
Course information

• More information next week

• This is a challenging course that will put you at the forefront of current
data management research

• Lots of work done by you:

◦ extra reading: at least 4 research papers for course evaluation, and
probably more to choose those 4

◦ writing: 3 essays, one project, plus project presentation

◦ Don’t fall behind! It will be intense.

Winter 2016 1 ATFD

Background knowledge

• Conjunctive queries: the basis for data integration/exchange, metadata
management, ontology-based data access, a very important class of
database queries

• Chase: reasoning about constraints and a way to build new database
instances

• Datalog: a recursive database language

• Automata: the basis for formalisms for XML and graph databases

Winter 2016 2 ATFD

Optimization of conjunctive queries

• Reminder:

conjunctive queries
= SPJ queries
= rule-based queries
= simple SELECT-FROM-WHERE SQL queries

(only AND and equality in the WHERE clause)

• Extremely common, and thus special optimization techniques have been
developed

• Reminder: for two relational algebra expressions e1, e2, e1 = e2 is un-
decidable.

• But for conjunctive queries, even e1 ⊆ e2 is decidable.

• Main goal of optimizing conjunctive queries: reduce the number of
joins.

Winter 2016 3 ATFD

Optimization of conjunctive queries: an example

• Given a relation R with two attributes A, B

• Two SQL queries:
Q1 Q2

SELECT R1.B, R1.A SELECT R3.A, R1.A

FROM R R1, R R2 FROM R R1, R R2, R R3

WHERE R2.A=R1.B WHERE R1.B=R2.B AND R2.B=R3.A

• Are they equivalent?

• If they are, we saved one join operation.

• In relational algebra:

Q1 = π2,1(σ2=3(R×R))

Q2 = π5,1(σ2=4∧4=5(R×R×R))

Winter 2016 4 ATFD

Optimization of conjunctive queries cont’d

• Are Q1 and Q2 equivalent?

• If they are, we cannot show it by using equivalences for relational algebra
expression.

• Because: they don’t decrease the number of ✶ or × operators, but Q1

has 1 join, and Q2 has 2.

• But Q1 and Q2 are equivalent. How can we show this?

• But representing queries as databases. This representation is very close
to rule-based queries.

Q1(x, y) :– R(y, x), R(x, z)

Q2(x, y) :– R(y, x), R(w, x), R(x, u)

Winter 2016 5 ATFD

Conjunctive queries into tableaux

• Tableau: representing of a conjunctive query as a database

• We first consider queries over a single relation

• Q1(x, y) :– R(y, x), R(x, z)

• Q2(x, y) :– R(y, x), R(w, x), R(x, u)

• Tableaux:

A B
y x
x z
x y ← answer line

A B
y x
w x
x u
x y ← answer line

• Variables in the answer line are called distinguished

Winter 2016 6 ATFD

Tableau homomorphisms

• A homomorphism of two tableaux f : T1→ T2 is a mapping

f : {variables of T1} → {variables of T2}
⋃

{constants}

• For every distinguished x, f(x) = x

• For every row x1, . . . , xk in T1, f(x1), . . . , f(xk) is a row of T2

• Query containment: Q ⊆ Q′ if Q(D) ⊆ Q′(D) for every database D

• Homomorphism Theorem: Let Q,Q′ be two conjunctive queries,
and T, T ′ their tableaux. Then

Q ⊆ Q′

if and only if
there exists a homomorphism f : T ′ → T

Winter 2016 7 ATFD

Applying the Homomorphism Theorem: Q1 = Q2

A B

y x

x z

x y

A B

y x

w x

x u

T1 T2

x y

A B

y x

x z

x y

A B

y x

w x

x u

T1 T2

x y

f(x)=x, f(y)=y

f(u)=z, f(w)=y

Hence Q1 Q2

f(x)=x, f(y)=y

f(z)=u

Hence Q2 Q1

Winter 2016 8 ATFD

Applying the Homomorphism Theorem: Complexity

• Given two conjunctive queries, how hard is it to test if Q1 = Q2?

• it is easy to transform them into tableaux, from either SPJ relational
algebra queries, or SQL queries, or rule-based queries

• But testing the existence of a homomorphism between two tableaux is
hard: NP-complete. Thus, a polynomial algorithm is unlikely to exists.

• However, queries are small, and conjunctive query optimization is pos-
sible in practice.

Winter 2016 9 ATFD

Minimizing conjunctive queries

• Goal: given a conjunctive query Q, find an equivalent conjunctive query
Q′ with the minimum number of joins.

• Assume Q is
Q(~x) :– R1(~u1), . . . , Rk(~uk)

• Assume that there is an equivalent conjunctive query Q′ of the form

Q′(~x) :– S1(~v1), . . . , Sl(~vl)

with l < k

• Then Q is equivalent to a query of the form

Q′(~x) :– Ri1(~ui1), . . . , Rl
(~uil)

• In other words, to minimize a conjunctive query, one has to delete some
subqueries on the right of :–

Winter 2016 10 ATFD

Minimizing conjunctive queries cont’d

• Given a conjunctive query Q, transform it into a tableau T

• Let Q′ be a minimal conjunctive query equivalent to Q. Then its
tableau T ′ is a subset of T .

• Minimization algorithm:

T ′ := T

repeat until no change
choose a row t in T ′

if there is a homomorphism f : T ′ → T ′ − {t}
then T ′ := T ′ − {t}

end

• Note: if there exists a homomorphism T ′ → T ′−{t}, then the queries
defined by T ′ and T ′ − {t} are equivalent. Because: there is always a
homomorphism from T ′ − {t} to T ′. (Why?)

Winter 2016 11 ATFD

Minimizing SPJ/conjunctive queries: example

• R with three attributes A, B,C

• SPJ query

Q = πAB(σB=4(R)) ✶ πBC(πAB(R) ✶ πAC(σB=4(R)))

• Translate into relational calculus:

(∃z1 R(x, y, z1)∧y = 4) ∧ ∃x1 ((∃z2 R(x1, y, z2)) ∧ (∃y1 R(x1, y1, z)∧y1 = 4))

• Simplify, by substituting the constant, and putting quantifiers forward:

∃x1, z1, z2 (R(x, 4, z1) ∧R(x1, 4, z2) ∧R(x1, 4, z) ∧ y = 4)

• Conjunctive query:

Q(x, y, z) :–R(x, 4, z1), R(x1, 4, z2), R(x1, 4, z), y = 4

Winter 2016 12 ATFD

Minimizing SPJ/conjunctive queries cont’d

• Tableau T :
A B C
x 4 z1

x1 4 z2

x1 4 z

x 4 z

• Minimization, step 1: is there a homomorphism from T to
A B C
x1 4 z2

x1 4 z

x 4 z

• Answer: No. For any homomorphism f , f(x) = x (why?), thus the
image of the first row is not in the small tableau.

Winter 2016 13 ATFD

Minimizing SPJ/conjunctive queries cont’d

• Step 2: Is T equivalent to

A B C
x 4 z1

x1 4 z

x 4 z

• Answer: Yes. Homomorphism f : f(z2) = z, all other variables stay
the same.

• The new tableau is not equivalent to
A B C
x 4 z1

x 4 z

or
A B C
x1 4 z

x 4 z

• Because f(x) = x, f(z) = z, and the image of one of the rows is not
present.

Winter 2016 14 ATFD

Minimizing SPJ/conjunctive queries cont’d

• Minimal tableau:

A B C
x 4 z1

x1 4 z

x 4 z

• Back to conjunctive query:

Q′(x, y, z) :– R(x, y, z1), R(x1, y, z), y = 4

• An SPJ query:
σB=4(πAB(R) ✶ πBC(R))

• Pushing selections:

πAB(σB=4(R)) ✶ πBC(σB=4(R))

Winter 2016 15 ATFD

Review of the journey

• We started with

πAB(σB=4(R)) ✶ πBC(πAB(R) ✶ πAC(σB=4(R)))

• Translated into a conjunctive query

• Built a tableau and minimized it

• Translated back into conjunctive query and SPJ query

• Applied algebraic equivalences and obtained

πAB(σB=4(R)) ✶ πBC(σB=4(R))

• Savings: one join.

Winter 2016 16 ATFD

All minimizations are equivalent

• Let Q be a conjunctive query, and Q1, Q2 two conjunctive queries
equivalent to Q

• Assume that Q1 and Q2 are both minimal, and let T1 and T2 be their
tableaux.

• Then T1 and T2 are isomorphic; that is, T2 can be obtained from T1 by
renaming of variables.

• That is, all minimizations are equivalent.

• In particular, in the minimization algorithm, the order in which rows are
considered, is irrelevant.

Winter 2016 17 ATFD

Equivalence of conjunctive queries: the general case

• So far we assumed that there is only one relation R, but what if there
are many?

• Construct tableaux as before:

Q(x, y):–B(x, y), R(y, z), R(y, w), R(w, y)

• Tableau:

B:
A B
x y

R:

A B
y z
y w
w y

x y

• Formally, a tableau is just a database where variables can appear in
tuples, plus a set of distinguished variables.

Winter 2016 18 ATFD

Tableaux and multiple relations

• Given two tableaux T1 and T2 over the same set of relations, and the
same distinguished variables, a homomorphism h : T1 → T2 is a map-
ping

f : {variables of T1} → {variables of T2}

such that

- f(x) = x for every distinguished variable, and

- for each row ~t in R in T1, f(~t) is in R in T2.

• Homomorphism theorem: let Q1 and Q2 be conjunctive queries, and
T1, T2 their tableaux. Then

Q2 ⊆ Q1

if and only if
there exists a homomorphism f : T1→ T2

Winter 2016 19 ATFD

Minimization with multiple relations

• The algorithm is the same as before, but one has to try rows in different
relations. Consider homomorphism f(z) = w, and f is the identity for
other variables. Applying this to the tableau for Q yields

B:
A B
x y

R:
A B
y w
w y

x y

• This cannot be further reduced, as for any homomorphism f , f(x) = x,
f(y) = y.

• Thus Q is equivalent to

Q′(x, y) :– B(x, y), R(y, w), R(w, y)

• One join is eliminated.

Winter 2016 20 ATFD

Static analysis of conjunctive queries: complexity

• Problem: given queries Q1, Q2, is Q1 contained in Q2?

• For full relational calculus, undecidable.

• For conjunctive queries, there is an algorithm:

◦ guess a mapping h between the tableaux of Q2 and Q1

◦ check if it is a homomorphism.

◦ Thus it is in NP.

• The problem is in fact NP-complete (sketch: blackboard).

• Hence efficient algorithms unlikely to exist unless P=NP.

• But the input is a query, not a database, hence algorithms are quite
practical (heavily used in data integration)

◦ still in the worst case they need exponential time

Winter 2016 21 ATFD

Query optimization and integrity constraints

• Additional equivalences can be inferred if integrity constraints are known

• Example: Let R have attributes A, B,C. Assume that R satisfies
A→ B.

• Then R satisfies A→→ B and thus

R = πAB(R) ✶ πAC(R)

• Tableaux can help with these optimizations!

• πAB(R) ✶ πAC(R) as a conjunctive query:

Q(x, y, z):–R(x, y, z1), R(x, y1, z)

Winter 2016 22 ATFD

Query optimization and integrity constraints cont’d

• Tableau:
A B C
x y z1

x y1 z

x y z

• Using the FD A→ B infer y = y1

• Next, minimize the resulting tableau

A B C
x y z1

x y z

x y z

→
A B C
x y z

x y z

• And this says that the query is equivalent to Q′(x, y, z):–R(x, y, z),
that is, R.

Winter 2016 23 ATFD

Query optimization and integrity constraints cont’d

• General idea: simplify the tableau using functional dependencies and
then minimize.

• Given: a conjunctive query Q, and a set of FDs F

• Algorithm:

Step 1. Compute the tableau T for Q.

Step 2. Apply algorithm CHASE(T, F).

Step 3. Minimize output of CHASE(T, F).

Step 4. Construct a query from the tableau produced in Step 3.

Winter 2016 24 ATFD

The CHASE

Assume that all FDs are of the form X → A, where A is an attribute.

for each X → A in F do
for each t1, t2 in T such that t1.X = t2.X and t1.A 6= t2.A do

case t1.A, t2.A of
both nondistinguished ⇒

replace one by the other
one distinguished, one nondistinguished ⇒

replace nondistinguished by distinguished
one constant, one variable ⇒

replace variable by constant
both constants ⇒

output ∅ and STOP
end

end

Winter 2016 25 ATFD

Query optimization and integrity constraints: example

• R is over A, B,C; F contains B → A

• Q = πBC(σA=4(R)) ✶ πAB(R)

• Q as a conjunctive query:

Q(x, y, z) :– R(4, y, z), R(x, y, z1)

• Tableau:

A B C
4 y z

x y z1

x y z

CHASE
→

A B C
4 y z

4 y z1

4 y z

minimize
→

A B C
4 y z

4 y z

• Final result: Q(x, y, z) :– R(x, y, z), x = 4, that is, σA=4(R).

Winter 2016 26 ATFD

Query optimization and integrity constraints: example

• Same R and F ; the query is:

Q = πBC(σA=4(R)) ✶ πAB(σA=5(R))

• As a conjunctive query:

Q(x, y, z) :– R(4, y, z), R(x, y, z1), x = 5

• Tableau:

A B C
4 y z

5 y z1

5 y z

CHASE
→ ∅

• Final result: ∅

• This equivalence is not true without the FD B → A

Winter 2016 27 ATFD

Query optimization and integrity constraints: example

• Sometimes simplifications are quite dramatic

• Same R, FD is A→ B, the query is

Q = πAB(R) ✶ πA(σB=4(R)) ✶ πAB(πAC(R) ✶ πBC(R))

• Convert into conjunctive query:

Q(x, y) :– R(x, y, z1), R(x, y1, z), R(x1, y, z), R(x, 4, z2)

• Tableau:

A B C
x y z1

x y1 z

x1 y z

x 4 z2

x y

CHASE
→

A B C
x 4 z1

x 4 z

x1 4 z

x 4 z2

x 4

minimize
→

A B C
x 4 z

x 4

Winter 2016 28 ATFD

Query optimization and integrity constraints: example cont’d

•
A B C
x 4 z

x 4
is translated into

Q(x, y) :– R(x, y, z), y = 4

• or, equivalently πAB(σB=4(R)).

• Thus,

πAB(R) ✶ πA(σB=4(R)) ✶ πAB(πAC(R) ✶ πBC(R)) = πAB(σB=4(R))

in the presence of FD A→ B.

• Savings: 3 joins!

• This cannot be derived by algebraic manipulations, nor conjunctive
query minimization without using CHASE.

Winter 2016 29 ATFD

Chase procedures

• In general, CHASE may refer to a family of procedures of a similar
flavor: keep changing entries in a database instance as dictated by
constraints

• Main uses:

◦ checking constraints satisfiability and implication (and thus impor-
tant for reasoning about metadata)

◦ building instances that satisfy constraints (e.g., in data exchange)

• Many papers refer to CHASE procedures; we now review the classical
one for implication of functional and join dependencies

Winter 2016 30 ATFD

FD and JD implication by CHASE

• Reminder: JDs are join dependencies

• A JD: ✶ [X1, . . . , Xm]

• It holds in a relation R iff

R = πX1
(R) ✶ . . . ✶ πXm(R)

• Important for decomposing relations and normalizing databases

• An FD X → Y over attributes U implies a JD ✶ [XY,X(U − Y)]

◦ a simple exercise

• Let F be a set of FDs, J a set of JDs, and θ a dependency (FD or
JD)

• F ,J |= θ (in words, F and J imply θ) if for every relation R, if all
of F and J dependencies are true in R, then θ is true in R.

Winter 2016 31 ATFD

CHASE: tableaux and rules

• CHASE procedure consists of CHASE steps that apply to instances or
tableaux. In tableaux, we shall mark distinguished variables in bold:

A B C

x y x1

x2 y z

x2 y x3

• Rules for FDs we have already seen

Winter 2016 32 ATFD

CHASE: JD rule

Let J contain a join dependency ✶ [X1, . . . , Xm] and let T be a tableau.

If u is a tuple not in T such that there are tuples u1, . . . , un ∈ T such that
ui[Xi] = u[Xi] for every i ∈ [1,m], then the result of applying this JD over
T is the new tableau T ′ = T ∪ {u}.

Winter 2016 33 ATFD

CHASE sequences

• A CHASE sequence of T by a set of FDs and JDs is a sequence of
tableaux T = T0, T1, T2, . . ., such that for each i ≥ 0, Ti+1 is the
result of applying some dependency to Ti.

• For JDs and FDs, all such sequences are finite (in other cases they
won’t be, and chase termination is a very important issue, particularly
in data exchange).

• A sequence terminates when no more rules apply.

• No matter how we apply the rules, sequences terminate with the same
tableau (up to renaming of non-distinguished variables)

• This tableau is denoted by chaseF ,J (T)

Winter 2016 34 ATFD

CHASE for dependency implication

To check if F ,J |= θ:

• Construct a tableau Tθ

• Compute chaseF ,J (Tθ)

• Check if a certain condition is satisfied.

If θ = A1, . . . , Ak → Ak+1 (attributes are A1, . . . , Am):

• Tθ has two rows: (x1, . . . , xm) and (x1, . . . , xk, yk+1, . . . , ym)

• Condition: chaseF ,J (Tθ) has only distinguished variables for Ak+1

Winter 2016 35 ATFD

Example: {✶ [AB,AC], AB → C} |= A→ C

TA→C:

A B C

x y z

x x1 x2

Chase sequence: use ✶ [AB,AC] and get:

A B C

x y z

x x1 x2

x y x2

Then use AB → C and get

A B C

x y z

x x1 z

Only distinguished variables in column C.

Winter 2016 36 ATFD

CHASE for JDs

• Let θ be ✶ [X1, . . . , Xn].

• Tθ has n rows.

• The ith row has distinguished variables in the Xi-columns and non-
distinguished variables in the remaining columns.

• Each non-distinguished variable appears exactly once.

• Condition: chaseF ,J (T) has a row with all distinguished variables.

Winter 2016 37 ATFD

Length of chase sequences

• In general, could be exponential

• An important question is when it is polynomial

• Then implication is solved in polynomial time

• Conditions known: essentially acyclicity of JDs

• We shall come back to the idea of acyclicity and polynomial chase
termination in data exchange: this is how instances of exchanged data
are constructed

Winter 2016 38 ATFD

Complexity classes: a very brief intro

• In databases, we reason about complexity in two ways:

◦ The big-O notation (O(n log n) vs O(n2) vs O(2n))

◦ Complexity-theoretic notions: PTIME, NP, DLOGSPACE, etc

• You see a lot of the latter in the literature

• Advantage of complexity-theoretic notions: if you have a O(2n) algo-
rithm, is it because the problem is inherently hard, or because we are
not smart enough to come up with a better algorithm (or both)?

Winter 2016 39 ATFD

The big divide

PTIME (computable in polynomial time, i.e. O(nk) for some fixed k)

Inside PTIME: tractable queries (although high-degree polynomial are real-
life intractable)

Outside PTIME: intractable queries (efficient algorithms are unlikely)

Way outside PTIME: provably intractable queries (efficient algorithms do
not exist)

• EXPTIME: cn-algorithms for a constant c. Could still be ok for not
very large inputs

• Even further – 2-EXPTIME: ccn. Cannot be ok even for small inputs
(compare 210 and 2210

).

Winter 2016 40 ATFD

Inside PTIME

AC0 (TC0 ⊆ NC1 ⊆ DLOG ⊆ NLOG ⊆ PTIME

• AC0: very efficient parallel algorithms (constant time, simple circuits)

– relational calculus

• TC0: very efficient parallel algorithms in a more powerful computational
model with counting gates

– basic SQL (relational calculus/grouping/aggregation)

• NC1: efficient parallel algorithms

– regular languages

• DLOG: very little – O(log n) – space is required

– SQL + (restricted) transitive closure

• NLOG: O(log n) space is required if nondeterminism is allowed

– SQL + transitive closure (as in the SQL3 standard)

Winter 2016 41 ATFD

Beyond PTIME

PTIME ⊆

{

NP
coNP

}

⊆ PSPACE

• PTIME: can solve a problem in polynomial time

• NP: can check a given candidate solution in polynomial time

◦ another way of looking at it: guess a solution, and then verify if
you guessed it right in polynomial time

• coNP: complement of NP – verify that all “reasonable” candidates are
solutions to a given problem.

◦ Appears to be harder than NP but the precise relationship isn’t
known

• PSPACE: can be solved using memory of polynomial size (but perhaps
an exponential-time algorithm)

Winter 2016 42 ATFD

Complete problems

• These are the hardest problems in a class.

• If our problem is as hard as a complete problem, it is very unlikely it
can be done with lower complexity.

• For NP:

◦ SAT (satisfiability of Boolean formulae)

◦ many graph problems (e.g. 3-colourability)

◦ Integer linear programming etc

• For PSPACE:

◦ Quantified SAT

◦ Are two regular languages equivalent?

◦ Many games, e.g., Geography.

Winter 2016 43 ATFD

Measuring complexity in databases

Problem: Given a database D, and a query Q, find Q(D).

Complexity measurements are defined for decision problems, so: Given D,
Q, and a tuple u, is u ∈ Q(D)?

• Combined complexity: all D, Q, u are inputs to the problem.

• Data complexity: Q is fixed.

◦ Rationale: Q is much smaller than D, can disregard it

Winter 2016 44 ATFD

Automata and regular languages

• The key toolkit for XML and graph data

• For XML, we need automata working on both words (strings) and trees

• We’ll define them later and for now review automata on words

Winter 2016 45 ATFD

Automata and regular languages

A nondeterministic finite automaton (NFA) over a finite alphabet Σ is A =
(Q, q0, δ, F) where

• Q is a set of states

• q0 is an initial state (sometimes people assume Q0 ⊆ Q of initial states:
no difference)

• δ : Q× Σ→ 2Q: transition function

• F ⊆ Q: set of final states

A run of A on a word a0a1 . . . an is a map ρ from positions to states such
that:

• ρ(0) ∈ δ(q0, a0)

• ρ(i + 1) ∈ δ(ρ(i), ai+1)

Winter 2016 46 ATFD

Automata and regular languages cont’d

• Intuition: ρ indicates where in which state the automaton could be
after reading a portion of the word

• A run is accepting is ρ(n) ∈ F : it accepts after reading everything

• A word is accepted by A if there is an accepting run

• L(A): the language of automaton – set of all accepted words

• These are regular languages

◦ also given by regular expressions

◦ also given by monoid homomorphisms

◦ also given by monadic second order logic

◦ and many other formalisms (don’t worry if you don’t know the last
two)

Winter 2016 47 ATFD

Automata and computational problems

• Membership: Given a word w ∈ Σ∗ and A, is w ∈ L(A)?

◦ Complexity: NLOG. Think of guessing where the automaton will
go.

• Nonemptiness: given A, is L(A) 6= ∅?

◦ Linear time: reachability of F from q0; also NLOG-complete.

• Universality: given A, is L(A) = Σ∗

◦ PSPACE-complete. Think of converting to a DFA and then check-
ing emptiness of the complement.

• Variations: Given A1, A2, is L(A1) ∩ L(A2) 6= ∅?

◦ Of course we can construct A = A1×A2 and check L(A) 6= ∅, but
one can do better (on-the-fly); we’ll see how when we talk about
graph database queries.

Winter 2016 48 ATFD

Notes on proposed papers

1. Ashok K. Chandra, Philip M. Merlin: Optimal Implementation of
Conjunctive Queries in Relational Data Bases. STOC 1977: 77-90

Criterion for CQ containment/equivalence

2. Mihalis Yannakakis: Algorithms for Acyclic Database Schemes.
VLDB 1981: 82-94

Notion of acyclicity of CQs and fast evaluation scheme based on it

3. Georg Gottlob, Nicola Leone, Francesco Scarcello: The complexity
of acyclic conjunctive queries. Journal of the ACM 48(3):431-498
(2001)

An in-depth study of acyclicity

4. Georg Gottlob, Nicola Leone, Francesco Scarcello: Hypertree De-
compositions and Tractable Queries. J. Comput. Syst. Sci. 64(3):579-
627 (2002)

A hierarchy of classes of efficient CQs, the bottom level of which
is acyclic queries

Winter 2016 49 ATFD

5. Martin Grohe, Thomas Schwentick, Luc Segoufin: When is the
evaluation of conjunctive queries tractable? STOC 2001: 657-666

A different way of characterizing efficiency of CQs, this time via
the notion of bounded treewidth

6. Moshe Y. Vardi: The Complexity of Relational Query Languages
(Extended Abstract) .STOC 1982: 137-146

Different types of complexity of database queries, and a language
for PTIME

7. Christos H. Papadimitriou, Mihalis Yannakakis: On the Complexity
of Database Queries. J. Comput. Syst. Sci. 58(3): 407-427
(1999)

A finer way of measuring complexity, between data and combined

8. Neil Immerman: Languages that Capture Complexity Classes. SIAM
J. Comput. 16(4): 760-778 (1987)

Query languages that correspond to complexity classes

9. Martin Grohe: Fixed-point definability and polynomial time on

Winter 2016 50 ATFD

graphs with excluded minors. Journal of the ACM 59(5): 27 (2012)

We can capture PTIME on some databases if they satisfy certain
structural (graph-theoretic) restrictions

10. Phokion G. Kolaitis, Moshe Y. Vardi: Conjunctive-Query Contain-
ment and Constraint Satisfaction. J. Comput. Syst. Sci. 61(2):
302-332 (2000)

An intriguing connection between conjunctive queries and a central
AI problem of constraint satisfaction

11. Martin Grohe: From polynomial time queries to graph structure
theory. Commun. ACM 54(6): 104-112 (2011)

A general account of connections between structural properties of
databases and languages that capture efficient queries over them

12. Leonid Libkin: The finite model theory toolbox of a database the-
oretician. PODS 2009: 65-76

A toolbox for reasoning about expressivity and complexity of query
languages

Winter 2016 51 ATFD

13. Leonid Libkin: Expressive power of SQL. Theor. Comput. Sci.
296(3): 379-404 (2003)

... and a specific application for SQL

14. David Maier, Alberto O. Mendelzon, Yehoshua Sagiv: Testing Im-
plications of Data Dependencies. ACM Trans. Database Syst.
4(4): 455-469 (1979)

The paper that proposed CHASE

15. Alin Deutsch, Alan Nash, Jeffrey B. Remmel: The chase revisited.
PODS 2008: 149-158

and the paper that looked at how to make it efficient more often

Winter 2016 52 ATFD

