Semantic Web Data/RDF/SPARQL

Relational Semantic Web

Tables

SQL

Relational	Semantic Web
Tables	RDF Graphs
SQL	

Relational	Semantic Web
Tables	RDF Graphs
SQL	SPARQL

<∂> ≥

Relational	Semantic Web
Tables	RDF Graphs
SQL	SPARQL
Closed Data (inside an organization)	

Relational	Semantic Web	
Tables	RDF Graphs	
SQL	SPARQL	
Closed Data (inside an organization)	<i>Open Data</i> (available on the Web)	

Semantic Web

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

[Tim Berners-Lee et al. 2001.]

Specific Goals:

- Build a description language with standard semantics
- Make semantics machine-processable and understandable
- Incorporate logical infrastructure to reason about resources
- ► W3C Proposal: Resource Description Framework (RDF)

RDF in a nutshell

- RDF is the W3C proposal framework for representing information in the Web
- Abstract syntax based on directed labeled graph
- Schema definition language (RDFS): Define new vocabulary (typing, inheritance of classes and properties)
- Extensible URI-based vocabulary
- Formal semantics

RDF formal model

- $U = \text{set of } \mathbf{U} \text{ris}$
- B = set of Blank nodes

$$L = \text{set of Literals}$$

</2> <

RDF formal model

- U = set of U ris
- B = set of Blank nodes

$$L = \text{set of Literals}$$

 $(s, p, o) \in (U \cup B) \times U \times (U \cup B \cup L)$ is called an RDF triple

RDF formal model

- $U = \text{set of } \mathbf{U} \text{ris}$
- B = set of Blank nodes

$$L = \text{set of Literals}$$

 $(s, p, o) \in (U \cup B) \times U \times (U \cup B \cup L)$ is called an RDF triple

A set of RDF triples is called an RDF graph

An example of an RDF graph: DBLP

An example of a URI

http://dblp.13s.de/d2r/resource/conferences/pods

is swrc:series of <http< th=""><th>p://dblp.I3s.de/d2r/resource/pu</th><th>ublications/conf/pods/00></th></http<>	p://dblp.I3s.de/d2r/resource/pu	ublications/conf/pods/00>
--	---------------------------------	---------------------------

- is swrc:series of <http://dblp.l3s.de/d2r/resource/publications/conf/pods/2001>
- is swrc:series of <http://dblp.I3s.de/d2r/resource/publications/conf/pods/2002>
- is swrc:series of <http://dblp.l3s.de/d2r/resource/publications/conf/pods/2003>
- is swrc:series of <http://dblp.l3s.de/d2r/resource/publications/conf/pods/2004>
- is swrc:series of <http://dblp.I3s.de/d2r/resource/publications/conf/pods/2005>

-≣ 7

URI can be used for any abstract resource

http://dblp.13s.de/d2r/page/authors/Ronald_Fagin

Home | Example Authors

Property	Value
is dc:creator of	<a>http://dblp.l3s.de/d2r/resource/publications/conf/aaai/FagiHV86>
is do:creator of	http://dblp.l3s.de/d2r/resource/publications/conf/aaai/FaginHMV94
is do:creator of	http://dblp.l3s.de/d2r/resource/publications/conf/aaai/HalpernF90
is dc:creator of	<http: apccm="" conf="" d2r="" dblp.l3s.de="" fagin09="" publications="" resource=""></http:>
is dc:creator of	<http: birthday="" conf="" d2r="" dblp.l3s.de="" faginhhmpv09="" publications="" resource=""></http:>
is dc:creator of	">http://dblp.l3s.de/d2r/resource/publications/conf/caap/Fagin83>
is dc:creator of	">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93>">http://d2r/resource/publications/conf/coco/FaginSV93>">http://d2r/resource/publications/conf/coco/FaginSV93>">http://d2r/resource/publications/coco/FaginSV93>">http://d2r/resource/publications/coco/FaginSV93>">http://d2r/resource/publications/coco/FaginSV93>">http://d2r/resource/publications/coco/FaginSV93>">http://d2r/resource/publications/coco/FaginSV93>">http://d2r/resource/publications/coco/FaginSV93>">http://d2r/resource/publications/coco/FaginSV93>">http://d2r/resource/publications/coco/FaginSV93>">http://d2r/resource/Publications/coco/FaginSV93<">http://d2r/resource/Publications/coco/FaginSV93>">http://d2r/resource/
is dc:creator of	http://dblp.l3s.de/d2r/resource/publications/conf/concur/HalpernF88

RDF: Another example

</2> ≥

Some peculiarities of the RDF data model

- Existential variables as datavalues (null values)
- Built-in vocabulary with fixed semantics (RDFS)
- Graph model where nodes may also be edge labels

Previous example: A better representation

11

RDF + RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf (rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range (rdf:range), type (rdf:type).

plus semantics for this vocabulary

RDFS: Messi is a Person

<**₽** ► ₽

Checking whether a triple t is in a graph G is the basic step when reasoning about RDF(S).

▶ For the case of RDFS, we need to check whether *t* is implied by *G*

Checking whether a triple t is in a graph G is the basic step when reasoning about RDF(S).

For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined in terms of classical notions such as model, interpretation, etc.

As for the case of first-order logic

Checking whether a triple t is in a graph G is the basic step when reasoning about RDF(S).

▶ For the case of RDFS, we need to check whether *t* is implied by *G*

The notion of entailment in RDFS can be defined in terms of classical notions such as model, interpretation, etc.

As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

Checking whether a triple t is in a graph G is the basic step when reasoning about RDF(S).

▶ For the case of RDFS, we need to check whether *t* is implied by *G*

The notion of entailment in RDFS can be defined in terms of classical notions such as model, interpretation, etc.

As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

The closure of an RDFS graph G(cl(G)) is the graph obtained by adding to G all the triples that are implied by G.

A basic property of the closure:

• G implies t iff $t \in cl(G)$

Example: (Messi, rdf:type, person) over the closure

</2> ≥

Does the blank node add some information?

<∂> ≞

What about now?

</2> ≥

17

SPARQL

Querying RDF: SPARQL

- SPARQL is the W3C recommendation query language for RDF (January 2008).
 - SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF Query Language
- SPARQL is a graph-matching query language.
- A SPARQL query consists of three parts:
 - Pattern matching: optional, union, filtering, ...
 - Solution modifiers: projection, distinct, order, limit, offset, ...
 - Output part: construction of new triples,

Example: Authors that have published in PODS

Example: Authors that have published in PODS

SELECT ?Author

Example: Authors that have published in PODS

SELECT ?Author WHERE { }

Example: Authors that have published in PODS

Example: Authors that have published in PODS

}

Example: Authors that have published in PODS

SELECT ?Auth	lor		
WHERE			
{			
?Paper	dc:creator	?Author .	
?Paper	dct:partOf	?Conf .	
?Conf	swrc:series	conf:pods .	
}			

Example: Authors that have published in PODS

SELECT ?Author WHERE	c	
{		
?Paper	dc:creator	?Author .
?Paper	dct:partOf	?Conf .
?Conf	swrc:series	conf:pods .
}		

A SPARQL query consists of a:

Example: Authors that have published in PODS

SELECT ?Author WHERE {	r	
?Paper ?Paper ?Conf }	dc:creator dct:partOf swrc:series	<pre>?Author . ?Conf . conf:pods .</pre>

A SPARQL query consists of a:

Head: Processing of the variables
SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

A SPARQL query consists of a: Head: Processing of the variables Body: Pattern matching expression

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS, and their Web pages if this information is available:

```
SELECT ?Author ?WebPage
WHERE
{
    ?Paper dc:creator ?Author .
    ?Paper dct:partOf ?Conf .
    ?Conf swrc:series conf:pods .
    OPTIONAL {
        ?Author foaf:homePage ?WebPage . }
}
```

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS, and their Web pages if this information is available:

```
SELECT ?Author ?WebPage
WHERE
{
    ?Paper dc:creator ?Author.
    ?Paper dct:partOf ?Conf.
    ?Conf swrc:series conf:pods.

OPTIONAL {
        ?Author foaf:homePage ?WebPage. }
}
```

Interesting features of pattern matching on graphs

Interesting features of pattern matching on graphs

► Grouping

Interesting features of pattern matching on graphs

- Grouping
- Optional parts

```
SELECT ?X1 ?X2 ...
{{ P1 .
   P2
    OPTIONAL { P5 } }
 { P3 .
   Ρ4
    OPTIONAL { P7 } }
}
```

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting

```
SELECT ?X1 ?X2 ...
{{ P1 .
    P2
    OPTIONAL { P5 } }
 { P3 .
   P4
    OPTIONAL { P7
      OPTIONAL { P8 } } }
}
```


</2>

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns

```
SELECT ?X1 ?X2 ...
{{{ P1 .
    P2
    OPTIONAL { P5 } }
 { P3 .
   P4
    OPTIONAL { P7
      OPTIONAL { P8 } } }
}
UNION
{ P9 }}
```

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering

```
SELECT ?X1 ?X2 ...
{{{ P1 .
    P2
    OPTIONAL { P5 } }
 { P3 .
   P4
    OPTIONAL { P7
      OPTIONAL { P8 } } }
}
UNION
{ P9
 FILTER ( R ) }}
```

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering
- ► ...
- + several new features in the new version (March 2013): navigation, entailment regimes, federation, ...

```
SELECT ?X1 ?X2 ....
{{{ P1 .
    P2
    OPTIONAL { P5 } }
  { P3 .
    P4
    OPTIONAL { P7
      OPTIONAL { P8 } } }
 }
 UNION
 { P9
  FILTER ( R ) }}
```


</2>

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering
- ► ...
- + several new features in the new version (March 2013): navigation, entailment regimes, federation, ...

```
SELECT ?X1 ?X2 ....
{{{ P1 .
    P2
    OPTIONAL { P5 } }
  { P3 .
    P4
    OPTIONAL { P7
      OPTIONAL { P8 } } }
 }
 UNION
{ P9
  FILTER ( R ) }}
```

What is the (formal) meaning of a general SPARQL query?

SPARQL: An algebraic syntax

V: set of variables

Each variable is assumed to start with ?

SPARQL: An algebraic syntax

V: set of variables

Each variable is assumed to start with ?

Triple pattern: $t \in (U \cup V) \times (U \cup V) \times (U \cup L \cup V)$ Examples: (?X, name, john), (?X, name, ?Y)

SPARQL: An algebraic syntax

V: set of variables

Each variable is assumed to start with ?

Triple pattern: $t \in (U \cup V) \times (U \cup V) \times (U \cup L \cup V)$ Examples: (?X, name, john), (?X, name, ?Y)

Basic graph pattern (bgp): Finite set of triple patterns Examples: {(?X, knows, ?Y), (?Y, name, john)}

SPARQL: An algebraic syntax (cont'd)

Recursive definition of SPARQL graph patterns:

- Every basic graph pattern is a graph pattern
- If P₁, P₂ are graph patterns, then (P₁ AND P₂), (P₁ OPT P₂), (P₁ UNION P₂) are graph pattern
- If P is a graph pattern and R is a built-in condition, then (P FILTER R) is a graph pattern

SPARQL query:

If P is a graph pattern and W is a finite set of variables, then (SELECT W P) is a SPARQL query

?X :name "john"

(?X, name, john)

</2> ≥

?X :name "john"	(?X, name, john)
{ P1 . P2 }	$(P_1 \text{ AND } P_2)$
{ P1 OPTIONAL { P2 }}	(<i>P</i> ₁ OPT <i>P</i> ₂)

?X :name "john"	(?X, name, john)
{ P1 . P2 }	$(P_1 \text{ AND } P_2)$
{ P1 OPTIONAL { P2 }}	(<i>P</i> ₁ OPT <i>P</i> ₂)
{ P1 } UNION { P2 }	$(P_1 \text{ UNION } P_2)$

◆ ₫ > = 29

?X :name "john"	(?X, name, john)
{ P1 . P2 }	$(P_1 \text{ AND } P_2)$
<pre>{ P1 OPTIONAL { P2 }}</pre>	$(P_1 \text{ OPT } P_2)$
{ P1 } UNION { P2 }	$(P_1 \text{ UNION } P_2)$
{ P1 FILTER (R) }	$(P_1 \text{ FILTER } R)$

?X :name "john"	(?X, name, john)
{ P1 . P2 }	$(P_1 \text{ AND } P_2)$
	(P, OPT, P_{c})
{ PI UPIIUNAL { P2 }}	$(r_1 \cup r_2)$
{ P1 } UNION { P2 }	$(P_1 \text{ UNION } P_2)$
{ P1 FILTER (R) }	$(P_1 \text{ FILTER } R)$
SELECT W WHERE { P }	(SELECT W P)

Definition A mapping is a partial function:

 $\mu : V \longrightarrow (U \cup L \cup B)$

Definition A mapping is a partial function: $\mu \quad : \quad V \quad \longrightarrow \quad (U \cup L \cup B)$

Given a mapping μ and a triple pattern t:

Definition A mapping is a partial function:

 $\mu : V \longrightarrow (U \cup L \cup B)$

Given a mapping μ and a triple pattern t:

• $\mu(t)$: triple obtained from t replacing variables according to μ

Definition A mapping is a partial function:

 $\mu : V \longrightarrow (U \cup L \cup B)$

Given a mapping μ and a triple pattern t:

• $\mu(t)$: triple obtained from t replacing variables according to μ

Example

Definition A mapping is a partial function:

 $\mu : V \longrightarrow (U \cup L \cup B)$

Given a mapping μ and a triple pattern t:

• $\mu(t)$: triple obtained from t replacing variables according to μ

Example

$$\mu = \{?X \to R_1, ?Y \to R_2, ?Z \to \mathsf{john}\}$$

Definition A mapping is a partial function:

 $\mu : V \longrightarrow (U \cup L \cup B)$

Given a mapping μ and a triple pattern t:

• $\mu(t)$: triple obtained from t replacing variables according to μ

Example

$$\mu = \{?X
ightarrow R_1, ?Y
ightarrow R_2, ?Z
ightarrow ext{john} \}$$
 $t = (?X, ext{ name, } ?Z)$

Definition A mapping is a partial function:

 $\mu : V \longrightarrow (U \cup L \cup B)$

Given a mapping μ and a triple pattern t:

• $\mu(t)$: triple obtained from t replacing variables according to μ

Example

$$\mu = \{?X
ightarrow R_1, ?Y
ightarrow R_2, ?Z
ightarrow ext{john}\}$$
 $t = (?X, ext{ name, } ?Z)$
 $\mu(t) = (R_1, ext{ name, john})$

The semantics of triple patterns

Definition

The evaluation of triple pattern t over a graph G, denoted by $[t]_G$, is the set of all mappings μ such that:

The semantics of triple patterns

Definition

The evaluation of triple pattern t over a graph G, denoted by $[t]_G$, is the set of all mappings μ such that:

• dom(μ) is exactly the set of variables occurring in t

The semantics of triple patterns

Definition

The evaluation of triple pattern t over a graph G, denoted by $[t]_G$, is the set of all mappings μ such that:

- dom(μ) is exactly the set of variables occurring in t
- ▶ $\mu(t) \in G$

G(R_1 , name, john) (R_1 , email, J@ed.ex) (R_2 , name, paul)

 $[(?X, name, ?N)]_G$

G(R_1 , name, john) (R_1 , email, J@ed.ex) (R_2 , name, paul)

 $[[(?X, name, ?N)]]_G$ $\left\{ \begin{array}{l} \mu_1 = \{?X \to R_1, ?N \to \mathsf{john}\} \\ \mu_2 = \{?X \to R_2, ?N \to \mathsf{paul}\} \end{array} \right\}$

</i>
< □
< □

G(R_1 , name, john) (R_1 , email, J@ed.ex) (R_2 , name, paul)

$$\begin{bmatrix} (?X, name, ?N) \end{bmatrix}_G \\ \mu_1 = \{?X \to R_1, ?N \to \text{john} \} \\ \mu_2 = \{?X \to R_2, ?N \to \text{paul} \} \end{bmatrix}$$

 $[(?X, email, ?E)]_G$

$$G$$

(R_1 , name, john)
(R_1 , email, J@ed.ex)
(R_2 , name, paul)

$$\begin{bmatrix} (?X, \text{ name, } ?N) \end{bmatrix}_G \\ \mu_1 = \{?X \to R_1, ?N \to \text{ john} \} \\ \mu_2 = \{?X \to R_2, ?N \to \text{ paul} \}$$

$$\llbracket (?X, \text{ email, }?E) \rrbracket_G$$
$$\{ \mu = \{?X \to R_1, ?E \to \text{J@ed.ex} \} \}$$

G(R_1 , name, john) (R_1 , email, J@ed.ex) (R_2 , name, paul)

 $[(?X, name, ?N)]_G$

	?X	?N
μ_1	R_1	john
μ_2	R_2	paul

 $[(?X, \text{ email, }?E)]_G$ $\mu \begin{array}{c} ?X & ?E \\ \hline R_1 & \mathsf{JOed.ex} \end{array}$

<₽> ₽

G(R_1 , name, john) (R_1 , email, J@ed.ex) (R_2 , name, paul)

 $\llbracket (R_1, \mathsf{webPage}, ?W) \rrbracket_G$

 $[(R_3, name, ringo)]_G$

 $\llbracket (R_2, \mathsf{name}, \mathsf{paul}) \rrbracket_G$

</2> ≥

</2> <

</2> ≥

Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

▶ var(P): set of variables mentioned in P

Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

var(P): set of variables mentioned in P

Given a mapping μ such that $var(P) \subseteq dom(\mu)$: $\mu(P) = \{\mu(t) \mid t \in P\}$

Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

var(P): set of variables mentioned in P

Given a mapping μ such that $var(P) \subseteq dom(\mu)$: $\mu(P) = \{\mu(t) \mid t \in P\}$

Definition

The evaluation of *P* over an RDF graph *G*, denoted by $\llbracket P \rrbracket_G$, is the set of mappings μ :

- dom(μ) = var(P)
- ▶ $\mu(P) \subseteq G$

graph	bgp	evaluation
(<i>R</i> 1, name, john) (<i>R</i> 1, email, J@ed.ex) (<i>R</i> 2, name, paul)	{(?X, name, ?Y), (?X, email, ?Z)}	

35

graph	bgp		ev	aluation	ı
(<i>R</i> ₁ , name, john) (<i>R</i> ₁ , amail 1@ad av)	{(?X, name, ?Y),		?X	?Y	?Z
$(R_2, \text{ name, paul})$	(?X, email, ?Z)}	μ :	R_1	john	J@ed.ex

graph	bgp		ev	aluatio	า
$(R_1, \text{ name, john})$	{(?X, name, ?Y),		?X	?Y	?Z
$(R_2, \text{ name, paul})$	(?X, email, ?Z)}	μ :	R_1	john	J@ed.ex

Notation t is used to represent {t}

</2> ≥

35

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If $?X \in \mathsf{dom}(\mu_1) \cap \mathsf{dom}(\mu_2)$, then $\mu_1(?X) = \mu_2(?X)$

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If $?X \in \mathsf{dom}(\mu_1) \cap \mathsf{dom}(\mu_2)$, then $\mu_1(?X) = \mu_2(?X)$

Example

	?X	?Y	?Z	?V
μ_1 :	R_1	john		
μ_2 :	R_1		J@edu.ex	
μ_{3} :			P@edu.ex	R_2

36

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If $?X \in \mathsf{dom}(\mu_1) \cap \mathsf{dom}(\mu_2)$, then $\mu_1(?X) = \mu_2(?X)$

Example

	?X	?Y	?Z	?V
ι_1 :	R_1	john		
<i>ι</i> 2 :	R_1		J@edu.ex	
ιз :			P@edu.ex	R_2

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If $?X \in \mathsf{dom}(\mu_1) \cap \mathsf{dom}(\mu_2)$, then $\mu_1(?X) = \mu_2(?X)$

Example

 $\mu_1 \cup$

	?X	?Y	?Z	?V
μ_{1} :	R_1	john		
μ_2 :	R_1		J@edu.ex	
μ_{3} :			P@edu.ex	R_2
μ_2 :	R_1	john	J@edu.ex	

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If $?X \in \mathsf{dom}(\mu_1) \cap \mathsf{dom}(\mu_2)$, then $\mu_1(?X) = \mu_2(?X)$

Example

 $\mu_1 \cup$

	?X	?Y	?Z	?V
μ_1 :	R_1	john		
μ_2 :	R_1		J@edu.ex	
μ_{3} :			P@edu.ex	R_2
μ_2 :	R_1	john	J@edu.ex	

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If $?X \in \mathsf{dom}(\mu_1) \cap \mathsf{dom}(\mu_2)$, then $\mu_1(?X) = \mu_2(?X)$

Example

	?X	?Y	?Z	?V
μ_{1} :	R_1	john		
μ_{2} :	R_1		J@edu.ex	
μ_{3} :			P@edu.ex	R_2
$\mu_1\cup\mu_2:$	R_1	john	J@edu.ex	
$\mu_1\cup\mu_3:$	R_1	john	P@edu.ex	R_2

Definition

Mappings μ_1 and μ_2 are compatible if they agree in their common variables:

If $?X \in \mathsf{dom}(\mu_1) \cap \mathsf{dom}(\mu_2)$, then $\mu_1(?X) = \mu_2(?X)$

Example

	?X	?Y	?Z	?V
μ_{1} :	R_1	john		
μ_2 :	R_1		J@edu.ex	
μ_{3} :			P@edu.ex	R_2
$\mu_1\cup\mu_2$:	R_1	john	J@edu.ex	
$\mu_1\cup\mu_3$:	R_1	john	P@edu.ex	R_2

• μ_2 and μ_3 are not compatible

36

Let Ω_1 and Ω_2 be sets of mappings:

Definition

Join: $\Omega_1 \bowtie \Omega_2$

- $\{\mu_1 \cup \mu_2 \mid \mu_1 \in \Omega_1, \mu_2 \in \Omega_2, \text{ and } \mu_1, \mu_2 \text{ are compatibles}\}\$
- extending mappings in Ω_1 with compatible mappings in Ω_2

will be used to define AND

Let Ω_1 and Ω_2 be sets of mappings:

Definition

- $\{\mu_1 \cup \mu_2 \mid \mu_1 \in \Omega_1, \mu_2 \in \Omega_2, \text{ and } \mu_1, \mu_2 \text{ are compatibles}\}\$
- extending mappings in Ω_1 with compatible mappings in Ω_2

will be used to define AND

Definition Union: $\Omega_1 \cup \Omega_2$

- $\blacktriangleright \ \{\mu \mid \mu \in \Omega_1 \text{ or } \mu \in \Omega_2\}$
- mappings in Ω_1 plus mappings in Ω_2 (the usual union of sets)

will be used to define UNION

Definition

Difference: $\Omega_1 \smallsetminus \Omega_2$

▶ $\{\mu \in \Omega_1 \mid \text{ for all } \mu' \in \Omega_2, \mu \text{ and } \mu' \text{ are not compatibles} \}$

• mappings in Ω_1 that cannot be extended with mappings in Ω_2

38

Definition

Difference: $\Omega_1 \smallsetminus \Omega_2$

- $\{\mu \in \Omega_1 \mid \text{ for all } \mu' \in \Omega_2, \mu \text{ and } \mu' \text{ are not compatibles} \}$
- mappings in Ω_1 that cannot be extended with mappings in Ω_2

Definition

Left outer join: $\Omega_1 \supset \Omega_2 = (\Omega_1 \bowtie \Omega_2) \cup (\Omega_1 \smallsetminus \Omega_2)$

- extension of mappings in Ω_1 with compatible mappings in Ω_2
- plus the mappings in Ω_1 that cannot be extended.

will be used to define OPT

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph ${\it G}$

Definition

- $\llbracket (P_1 \text{ AND } P_2) \rrbracket_G =$
- $\llbracket (P_1 \text{ UNION } P_2) \rrbracket_G =$
- $[(P_1 \text{ OPT } P_2)]_G =$
- $[[(SELECT W P)]]_G =$

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition

- $\llbracket (P_1 \text{ AND } P_2) \rrbracket_G \qquad = \quad \llbracket P_1 \rrbracket_G \bowtie \llbracket P_2 \rrbracket_G$
- $\llbracket (P_1 \text{ UNION } P_2) \rrbracket_G = \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$
- $\llbracket (P_1 \text{ OPT } P_2) \rrbracket_G \qquad = \quad \llbracket P_1 \rrbracket_G \bowtie \llbracket P_2 \rrbracket_G$
- $\llbracket (\mathsf{SELECT} \ W \ P) \rrbracket_G = \{ \mu_{|_W} \mid \mu \in \llbracket P \rrbracket_G \}$

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition

- $\llbracket (P_1 \text{ AND } P_2) \rrbracket_G \qquad = \quad \llbracket P_1 \rrbracket_G \bowtie \llbracket P_2 \rrbracket_G$
- $\llbracket (P_1 \text{ UNION } P_2) \rrbracket_G \quad = \quad \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$
- $\llbracket (P_1 \text{ OPT } P_2) \rrbracket_G \qquad = \quad \llbracket P_1 \rrbracket_G \bowtie \llbracket P_2 \rrbracket_G$
- $\llbracket (\mathsf{SELECT} \ W \ P) \rrbracket_G = \{ \mu_{|_W} \mid \mu \in \llbracket P \rrbracket_G \}$

<₽> E

 $(R_1, \text{ name, john})$ $(R_2, \text{ name, paul})$ $(R_3, \text{ name, ringo})$ G: $(R_1, \text{ email, J@ed.ex})$ $(R_3, \text{ email, R@ed.ex})$ $(R_3, \text{ webPage, www.ringo.com})$

$[((?X, name, ?N) AND (?X, email, ?E))]_G$

(R1, name, john)(R2, name, paul)(R3, name, ringo)G:(R1, email, J@ed.ex)(R3, email, R@ed.ex)(R3, webPage, www.ringo.com)

$\llbracket ((?X, name, ?N) AND (?X, email, ?E)) \rrbracket_G$ $\llbracket (?X, name, ?N) \rrbracket_G \bowtie \llbracket (?X, email, ?E) \rrbracket_G$

 $(R_1, \text{ name, john})$ $(R_2, \text{ name, paul})$ $(R_3, \text{ name, ringo})$ G: $(R_1, \text{ email, J@ed.ex})$ $(R_3, \text{ email, R@ed.ex})$ $(R_3, \text{ webPage, www.ringo.com})$

	?X	?N
μ_1	R_1	john
μ_2	R_2	paul
μ_3	R_3	ringo

 $(R_1, \text{ name, john})$ $(R_2, \text{ name, paul})$ $(R_3, \text{ name, ringo})$ G: $(R_1, \text{ email, J@ed.ex})$ $(R_3, \text{ email, R@ed.ex})$ $(R_3, \text{ webPage, www.ringo.com})$

	?X	?N
μ_1	R_1	john
μ_2	R_2	paul
μ_3	R_3	ringo

	?X	?E
μ_{4}	R_1	J@ed.ex
μ_{5}	R_3	R@ed.ex

 $(R_1, \text{ name, john})$ $(R_2, \text{ name, paul})$ $(R_3, \text{ name, ringo})$ G: $(R_1, \text{ email, J@ed.ex})$ $(R_3, \text{ email, R@ed.ex})$ $(R_3, \text{ webPage, www.ringo.com})$

	7 X	2 <i>N</i> /				
		. / V			?X	?E
μ_1	R_1	john	NA		D	
	P.	noul	M	μ_{4}	κ_1	J@ed.ex
μ_2	Λ_2	paul		11-	Ra	R@ed ev
113	R_3	ringo		μ_5	113	Recu.cx

 $(R_1, \text{ name, john})$ $(R_2, \text{ name, paul})$ $(R_3, \text{ name, ringo})$ $G: (R_1, \text{ email, J@ed.ex})$ $(R_3, \text{ email, R@ed.ex})$ $(R_3, \text{ webPage, www.ringo.com})$

	7 <i>X</i>	?N	1				
	R.	iohn	-			?X	?E
μ_1	$\overline{n_1}$	John	\bowtie		Цл	R_1	J@ed.ex
μ_2	R_2	paul			r~4	D	Dad ov
112	R_2	ringo	1		μ_5	π ₃	R@ed.ex
<i>p</i> ~3	5		J				
]	?X	?N	Ĩ	ΡE]
$\mu_1\cup\mu_4$			R_1	john	J@ed.ex]
$\mu_3\cup\mu_5$			R_3	ringo	R@ed.ex		

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{email, \, R@ed.ex}) & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[((?X, name, ?N) \text{ OPT } (?X, email, ?E))]_G$

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $\begin{array}{c} (R_1, \text{ name, john}) & (R_2, \text{ name, paul}) & (R_3, \text{ name, ringo}) \\ \hline G: & (R_1, \text{ email, J@ed.ex}) & (R_3, \text{ email, R@ed.ex}) \\ & & (R_3, \text{ webPage, www.ringo.com}) \end{array}$

 $[((?X, name, ?N) \text{ OPT } (?X, email, ?E))]_G \\ [(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

 $(R_1, \text{ name, john})$ $(R_2, \text{ name, paul})$ $(R_3, \text{ name, ringo})$ G: $(R_1, \text{ email, J@ed.ex})$ $(R_3, \text{ email, R@ed.ex})$ $(R_3, \text{ webPage, www.ringo.com})$

 $[((?X, name, ?N) \text{ OPT } (?X, email, ?E))]_G$ $[(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

	?X	?E
U4	R_1	J@ed.ex
u_5	R_3	R@ed.ex

</2> <
Example (OPT)

 $(R_1, \text{ name, john})$ $(R_2, \text{ name, paul})$ $(R_3, \text{ name, ringo})$ G: $(R_1, \text{ email, J@ed.ex})$ $(R_3, \text{ email, R@ed.ex})$ $(R_3, \text{ webPage, www.ringo.com})$

 $[((?X, name, ?N) \text{ OPT } (?X, email, ?E))]_G \\ [(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

Example (OPT)

 $(R_1, \text{ name, john})$ $(R_2, \text{ name, paul})$ $(R_3, \text{ name, ringo})$ $G: (R_1, \text{ email, J@ed.ex})$ $(R_3, \text{ email, R@ed.ex})$ $(R_3, \text{ webPage, www.ringo.com})$

 $[((?X, name, ?N) \text{ OPT } (?X, email, ?E))]_G$ $[(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

	?X	?N]			2 Y	2 <i>E</i>
μ_1	R_1	john	1	м		! A P.	! L
μ_2	R_2	paul	1		μ_4	Λ_1	Jeeu.ex
, _ Цз	R_3	ringo			μ_5	K_3	R@ed.ex
1.2	5	0	J				
			?X	?N	?	Ε]
$\mu_1\cup\mu_4$		R_1	john	J@e	ed.ex		
							1
	μ	$_3\cup\mu_5$	R_3	ringo	R@e	ed.ex	

- ∢ @ ▶ _ ⊒

Example (OPT)

 $(R_1, \text{ name, john})$ $(R_2, \text{ name, paul})$ $(R_3, \text{ name, ringo})$ $G: (R_1, \text{ email, J@ed.ex})$ $(R_3, \text{ email, R@ed.ex})$ $(R_3, \text{ webPage, www.ringo.com})$

 $[((?X, name, ?N) \text{ OPT } (?X, email, ?E))]_G \\ [(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

	?X	?N]			7 X	2 <i>F</i>
μ_1	R_1	john		м		R.	
μ_2	R_2	paul			μ_4	<i>P</i> .	Pod ox
μ_3	R_3	ringo	1		μ_5	Π3	Neeu.ex
			?X	?N	?	E	
$\mu_1 \cup \mu_4 R_1$		R_1	john	J@e	d.ex		
	μ	$_3\cup\mu_5$	R_3	ringo	R@e	ed.ex	
		μ_2	R_2	paul			

 $(R_1, \text{ name, john})$ $(R_2, \text{ name, paul})$ $(R_3, \text{ name, ringo})$ G: $(R_1, \text{ email, J@ed.ex})$ $(R_3, \text{ email, R@ed.ex})$ $(R_3, \text{ webPage, www.ringo.com})$

 $[((?X, email, ?Info) UNION (?X, webPage, ?Info))]_G$

 $\begin{array}{c} (R_1, \text{ name, john}) & (R_2, \text{ name, paul}) & (R_3, \text{ name, ringo}) \\ G: (R_1, \text{ email, J@ed.ex}) & (R_3, \text{ email, R@ed.ex}) \\ & (R_3, \text{ webPage, www.ringo.com}) \end{array}$

 $[((?X, \text{ email}, ?Info) \cup \text{NION} (?X, \text{ webPage}, ?Info))]_G$ $[(?X, \text{ email}, ?Info)]_G \cup [(?X, \text{ webPage}, ?Info)]_G$

 $\begin{array}{c} (R_1, \text{ name, john}) & (R_2, \text{ name, paul}) & (R_3, \text{ name, ringo}) \\ G: (R_1, \text{ email, J@ed.ex}) & (R_3, \text{ email, R@ed.ex}) \\ (R_3, \text{ webPage, www.ringo.com}) \end{array}$

 $[((?X, email, ?Info) UNION (?X, webPage, ?Info))]_G$

 $\llbracket (?X, \text{ email}, ?Info) \rrbracket_G \cup \llbracket (?X, \text{ webPage}, ?Info) \rrbracket_G$

	?X	?Info
μ_1	R_1	J@ed.ex
μ_2	R_3	R@ed.ex

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{email, \, R@ed.ex}) & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[((?X, email, ?Info) \cup NION (?X, webPage, ?Info))]_G$

 $\llbracket (?X, \text{ email}, ?Info) \rrbracket_G \cup \llbracket (?X, \text{ webPage}, ?Info) \rrbracket_G$

	?X	?Info
μ_1	R_1	J@ed.ex
μ_2	R_3	R@ed.ex

	?X	?Info
l3	R_3	www.ringo.com

 $\begin{array}{c} (R_1, \text{ name, john}) \\ \textbf{G}: (R_1, \text{ email, J}@ed.ex) \end{array} (R_2, \text{ name, paul}) \\ (R_3, \text{ name, ringo}) \\ (R_3, \text{ email, R}@ed.ex) \\ (R_3, \text{ webPage, www.ringo.com}) \end{array}$

 $[((?X, \text{email}, ?Info) \cup NION (?X, \text{webPage}, ?Info))]_G$

 $\llbracket (?X, \text{ email}, ?Info) \rrbracket_G \cup \llbracket (?X, \text{ webPage}, ?Info) \rrbracket_G$

	?X	?Info		1	2 Y	2 Info
μ_1	R_1	J@ed.ex	U		! A P.	
μ_2	R_3	R@ed.ex		μ_3	113	www.migo.com

42

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ \hline G : (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[((?X, email, ?Info) \cup NION (?X, webPage, ?Info))]_G$

 $\llbracket (?X, \text{ email}, ?Info) \rrbracket_G \cup \llbracket (?X, \text{ webPage}, ?Info) \rrbracket_G$

Example (SELECT)

 $[(SELECT \{?N, ?E\} ((?X, name, ?N) AND (?X, email, ?E)))]_G$

Example (SELECT)

 $[(SELECT \{?N, ?E\} ((?X, name, ?N) AND (?X, email, ?E)))]_G$

		?X	?N	?E
SELECT{? <i>N</i> ,? <i>E</i> }	μ_1	R_1	john	J@ed.ex
	μ_2	R_3	ringo	R@ed.ex

Example (SELECT)

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ \hline {\textbf{G}}: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[(SELECT \{?N, ?E\} ((?X, name, ?N) AND (?X, email, ?E)))]_G$

SELECT{?N,?E}
$$\mu_{1} \begin{array}{|c|c|c|c|c|} \hline ?X & ?N & ?E \\ \hline R_{1} & john & J@ed.ex \\ \hline R_{3} & ringo & R@ed.ex \\ \hline \mu_{1}_{|\{?N,7E\}} & \hline john & J@ed.ex \\ \hline \mu_{2}_{|\{?N,7E\}} & ringo & R@ed.ex \\ \hline \end{array}$$

-<∂> ≣

Filter expressions (value constraints)

Filter expression: (P FILTER R)

- P is a graph pattern
- R is a built-in condition

We consider in R:

- equality = among variables and RDF terms
- unary predicate bound
- ▶ boolean combinations (∧, ∨, ¬)

A mapping μ satisfies a condition R ($\mu \models R$) if:

A mapping μ satisfies a condition R ($\mu \models R$) if:

• R is
$$?X = c$$
, $?X \in dom(\mu)$ and $\mu(?X) = c$

▶ *R* is
$$?X = ?Y$$
, $?X, ?Y \in dom(\mu)$ and $\mu(?X) = \mu(?Y)$

• *R* is bound(?*X*) and ?*X*
$$\in$$
 dom(μ)

A mapping μ satisfies a condition R ($\mu \models R$) if:

• R is
$$?X = c$$
, $?X \in dom(\mu)$ and $\mu(?X) = c$

- ▶ *R* is ?X = ?Y, $?X, ?Y \in dom(\mu)$ and $\mu(?X) = \mu(?Y)$
- *R* is bound(?*X*) and ?*X* \in dom(μ)
- usual rules for Boolean connectives

45

A mapping μ satisfies a condition R ($\mu \models R$) if:

• R is
$$?X = c$$
, $?X \in dom(\mu)$ and $\mu(?X) = c$

▶ *R* is
$$?X = ?Y$$
, $?X, ?Y \in dom(\mu)$ and $\mu(?X) = \mu(?Y)$

- *R* is bound(?*X*) and ?*X* \in dom(μ)
- usual rules for Boolean connectives

Definition FILTER : selects mappings that satisfy a condition $[(P \text{ FILTER } R)]_{G} = \{\mu \in [\![P]\!]_{G} \mid \mu \models R\}$

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[(?X, name, ?N) \text{ FILTER } (?N = ringo \lor ?N = paul))]_G$

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[((?X, name, ?N) FILTER (?N = ringo \lor ?N = paul))]_{G}$

	?X	?N
μ_1	R_1	john
μ_2	R_2	paul
μ_3	R_3	ringo

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[((?X, name, ?N) FILTER (?N = ringo \lor ?N = paul))]_{G}$

	?X	?N
μ_1	R_1	john
μ_2	R_2	paul
μ_3	R_3	ringo

$$N = ringo \lor N = paul$$

<**₽** ► E

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[((?X, name, ?N) FILTER (?N = ringo \lor ?N = paul))]_{G}$

	?X	?N
μ_1	R_1	john
μ_2	R_2	paul
μ_3	R_3	ringo

$$?N = ringo \lor ?N = paul$$

	?X	?N
μ_2	R_2	paul
μ_3	R_3	ringo

<∂> ≥

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ \hline {\textbf{G}}: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER \neg bound(?E))]_G$

 $[((?X, name, ?N) OPT (?X, email, ?E)) FILTER \neg bound(?E))]_G$

	?X	?N	?E
$\mu_1\cup\mu_4$	R_1	john	J@ed.ex
$\mu_{3}\cup\mu_{5}$	R_3	ringo	R@ed.ex
μ_2	R_2	paul	

 $[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER \neg bound(?E))]_G$

	?X	?N	?E
$\mu_1 \cup \mu_4$	R_1	john	J@ed.ex
$\mu_{3}\cup\mu_{5}$	R_3	ringo	R@ed.ex
μ_2	R_2	paul	

 \neg bound(?*E*)

</2> < ⊡</td>

 $[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER \neg bound(?E))]_G$

	?X	?N	?E			
$\mu_1\cup\mu_4$	R_1	john	J@ed.ex	-bound(2E)		
$\mu_3\cup\mu_5$	R_3	ringo	R@ed.ex	+bound(!L)		
μ_2	R_2	paul				
$\begin{array}{c c} ?X & ?N \\ \mu_2 & R_2 & paul \end{array}$						

<**₽** ► Ξ

47

SPARQL 1.1

A new version of SPARQL was recently released (March 2013): SPARQL 1.1 $\,$

Some new features in SPARQL 1.1:

- Entailment regimes for RDFS and OWL
- Navigational capabilities: Property paths

SPARQL provides limited navigational capabilities

</2> <

SPARQL provides limited navigational capabilities

</2> ≥

50

A possible solution: Property paths

</2> < </2>

A possible solution: Property paths

(SELECT ?X ((?X, (friendOf)*, ?Y) AND (?Y, name, George)))

Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:

 $exp \ := \ a \ | \ exp/exp \ | \ exp|exp \ | \ exp^*$ where $a \in U$

53

Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:

exp := $a \mid exp/exp \mid exp|exp \mid exp^{*}$ where $a \in U$

Other expressions are allowed:

exp : inverse path $|(a_1|...|a_n)$: a URI which is not one of a_i $(1 \le i \le n)$

<₽> ₽

 $[\![a]\!]_G = \{(x,y) \mid (x,a,y) \in G\}$

54

 $[\![a]\!]_G = \{(x,y) \mid (x,a,y) \in G \}$ $[\![exp_1/exp_2]\!]_G = \{(x,y) \mid \exists z \ (x,z) \in [\![exp_1]\!]_G \text{ and }$ $(z,y) \in [\![exp_2]\!]_G \}$

$$\begin{split} \llbracket a \rrbracket_G &= \{ (x, y) \mid (x, a, y) \in G \} \\ \llbracket exp_1 / exp_2 \rrbracket_G &= \{ (x, y) \mid \exists z \ (x, z) \in \llbracket exp_1 \rrbracket_G \text{ and } \\ & (z, y) \in \llbracket exp_2 \rrbracket_G \} \\ \llbracket exp_1 | exp_2 \rrbracket_G &= \llbracket exp_1 \rrbracket_G \cup \llbracket exp_2 \rrbracket_G \end{split}$$
The evaluation of a property path over an RDF graph G is defined as follows:

$$\begin{split} \llbracket a \rrbracket_G &= \{(x,y) \mid (x,a,y) \in G \} \\ \llbracket exp_1/exp_2 \rrbracket_G &= \{(x,y) \mid \exists z \ (x,z) \in \llbracket exp_1 \rrbracket_G \text{ and } \\ & (z,y) \in \llbracket exp_2 \rrbracket_G \} \\ \llbracket exp_1 \lvert exp_2 \rrbracket_G &= \llbracket exp_1 \rrbracket_G \cup \llbracket exp_2 \rrbracket_G \\ \llbracket exp^* \rrbracket_G &= \{(a,a) \mid a \text{ is a URI in } G \} \cup \llbracket exp \rrbracket_G \cup \\ & \llbracket exp/exp \rrbracket_G \cup \llbracket exp/exp/exp \rrbracket_G \cup \cdots \end{cases}$$

New element in SPARQL 1.1: A triple of the form (x, exp, y)

- *exp* is a property path
- \triangleright x (resp. y) is either an element from U or a variable

New element in SPARQL 1.1: A triple of the form (x, exp, y)

- exp is a property path
- > x (resp. y) is either an element from U or a variable

Example

(?X, (friendOf)*, ?Y): Checks whether there exists a path of friends of arbitrary length from ?X to ?Y

New element in SPARQL 1.1: A triple of the form (x, exp, y)

- *exp* is a property path
- \triangleright x (resp. y) is either an element from U or a variable

Example

- ► (?X, (friendOf)*, ?Y): Checks whether there exists a path of friends of arbitrary length from ?X to ?Y
- (?X, (rdf:sc)*, person): Checks whether the value stored in ?X is a subclass of person

New element in SPARQL 1.1: A triple of the form (x, exp, y)

- exp is a property path
- > x (resp. y) is either an element from U or a variable

Example

- (?X, (friendOf)*, ?Y): Checks whether there exists a path of friends of arbitrary length from ?X to ?Y
- (?X, (rdf:sc)*, person): Checks whether the value stored in ?X is a subclass of person
- (?X, (rdf:sp)*, ?Y): Checks whether the value stored in ?X is a subproperty of the value stored in ?Y

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of mappings μ such that:

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of mappings μ such that:

• dom
$$(\mu) = \{?X, ?Y\}$$

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of mappings μ such that:

• dom
$$(\mu) = \{?X, ?Y\}$$

$$\blacktriangleright (\mu(?X),\mu(?Y)) \in \llbracket exp \rrbracket_G$$

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of mappings μ such that:

• dom(μ) = {?X, ?Y}

$$\blacktriangleright (\mu(?X),\mu(?Y)) \in \llbracket exp \rrbracket_G$$

Other cases are defined analogously.

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of mappings μ such that:

• dom(μ) = {?X, ?Y}

$$\blacktriangleright (\mu(?X),\mu(?Y)) \in \llbracket exp \rrbracket_G$$

Other cases are defined analogously.

Example

► ((?X, KLM/(KLM)*, ?Y) FILTER ¬(?X =?Y)): It is possible to go from ?X to ?Y by using the airline KLM, where ?X, ?Y are different cities

Comments on papers

Jorge Perez, Marcelo Arenas, Claudio Gutierrez: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3) (2009)

M. Arenas, J. Perez: Querying semantic web data with SPARQL. PODS 2011: 305-316 In these two papers, your essays ought to concentrate on complexity, as semantics was already covered.

Marcelo Arenas, Georg Gottlob, Andreas Pieris: Expressive languages for querying the semantic web. PODS 2014: 14-26 Extend SPARQL with more expressive ontologies and recursion, and translation into datalog.

Leonid Libkin, Juan L. Reutter, Domagoj Vrgoc: Trial for RDF: adapting graph query languages for RDF data. PODS 2013: 201-212 Are graph data and RDF the same? Not really. This shows how to bridge them.

Jorge Perez, Marcelo Arenas, Claudio Gutierrez: nSPARQL: A navigational language for RDF. J. Web Sem. 8(4): 255-270 (2010) Extending navigational capabilities, using some XPath ideas.

Marcelo Arenas, Sebastian Conca, Jorge Perez: Counting beyond a Yottabyte, or how SPARQL 1.1 property paths will prevent adoption of the standard. WWW 2012: 629-638

Katja Losemann, Wim Martens: The complexity of regular expressions and property paths in SPARQL. ACM Trans. Database Syst. 38(4): 24 (2013)

Two papers showing that bad things happen if one queries RDF accoring to SPARQL 1.1 standard, and different solutions for fixing the problem.