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ABSTRACT
Design principles for XML schemas that eliminate redun-
dancies and avoid update anomalies have been studied re-
cently. Several normal forms, generalizing those for rela-
tional databases, have been proposed. All of them, how-
ever, are based on the assumption of a native XML storage,
while in practice most of XML data is stored in relational
databases.

In this paper we study XML design and normalization
for relational storage of XML documents. To be able to re-
late and compare XML and relational designs, we use an
information-theoretic framework that measures information
content in relations and documents, with higher values cor-
responding to lower levels of redundancy. We show that
most common relational storage schemes preserve the no-
tion of being well-designed (i.e., anomalies- and redundancy-
free). Thus, existing XML normal forms guarantee well-
designed relational storages as well. We further show that if
this perfect option is not achievable, then a slight restriction
on XML constraints guarantees a “second-best” relational
design, according to possible values of the information-
theoretic measure. We finally consider an edge-based re-
lational representation of XML documents, and show that
while it has similar information-theoretic properties with
other relational representations, it can behave significantly
worse in terms of enforcing integrity constraints.
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1. INTRODUCTION
Database design and normalization, which originated with

early papers by Codd [12, 13, 14], is one of the classical ar-
eas of relational database theory, and a standard textbook
topic. With a recent shift to XML as a data model, many
of classical database subjects have been reexamined in the
XML context, among them design and normalization [4, 35,
37, 36, 20, 38]. The goal of normalization is to eliminate
redundancies from a database or an XML document, and
by doing so, eliminate or reduce potential update anoma-
lies. With that goal in mind, XML normal forms have been
introduced [4, 38, 36] and proved to eliminate redundancies
in data storage [5].

However, all the work on XML design was making an
assumption of a native XML storage for reasoning about
redundancies and anomalies. While native XML storage fa-
cilities exist [31, 30, 23, 1], many XML processing systems
take advantage of relational databases to store and query
XML data [21, 39, 32, 34, 18]. The issues of storing and
querying relational representations of XML have been stud-
ied extensively (refer to [26] for a survey).

So the rationale for good XML designs that can be found
in the literature applies to the storage model that is not
the prevalent one in practice. Thus, a natural question to
ask is: Do the existing principles of XML design apply when
one stores XML in relational databases? And, in case there
is a mismatch between the native XML representation and
a relational one, how can one adjust XML design principles
to guarantee well-designed relational representation of XML
documents?

As we try to formulate these questions in a more precise
way, one issue arises immediately: how do we compare XML
designs and designs of their relational translations? After
all, the notions of redundancies, updates, queries, etc. are
rather different in these two worlds. To overcome this prob-
lem, we use an information-theoretic approach to database
designs proposed in [5] and further developed in [25]. The
idea of this approach is that it measures, in a way indepen-
dent of features such as updates and queries, the information
content of data, as an entropy of a suitably chosen proba-
bility distribution. The higher this information content is,
the less redundancy the design carries. This measure applies
across different data formats and integrity constraints, and
allows us to reason about and compare data designs over
different data models.

The values of the information-theoretic measure are real
numbers between 0 and 1, with 0 meaning “completely re-
dundant information” and 1 corresponding to no redun-



dancy at all. Good designs are those where all data items
have measure 1. It is known, for example, that over re-
lational databases this corresponds to BCNF (Boyce-Codd
Normal Form) [2, 24, 28], and over XML documents, to a
normal form XNF introduced in [4], if only functional de-
pendencies are involved.

When XML documents are stored as relations, con-
straints may not remain in the same forms, e.g. XML keys
may change to functional dependencies over the relational
schema [17]. However, the information-theoretic approach
applies to any kind of constraints, and as our first result,
we are able to show that the normal form XNF corresponds
precisely to the perfect designs of relational translations of
XML. For this result, we impose fairly mild conditions on
translations of XML; in fact for most translations used in
the literature [33, 21] the result holds.

While one often tries to achieve a perfect design, in prac-
tice it is not always possible. For example, if we deal with
relational databases and functional dependencies, the per-
fect design that eliminates all redundancies is BCNF, but if
one needs to enforce all the functional dependencies at the
same time, a decomposition into BCNF may not exist [2].
In that case, one usually tries to obtain a 3NF (3rd Normal
Form) design; in fact 3NF is much more commonly used in
practice than BCNF. It was recently shown that 3NF can
be explained information-theoretically as the best relational
normal form achievable if all constraints are preserved [25].
Using the information-theoretic measure, one can also char-
acterize it as a normal form always guaranteeing values of
the measure at least 1

2
, which is the highest value that one

can guarantee if the preservation of functional dependencies
is important.

Here we show that there is a simple XML design criterion
that guarantees this second-best relational design. Namely,
our XML design criterion says that every constraint violat-
ing XNF should be relative [10, 3], i.e. restricted to some
element type of a DTD that occurs under the scope of a
Kleene star.

Thus, our results suggest the following guidelines for XML
design if one stores XML documents in relations:

1. try to achieve the normal form XNF (using, e.g., algo-
rithm from [4]);

2. if that fails, try replacing all XNF-violating constraints
by relative ones.

This way one guarantees good design not only of an XML
document itself, but also of its relational storage by remov-
ing redundancies.

Our final result deals with a relational representation of
documents in which we essentially store the document as a
tree (the edge relation) [21]. This representation shares some
of the information-theoretic characteristics with those more
commonly used, but we show that it may require arbitrarily
many more relational joins for enforcing XML constraints
even for well-designed documents in XNF.

Organization. The paper is organized as follows. In Sec-
tion 2 we define relational and XML constraints and DTDs.
In Section 3 we give a brief overview of normal forms BCNF,
3NF for relational databases, and XNF for XML. In Section
4, we give an overview of the information-theoretic measure,
explain how it characterizes good designs. The precise for-
mal definition is in the appendix. In Section 5 we overview

relational translations of XML and XML constraints. In
Section 6, we show that perfect XML designs (i.e., XNF)
correspond precisely to perfect designs of relational repre-
sentations. In Section 7 we find conditions on XML docu-
ments guaranteeing the best non-perfect relational designs,
akin to 3NF. In Section 8 we discuss the edge representation,
and in Sections 9 and 10 we give conclusions and directions
for future work.

2. NOTATIONS

Relational schemas and instances. A relational schema,
usually written as S, is a set of relation names. With each m-
ary relation R ∈ S, we associate a set of attributes attr(R).
We assume that all data values in a database instance are
from a countably infinite domain, N+ (the set of positive
natural numbers) for simplicity. Therefore, an instance I of
S assigns to each m-attribute relation R in S a finite subset
I(R) of N

m
+ . The active domain of I , denoted by adom(I)

is the set of all elements of N+ that occur in I . The set of
positions in an instance I of S, denoted by Pos(I), is the set
{(R, t, A) | R ∈ S, t ∈ I(R) and A ∈ attr(R)}.

Schemas may contain integrity constraints. We denote
such schemas by (S, Σ), where S is a set of relation names
and Σ is a set of constraints. In this paper, we deal with con-
straints such as equality-generating dependencies (EGDs),
and functional dependencies (FDs) as special cases of EGDs.
An EGD is an expression of the form

∀ (R1(x̄1) ∧ . . . ∧ Rm(x̄m) → x = y) ,

where ∀ represents the universal closure of the formula,
x, y ∈ x̄1 ∪ . . . ∪ x̄m, and there is an assignment of vari-
ables to columns such that each variable occurs only in one
column, and x, y are assigned to the same column. We as-
sume that FDs are of the form X → Y , where X, Y are
nonempty sets of attribute names.

If Σ is a set of constraints, then Σ+ denotes the set of all
constraints implied by it, and inst(S, Σ) stands for the set
of all instances of S satisfying Σ. We write instk(S,Σ) for
the set of instances I ∈ inst(S, Σ) with adom(I) ⊆ [1, k].

DTDs and XML trees. Assume that we have the fol-
lowing disjoint sets: El of element names, Att of attribute
names, Str of possible values of string-valued attributes. All
attribute names start with the symbol @.

A DTD D is defined to be D = (E, A, P, R, r), where

• E ⊆ El is a finite set of element types;

• A ⊆ Att is a finite set of attributes;

• P is a set of rules τ → Pτ for each τ ∈ E, where Pτ is
a regular expression over E − {r};

• R assigns a subset of A of attribute names to each
element τ ∈ E;

• r ∈ E is the root element.

For simplicity, we do not consider PCDATA elements in XML
trees since they can be represented by attributes.

An XML tree is a finite rooted directed tree T = (N, G),
where N is the set of nodes, and G is the set of edges,
together with
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Figure 1: An XML tree.

1. a labeling function λ : N → El;

2. an attribute function ρ@a : N → Str for each @a ∈
Att.

We say tree T conforms to DTD D = (E, A, P, R, r), written
as T |= D, if

• the root of T is labeled r;

• for every x ∈ N with λ(x) = a, the word
λ(x1) . . . λ(xn) is in the language defined by Pa where
x1, . . . , xn are children of x in order;

• @l ∈ R(a) iff the function ρ@l is defined on x.

The set of positions in an XML document is intuitively the
set of places where values (i.e. attribute values) occur. For-
mally, for a tree T = (N, G) that conforms to DTD D, the
set of positions is defined as the set {(x, @l) | x ∈ N, @l ∈
R(λ(x))}, and is denoted by Pos(T ).

Given a DTD D = (E, A, P, R, r), an element path q is a
word in the language E∗, and an attribute path is a word
of the form q.@l, where q ∈ E∗ and @l ∈ A. An element
path q is consistent with D if there is a tree T |= D that
contains a node reachable by q; if the nodes reachable by q
have attribute @l, then the attribute path q.@l is consistent
with D. The set of all paths consistent with a DTD D is
denoted by paths(D). The last element type that occurs on
a path q is called last(q).

A functional dependency over a DTD D [4] is an expres-
sion of the form {q1, . . . , qn} → q, where q, q1, . . . , qn ∈
paths(D).

To define satisfaction of functional dependencies, we need
a notion of tree tuples in XML documents. Given an XML
tree T = (N, G) such that T |= D, a tree tuple [4] is in-
tuitively a subtree of T rooted at r containing at most one
occurrence of every path. Then satisfaction is defined in the
usual way: if two tree tuples agree on all the paths q1, . . . , qn,
then they must agree on q.

The precise definition requires a bit of care since a tree
tuple may not be defined on some paths (as tree tuples have
at most one occurrence of every path, and may have zero
occurrences). Let ⊥ represents such missing values. A tree
tuple is formally defined as a mapping t : paths(D) → N ∪
Str∪{⊥} such that if for an element path q whose last letter
is a, we have t(q) 6= ⊥, then t(q) ∈ N and λ(t(q)) = a; if

q′ is a prefix of q, then t(q′) 6= ⊥ and t(q′) lies on the path
from the root to t(q) in T ; if @l is defined for t(q) and its
value is v ∈ Str, then t(q.@l) = v.

Then a tree T satisfies an FD {q1, . . . , qn} → q if for any
two tree tuples t1, t2 in T , whenever t1(qi) = t2(qi) 6= ⊥ for
all i ∈ [1, n], then t1(q) = t2(q).

If in an FD {q1, . . . , qn} → q, for some i the path qi is an
element path, and for all j ∈ [1, n], j 6= i, the path qi is a
prefix of qj , then we say that such an FD is relative (more
precisely, relative to qi).

Example 1. Consider the XML tree of Figure 1 that con-
forms to DTD D = (E, A,P, R, db), where

E = {db, student, contact, address, phone}
A = {@name, @streetNo,@aptNo,@city, @postalCode,

@number}
P = {db → student∗, student → contact,

contact → address∗, address → ε, phone → ε}
R(student) = {@name}
R(address) = {@streetNo,@aptNo,@city, @postalCode}
R(phone) = {@number}
R(db) = R(contact) = ∅
This XML tree satisfies the following constraints: (1) for

each student, no more than one address is kept with a single
postalCode, and (2) the value of postalCode uniquely deter-
mines streetNo and city. These constraints can be formu-
lated as the following FDs:

db.student, db.student.contact.address.@postalCode →
db.student.contact.address

(1)

db.student.contact.address.@postalCode →
db.student.contact.address.@city

(2)

The first FD is an example of a relative FD, where the
constraint holds within each fixed element student.

3. OVERVIEW OF NORMALIZATION
A normal form specifies a set of syntactic conditions over

the constraints defined for a database that will lead to less
redundant instances. We briefly review some normal forms



defined for relational and XML data and refer the reader to
surveys [7, 22, 9], texts [2, 24, 28], and papers [4, 38] for
additional information.

Relational normal forms. A schema (S, Σ) is in BCNF if
for every relation name R in it and every nontrivial FD X →
Y over attributes of R, X is a key of R. Prime attributes are
those that belong to a candidate (minimal) key. A schema
(S, Σ) is in 3NF if for every relation name R in it and every
nontrivial FD X → Y over attributes of R, either X is a
key, or every attribute in Y − X is prime.

Given a single-relation schema (R,Σ) and some normal
form NF , a lossless NF-decomposition is a set of schemas
(Rj , Σj), j ∈ J , such that each (Rj , Σj) is in NF , and for
every I ∈ inst(R, Σ) we have πattr(Rj)(I) |= Σj and further-
more I =1 {πattr(Rj)(I) | j ∈ J}. Such a decomposition is

called dependency-preserving if
( ⋃

j Σj

)+
= Σ+. It is well-

known that both 3NF and BCNF admit lossless decompo-
sitions, which in the case of 3NF can be guaranteed to be
dependency-preserving. In the case of BCNF dependency
preservation is not always possible (consider a schema with
attributes A, B, C and FDs AB → C and C → A).

A normal form for XML. Given a DTD D and a set
Σ of FDs over D, (D, Σ)+ is the set of all FDs implied by
(D, Σ). An FD is called trivial if it belongs to (D, ∅)+. We
say that (D, Σ) is in XML Normal Form (XNF) [4] if for
every nontrivial FD X → q.@l in (D, Σ)+, the FD X → q
is also in (D, Σ)+.

Intuitively, this condition prevents redundancies among
values of attributes @l of q. It was shown in [4] that if re-
lational databases are translated into XML documents (say,
as instances of DTDs r → t∗, where t has all the attributes
of a relation R), then XNF coincides with BCNF. Thus, it
is a natural extension of BCNF to XML documents. For
further results on XNF, and its justification, see [4, 5].

We can see an example of XNF violation by FD (2)
in Example 1. While the path on the left-hand side
db.student.contact.address.@postalCode implies the at-
tribute path db.student.contact.address.@city, it does not
imply the element path db.student.contact.address.

4. INFORMATION THEORY AND NOR-
MALIZATION

Since we shall be comparing XML designs and relational
designs, we would like to work in a framework that applies
across several data models and is independent of concepts
such as query languages and updates (which are not yet
as fully understood for XML as for relational world), and
concepts such as dependency preservation (which has not
been adequately explored in the XML context).

Such framework is provided by the classical information
theory and its central concept of entropy which measures
information content. Information theory has recently been
used to characterize well-known relational normal forms,
such as BCNF, 4NF, and 3NF, as well as XML normal
forms [5, 25]. Given a database schema S, a set of integrity
constraints Σ and an instance I of (S, Σ), the information-
theoretic measure, introduced in [5], assigns a number to
every position p in the instance that contains a data value.
This number, which is called relative information content
with respect to constraints Σ and is written as RicI(p|Σ),

ranges between 0 and 1 and shows how much redundancy is
carried by position p. Numbers close to 0 mean high redun-
dancy, while numbers close to 1 mean no or low redundancy
for the data value in position p.

Example 2. (see [5]) Consider relation R(A,B, C) with
the set of FDs Σ = {A → B}, and three instances I1, I2,
and I3 of (R, Σ) shown in Figures 2(a), 2(b), and 2(c) re-
spectively. Let p1, p2, and p3 denote the position of the gray
cell in the instances. We can observe that the information
content of the gray cell decreases as it becomes more redun-
dant by adding tuples to the instances.

To define this measure intuitively, suppose that we have
n positions (data elements) in a relational or XML instance
I , whose values are drawn from a domain of size k (which
we may assume without loss of generality to be the interval
[1, k]). We want to measure, on average, how much infor-
mation is contained in position p with respect to all other
sets X of positions — or, in other words, how much we can
derive about p from values in positions in X. When we can
derive the value in p unambiguously, the information con-
tent will be 0; when we cannot say anything about it, it will
be 1.

This in turn is measured as follows. Suppose X is a subset
of Pos(I) − {p}. Suppose the values of positions in X are
lost, and then somehow restored from the set [1, k]. We mea-
sure how much information this gives us about the value of
p. This is done in a standard information-theoretic fashion,
by computing an entropy of a certain distribution1. Then
Rick

I (p|Σ) is the average of such entropy over all such sets
X.

We want the information content to be a value in [0, 1].
It is known that the maximum entropy for a discrete distri-
bution on k elements is log k [15]. So we consider the ratio
Rick

I (p|Σ)/ log k, and then define the relative information
content of position p as

RicI(p|Σ) = lim
k→∞

Rick
I (p | Σ)

log k
.

A key result of [5] is that this limit exists for all reasonable
classes of constraints (e.g., all those definable in first-order
logic, such as functional, multi-valued, join, etc. dependen-
cies).

The following definition is from [5] and it applies across
different data formats, including relational and XML data.

Definition 1. A database schema (S, Σ), with a set of
constraints Σ, is well-designed if for every instance I of
(S, Σ) and every position p in I, we have RicI(p|Σ) = 1.

In other words, a schema is well-designed if in every in-
stance, no position has any redundancy at all.

Here we concentrate on designs guided by functional de-
pendencies. For them, well-designed schemas have been pre-
cisely characterized in [5].

Fact 1. (see [5])

1. If S is a relational schema and Σ is a set of functional
dependencies, then (S, Σ) is well-designed if and only
if it is in BCNF.

1The precise definition of this distribution and the definition
of entropy are in the appendix.
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Figure 2: Information content vs redundancy.

2. If D is a DTD and Σ is a set of XML functional de-
pendencies, then (D, Σ) is well-designed if and only if
it is in XNF.

We also note that the framework applies well beyond func-
tional dependencies. For example, [5] used it to characterize
designs based on multi-valued and join dependencies, and
we shall use it soon for schemas for equality-generating de-
pendencies (EGDs).

Some popular relational normal forms, such as 3NF, are
not well-designed according to our definition, because they
allow some amount of redundancy to compensate for pre-
serving all the constraints. A way to measure and compare
information contents over multiple schemes satisfying a par-
ticular condition, such as a normal form, was introduced
in [25].

Let C be some condition on relational schemas, e.g., BCNF
or 3NF. Now consider all instances I of these schemas (S, Σ),
and all the possible values RicI(p|Σ).

Definition 2. The guaranteed information content of
a condition C is the largest number c ∈ [0, 1] such that
RicI(p|Σ) ≥ c for all such instances I and positions p. It is
denoted by GIC(C). Formally,

GIC(C) = inf{RicI(p|Σ)},
where I ranges over instances of schemas (S, Σ) that satisfy
C, and p ranges over positions in I.

Using this, one can characterize 3NF. In fact, it was no-
ticed long ago that 3NF designs can differ significantly [40],
and in general those accepted as good ones are the ones
produced by the standard 3NF synthesis algorithm by Bern-
stein [8]. In fact such a subset of 3NF, which we denote by
3NF+, can be characterized information-theoretically as fol-
lows:

Fact 2. (see [25]) GIC(3NF+) = 1
2
. Moreover, if

C is any other normal form that guarantees dependency-
preserving decompositions, then GIC(C) ≤ 1

2
.

Note that we can reformulate Fact 1 as GIC(BCNF) = 1.
This means that if we cannot achieve the maximum informa-
tion content equal to 1 for all positions, the next best thing
that we guarantee is the value of the information-theoretic
measure equal to 1

2
.

5. RELATIONAL TRANSLATION OF XML
The main goal of this paper is to show how a good XML

design can result in having a less redundant relational stor-
age for XML documents. Redundancies occur when DTDs

permit adding more redundant values, or redundant tree
tuples, to XML documents. In particular, they occur when
element types occur under the scope of a Kleene star in the
DTD. This is indeed what is required for the worst cases of
redundancy, so for lower bounds we can safely concentrate
on DTDs that basically model nested relations, i.e. non-
recursive disjunction-free DTDs, where each element type
appears once or under a Kleene star in the production rule
of its parent.

We shall use the inlining technique [33] as our XML-to-
relational mapping scheme. While the inlining technique
is not the only [21, 39, 32, 6, 19, 18] or necessarily the
best mapping scheme (see [26] for a survey), it produces the
most natural relational schema for DTDs that are essentially
nested relations. But our results are more general: they
apply to any other mapping scheme that produces a similar
relational schema for nested-relation-like DTDs.

Given a DTD, the basic idea of the inlining mapping is
that separate relations are created for the root and the ele-
ment types that appear under a star, and the other element
types are inlined in the relations corresponding to their par-
ents. Each relation corresponding to an element type has an
ID attribute that is a key for that relation as well as a parent
ID attribute that is a foreign key pointing to the parent of
that element in the document. All the attributes of a given
element type in the DTD become attributes in the relation
corresponding to that element type.

For example, the relational schema for storing XML doc-
uments conforming to the DTD in Example 1 would be

student(stID, name, conID)
address(addID, conID, postalCode, streetNo, aptNo, city)
phone(phID, conID, number)

Key attributes are underlined, and the following foreign
keys also hold: address[conID] ⊆FK student[conID] and
phone[conID] ⊆FK student[conID].

The inlining schema generation can be formally captured
as follows.

Definition 3. Given a DTD D = (E, A,P, R, r), we de-
fine the inlining of D to be a relational schema S, where

• S = {Re | e ∈ E, and e∗ occurs in Pe′ for some e′ ∈
E or e occurs in Pr}, and

• there is a mapping σ : E → S recursively defined as

σ(e) =

{
Re if Re ∈ S
σ(e′), where e occurs in Pe′ if Re 6∈ S

such that for each Re ∈ S,



attr(Re) =
⋃

e′∈σ−1(Re) ({e′ID} ∪ A(e′))
∪{e′ID | e occurs in Pe′} .

Then given an XML tree T = (N, G) conforming to D
and satisfying Σ, we can straightforwardly shred it into an
instance IT of relational schema S, the inlining of D. Note
that we can use node identifiers in N for values of ID at-
tributes when populating IT . The precise definition of this
transformation is omitted here.

It is easy to observe that the FDs defined over a DTD
do not necessarily translate into FDs over the relational
schema, simply because the paths involved in an XML func-
tional dependency may not all occur in a single relation.
Therefore, we need to join different relations to enforce the
integrity constraints that are now in the form of equality-
generating dependencies (EGDs).

For example, the FDs in Example 1 would translate into
the following EGDs. Note that EGD (4) is an FD, but
EGD (3) is not.

∀ student(s, n, c) ∧ address(a, c, pc, st, apt, ct) ∧
student(s, n, c) ∧ address(a′, c, pc, st′, apt′, ct′)
→ a = a′,

(3)

∀ address(a, c, pc, st, apt, ct) ∧
address(a′, c′, pc, st′, apt′, ct′) → ct = ct′. (4)

We can show that every constraint expressed in the form
of an FD for XML can be written as an EGD over the in-
lining relational storage. More formally,

Proposition 1. For every DTD D and set of XML func-
tional dependencies Σ defined over D, there is a set of EGDs
ΣE over the relations of S, the inlining of D, such that for
every XML tree T conforming to D, the tree T satisfies Σ if
and only if IT satisfies ΣE .

Note that there are also some key and foreign key con-
straints ΣK,FK over the ID attributes of S, as shown in pre-
vious example. We then call (S, ΣS) the inlining translation
of (D, Σ), where ΣS = ΣE ∪ ΣK,FK .

6. RELATIONAL TRANSLATIONS PRE-
SERVE PERFECT DESIGNS

We know that if we want a perfectly non-redundant design
for XML, we should try to achieve XNF [4]. XML is most
commonly stored in relational databases, in order to take ad-
vantage of fast relational query engines and well-developed
storage facilities. We therefore need to study the design and
normalization not only for XML per se, but also for the rela-
tional storage of XML documents. Here we study the effect
of XNF normalization on the relational storage, and in the
next section we will see how the relational storage looks, in
terms of redundancy, for non-perfect XML designs.

We observe that the inlining mapping preserves a good
XML design by showing that the information content of data
values will remain maximum after transforming XML data
into relational storage. Note that the FDs over XML data
will become EGDs over the relational storage.

Let D be a DTD, Σ be a set of XML functional dependen-
cies defined over D, and (S, ΣS) be the inlining translation of
(D, Σ). Consider an XML tree T conforming to D and sat-
isfying Σ. Let IT be the instance of (S, ΣS) that is obtained

by shredding T into relations of S. Now every position p in
T is naturally mapped into a unique position δ(p) in IT .

Definition 4. We say that an inlining translation
(S, ΣS) of (D, Σ) is well-designed iff for every XML tree
T conforming to D and satisfying Σ and every position p in
T , we have RicIT (δ(p)|ΣS) = 1.

In other words, in positions corresponding to positions
from the XML document, there is no redundancy whatso-
ever in the shredded documents according to the translation
of XML constraints.

Theorem 1. The following are equivalent for an XML
specification (D, Σ) and its inlining translation (S, ΣS):

1. (D, Σ) is well-designed (or, equivalently, is in XNF);

2. (S, ΣS) is well-designed.

This means that in order to ensure a non-redundant rela-
tional storage for our XML data, we need to have an XNF
design. In other words, XNF achieves nonredundant design
no matter what type of storage – native or relational – is
used.

7. RELATIVE CONSTRAINTS AND GOOD
DESIGNS

Like in the relational case, bad XML designs may lead to
very low information contents for positions in the relational
storage. In fact, the information content of a position in a
relational storage of an XML document can potentially be
arbitrarily low.

Proposition 2. For every ε > 0, we can find an XML
design (D, Σ) with inlining translation (S, ΣS) and an XML
tree T conforming to D and satisfying Σ with a position p,
such that for the corresponding position δ(p) in IT , we have
RicIT (δ(p)|ΣS) < ε.

To avoid the possibility of having such a high redundancy,
we need some restrictions that guarantee a reasonable infor-
mation content for all positions in the relational storage of
XML. We showed in the previous section that an XNF de-
sign corresponds to maximum information content for the
relational storage, but is it always possible to achieve XNF?

Recall that in the relational context it is not always
possible to achieve a dependency-preserving perfect design.
Therefore to guarantee dependency preservation, we may
have to tolerate some redundancy, at most equal to one half
of the maximum information content, and this is exactly
what a good 3NF (i.e., 3NF+) normalization gives us.

Here we want to show that if a dependency-preserving
XNF design is not achievable, then a simple restriction on
FDs defined for XML guarantees the second best informa-
tion content for the relational storage of an XML document.
The restriction is simply that all FDs should satisfy XNF or
be relative to an element that occurs under the scope of a
Kleene star. Then the information content of all positions
of the relational storage of the XML document will be at
least 1

2
.

Let D = (E, A, P, R, r) be a DTD, Σ be a set of XML
functional dependencies defined over D, and (S, ΣS) be the
inlining translation of (D, Σ).



Definition 5. We say that an FD {q1, . . . , qn} → q ∈ Σ
is relative under the Kleene star if

• qi is an element path for some i ∈ [1, n],

• for all j ∈ [1, n], qi is a prefix of qj, and

• for some p which is a prefix of qi and τ ∈ E, last(p)
occurs under a Kleene star in Pτ .

An example of FD that violates this condition is FD (2)
in Example 1. We refer to such FDs as absolute or global
FDs.

We now extend the definition of guaranteed information
content for relational storage of XML documents. Let C
be some condition on XML functional dependencies defined
over a DTD, e.g. XNF or relative under the Kleene star.
Now consider all XML trees T conforming to some DTD D
and satisfying FDs Σ, such that FDs in Σ are of type C. The
guaranteed information content of a condition C for inlining
translation, written as GICinl(C) is the largest number c ∈
[0, 1] such that for all such trees T and position p in T ,

RicIT (δ(p)|ΣS) ≥ c,

where IT is the shredding of T into the inlining translation
(S, ΣS) of (D, Σ), and δ(p) is the position in IT to which p
is mapped. Formally,

GICinl(C) = inf{RicIT (δ(p)|ΣS)},
where T ranges over trees conforming to D and satisfying
FDs Σ of type C, and p ranges over positions in T .

Using this, we can reformulate Theorem 1 as
GICinl(XNF) = 1. Now let relative denote the condi-
tion of being relative under star. Then we can formally
state the main result of this section:

Theorem 2. GICinl(relative) ≥ 1
2
.

In other words, if we manage to design an XML docu-
ment in such a way that there is no global FDs, then the
redundancy of each data value in the relational storage of
the XML document would not be worse than 1

2
.

We can explain this result more intuitively by looking at
update anomalies that could happen in the relational storage
of an XML document. Most database management systems
disallow updates that violate key constraints, but the only
mechanism to enforce FDs or EGDs would be through writ-
ing assertions. In the absence of global or absolute FDs on
the XML side, the possibility of FD or EGD violation due to
a bad update in the relational storage will be restricted to a
small portion of the entire database. Informally speaking, if
we are to numerically evaluate the possibility of having up-
date anomalies, our results state that by having global FDs,
the relational storage of an XML document could be ex-
ponentially more prone to anomalies, compared to the case
when we are restricted to XNF and relative FDs.

8. A DIFFERENT MAPPING SCHEME
Beside inlining, there are other XML-to-relational data

and query mapping schemes [21, 39, 32, 6, 19, 18], among
them being the Edge representation [21], which is used as a
basis for many XML query translation techniques. Here we
would like to study this mapping scheme from two points

of view: 1) redundancy and information content, and 2) the
complexity of enforcing integrity constraints.

In the Edge representation, an XML tree is viewed as an
edge-labeled graph. Each element-to-element and element-
to-attribute edge of the tree has a tuple in Edge table, and
for each data value in the tree, there is a tuple in Value table
associating the node identifier to a value. The relational
storage for any XML tree, regardless of its schema, has the
following relations:

Edge(source, target, label),
Value(vid, val).

In the original definition of this schema [21], there are two
more attributes in the Edge relation: ordinal, which speci-
fies the ordinal of the target among children of the source,
and flag which specifies whether the tuple corresponds to
an element-to-element edge or an element-to-attribute edge.
We simplify the schema by removing these attributes, as
they do not have any effect on the redundancy of data val-
ues.

Assume that we have a set El of element names, Attr
of attribute names, and Str of all possible string-valued at-
tributes. Then given an XML tree T = (N, G), with labeling
function λ : N → El and attribute functions ρ@a : N → Str
for each @a ∈ Attr, we can populate Edge and Value such
that

• for each edge (x, y) ∈ G, there is a tuple (x, y, λ(y)) ∈
Edge, and

• for each x ∈ N and @a ∈ Attr such that ρ@a is defined
for x, there is a tuple (x, y, @a) ∈ Edge as well as a
tuple (y, ρ@a(x)) ∈ Value, where y 6∈ N is a fresh node
identifier.

Other variants of this approach also exist. One of them
is the binary approach [21, 32], where the Edge relation
is horizontally partitioned based on attribute label. The
schema would then have the following relations:

Blabel(source, target)
Value(vid, val).

In this representation, edge labels or element types are
not stored as attributes. We can therefore assume that
the domain of each attribute is an infinite set, and thus
the measure of information content can be directly applied.
Here we focus on the binary representation and show that
redundancy-wise it looks the same as the inlining represen-
tation.

Given a set of FDs Σ defined over a DTD D, the transla-
tion of Σ over the binary representation of D will again be
a set of EGDs. We denote the binary translation of (D, Σ)
by (SB , ΣB), where ΣB contains some key and foreign key
constraints, as well as some EGDs obtained from Σ. Every
T conforming to D and satisfying Σ can be trivially shred-
ded into an instance IB of (SB , ΣB), and each position p in
T is mapped to a unique position δB(p) in IB. Then the
definitions of being well-designed and guaranteed informa-
tion content for binary translation, GICbin, would be very
similar to those of inlining translation. Not surprisingly, the
binary translation also preserves a perfect XML design:

Theorem 3. The following are equivalent for an XML
specification (D, Σ) and its binary translation (SB, ΣB):



1. (D, Σ) is well-designed (or, equivalently, is in XNF);

2. (SB , ΣB) is well-designed.

Similarly, to guarantee an information content of 1
2

for po-
sitions in the binary representation of an XML document,
it is enough to make sure that all the XML functional de-
pendencies are relative:

Theorem 4. GICbin(relative) ≥ 1
2
.

This might make us think that, from the design point
of view, binary and inlining representations are equivalent.
However, we will next show that they differ significantly
when it comes to the complexity of enforcing integrity con-
straints. Here by complexity, we mean the number of joins
needed to write a SQL assertion that enforces an EGD trans-
lated from an XML functional dependency. Given an XML
functional dependency f over a DTD D, we use the notation

#1
f
inl and #1

f
bin

to denote the number of joins required to enforce the transla-
tion of f on the inlining and binary relational representation
of D respectively.

Consider for instance FD (2) of Example 1. The transla-
tion of this FD over the binary representation of the DTD
is an EGD that involves five joins, whereas over the inlining
translation, it can be written as an FD requiring only one
join as shown by (4).

In fact, we can show that even for key or XNF depen-
dencies, the number of joins needed for the binary repre-
sentation is never smaller than under inlining, and can be
arbitrarily higher.

Proposition 3.

1. For every DTD D and XML functional dependency f ,
we have #1

f
bin≥ #1

f
inl.

2. For every m > 0, we can find a DTD D and an XML
functional dependency f over D, such that

#1
f
bin

#1
f
inl

> m.

9. CONCLUSIONS
We have studied design and normalization for XML docu-

ments stored in relations, rather than in native XML storage
facilities (which was the assumption of the previous work on
XML normalization). To be able to compare relational and
XML designs, we applied the information-theoretic frame-
work of [5] that can be used for many different data mod-
els, and is independent of data model features such as up-
date and query languages (which are still in the development
stage for XML).

The main conclusions are as follows:

1. The XML normal form XNF, proposed in [4] as a gen-
eralization of BCNF for XML documents, achieves the
best possible design from the point of view of eliminat-
ing redundancies in both native and relational storage
of XML.

Note that algorithms for converting XML designs into
XNF exist.

2. If XNF is not achievable, the next best possible de-
sign is achieved by relativizing all constraints that vi-
olate XNF. By relativizing we mean restricting them
to the scope of an element that occurs in a DTD with
a Kleene star (or under the scope of another element
with a Kleene star). When we say “the next best pos-
sible design”, our criterion is the information content
of redundant values in the relational storage of XML
documents.

3. The information-theoretic framework allows us to com-
pare different shredding techniques from the point of
view of redundancies in XML documents. We show
that two popular techniques – inlining [33] and the
edge representation [21] – behave in the same way
information-theoretically, while the latter can behave
arbitrarily worse in terms of enforcing integrity con-
straints.

10. FUTURE WORK
While the situation with the best possible design from the

point of view of eliminating update anomalies has now been
completely clarified for both native and relational storage,
it is not yet entirely clear how to handle non-perfect de-
signs that do not eliminate all redundancies. Such designs
are necessary, and in fact essential, in the relational world,
where they guarantee database consistency by means of de-
pendency preservation. This in fact explains why 3NF de-
signs in practice are more popular than BCNF designs. In
the XML world, we do not yet have an adequate understand-
ing of the notion of dependency preservation and its impact
on XML design, whether for native or relational storage.

Another open issue is whether one can relativize con-
straints, as suggested in this paper for achieving the best
non-XNF design, and do it while preserving XML con-
straints.

We also would like to extend the idea of using the
information-theoretic framework for reasoning about and
comparing different shredding techniques for XML docu-
ments.
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APPENDIX

A. DEFINITION OF THE INFORMATION-
THEORETIC MEASURE

A.1 Basics of information theory
The main concept of information theory is that of entropy,

which measures the amount of information provided by a



certain event. Assume that an event can have n different
outcomes s1, . . ., sn. Then for a probability space A =
({s1, . . . , sn}, PA), where PA is a probability distribution,
its entropy is defined as

H(A) =
n∑

i=1

PA(si) log
1

PA(si)
.

For probabilities that are zero, we adopt the convention that
0 log 1

0
= 0, since limx→0 x log 1

x
= 0. It is known that

0 ≤ H(A) ≤ log n, with H(A) = log n only for the uniform
distribution PA(si) = 1/n [15].

We shall also need the concept of conditional entropy of
B assuming A.

Suppose we have two probability spaces

A = ({s1, . . . , sn}, PA),
B = ({s′1, . . . , s′m}, PB)

and probabilities P (s′j, si) of all the events (s′j , si). Note
that PA and PB need not be independent. Then the con-
ditional entropy of B given A, denoted by H(B | A), gives
the average amount of information provided by B if A is
known [15]. If

P (s′j | si) =
P (s′j , si)

PA(si)

are conditional probabilities, then the conditional entropy is
defined as

H(B | A) =
n∑

i=1

(
PA(si)

m∑
j=1

P (s′j | si) log
1

P (s′j | si)

)
.

A.2 Relative information content
We now give a detailed definition of relative information

content from [5] that was used to justify relational and XML
normal forms [5, 25].

Unlike other proposed information-theoretic measures [27,
11, 16, 29] that work only at the level of data, this measure
takes into account both data and schema constraints.

Fix a schema S and a set Σ of constraints, and let
I ∈ inst(S, Σ). We want to define RicI(p | Σ), the relative
information content of a position p ∈ Pos(I) with respect
to the set of constraints Σ.

Formally, we assume that I has n positions (which we
enumerate as 1, . . . , n), and fix an n-element set of variables
{vi | 1 ≤ i ≤ n}. Let Ω(I, p) be the set of all 2n−1 vectors
(a1, . . . , ap−1, ap+1, . . . , an) such that for every i ∈ [1, n]−
{p}, ai is either vi or the value in the i-th position of I . We
make this into a probability space A(I, p) = (Ω(I, p), Pu)
with the uniform distribution Pu(ā) = 21−n.

We next define conditional probabilities Pk(a | ā) that
show how likely a is to occur in position p, if values are re-
moved from I according to the tuple ā ∈ Ω(I, p) Let I(a,ā) be
obtained from I by putting a in position p, and ai in position
i 6= p. A substitution is a map σ : ā → [1, k] that assigns
a value to each ai which is a variable, and leaves other ais
intact. We let SATk

Σ(I(a,ā)) be the set of all substitutions
σ such that σ(I(a,ā)) |= Σ and |σ(I(a,ā))| = |I | (the latter
ensures that no two tuples collapse as the result of applying
σ). Then Pk(a | ā) is defined as:

Pk(a | ā) =
|SATk

Σ(I(a,ā))|∑
b∈[1,k] |SATk

Σ(I(b,ā))|
.

With this, we define Rick
I (p | Σ) as

∑
ā∈Ω(I,p)

(
1

2n−1

∑
a∈[1,k]

Pk(a | ā) log
1

Pk(a | ā)

)
.

Since
∑

a∈[1,k] Pk(a | ā) log 1
Pk(a|ā)

measures the amount of

information in p, given constraints Σ and some missing val-
ues in I , represented by the variables in ā, our measure
Rick

I (p | Σ) is the average such amount over all ā ∈ Ω(I, p).
To see that Rick

I (p | Σ) is a conditional entropy, define

P ′
k(a) =

1

2n−1

∑
ā∈Ω(I,p)

Pk(a | ā) .

It is a probability distribution on [1, k] (intuitively, it says
how likely an element from [1, k] is to satisfy Σ when put
in position p, given all possible interactions between p and
sets of positions in I). If Bk

Σ(I, p) is the probability space
([1, k], P ′

k), then Rick
I (p | Σ) is the conditional entropy:

Rick
I (p | Σ) = H(Bk

Σ(I, p) | A(I, p)).

Since the domain of Bk
Σ(I, p) is [1, k], we have 0 ≤ Rick

I (p |
Σ) ≤ log k. To normalize this, we consider the ratio
Rick

I (p | Σ)/ log k. The key observation of [5] is that for
most reasonable constraints Σ (certainly for all definable in
first-order logic), this sequence converges as k → ∞, and we
thus define

RicI(p|Σ) = lim
k→∞

Rick
I (p | Σ)

log k
.


