
FOUNDATIONS OF XML
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XML data

• XML = eXtensible Markup Language, the standard for exchanging
data on the web.

• Has become one of the most common data formats.

• XML data is modeled as trees. In fact as unranked trees – we’ll see
soon what this means.

• W3C standards: XML Schema, XPath, XSLT, XQuery define types,
navigation mechanism, transformations, and query languages for XML.

• Active work on XML in many communities, especially databases, infor-
mation retrieval.

• Brings techniques (sometimes old and almost forgotten) from formal
language theory and merges them nicely with logic.
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XML documents look like this

<db>

<book>

<title attr_title="Model Theory"></title>

<publisher publ_attr="Elsevier"></publisher>

<author>

<name name_attr="Change">

</author>

<author>

<name name_attr="Keisler">

</author>

</book>

<book>

<title attr_title="Desciptive Complexity"></title>

<publisher publ_attr="Springer"></publisher>

<author>

<name name_attr="Immerman">

</author>

</book>

<book>

<title attr_title="Computational Complexity"></title>

<publisher publ_attr="Addison Wesley"></publisher>

<year year_attr="1994"></year>

<author>

<name name_attr="Papadimitriou">

</author>

</book>

</db>
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But we view them like this

db

book
book book

title
publ

title
publ author

name
name

title
publ author yearauthor

author

”Model

Theory”

”Elsevier”

”Chang” ”Keisler”

name

”Descriptive

complexity”

”Springer”

”Immerman”

”Computational

Complexity”

”Addison

Wesley

”Papadimitriou”

”1994”
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Analogy: traditional databases

• Many ad hoc models before 1970:

• hard to work with, hard to reason about

• 1970: Codd – relational model

• data stored in relations

• queried using a declarative language (e.g., relational calculus; syn-
tactically SQL but the core is the same)

• DBMS converts declarative queries into procedural queries that are
optimized and executed

• Key advantages:

• A clean mathematical model (based on logic)

• Separation of declarative and procedural
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XML development

• Clean model:

• Structure – labeled unranked trees

• Data – attributes

• Declarative languages (XPath, XQuery)

• Flavor of traditional first-order logic or

• Temporal logics – for describing navigation

• Procedural languages: automata-theoretic constructions

• Schemas: automata
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Logic/automata connection

• Automata are a natural procedural counterpart of logic.

• All as occur before bs – a∗b∗:

∀x∀y Laba(x) ∧ Labb(y) → x < y.

• The length is even –
(

(a|b)(a|b)
)∗

∃X





∀x(first(x) → x ∈ X) ∧ (last(x) → ¬X(x))
∧ ∀x (x ∈ X → successor(x) 6∈ X)
∧ ∀x (x 6∈ X → successor(x) ∈ X)





• ∃X – quantification over sets of positions.

• MSO — Monadic Second-Order logic – extension of first-order logic
(relational calculus) with such quantifiers.
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Logic/automata connection

• Theorem (Büchi, 1959) MSO-definable = Regular word languages.

• Theorem (Thatcher/Wright, late 60s): The same is true for finite
binary trees.

• Theorem (Rabin 1970): The same is true for infinite binary trees.

• Initially these results were developed to prove decidability of logical
theory.

• Sentences in a theory are converted into automata; then satisfiability
is the nonemptiness problem for automata.

• These are easier to prove decidable.

• The ultimate result: decidability of S2S, monadic theory of the infinite
binary tree. Almost everything else decidable can be encoded in this
theory.
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Ranked vs Unranked Trees

Typically in CS one works with ranked trees; e.g., binary, ternary, etc trees.

A binary tree:

a

b

a b

b

a

b a

a
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Unranked trees

But for XML we need unranked trees.

In them, nodes can have arbitrarily many children, and different nodes may
have different number of children.

a

b b

a b a

a b

a

b
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We look at logic(s) for XML

Why?

• XML documents describe data.

• Standard relational database approach:

• data model – relations

• declarative languages for specifying queries

• procedural languages for evaluating queries

• Standard declarative languages are all logic-based:

• relational calculus = first-order logic (FO)

• datalog = fragment of fixed-point logic

• basic SQL = FO with counting
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What does XML add?

• New logics.

• New procedural languages:

• logic–automata connection.
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What do logics do?

Most commonly they define:

• Boolean (that is, yes/no) queries:

• DTD conformance

• Existence of certain paths

• Unary queries which select nodes in trees:

• all nodes reachable by a certain path from the root;

• all nodes with a certain label or certain data element.
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Commonalities between logics

• (Almost) all have associated automata models.

• Crucial aspect is navigation.

• Hence we often see close connection with temporal logics.

• Logics are specifically designed for unranked trees.
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Ranked/Unranked Connection

(used by Rabin in 1970 to interpret SωS in S2S):

a

b

a

a

a b a

=⇒

a

b

a a

a

⊥ b

⊥ a

⊥

⊥

It preserves recognizability by automata, MSO-definability, FO-definability...
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Why not just use it?

• Instead of defining logics for unranked trees, just translate them into
binary trees and use known logical formalisms.

• Problem: hard to navigate!

• A path in a translation becomes a union of arbitrarily many child paths
and sibling paths.

• Hard (at least not natural) to express many properties such as DTD
conformance.
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Classification: Yardstick logic

Most logics are based either on FO or MSO.

• FO:

• Boolean connectives ∨,∧,¬,

• quantifiers ∃x, ∀x ranging over nodes of trees.

• MSO: in addition

• quantifiers ∃X , ∀X ranging over sets of nodes;

• plus new formulae x ∈ X .
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Classification: Ordered vs Unordered Trees

In unordered trees, there is no order among siblings (children of the same
node).
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Classification: Ordered vs Unordered Trees

In unordered trees, there is no order among siblings (children of the same
node).

In ordered trees, siblings are ordered (from the oldest to the youngest).
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Formal definition of unranked trees

ε

1 2 3 4 5

21 22 41 42 43

Tree domain: prefix-closed subset D of N
∗ such that s · i ∈ D implies

s · j ∈ D for j < i.
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Formal definition of unranked trees

ε

1 2 3 4 5

21 22 41 42 43

a

b

a a a
b

a b b b a

Tree domain: prefix-closed subset D of N
∗ such that s · i ∈ D implies

s · j ∈ D for j < i.

Tree over finite alphabet Σ: tree domain plus a mapping from it to Σ.
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Basic predicates

child ≺ch

next-sibling ≺ns

first child ≺fc

Transitive closures: • ≺∗
ch of ≺ch (descendant)

• ≺∗
ns of ≺ns (younger child)

We normally use transitive closures (since they are not definable in FO).

For MSO, we can use either ≺ch, ≺ns or ≺∗
ch, ≺∗

ns as they are inter-
definable.
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LOGICS FOR ORDERED TREES

ATFD 23 Winter 2016



Logic/automata connection

A set T of trees is definable in a logic L iff there is a sentence ϕ of L such
that

T ∈ T ⇔ T |= ϕ

A set T of trees is regular if it is recognizable by a tree automaton.

Theorem

• A set of binary trees is regular iff it is MSO-definable (Thatcher-Wright,
1966).

• A set of unranked trees is regular iff it is MSO-definable
(Thatcher 1967 → forgotten → folklore, republished many times)
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Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.
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Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

q1 q2

q

a

if q ∈ δ(q1, q2, a)
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Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

q1 q2

q

a

if q ∈ δ(q1, q2, a)

a b a b

a b

a
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Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

q1 q2

q

a

if q ∈ δ(q1, q2, a)

a b a b

a b

a

q1 q2 q1 q2
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Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

q1 q2

q

a

if q ∈ δ(q1, q2, a)

a b a b

a b

a

q1 q2 q1 q2

q3q4
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Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

q1 q2

q

a

if q ∈ δ(q1, q2, a)

a b a b

a b

a

q1 q2 q1 q2

q3q4

q5
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Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

q1 q2

q

a

if q ∈ δ(q1, q2, a)

a b a b

a b

a

q1 q2 q1 q2

q3q4

q5

accepted if q5 is a final state
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Tree automata: unranked case

Transitions are δ : States × Σ → 2States∗ so that each δ(q, a) ⊆ States∗ is
a regular language.
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Tree automata: unranked case

Transitions are δ : States × Σ → 2States∗ so that each δ(q, a) ⊆ States∗ is
a regular language.

The run is the same as before:

q1 q2 ......... qn−1 qn

a

ATFD 33 Winter 2016



Tree automata: unranked case

Transitions are δ : States × Σ → 2States∗ so that each δ(q, a) ⊆ States∗ is
a regular language.

The run is the same as before:

q1 q2 ......... qn−1 qn

a q

if q1 · · · qn ∈ δ(q, a)

ATFD 34 Winter 2016



Tree automata: unranked case

Transitions are δ : States × Σ → 2States∗ so that each δ(q, a) ⊆ States∗ is
a regular language.

The run is the same as before:

q1 q2 ......... qn−1 qn

a q

if q1 · · · qn ∈ δ(q, a)

A tree is accepted if there is a run such that the root is assigned an accepting
state.
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Properties of tree automata

• Languages defined by automata are called regular.

• Regular languages are closed under:

• union (O(n) algorithm)

• intersection (O(n2) algorithm – product construction)

• complementation (2O(n) algorithm – powerset construction)

• Binary case: equivalent to deterministic automata

• for unranked it’s a bit tricky to say what “deterministic” means

• Nonemptiness problem: Given an automaton A, does it accept a tree?

• solvable in polynomial time (naively in O(n3)), same as for context-
free grammars
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Automata and XML schemas

db

book
book book

title
publ

title
publ author

name
name

title
publ author yearauthor

author

”Model

Theory”

”Elsevier”

”Chang” ”Keisler”

name

”Descriptive

complexity”

”Springer”

”Immerman”

”Computational

Complexity”

”Addison

Wesley

”Papadimitriou”

”1994”

Document description (DTD = Document Type Definition)

db → book∗

book → title, publ, author+, year?
author → name
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MSO and DTDs

• DTDs have rules such as

book → title, publ, author+, year?

• Not a new invention: known for ages as extended context-free gram-

mars, i.e., CFGs in which right hand sides of productions can be arbi-
trary regular expressions.

• Since regular string languages are precisely those MSO-definable, it
follows that all DTDs are MSO-definable.

• Are DTDs and MSO equal?

• The answer is negative.
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MSO and DTDs cont’d

• EDTDs = Extended DTDs: these are DTDs over a larger alphabet
Σ′ ⊇ Σ together with a projection π : Σ′ → Σ.

• Trees over Σ that conform to an EDTD: projections of conforming trees
over Σ′

Theorem (Thatcher 1967; rediscovered several times recently)

EDTDs = MSO

• Led to a key addition in XML Schema: specialization

• Essentially a non-context-free feature
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Unary queries

• A unary query selects a set of nodes in a tree.

• A surprisingly simple automaton model captures them.

• Query automaton:

QA = unranked tree automaton + selecting set S ⊆ States.

• QA selects a node s from a tree T if there is an accepting run that
assigns a state q to s such that

q ∈ S.

Theorem For unary queries over unranked trees,

Query Automata = MSO.
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MSO over trees: Complexity

• Evaluating queries:

Input: tree T , sentence ϕ
Question: Is T |= ϕ?

• Or could be: T |= ψ(a) for a unary formula ψ(x).

• Two ways:

• ‖T‖ is the only input: data complexity

• both ‖T‖ and ‖ϕ‖ are inputs: query complexity
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MSO over trees: Complexity cont’d

• By translation to automata:

• Every MSO sentence ϕ can be transformed into an automaton Aϕ

• To run Aϕ on T – linear time in the size of T .

• Hence the data complexity of MSO is linear.
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MSO over trees: Complexity cont’d

• But what what about query complexity?

• How big can Aϕ be in terms of T ?

• Answer: non-elementary.

• Recall: in recursion theory, elementary means a function

f(n) < 22.
..
n }

ℓ times
for a fixed ℓ.

• Dates back to the “optimistic” 1950s when those functions were viewed
as relatively “simple”.

• For the size of Aϕ, the number ℓ may depend on ϕ.

ATFD 43 Winter 2016



MSO over trees: Complexity cont’d

• These “towers of 2s” grow very fast:

Tower(0) = 1 Tower(n + 1) = 2Tower(n)

• Tower(5) exceed the number of atoms in the visible universe.

• Tower(6) exceed the number of atoms in the universe.

• Hence impractical...

• An even bigger problem: if we keep data complexity linear, the query
complexity is necessarily non-elementary (even if we manage to avoid
automata – Frick/Grohe, 2002)

• Can we do better?

• Yes, by finding different logics that have the power of MSO, and yet
better model-checking properties.
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Changing syntax to lower complexity: LTL

Syntax:
ϕ := a(∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′
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Changing syntax to lower complexity: LTL

Syntax:
ϕ := a(∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′

Semantics:

a

a, a ∈ Σ
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Changing syntax to lower complexity: LTL

Syntax:
ϕ := a(∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′

Semantics:

ϕ

Xϕ
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Changing syntax to lower complexity: LTL

Syntax:
ϕ := a(∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′

Semantics:

ϕ ϕ ϕ ϕ ψ

ϕUψ

ATFD 48 Winter 2016



LTL cont’d

• LTL = FO over strings (Kamp’s theorem).

• To evaluate FO with linear data complexity, one needs non-elementary
query complexity
(modulo some complexity-theoretic assumptions; Frick/Grohe 2002)

• But LTL over strings can be evaluated in time

O(‖ϕ‖ · |s|)

• Of course this implies that translation from FO to LTL is non-elementary.

ATFD 49 Winter 2016



A good and practical logic for XML – Monadic
Datalog

• Datalog = database query language; essentially extension of positive
FO with least fixed point. (Transitive closure example – board.)

• Can also be viewed as prolog without function symbols.

• Datalog program is monadic if all introduced predicates (intensional
predicates) are monadic – have one free variable.

• Example: select (in predicate D) all nodes s such that all their descen-
dants (including s) are labeled a:

D(x) :– Pa(x), Leaf(x)
D(x) :– Pa(x), x ≺fc y, S(y)
S(y) :– Pa(x), LastChild(y), D(y)
S(y) :– Pa(x), x ≺ns y, S(y), D(y)
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Monadic Datalog cont’d

Assume that Leaf and LastChild are available as basic predicates.

Then:

• Monadic Datalog = MSO

• A Monadic Datalog program P can be evaluated on a tree T in time

O(‖P‖ · ‖T‖)

This is heavily used in Web data extraction: real-life languages are based on
monadic datalog, which combines expressiveness and very good evaluation
properties.
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µ-calculus over unranked trees

• µ-calculus (Kozen 82): extension of a temporal logic with the least
fixed point operator.

• Subsumes many logics used in verification: LTL, CTL, CTL∗.

• Syntax:

ϕ := S | a | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ¬ϕ | XEϕ | µS ϕ(S)

• S must occur positively;

• E ranges over relations ≺ch and ≺ns

• Full µ-calculus: one can talk about the past.

• That is, E also ranges over inverses of ≺ch and ≺ns
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µ-calculus over unranked trees cont’d

Over unranked trees:

full µ-calculus = MSO

For Boolean queries:

• MSO = alternation-free µ-calculus (all negations pushed to atomic
formulae)

• Complexity of model-checking

• O(‖ϕ‖2 · ‖T‖) for µ-calculus;

• O(‖ϕ‖ · ‖T‖) for alternation-free µ-calculus.
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First-Order based formalisms

• These are often studied in connection with XPath

• XPath – a W3C standard, essentially the navigation language for XML.
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XPath – an informal introduction

• XPath has two kinds of formulae: node tests and path formulae.

• Node tests are closed under Boolean connectives and can check if a
path satisfying a path formula can start in a given node.

• Path formulae can:

• test if a node test is true in the first node of a path;

• test if a path starts by going to a child, first child, next child, previous
child, parent, descendant, ancestor, etc;

• take union or composition of two paths.

Example: //book[/author[name="Keisler"]]/title
gives titles of books coauthored by Keisler.
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CTL∗ vs XPath

• There is a well-known logic, CTL∗, that similarly combines node (called
state) and path formulae.

• Syntax:

state formulae α := a | α ∨ α′ |¬α | Eβ
path formulae β := LTL over state formulae

Example: all descendants of a given node (including self) are labeled a (with
Σ = {a, b}):

¬E

(

(a ∨ b) U b
)
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CTL∗ and FO over trees

With respect to Boolean queries, over both binary and unranked trees,
CTL∗ = FO

For unary queries, one adds reasoning about the past (temporal operators
Y – yesterday, and S – since).
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Linear-time logic on trees

• Defined by Schlingloff in 1992

• Rediscovered, modified and used for proving results about XPath by
Marx 2004

• Various names: Xuntil by Marx, {S,U} ∪ {Xk | k < ω} by Schlingloff

• We call it TLtree
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Linear-time tree logic TLtree

Syntax:

ϕ := a(∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | X∗ϕ | ϕU∗ϕ
′ | Y∗ϕ | ϕS∗ϕ

′

where * is either desc or sib.
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Linear-time tree logic TLtree

Syntax:

ϕ := a(∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | X∗ϕ | ϕU∗ϕ
′ | Y∗ϕ | ϕS∗ϕ

′

where * is either desc or sib.

.

ϕ ϕ ϕ ψ

α

α
α

α

α

β

(T, ·) |= ϕ Usib ψ

(T, ·) |= α Sdesc β

.
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Linear-time tree logic TLtree

Theorem (Marx ’04; Schlingloff ’92)
Over ordered unranked trees,

TLtree = FO
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Application: Static XML reasoning

• Documents and constraints

• Constraints and DTDs

• XPath satisfiability (with DTDs)

• XPath containment (query optimization, more generally)

• Properties of updates

• Properties of schema mappings

• Security guarantees provided by views

• . . . and many others.
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XML reasoning: logics+automata

• We need to combine logics that have a temporal flavor and automata.

• This is at the core of many software and hardware verification tech-
niques (aka model checking) that have been implemented in industrial
strength products and are widely used (NASA, Intel, Cadence, NEC,
Synopsis etc)
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XML reasoning: logics+automata

• Logic-automata translations:

• LTL to nondeterministic or alternating Büchi automata

•







PDL
CTL
µ-calculus







to (subclasses of) tree automata

• call-return logics to visibly pushdown automata, etc

• So to reason about XML, one can combine:

• a logical specification (e.g. navigation)

• an automaton specification (e.g. a schema) and

• a logic-automata translation
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Reasoning task: example I – XPath satisfiability

• Important in program optimization

• Can we

• disregard an XPath expression? (satisfiability)

• replace it by an easier one? (equivalence/containment)

• Satisfiability:

• Given an XPath expression e and a DTD d

• Question: Is there a tree T that satisfies d so that e selects at least
one node in it?

• In other words, are e and d compatible?

• Known complexity bounds: ranges from polynomial-time to exponential-
time. For many fragments of XPath it is NP-complete or even EXPTIME-
complete.

ATFD 65 Winter 2016



Reasoning task: example II – XPath containment

• Containment:

• Given a XPath expressions e, e′ and a DTD d

• Question: is it true that d |= e ⊆ e′?

• I.e., whether for every tree T that satisfies d, each node selected
by e is also selected by e′.

• Optimization = Equivalence: d |= e = e′ which is just

• d |= e ⊆ e′ and

• d |= e′ ⊆ e.
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Key ingredient: TLtree to query automata

Theorem Every TLtree formula ϕ can be translated, in exponential time,
into an equivalent automaton Aϕ of size 2O(‖ϕ‖), i.e. an automaton that
accepts T whenever ϕ is true in the root of T .

(Even more: get a query automaton QAϕ such that

QAϕ(T ) = {s | (T, s) |= ϕ}
for every tree T .)
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Second ingredient: TLtree vs (Conditional) XPath

• Both are FO-complete so there is a translation

• The number of subformulae is what gives us the size of the automaton.

• Hence we have a simple single-exponential translation from (condi-
tional) XPath to automata.
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Application I: Reasoning about navigation and
schemas

• XPath satisfiability with DTDs:

• Translate e into a query automaton QAe

(time complexity: 2O(‖e‖))

• Take the product with the linear-size automaton Ad for d

• Test QAe ×Ad for nonemptiness

• Time complexity:

• Exponential in e

• Polynomial in d
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Application II: containment

• XPath containment with DTDs (i.e. d |= e1 ⊆ e2):

• Translate e1 and e2 into TLtree formulae ψe1 and ψe2

• Construct query automaton for ψe1 ∧ ¬ψe2
• Take the product with Ad

• The result is a query automaton that describes the set of counterex-
amples to containment

• Its size is ‖d‖ · 2O(‖e1‖+‖e2‖)
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Unordered trees: easy punchline

• Order buys us counting.

• Without order, counting has to be introduced explicitly.

a b a b aa

• There is no way to say in a temporal logic that there are at least 2
children labeled a.
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MSO, order, and counting

• With MSO, ordering gives us even more powerful modulo counting.

• Example: parity in MSO

• The black set:

• contains the first element;

• contains every other element;

• does not contain the last element.

• But if we only have:

we cannot say it.
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Automata with counting

• New transition: δ : States × Σ → Boolean function over(V )

• V = {vkq | k ∈ N, q ∈ States}.
• A new notion of run:

q1 q2 ......... qn−1 qn

a q0

• For each q, set vkq to true if the number of children in state q is at least
k.

• If δ(q0, a) evaluates to true, then state q0 can be assigned.
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Counting in logics

Extend µ-calculus and CTL∗ to counting versions by changing X to X
k,

meaning the existence of at least k elements satisfying a formula.

Then:

• MSO = counting µ-calculus

• FO = counting CTL∗

• For unary queries, one adds both counting and past
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Other directions: streaming

a

b

c b

a

b ca

<a>

<b>

<a></a>

<c></c>

<b></b>

</b>

<a>

<b></b>

<c></c>

</a>

</a>

Streamed representation: abaācc̄bb̄b̄abb̄cc̄āā

Question: what properties of trees can we check by a finite automaton over
the streamed representation?

Since the language of balanced parentheses is not regular, we may assume
the input is already a valid stream.
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Not all DTDs can be verified in a streamed fashion

•
a → ab | ca | ε
b → ε

c → ε

• For every MSO sentence ϕ one can find two strings of the form

abb̄abb̄ . . . abb̄a . . . aācc̄ . . . ācc̄ā . . . ā

that agree on ϕ; one of them corresponds to the above DTD, and the
other one to:
a → a | ab | ca | ε
b → ε

c → ε

• The problem is still open in general: when can we verify DTDs fast?
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Other directions: data values

• So far we considered only labels on trees (e.g., book, author) but no
data values (e.g., ”WH Press”).

• Adding data values quickly leads to undecidability or at least intractabil-
ity.
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When it becomes problematic: static analysis

• DTDs + key/foreign key constraints

• Occur all the time: relational data =⇒ XML

• Satisfiability problem: is a specification consistent?

• Why it might be inconsistent?

• Because one puts data in a “wrong” place in the hierarchy.
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DTDs + key/foreign key constraints

DTD:
teachers → (teacher+)
teacher → (teach, research)
teach → (subject, subject)

teacher has an attribute name

subject has an attribute taught by.

Constraints:
teacher.name → teacher,
subject.taught by → subject,
subject.taught by ⊆ teacher.name.

name is a key of teacher
taught by is a key of subject
plus a foreign key referencing name of teacher

This is inconsistent!
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Consistency: known facts

• Surprisingly hard problem:

• It is NP-complete for unary constraints (like those in the example, based
on single-attributes)

• It is undecidable even for binary constraints (e.g., title and author de-
termine publisher).
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Model: data trees

r(2)

b(5) b(3)

a(2) b(3) a(1)

a(2) b(5)

a(1)

b(3)

Each node carries:

• a label, e.g., r, a, b — from a finite alphabet

• a piece of a date, e.g., a natural number — from an infinite alphabet

• easy to model multiple ones as well

• Tree automata lose their nice properties on infinite alphabets.
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Data trees and logic

Addition: predicate x ∼ y saying that x and y carry the same data value

Example: data values of as form a key:

∀x∀y (Laba(x) ∧ Laba(y) ∧ x ∼ y) → x = y

Example: foreign key from a to b

∀x Laba(x) → ∃y (Labb(x) ∧ x ∼ y)

What is common here? We only use 2 variables, x and y.

Dichotomy: With two variables, first-order logic is decidable on data trees;
with three or more, it is not.

Problem: complexity is astronomical (tower of 4 exponents).
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A better explanation. Parameters for a data tree T

• Vt(a) is the set of data values found in a-labeled nodes in T .

• #t(a) is the number of a-nodes in t.
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root

✠ ❘ q

(

a
1

) (

b
20

) (

d
5

)

✠ ❘

(

c
5

)

❄

(

d
10

)

(

c
1

)

❄

(

d
20

)

Vt(a) = {1}
Vt(b) = {20}
Vt(c) = {1, 5}
Vt(d) = {5, 10, 20}

#t(a) = 1
#t(b) = 1
#t(c) = 2
#t(d) = 3

V (a) ∩ V (b) = ∅ √
V (a) ∩ V (c) ⊆ V (d) X

V (a) ∪ V (c) ⊆ V (b)
√
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Unary keys/foreign keys

Logical formula Semantics

Key:

∀x ∀y Laba(x) ∧ Laba(y) ∧ x ∼ y → x = y
#t(a) = |Vt(a)|

Foreign key:
∀x ∃y Laba(x) → Labb(y) ∧ x ∼ y

Vt(a) ⊆ Vt(b)

⇒ Linear
constraints

⇒ Set
constraints

The structure of the tree must satisfy the given schema:

DTD
Extended DTD
XML Schema

tree automata
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Consistency of constraints

Input:

• A tree automaton A
• A collection C of set and linear constraints

Question: Is there a data tree T accepted by A that satisfies all constraints
in C?

This problem can be solved in NP (i.e., single exponential time)

• Automata can be encoded with linear constraints

• And so can be set constraints

• So just solve an instance of integer linear programming
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