulae the notion of d-boundedness is of course
undecidable, there are many useful examples of d-bounded formulae. Atomic
formulae are, of course, 1-bounded (and this has been used in data exchange
applications, where they correspond to an important subclass of data exchange
problems arising under the local-as-view scenario [6,1]). Conjunctive queries
whose graph is connected are also d-bounded for some d that depends on the
query.

So far we looked at transformations that define a structure with one
relation. But we could have considered transformations given by several
queries Q1, . . . , Qm: then we have a transformation [Q1, . . . , Qm] : A 7→
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〈A,Q1(A), . . . , Qm(A)〉. It turns out that even if all Qi’s are locally con-
sistent, then [Q1, . . . , Qm] need not be. The example is essentially the same
as formula (1): both E(x, y) and

(

C0(x) ∧ C1(y)
)

define locally consistent
transformations, and yet taken together they do not produce one.

We now move to the Hanf-based notion. We say that a transformation
given by Q is Hanf-locally consistent if for every d ≥ 0, there exists r ≥ 0 such
that

A ⇆r B ⇒ 〈A,Q(A)〉 ⇆d 〈B,Q(B)〉.

Then the same example as in (1) shows that this notion need not hold even
for transformations definable by quantifier-free FO formulae. But just as in
the case of Gaifman-based notion of local consistency, we can recover this for
d-bounded transformations.

Proposition 5.4 If ϕ is a d-bounded FO formula for d ≥ 0, then it defines
a Hanf-locally consistent transformation.

The proof combines the proof of Proposition 5.3 and Gaifman’s theorem
[10]. Results in this section can also be extended to the case of neighborhoods
of tuples rather than single elements [1].

6 Locally consistent transformations and logical equiv-

alence

Just as we changed the notion of locality from isomorphism-based to logical
equivalence-based, we can modify the definitions of locally consistent trans-
formations by making weaker assumptions on neighborhoods.

For a query Q, we say that a transformation given by Q is Hanf-locally
consistent under logical equivalence if for every d, k ≥ 0, there exist r, ℓ ≥ 0
such that

A ⇆
≡
r,ℓ B ⇒ 〈A,Q(A)〉 ⇆

≡
d,k 〈B,Q(B)〉.

Then a slight modification of the example showing that Hanf-locality of queries
under logical equivalence fails proves that this new notion fails too even for
very simple FO sentences.

But unlike the case of isomorphism-based local consistency, moving to
logical equivalence allows us to recover the Gaifman condition.

Definition 6.1 A transformation Q : A → 〈A,Q(A)〉 is Gaifman-locally con-
sistent under logical equivalence if for every d, k ≥ 0, one can find r, ℓ ≥ 0 such
that for every A and every a, b ∈ A we have

NA

r (a) ≡ℓ N
A

r (b) ⇒ N
〈A,Q(A)〉
d (a) ≡k N

〈A,Q(A)〉
d (b).

Since the rank-k type of a d-neighborhood can be defined by a formula
whose quantifier rank depends on d and k only, Gaifman’s theorem gives us
the following.

8



Libkin

Proposition 6.2 Every transformation given by an FO formula is Gaifman-
locally consistent under logical equivalence.

7 More expressive logics

While the Hanf notion of locality does not withstand more general definitions,
the Gaifman notion appears more robust and can be recovered under logical
equivalence for both queries and transformations.

We have looked at FO so far, so the next natural question is whether more
expressive logics possess similar notions of locality. For isomorphism-based
notions the answer is known. First, many extensions with counting or unary
quantifiers are local [17,20,14]. Maximal in terms of expressiveness logics that
are Gaifman- or Hanf-local (under isomorphism) have been characterized [18].

So it is natural to ask whether in logics that are known to be Gaifman-local
under isomorphism, Gaifman-locality can be recovered under the notion of
logical equivalence, where, of course, equivalence with respect to FO formulae
is replaced by equivalence with respect to formulae of the logic.

That is, assume that if we have a logic L with a notion of ≡L
k similar to

that of ≡k (that is, A ≡L
k B if A and B agree on all sentences of quantifier

rank – appropriately defined for L – up to k, or if there is a game for L
and the duplicator has a winning strategy in k rounds). Then locality under
logical equivalence for L states that for every formula ϕ(x̄), there are numbers
d, k ≥ 0 such that NA

d (ā) ≡L
k N

A

d (b̄) implies A |= ϕ(ā) ↔ ϕ(b̄).

While it seems natural that such extensions should be true for logics that
are Gaifman-local under isomorphism, the situation is more complex than
expected. Here we consider extensions of FO with simple unary quantifiers
[16,25]. A simple unary quantifier is a class K of structures 〈A,U〉, where U
is unary, closed under isomorphism. The logic FO(QK) extends FO by means
of the following rule: if ϕ(x̄, y) is a formula, then ψ(x̄) = QKyϕ(x̄, y) is a
formula. The semantics is as follows: A |= ψ(ā) iff the structure 〈A, {c ∈ A |
A |= ϕ(ā, c)}〉 is in K. The most commonly used unary quantifiers (besides the
usual ∃ and ∀) are modulo quantifiers [21,25] based on classes Kp of structures
〈A,U〉 where |U | = 0 (mod p). In this case we write Qp instead of QKp

.

We also consider the quantifier Qprime = QKprime
where Kprime is the class

of structures 〈A,U〉 where |U | is prime.

It is known that extensions of FO by means of an arbitrary collection of
simple unary generalized quantifiers are both Hanf- and Gaifman-local (un-
der isomorphism) [13]. The following shows that the behavior of the logical
equivalence-based notion of Gaifman-locality is not nearly as uniform.

Theorem 7.1 (see [2]) a) For an arbitrary set of natural numbers p1, . . . , pm,
the extension FO(Qp1

, . . . ,Qpm
) of FO with Qp1

, . . . ,Qpm
is Gaifman-local un-

der logical equivalence.

b) FO(Qprime) is not Gaifman-local under logical equivalence.
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8 Transformations that invent new values

So far we looked at transformations that sent a structure A to 〈A,Q(A)〉. But
in many applications, especially in data exchange [6,7], transformations need
to invent new values. Consider, for example, a database relation that stores
data about employee ids, names, and salaries, and suppose one needs to create
another relation that stores employee ids and departments. In this case one
copies data about ids and creates new and distinct values, that are not present
elsewhere in the database, for department names.

We assume that elements of finite universes come from some set D, and
we also have a countable set V of values (often called variables or nulls in the
database context) that will be used as new invented values. A transformation
of σ-structures to σ′-structures is given by rules of the form

(r) ψ(x̄, z̄) :– ϕ(x̄, ȳ),

where ψ is a conjunction of σ′-atoms, and ϕ is an FO formula of vocabulary
σ. The semantics of this rule (r) as follows: if ϕ(ā, b̄) is true in a σ-structure
A, then one picks a tuple v̄ with |v̄| = |z̄| of fresh elements from V , and
adds tuples specified by ψ(ā, v̄) to a σ′-structure. For example, if (r) is the
rule R1(x1, z), R2(z, z

′, x2) :– ϕ(x1, x2, y), and ϕ(a, b, c) is true in an input
structure A, then we pick two new elements v, v′ from V and add a tuple
(a, v) to R1 and a tuple (v, v′, b) to R2.

The result of applying (r) to A will be denoted by Fr(A). Notice that
Fr(A) is unique up to renaming elements from V . Notice also that if (r) is of
the form R(x̄) :– ϕ(x̄), then Fr(A) is simply ϕ(A) = 〈A, {ā | A |= ϕ(ā)}〉.

One can reformulate the previous notions of Hanf- and Gaifman-local con-
sistency for transformations of the form Fr. It turns out they behave in the
same way as transformations that do not invent new values.

Theorem 8.1 (see [1]) The transformation Fr is Gaifman-locally consistent
under logical equivalence. Moreover, if ϕ in (r) is d-bounded for some d ≥ 0,
then Fr is Gaifman-locally consistent.

In fact Theorem 8.1 is true for more general transformations that consist
of a sequence rules, with each rule referring in its body to relations mentioned
in the heads of rules appearing earlier in the sequence [1]. These rule-based
transformations are also closely related to FO transductions [3], but they
appear to be more convenient for presenting transformations and their locality
properties.

A central problem in data exchange is query answering, since queries are
formulated over σ′-relations, but then input is normally a σ-structure A. Sev-
eral ways of answering queries have been proposed [6,7]. The most common
one seems to be the following. If we have an input A and a formula α(x̄) over
σ′, then answer(r)(α,A) is the set {ā ∈ A|ā| | Fr(A) |= α(ā)} (one only keeps
elements of A since Fr(A) is specified up to renaming of elements of V ) [6].

10



Libkin

FO queries: locality FO transformations: local consistency

Hanf Gaifman Hanf Gaifman

under
isomorphism yes yes

no in general
yes for d-bounded

no in general
yes for d-bounded

under logical
equivalence no yes no yes

Fig. 7. Summary of main results

Theorem 8.1 gives us a useful locality property for answer(r)(α,A):

Corollary 8.2 Given a rule (r) as above and a formula α over σ′, there is a
number d such that NA

d (ā1) ∼= NA

d (ā2) implies ā1 ∈ answer(r)(α,A) ⇔ ā2 ∈
answer(r)(α,A), for every σ-structure A.

This result can easily be used to show that certain queries are not answer-
able in the data exchange scenario [1].

We conclude with a summary of the main results surveyed here, presented
in Figure 7.
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Marcelo Arenas and Pablo Barceló, for collaboration on locality results upon
which this paper is based.

References
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