
Semantic Web Data/RDF/SPARQL

1

Relational Semantic Web

Tables

SQL

2

Relational Semantic Web

Tables RDF Graphs

SQL

2

Relational Semantic Web

Tables RDF Graphs

SQL SPARQL

2

Relational Semantic Web

Tables RDF Graphs

SQL SPARQL

Closed Data

(inside an organization)

2

Relational Semantic Web

Tables RDF Graphs

SQL SPARQL

Closed Data Open Data

(inside an organization) (available on the Web)

2

Semantic Web

“The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation.”

[Tim Berners-Lee et al. 2001.]

Specific Goals:

◮ Build a description language with standard semantics

◮ Make semantics machine-processable and understandable

◮ Incorporate logical infrastructure to reason about resources

◮ W3C Proposal: Resource Description Framework (RDF)

3

RDF in a nutshell

◮ RDF is the W3C proposal framework for representing
information in the Web

◮ Abstract syntax based on directed labeled graph

◮ Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties)

◮ Extensible URI-based vocabulary

◮ Formal semantics

4

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

5

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L) is called an RDF triple

5

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph

5

An example of an RDF graph: DBLP

inPods:FaginLN01 :Moni Naor

:Amnon Lotem

:Ronald Fagin

inPods:2001

"Optimal Aggregation ..."

dc:creator
dc:creator

dc:
cre

ato
r

dct:PartOf

dc:title
swrc:series

conf:pods

<http://purl.org/dc/terms/>

: <http://dblp.l3s.de/d2r/resource/authors/>

conf: <http://dblp.l3s.de/d2r/resource/conferences/>

inPods: <http://dblp.l3s.de/d2r/resource/publications/conf/pods/>

swrc: <http://swrc.ontoware.org/ontology#>

dc:

dct:

<http://purl.org/dc/elements/1.1/>

6

An example of a URI

http://dblp.l3s.de/d2r/resource/conferences/pods

7

URI can be used for any abstract resource

http://dblp.l3s.de/d2r/page/authors/Ronald Fagin

8

RDF: Another example

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain:b

address
lives in

9

Some peculiarities of the RDF data model

◮ Existential variables as datavalues (null values)

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels

10

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Spain:b

lives in

country

address

works inperson

sportman

rdf:sc

rdf:dom rdf:range
company

11

RDF + RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).

plus semantics for this vocabulary

12

RDFS: Messi is a Person

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain

13

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

◮ For the case of RDFS, we need to check whether t is implied by G

14

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

◮ For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of first-order logic

14

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

◮ For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

14

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

◮ For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

The closure of an RDFS graph G (cl(G)) is the graph obtained by
adding to G all the triples that are implied by G .

A basic property of the closure:

◮ G implies t iff t ∈ cl(G)

14

Example: (Messi, rdf:type, person) over the closure

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

rdf:type

rdf:sc

rdf:type

Spain

lives in

15

Does the blank node add some information?

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain:b

address
lives in

16

What about now?

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain:b

lives in

17

SPARQL

18

Querying RDF: SPARQL

◮ SPARQL is the W3C recommendation query language for
RDF (January 2008).

◮ SPARQL is a recursive acronym that stands for SPARQL

Protocol and RDF Query Language

◮ SPARQL is a graph-matching query language.

◮ A SPARQL query consists of three parts:

◮ Pattern matching: optional, union, filtering, . . .
◮ Solution modifiers: projection, distinct, order, limit, offset, . . .
◮ Output part: construction of new triples,

19

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT ?Author

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT ?Author

WHERE

{

}

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

}

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

}

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:pods .

}

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:pods .

}

A SPARQL query consists of a:

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:pods .

}

A SPARQL query consists of a:

Head: Processing of the variables

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:pods .

}

A SPARQL query consists of a:

Head: Processing of the variables

Body: Pattern matching expression

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS, and their Web
pages if this information is available:

SELECT ?Author ?WebPage

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:pods .

OPTIONAL {

?Author foaf:homePage ?WebPage . }

}

23

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS, and their Web
pages if this information is available:

SELECT ?Author ?WebPage

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:pods .

OPTIONAL {

?Author foaf:homePage ?WebPage . }

}

23

But things can become more complex...

Interesting features of pattern
matching on graphs

SELECT ?X1 ?X2 ...

{ P1 .

P2 }

25

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping SELECT ?X1 ?X2 ...

{{ P1 .

P2 }

{ P3 .

P4 }

}

25

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

SELECT ?X1 ?X2 ...

{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7 } }

}

25

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

SELECT ?X1 ?X2 ...

{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

25

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

SELECT ?X1 ?X2 ...

{{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9 }}

25

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

SELECT ?X1 ?X2 ...

{{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9

FILTER (R) }}

25

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

◮ ...

◮ + several new features in the
new version (March 2013):
navigation, entailment regimes,
federation, . . .

SELECT ?X1 ?X2 ...

{{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9

FILTER (R) }}

25

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

◮ ...

◮ + several new features in the
new version (March 2013):
navigation, entailment regimes,
federation, . . .

SELECT ?X1 ?X2 ...

{{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9

FILTER (R) }}

What is the (formal) meaning of a general SPARQL query?

25

SPARQL: An algebraic syntax

V : set of variables

Each variable is assumed to start with ?

26

SPARQL: An algebraic syntax

V : set of variables

Each variable is assumed to start with ?

Triple pattern: t ∈ (U ∪ V) × (U ∪ V) × (U ∪ L ∪ V)

Examples: (?X , name, john), (?X , name, ?Y)

26

SPARQL: An algebraic syntax

V : set of variables

Each variable is assumed to start with ?

Triple pattern: t ∈ (U ∪ V) × (U ∪ V) × (U ∪ L ∪ V)

Examples: (?X , name, john), (?X , name, ?Y)

Basic graph pattern (bgp): Finite set of triple patterns

Examples: {(?X , knows, ?Y), (?Y , name, john)}

26

SPARQL: An algebraic syntax (cont’d)

Recursive definition of SPARQL graph patterns:

◮ Every basic graph pattern is a graph pattern

◮ If P1, P2 are graph patterns, then (P1 AND P2), (P1 OPT P2),
(P1 UNION P2) are graph pattern

◮ If P is a graph pattern and R is a built-in condition, then
(P FILTER R) is a graph pattern

SPARQL query:

◮ If P is a graph pattern and W is a finite set of variables, then
(SELECT W P) is a SPARQL query

27

Standard versus algebraic notation

?X :name "john" (?X , name, john)

29

Standard versus algebraic notation

?X :name "john" (?X , name, john)

{ P1 . P2 } (P1 AND P2)

29

Standard versus algebraic notation

?X :name "john" (?X , name, john)

{ P1 . P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

29

Standard versus algebraic notation

?X :name "john" (?X , name, john)

{ P1 . P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1 } UNION { P2 } (P1 UNION P2)

29

Standard versus algebraic notation

?X :name "john" (?X , name, john)

{ P1 . P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1 } UNION { P2 } (P1 UNION P2)

{ P1 FILTER (R) } (P1 FILTER R)

29

Standard versus algebraic notation

?X :name "john" (?X , name, john)

{ P1 . P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1 } UNION { P2 } (P1 UNION P2)

{ P1 FILTER (R) } (P1 FILTER R)

SELECT W WHERE { P } (SELECT W P)

29

Mappings: building block for the semantics

Definition

A mapping is a partial function:

µ : V −→ (U ∪ L ∪ B)

30

Mappings: building block for the semantics

Definition

A mapping is a partial function:

µ : V −→ (U ∪ L ∪ B)

Given a mapping µ and a triple pattern t:

30

Mappings: building block for the semantics

Definition

A mapping is a partial function:

µ : V −→ (U ∪ L ∪ B)

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

30

Mappings: building block for the semantics

Definition

A mapping is a partial function:

µ : V −→ (U ∪ L ∪ B)

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

30

Mappings: building block for the semantics

Definition

A mapping is a partial function:

µ : V −→ (U ∪ L ∪ B)

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

µ = {?X → R1, ?Y → R2, ?Z → john}

30

Mappings: building block for the semantics

Definition

A mapping is a partial function:

µ : V −→ (U ∪ L ∪ B)

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

µ = {?X → R1, ?Y → R2, ?Z → john}

t = (?X , name, ?Z)

30

Mappings: building block for the semantics

Definition

A mapping is a partial function:

µ : V −→ (U ∪ L ∪ B)

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

µ = {?X → R1, ?Y → R2, ?Z → john}

t = (?X , name, ?Z)

µ(t) = (R1, name, john)

30

The semantics of triple patterns

Definition

The evaluation of triple pattern t over a graph G , denoted by
JtKG , is the set of all mappings µ such that:

31

The semantics of triple patterns

Definition

The evaluation of triple pattern t over a graph G , denoted by
JtKG , is the set of all mappings µ such that:

◮ dom(µ) is exactly the set of variables occurring in t

31

The semantics of triple patterns

Definition

The evaluation of triple pattern t over a graph G , denoted by
JtKG , is the set of all mappings µ such that:

◮ dom(µ) is exactly the set of variables occurring in t

◮ µ(t) ∈ G

31

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG

32

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG

{

µ1 = {?X → R1, ?N → john}
µ2 = {?X → R2, ?N → paul}

}

32

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG

{

µ1 = {?X → R1, ?N → john}
µ2 = {?X → R2, ?N → paul}

}

J(?X , email, ?E)KG

32

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG

{

µ1 = {?X → R1, ?N → john}
µ2 = {?X → R2, ?N → paul}

}

J(?X , email, ?E)KG

{

µ = {?X → R1, ?E → J@ed.ex}
}

32

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG

?X ?N
µ1 R1 john
µ2 R2 paul

J(?X , email, ?E)KG

?X ?E
µ R1 J@ed.ex

32

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1, webPage, ?W)KG

J(R2, name, paul)KG

J(R3, name, ringo)KG

33

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1, webPage, ?W)KG

{ }

J(R2, name, paul)KG

J(R3, name, ringo)KG

33

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1, webPage, ?W)KG

{ }

J(R2, name, paul)KG

J(R3, name, ringo)KG

{ }

33

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1, webPage, ?W)KG

{ }

J(R2, name, paul)KG

{

µ∅ = { }
}

J(R3, name, ringo)KG

{ }

33

Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

◮ var(P): set of variables mentioned in P

34

Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

◮ var(P): set of variables mentioned in P

Given a mapping µ such that var(P) ⊆ dom(µ):

µ(P) = {µ(t) | t ∈ P}

34

Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

◮ var(P): set of variables mentioned in P

Given a mapping µ such that var(P) ⊆ dom(µ):

µ(P) = {µ(t) | t ∈ P}

Definition

The evaluation of P over an RDF graph G , denoted by JPKG , is
the set of mappings µ:

◮ dom(µ) = var(P)

◮ µ(P) ⊆ G

34

Semantics of basic graph patterns: An example

graph bgp evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

{(?X , name, ?Y),
(?X , email, ?Z)}

35

Semantics of basic graph patterns: An example

graph bgp evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

{(?X , name, ?Y),
(?X , email, ?Z)}

35

Semantics of basic graph patterns: An example

graph bgp evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

{(?X , name, ?Y),
(?X , email, ?Z)}

35

Semantics of basic graph patterns: An example

graph bgp evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

{(?X , name, ?Y),
(?X , email, ?Z)}

?X ?Y ?Z
µ: R1 john J@ed.ex

35

Semantics of basic graph patterns: An example

graph bgp evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

{(?X , name, ?Y),
(?X , email, ?Z)}

?X ?Y ?Z
µ: R1 john J@ed.ex

Notation
t is used to represent {t}

35

Compatible mappings: mappings that can be merged

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X)

36

Compatible mappings: mappings that can be merged

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X)

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

36

Compatible mappings: mappings that can be merged

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X)

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

36

Compatible mappings: mappings that can be merged

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X)

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex

36

Compatible mappings: mappings that can be merged

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X)

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex

36

Compatible mappings: mappings that can be merged

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X)

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

36

Compatible mappings: mappings that can be merged

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X)

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

◮ µ2 and µ3 are not compatible

36

Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings:

Definition
Join: Ω1 Ω2

◮ {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and µ1, µ2 are compatibles}

◮ extending mappings in Ω1 with compatible mappings in Ω2

will be used to define AND

37

Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings:

Definition
Join: Ω1 Ω2

◮ {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and µ1, µ2 are compatibles}

◮ extending mappings in Ω1 with compatible mappings in Ω2

will be used to define AND

Definition
Union: Ω1 ∪ Ω2

◮ {µ | µ ∈ Ω1 or µ ∈ Ω2}

◮ mappings in Ω1 plus mappings in Ω2 (the usual union of sets)

will be used to define UNION

37

Sets of mappings and operations

Definition
Difference: Ω1 r Ω2

◮ {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ′ are not compatibles}

◮ mappings in Ω1 that cannot be extended with mappings in Ω2

38

Sets of mappings and operations

Definition
Difference: Ω1 r Ω2

◮ {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ′ are not compatibles}

◮ mappings in Ω1 that cannot be extended with mappings in Ω2

Definition

Left outer join: Ω1 Ω2 = (Ω1 Ω2) ∪ (Ω1 r Ω2)

◮ extension of mappings in Ω1 with compatible mappings in Ω2

◮ plus the mappings in Ω1 that cannot be extended.

will be used to define OPT

38

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition

J(P1 AND P2)KG =

J(P1 UNION P2)KG =

J(P1 OPT P2)KG =

J(SELECT W P)KG =

39

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition

J(P1 AND P2)KG = JP1KG JP2KG

J(P1 UNION P2)KG = JP1KG ∪ JP2KG

J(P1 OPT P2)KG = JP1KG JP2KG

J(SELECT W P)KG = {µ|W | µ ∈ JPKG}

39

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition

J(P1 AND P2)KG = JP1KG JP2KG

J(P1 UNION P2)KG = JP1KG ∪ JP2KG

J(P1 OPT P2)KG = JP1KG JP2KG

J(SELECT W P)KG = {µ|W | µ ∈ JPKG}

dom(µ|W) = dom(µ) ∩ W and

µ|W (?X) = µ(?X) for every ?X ∈ dom(µ|W)

39

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

40

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

40

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

40

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

40

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

40

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

40

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

41

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

41

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

41

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

41

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

41

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

41

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

41

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

42

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

42

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info

µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

42

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info

µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

?X ?Info

µ3 R3 www.ringo.com

42

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info

µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

∪
?X ?Info

µ3 R3 www.ringo.com

42

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info

µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

∪
?X ?Info

µ3 R3 www.ringo.com

?X ?Info

µ1 R1 J@ed.ex
µ2 R3 R@ed.ex
µ3 R3 www.ringo.com

42

Example (SELECT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(SELECT {?N , ?E} ((?X , name, ?N) AND (?X , email, ?E)))KG

43

Example (SELECT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(SELECT {?N , ?E} ((?X , name, ?N) AND (?X , email, ?E)))KG

SELECT{?N , ?E}
?X ?N ?E

µ1 R1 john J@ed.ex
µ2 R3 ringo R@ed.ex

43

Example (SELECT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(SELECT {?N , ?E} ((?X , name, ?N) AND (?X , email, ?E)))KG

SELECT{?N , ?E}
?X ?N ?E

µ1 R1 john J@ed.ex
µ2 R3 ringo R@ed.ex

?N ?E
µ1|{?N,?E}

john J@ed.ex

µ2|{?N,?E}
ringo R@ed.ex

43

Filter expressions (value constraints)

Filter expression: (P FILTER R)

◮ P is a graph pattern

◮ R is a built-in condition

We consider in R :

◮ equality = among variables and RDF terms

◮ unary predicate bound

◮ boolean combinations (∧, ∨, ¬)

44

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

45

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y)

◮ R is bound(?X) and ?X ∈ dom(µ)

45

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y)

◮ R is bound(?X) and ?X ∈ dom(µ)

◮ usual rules for Boolean connectives

45

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y)

◮ R is bound(?X) and ?X ∈ dom(µ)

◮ usual rules for Boolean connectives

Definition

FILTER : selects mappings that satisfy a condition

J(P FILTER R)KG = {µ ∈ JPKG | µ |= R}

45

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

46

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

46

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?N = ringo ∨ ?N = paul

46

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?N = ringo ∨ ?N = paul

?X ?N
µ2 R2 paul
µ3 R3 ringo

46

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

47

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

47

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

¬ bound(?E)

47

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

¬ bound(?E)

?X ?N
µ2 R2 paul

47

SPARQL 1.1

A new version of SPARQL was recently released (March 2013):
SPARQL 1.1

Some new features in SPARQL 1.1:

◮ Entailment regimes for RDFS and OWL

◮ Navigational capabilities: Property paths

48

SPARQL provides limited navigational capabilities

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

50

SPARQL provides limited navigational capabilities

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

(SELECT ?X ((?X , friendOf, ?Y) AND (?Y , name, George)))

50

A possible solution: Property paths

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

52

A possible solution: Property paths

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

(SELECT ?X ((?X , (friendOf)∗, ?Y) AND (?Y , name, George)))

52

Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:

exp := a | exp/exp | exp|exp | exp∗

where a ∈ U

53

Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:

exp := a | exp/exp | exp|exp | exp∗

where a ∈ U

Other expressions are allowed:

ˆexp : inverse path
!(a1| . . . |an) : a URI which is not one of ai (1 ≤ i ≤ n)

53

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

54

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

JaKG = {(x , y) | (x , a, y) ∈ G}

54

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

JaKG = {(x , y) | (x , a, y) ∈ G}
Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and

(z , y) ∈ Jexp2KG}

54

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

JaKG = {(x , y) | (x , a, y) ∈ G}
Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and

(z , y) ∈ Jexp2KG}
Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

54

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

JaKG = {(x , y) | (x , a, y) ∈ G}
Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and

(z , y) ∈ Jexp2KG}
Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

Jexp∗KG = {(a, a) | a is a URI in G} ∪ JexpKG ∪
Jexp/expKG ∪ Jexp/exp/expKG ∪ · · ·

54

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x , exp, y)

◮ exp is a property path

◮ x (resp. y) is either an element from U or a variable

55

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x , exp, y)

◮ exp is a property path

◮ x (resp. y) is either an element from U or a variable

Example

◮ (?X , (friendOf)∗, ?Y): Checks whether there exists a path of
friends of arbitrary length from ?X to ?Y

55

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x , exp, y)

◮ exp is a property path

◮ x (resp. y) is either an element from U or a variable

Example

◮ (?X , (friendOf)∗, ?Y): Checks whether there exists a path of
friends of arbitrary length from ?X to ?Y

◮ (?X , (rdf:sc)∗, person): Checks whether the value stored in ?X is
a subclass of person

55

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x , exp, y)

◮ exp is a property path

◮ x (resp. y) is either an element from U or a variable

Example

◮ (?X , (friendOf)∗, ?Y): Checks whether there exists a path of
friends of arbitrary length from ?X to ?Y

◮ (?X , (rdf:sc)∗, person): Checks whether the value stored in ?X is
a subclass of person

◮ (?X , (rdf:sp)∗, ?Y): Checks whether the value stored in ?X is a
subproperty of the value stored in ?Y

55

Semantics of property paths

Evaluation of t = (?X , exp, ?Y) over an RDF graph G is the set of
mappings µ such that:

56

Semantics of property paths

Evaluation of t = (?X , exp, ?Y) over an RDF graph G is the set of
mappings µ such that:

◮ dom(µ) = {?X , ?Y }

56

Semantics of property paths

Evaluation of t = (?X , exp, ?Y) over an RDF graph G is the set of
mappings µ such that:

◮ dom(µ) = {?X , ?Y }

◮ (µ(?X), µ(?Y)) ∈ JexpKG

56

Semantics of property paths

Evaluation of t = (?X , exp, ?Y) over an RDF graph G is the set of
mappings µ such that:

◮ dom(µ) = {?X , ?Y }

◮ (µ(?X), µ(?Y)) ∈ JexpKG

Other cases are defined analogously.

56

Semantics of property paths

Evaluation of t = (?X , exp, ?Y) over an RDF graph G is the set of
mappings µ such that:

◮ dom(µ) = {?X , ?Y }

◮ (µ(?X), µ(?Y)) ∈ JexpKG

Other cases are defined analogously.

Example

◮ ((?X , KLM/(KLM)∗, ?Y) FILTER ¬(?X =?Y)): It is possible to go from
?X to ?Y by using the airline KLM, where ?X , ?Y are different cities

56

Comments on papers

◮ Jorge Perez, Marcelo Arenas, Claudio Gutierrez: Semantics and complexity of SPARQL. ACM Trans.
Database Syst. 34(3) (2009)

◮ M. Arenas, J. Perez: Querying semantic web data with SPARQL. PODS 2011: 305-316
In these two papers, your essays ought to concentrate on complexity, as semantics was already covered.

◮ Marcelo Arenas, Georg Gottlob, Andreas Pieris: Expressive languages for querying the semantic web.
PODS 2014: 14-26
Extend SPARQL with more expressive ontologies and recursion, and translation into datalog.

◮ Leonid Libkin, Juan L. Reutter, Domagoj Vrgoc: Trial for RDF: adapting graph query languages for RDF
data. PODS 2013: 201-212
Are graph data and RDF the same? Not really. This shows how to bridge them.

◮ Jorge Perez, Marcelo Arenas, Claudio Gutierrez: nSPARQL: A navigational language for RDF. J. Web
Sem. 8(4): 255-270 (2010)
Extending navigational capabilities, using some XPath ideas.

◮ Marcelo Arenas, Sebastian Conca, Jorge Perez: Counting beyond a Yottabyte, or how SPARQL 1.1
property paths will prevent adoption of the standard. WWW 2012: 629-638

◮ Katja Losemann, Wim Martens: The complexity of regular expressions and property paths in SPARQL.
ACM Trans. Database Syst. 38(4): 24 (2013)
Two papers showing that bad things happen if one queries RDF accoring to SPARQL 1.1 standard, and
different solutions for fixing the problem.

57

