Data Integration and Data Exchange
Traditional approach to databases

• A single large repository of data.
• Database administrator in charge of access to data.
• Users interact with the database through application programs.
• Programmers write those (embedded SQL, other ways of combining general purpose programming languages and DBMSs)
• Queries dominate; updates less common.
• DMBS takes care of lots of things for you such as
 query processing and optimisation
 concurrency control
 enforcing database integrity
Traditional approach to databases cont’d

• This model works very within a single organisation that either
 ◦ does not interact much with the outside world, or
 ◦ the interaction is heavily controlled by the DB administrators

• What do we expect from such a system?
 1. Data is relatively clean; little incompleteness
 2. Data is consistent (enforced by the DMBS)
 3. Data is there (resides on the disk)
 4. Well-defined semantics of query answering (if you ask a query, you
 know what you want to get)
 5. Access to data is controlled
The world is changing

- The traditional model still dominates, but the world is changing.
- Many huge repositories are publicly available
 - In fact many are well-organised databases, e.g., imdb.com, the CIA World Factbook, many genome databases, the DBLP server of CS publications, etc etc etc)
- Many queries cannot be answered using a single source.
- Often data from various sources needs to be combined, e.g.
 - company mergers
 - restructuring databases within a single organisation
 - combining data from several private and public sources
What industry offers now: ETL tools

• ETL stands for Extract–Transform–Load
 ○ Extract data from multiple sources
 ○ Transform it so it is compatible with the schema
 ○ Load it into a database

• Many self-built tools in the 80s and the 90s; through acquisition fewer products exist now

• The big players – IBM, Microsoft, Oracle – all have their ETL products; Microsoft and Oracle offer them with their database products.

• A few independent vendors, e.g. Informatica PowerCenter.

• Several open source products exist, e.g. Clover ETL.
ETL tools

• Focus:
 ○ Data profiling
 ○ Data cleaning
 ○ Simple transformations
 ○ Bulk loading
 ○ Latency requirements

• What they don’t do yet:
 ○ nontrivial transformations
 ○ query answering

• But techniques now exist for interesting data integration and for query answering – and we shall learn them.

• They soon will be reflected in products (IBM and Microsoft are particularly active in this area)
Data profiling/cleaning

• Data profiling: gives the user a view of data:
 ○ Samples over large tables
 ○ statistics (how many different values etc)
 ○ Graphical tools for exploring the database

• Cleaning:
 ○ Same properties may have different names
 e.g. Last_Name, L_Name, LastName
 ○ Same data may have different representations
 • e.g. (0131)555-1111 vs 01315551111,
 • George Str. vs George Street
 ○ Some data may be just wrong
Data transformation

• Most transformation rules tend to be simple:
 ◦ Copy attribute LName to Last_Name
 ◦ Set age to be current_year – DOB

• Heavy emphasis on industry specific formats

• For example, Informatica B2B Data Exchange product offers versions for Healthcare and Financial services as well as specialised tools for formats including:
 ◦ MS Word, Excel, PDF, UN/EDIFACT (Data Interchange For Administration, Commerce, and Transport), RosettaNet for B2B, and many specialised healthcare and financial form.

• These are format/industry specific and have little to do with the general tasks of data integration.
More on ETL Tools

- ETL = Extract – Transform – Load
- Typically: data integration software for building data warehouse
- Pull large volumes of data from different sources, in different formats, restructure them and load into a warehouse
- A variety of tools:
 - major database vendors (IBM, Microsoft, Oracle)
 - independent companies (Informatica)
 - Open source (e.g. Clover ETL)
- Significant demand: $1.5B/year, with >15% annual growth rate
IBM

- Product name: InfoSphere DataStage
- Main claims:
 - variety of data sources (almost any database, text, XML, web services)
 - capable of handling data arriving in real-time
 - scalability
- Unix (Linux) and Windows Platforms
InfoSphere DataStage cont’d

• InfoSphere – product line that includes software from WebSphere and Information Server lines.

• Includes lots of other things
 ○ application integration and transformation
 ○ online marketing tools
 ○ mobile, speech middleware
 ○ business process management
 ○ change data capture
 ○ information analyzer
 ○ data quality tools
InfoSphere Federation Server

- Federated (virtual) integration: “Access and integrate diverse data and content sources as if they were a single resource - regardless of where the information resides.”
- Integration across different relational products (db2, Oracle, SQL server)
- Integrity and accuracy guarantees
- Distributed query optimizer
- XML support
- Security strategies
- These are expensive products (>US$60K license)
IBM’s view of data integration

- Key tasks, with associated products
- Tasks:
 - Connect to information (products: information server; data publisher)
 - Understand information (data architect, models for ... (banking, insurance, retail, telecom))
 - Cleanse information (QualityStage: matching engine, cleaning rules etc)
 - Transform information (DataStage)
 - Deliver information (Federation Server, DataStage)
IBM: data exchange

- Clio Project (IBM Almaden Research Center).
- Includes:
 - a semi-automatic schema mapping generation tool
 - universal solutions are the semantics of data exchange
 - they are generated by extended SQL queries
 - Extension: Skolem functions
- Part of IBM Product “Rational® Data Architect”
- Other features:
 - discovery of attribute correspondence; interactive construction of mappings
 - Extended schemas (not full XML but more than relations)
Microsoft

- Integration Services – part of SQL Server (SSIS)
- Supports multiple formats; converts everything into tabular format
- Transformations:
 - join, union
 - sort
 - aggregate
 - lookup
 - convert
- Has a data quality tool
- Goes beyond traditional ETL: e.g., data and text mining tools
Oracle

- Oracle Warehouse Builder (OWB)
- Data integration and metadata management tasks:
 - Extraction, transformation, and loading (ETL) for data warehouses
 - Migrating data from legacy systems
 - Designing and managing corporate metadata
 - Data profiling
 - Data cleaning
- Included in the Oracle database product.
Oracle: transformations

• Scalar value transformations (plenty of predefined ones):
 ◦ Characters
 ◦ Conversions
 ◦ Dates
 ◦ Numbers
 ◦ Spatial objects
 ◦ XML transformations (from very simple – select nodes by XPath expressions – to very complex, such as applying XSLT style sheet)

• Also user-defined (functions, procedures, packages)
Informatica

- Market leader – Informatica PowerCenter
- Provides support for
 - migration
 - synchronization
 - warehousing
 - cross-enterprise integration
- Works with multiple data formats
- Provides support for metadata management
- Real-time capabilities
Informatica: Transformation language

- Main orientation: scalar value transformations
- Functions: change data in a mapping
- Operators: create transformation expressions
- Syntax is SQL-based
- Part of it is essentially a programming language in a Java-like syntax for manipulating values.
- Roughly: looks at a portion of the source data, modifies it, and changes the target data accordingly.
Informatica: Transformation language cont’d

- **DD_DELETE** and **DD_INSERT** specify what to do with data items.

- E.g., \(\text{IIF(job='CEO', DD_DELETE, DD_INSERT)} \) says: items with job being CEO are marked for deleting, others for insertion.

- **Operators:**
 - Arithmetic
 - String
 - Comparisons
 - Logical
 - (almost) everything you can imagine

- Many functions for dealing with dates in different formats.
Informatica: Transformation language cont’d

- Large number of functions
- Aggregates: \texttt{AVG}, \texttt{COUNT}, \texttt{MIN}, \texttt{MAX}, \texttt{MEDIAN}, \texttt{PERCENTILE}, \texttt{STDDEV}, \texttt{SUM}, etc.
- Character functions: \texttt{CONCAT}, \texttt{LENGTH}, \texttt{TRIM}, etc
- Conversion functions (e.g., \texttt{TO_CHAR} for Date, \texttt{TO_DECIMAL}, \texttt{TO_FLOAT}, \texttt{TO_DATE})
- Date functions: \texttt{ADD_TO_DATE}, \texttt{DATE_DIFF}, \texttt{DATE_COMPARE}, etc
- Numerical: the usual suspects.
- Scientific: \texttt{SIN}, \texttt{COS}, \texttt{TAN}, etc
- Search for a value in the source: \texttt{LOOKUP}
- This was quick; full manual – almost 250 pages.
Summary

- Complex tools; very good at transforming data values, and at working with specific formats (MS Word, Excel, PDF, UN/EDIFACT, RosettaNet, etc) and for specific industries (finance, insurance, health)

- Much better these days at getting real-time data; very good at bulk loading, supporting multiple formats

- Not so good:
 - virtual integration
 - complex structural transformation
 - query answering
 - metadata management

- A lot of effort will be put there over the coming years
Data integration, scenario 1

GLOBAL SCHEMA

QUERY: Q?
Data integration

GLOBAL SCHEMA

QUERY: Q?
Data integration

Answer to Q is obtained by querying the views V_1, \ldots, V_n
Data integration, query answering

• We have our view of the world (the Global Schema)
• We can access (parts of) databases DB_1, \ldots, DB_n to get relevant data.
• It comes in the form of views, V_1, \ldots, V_n
• Our query against the global schema must be reformulated as a query against the views V_1, \ldots, V_n
• The approach is completely virtual: we never create a database the conforms to the global schema.
Data integration, query answering, a toy example

- List courses taught by permanent teaching staff during Winter 2007
- We have two databases:
 - D_1(name, age, salary) of permanent staff
 - D_2(teacher, course, semester, enrollment) of courses
- D_1 only publishes the value of the name attribute
- D_2 does not reveal enrollments
- The views:
 \[V_1 = \pi_{\text{name}}(D_1) \]
 \[V_2 = \pi_{\text{teacher, course, semester}}(D_2) \]
- Next step: establish correspondence between attributes name of V_1 and teacher of V_2
Data integration, query answering, a toy example cont’d

- To answer query, we need to import the following data:

 \[
 V_1
 \]

 \[
 W_2 = \sigma_{semester='Winter 2007'}(V_2)
 \]

- Answering query:

 \[
 \{ course \mid \exists name, sem \ V_1(name) \land W_2(name, course, sem) \}
 \]

- Or, in relational algebra

 \[
 \pi_{course}(V_1 \bowtie_{name=teacher} W_2)
 \]
Toy example, lessons learned

- We don’t have access to all the data
- Some human intervention is essential (someone needs to tell us that teacher and name refer to the same entity)
- We don’t run a query against a single database. Instead, we
 - run queries against different databases based on restrictions they impose
 - get results to use them locally
 - run another query against those results
Toy example, things getting more complicated

- Find informatics permanent staff who taught during the Winter 2007 semester, and their phone numbers.
- We have additional personnel databases:
 - an informatics database $D_3(\text{employee, phone, office})$, and
 - a university-wide database $D_4(\text{employee, school, phone})$
- for simplicity, assume all this information is public.
- Now we have a choice:
 - use D_3 to get information about phones
 - use D_4 to get information about phones
 - use both D_3 and D_4 to get information about phones
Toy example cont’d

• First, we need some human involvement to see that employee, name, and teacher refer to the same category of objects

• If one uses D_3, then the query is

\[
\{ \text{name, phone} \mid \exists \text{sem, course, office} \ V_1(\text{name}) \land \\
W_2(\text{name, course, sem}) \land D_3(\text{name, phone, office}) \}
\]

• If one uses D_4, then the query is

\[
\{ \text{name, phone} \mid \exists \text{sem, course, school} \ V_1(\text{name}) \land \\
W_2(\text{name, course, sem}) \land D_4(\text{name, school, phone}) \}
\]

• But what if one uses both D_3 and D_4?
Toy example cont’d

• We could insist on the phone number being:
 ◦ in either D_3 or D_4
 ◦ in both D_3 and D_4, but not necessarily the same
 ◦ in both D_3 and D_4, and the same in both databases

• One can write queries for all the cases, but which one should we use?

• New lessons:
 ◦ databases that are being integrated are often inconsistent
 ◦ query answering is by no means unique – there could be several ways to answer a query
 ◦ different possibilities for answering queries are a result of inconsistencies and incomplete information
Toy example cont’d

• Suppose phone numbers in D_3 and D_4 are different.
• What is a sensible query answer then?
• A common approach is to use certain answers – these are guaranteed to be true.
• Another question: what if there is no record at all for the phone number in D_3 and D_4?
• Then we have an instance of incomplete information.
A different scenario

- So far we looked at virtual integration: no database of the global schema was created.
- Sometimes we need such a database to be created, for example, if many queries are expected to be asked against it.
- In general, this is a common problem with data integration: materialize vs federate.
- Materialize = create a new database based on integrating data from different sources.
- Federate = the virtual approach: obtain data from various sources and use them to answer queries.
Virtual vs Materialization

- A common situation for the materialization approach: merger of different organizations.
- A common situation for the federated approach: we don’t have full access to the data, and the data changes often.
Common tasks in data integration

• How do we represent information?
 ○ Global schema, attributes, constraints
 ○ data formats of attributes
 ○ reconciling data from different sources
 ○ abbreviations, terminology, ontologies

• How do we deal with imperfect information?
 ○ resolve overlaps
 ○ handling missing data
 ○ handling inconsistencies
Common tasks in data integration cont’d

• How do we answer queries?
 ○ what information is available?
 ○ Can we get the answer?
 ○ if not, what is the semantics of query answering?
 ○ Is query answering feasible?
 ○ Is it possible to compute query answers at all?
 ○ If now, how do we approximate?

• Materialize or federate?
Common tasks in data integration cont’d

• Do it from scratch or use commercial tools?
 ○ many are available (just google for “data integration”)
 ○ but do we fully understand them?
 ○ lots of them are very ad hoc, with poorly defined semantics
 ○ this is why it is so important to understand what really happens in data integration
Data Exchange

\[
\begin{align*}
\text{SOURCE DATABASE} \\
\text{Source Schema } S & \quad \text{Target Schema } T
\end{align*}
\]
Data Exchange

Source Schema S

Target Schema T
Data Exchange

Query over the target schema: \(Q \)

How to answer \(Q \) so that the answer is consistent with the data in the source database?
Data exchange vs Data integration

Data exchange appears to be an easier problem:

- there is only one source database;
- and one has complete access to the source data.

But there could be many different target instances.

Problem: which one to use for query answering?
When do we have the need for data exchange

- A typical scenario:
 - Two organizations have their legacy databases, schemas cannot be changed.
 - Data from one organization 1 needs to be transferred to data from organization 2.
 - Queries need to be answered against the transferred data.
Query answering using views

- General setting: database relations R_1, \ldots, R_n.
- Several views V_1, \ldots, V_k are defined as results of queries over the R_i’s.
- We have a query Q over R_1, \ldots, R_n.
- Question: Can Q be answered in terms of the views?
 - In other words, can Q be reformulated so it only refers to the data in V_1, \ldots, V_k?
Query answering using views in data integration

- **LAV:**
 - R_1, \ldots, R_n are global schema relations; Q is the global schema query
 - V_i’s are the sources defined over the global schema
 - We must answer Q based on the sources (virtual integration)

- **GAV:**
 - R_1, \ldots, R_n are the sources that are not fully available.
 - Q is a query in terms of the source (or a query that was reformulated in terms of the sources)
 - Must see if it is answerable from the available views V_1, \ldots, V_k.

- We know the problem is impossible to solve for full relational algebra, hence we concentrate on conjunctive queries.
Query answering using views: example

• Two relations in the database: \textit{Cites}(A,B) (if A cites B), and \textit{SameTopic}(A,B) (if A, B work on the same topic)

• Query \(Q(x,y) \leftarrow \text{SameTopic}(x,y), \text{Cites}(x,y), \text{Cites}(y,x)\)

• Two views are given:
 - \(V_1(x,y) \leftarrow \text{Cites}(x,y), \text{Cites}(y,x)\)
 - \(V_2(x,y) \leftarrow \text{SameTopic}(x,y), \text{Cites}(x,x'), \text{Cites}(y,y')\)

• Suggested rewriting: \(Q'(x,y) \leftarrow V_1(x,y), V_2(x,y)\)

• Why? Unfold using the definitions:
 \(Q'(x,y) \leftarrow \text{Cites}(x,y), \text{Cites}(y,x), \text{SameTopic}(x,y), \text{Cites}(x,x'), \text{Cites}(y,y')\)

• Equivalent to \(Q\)
Query answering using views

- Need a formal technique (algorithm): cannot rely on the semantics.
- Query Q:

$$\begin{align*}
\text{SELECT} & \ R1.A \\
\text{FROM} & \ R \ R1, \ R \ R2, \ S \ S1, \ S \ S2 \\
\text{WHERE} & \ R1.A=R2.A \ \text{AND} \ S1.A=S2.A \ \text{AND} \ R1.A=S1.A \\
& \ \text{AND} \ R1.B=1 \ \text{and} \ S2.B=1
\end{align*}$$

- $Q(x) := R(x, y), R(x, 1), S(x, z), S(x, 1)$
- Equivalent to $Q(x) := R(x, 1), S(x, 1)$
- So if we have a view
 - $V(x, y) := R(x, y), S(x, y)$ (i.e. $V = R \cap S$), then
 - $Q = \pi_A(\sigma_{B=1}(V))$
 - Q can be rewritten (as a conjunctive query) in terms of V
Query rewriting

• Setting:
 ○ Queries V_1, \ldots, V_k over the same schema σ (assume to be conjunctive; they define the views)
 ○ Each Q_i is of arity n_i
 ○ A schema ω with relations of arities n_1, \ldots, n_k

• Given:
 ○ a query Q over σ
 ○ a query Q' over ω

• Q' is a rewriting of Q if for every σ-database D,
 \[Q(D) = Q'(V_1(D), \ldots, V_k(D)) \]
Maximal rewriting

- Sometimes exact rewritings cannot be obtained
- \(Q'\) is a maximally-contained rewriting if:
 - it is contained in \(Q\):
 \[
 Q'(V_1(D), \ldots, V_k(D)) \subseteq Q(D)
 \]
 for all \(D\)
 - it is maximal such: if
 \[
 Q''(V_1(D), \ldots, V_k(D)) \subseteq Q(D)
 \]
 for all \(D\), then
 \[
 Q'' \subseteq Q'
 \]
Query rewriting: a naive algorithm

- Given:
 - conjunctive queries V_1, \ldots, V_k over schema σ
 - a query Q over σ

- Algorithm:
 - guess a query Q' over the views
 - Unfold Q' in terms of the views
 - Check if the unfolding is contained in Q

- If one unfolding is equivalent to Q, then Q' is a rewriting

- Otherwise take the union of all unfoldings contained in Q
 - it is a maximally contained rewriting
Why is it not an algorithm yet?

- **Problem**: the guess stage.
 - There are infinitely many conjunctive queries.
 - *We cannot check them all.*
 - **Solution**: we only need to check a few.
Guessing rewritings

- A basic fact:
 - If there is a rewriting of Q using V_1, \ldots, V_k, then there is a rewriting with no more conjuncts than in Q.
 - E.g., if $Q(x) := R(x, y), R(x, 1), S(x, z), S(x, 1)$, we only need to check conjunctive queries over V with at most 4 conjuncts.
- Moreover, maximally contained rewriting is obtained as the union of all conjunctive rewritings of length of Q or less.
- Complexity: enumerate all candidates (exponentially many); for each an NP (or exponential) algorithm. Hence exponential time is required.
- Cannot lower this due to NP-completeness.
Query rewriting

- Recall the algorithm, for a given Q and view definitions V_1, \ldots, V_k:
 - Look at all rewritings that have as at most as many joins as Q
 - check if they are contained in Q
 - take the union of those that are
- This is the maximally contained rewriting
- There are algorithms that prune the search space and make looking for rewritings contained in Q more efficient
 - the bucket algorithm
 - MiniCon
How hard is it to answer queries using views?

• Setting: we now have an actual content of the views.

• As before, a query is Q posed against D, but must be answered using information in the views.

• Suppose I_1, \ldots, I_k are view instances. Two possibilities:
 - Exact mappings: $I_j = V_j(D)$
 - Sound mappings: $I_j \subseteq V_j(D)$

• We need certain answers for given $\mathcal{I} = (I_1, \ldots, I_k)$:
 $$\text{certain}_{\text{exact}}(Q, \mathcal{I}) = \bigcap_{D: I_j = V_j(D) \text{ for all } j} Q(D)$$
 $$\text{certain}_{\text{sound}}(Q, \mathcal{I}) = \bigcap_{D: I_j \subseteq V_j(D) \text{ for all } j} Q(D)$$
How hard is it to answer queries using views?

• If $\text{certain}_{\text{exact}}(Q, I)$ or $\text{certain}_{\text{sound}}(Q, I)$ are impossible to obtain, we want maximally contained rewritings:

 \circ $Q'(I) \subseteq \text{certain}_{\text{exact}}(Q, I)$, and

 \circ if $Q''(I) \subseteq \text{certain}_{\text{exact}}(Q, I)$ then $Q''(I) \subseteq Q'(I)$

 \circ (and likewise for sound)

• How hard is it to compute this from I?
Complexity of query answering

• We want the complexity of finding
 \[\text{certain}_{\text{exact}}(Q, I) \text{ or } \text{certain}_{\text{sound}}(Q, I) \]
 in terms of the size of \(I \)

• If all view definitions are conjunctive queries and \(Q \) is a relational algebra or a SQL query, then the complexity is \(\text{coNP} \).

• This is too high!

• If all view definitions are conjunctive queries and \(Q \) is a conjunctive query, then the complexity is \(\text{PTIME} \).

 ○ Because: the maximally contained rewriting computes certain answers!
Complexity of query answering

<table>
<thead>
<tr>
<th>view language</th>
<th>CQ</th>
<th>CQ\neq</th>
<th>relational calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ</td>
<td>ptime</td>
<td>coNP</td>
<td>undecidable</td>
</tr>
<tr>
<td>CQ\neq</td>
<td>ptime</td>
<td>coNP</td>
<td>undecidable</td>
</tr>
<tr>
<td>relational calculus</td>
<td>undecidable</td>
<td>undecidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

CQ – conjunctive queries

CQ\neq – conjunctive queries with inequalities
(for example, $Q(x) :\neg R(x, y), S(y, z), x \neq z$)
Data exchange

- Source schema, target schema; need to transfer data between them.
- A typical scenario:
 - Two organizations have their legacy databases, schemas cannot be changed.
 - Data from one organization 1 needs to be transferred to data from organization 2.
 - Queries need to be answered against the transferred data.
Data Exchange

Source Schema S
Target Schema T
Data Exchange

Source Schema S

Source DATABASE

Target Schema T

TARGET DATABASE

?????
Data exchange: an example

- We want to create a **target** database with the schema

 \[\text{Flight}(\text{city1,city2,aircraft,departure,arrival})\]
 \[\text{Served}(\text{city,country,population,agency})\]

- We don't start from scratch: there is a **source** database containing relations

 \[\text{Route}(\text{source,destination,departure})\]
 \[\text{BG}(\text{country,city})\]

- We want to transfer data from the source to the target.
Data exchange – relationships between the source and the target

How to specify the relationship?
Relationships between the source and the target

- Formal specification: we have a *relational calculus query* over both the source and the target schema.
- The query is of a restricted form, and can be thought of as a sequence of rules:

 \[\text{Flight}(c_1, c_2, _, \text{dept}, _) \,:= \, \text{Route}(c_1, c_2, \text{dept})\]

 \[\text{Served}(\text{city}, \text{country}, _, _) \,:= \, \text{Route}(\text{city}, _, _), \text{BG}(\text{country}, \text{city})\]

 \[\text{Served}(\text{city}, \text{country}, _, _) \,:= \, \text{Route}(_, \text{city}, _), \text{BG}(\text{country}, \text{city})\]
Data exchange – targets

- Target instances should satisfy the rules.
- What does it mean to satisfy a rule?
- Formally, if we take:

\[
\text{Flight}(c_1, c_2, _, \text{dept}, _) \leftarrow \text{Route}(c_1, c_2, \text{dept})
\]

then it is satisfied by a source \(S \) and a target \(T \) if the constraint

\[
\forall c_1, c_2, d \left(\text{Route}(c_1, c_2, d) \rightarrow \exists a_1, a_2 \left(\text{Flight}(c_1, c_2, a_1, d, a_2) \right) \right)
\]

- This constraint is a relational calculus query that evaluates to \textit{true} or \textit{false}
Data exchange – targets

• What happens if there no values for some attributes, e.g. aircraft, arrival?
• We put in null values or some real values.
• But then we may have multiple solutions!
Data exchange – targets

Source Database:

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edinburgh</td>
<td>Amsterdam</td>
<td>0600</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>London</td>
<td>0615</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>Frankfurt</td>
<td>0700</td>
</tr>
</tbody>
</table>

BG:

<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>London</td>
</tr>
<tr>
<td>UK</td>
<td>Edinburgh</td>
</tr>
<tr>
<td>NL</td>
<td>Amsterdam</td>
</tr>
<tr>
<td>GER</td>
<td>Frankfurt</td>
</tr>
</tbody>
</table>

Look at the rule

\[\text{Flight}(c1, c2, _, \text{dept}, _) \Leftarrow \text{Route}(c1, c2, \text{dept}) \]

The right hand side is satisfied by

\[\text{Route}(\text{Edinburgh, Amsterdam, 0600}) \]

But what can we put in the target?
Data exchange – targets

Rule: \(\text{Flight}(c_1, c_2, __, \text{dept}, __) \leftarrow \text{Route}(c_1, c_2, \text{dept}) \)

Satisfied by: \(\text{Route}(\text{Edinburgh}, \text{Amsterdam}, 0600) \)

Possible targets:

- \(\text{Flight}(\text{Edinburgh}, \text{Amsterdam}, \bot_1, 0600, \bot_2) \)
- \(\text{Flight}(\text{Edinburgh}, \text{Amsterdam}, \text{B737}, 0600, \bot) \)
- \(\text{Flight}(\text{Edinburgh}, \text{Amsterdam}, \bot, 0600, 0845) \)
- \(\text{Flight}(\text{Edinburgh}, \text{Amsterdam}, \bot, 0600, \bot) \)
- \(\text{Flight}(\text{Edinburgh}, \text{Amsterdam}, \text{B737}, 0600, 0845) \)

They all satisfy the constraints!
Which target to choose

• One of them happens to be right:
 – Flight(Edinburgh, Amsterdam, B737, 0600, 0845)
• But in general we do not know this; it looks just as good as
 – Flight(Edinburgh, Amsterdam, ’The Spirit of St Louis’, 0600, 1300),
 or
 – Flight(Edinburgh, Amsterdam, F16, 0600, 0620).
• Goal: look for the “most general” solution.
• How to define “most general”: can be mapped into any other solution.
• It is not unique either, but the space of solution is greatly reduced.
• In our case Flight(Edinburgh, Amsterdam, ⊥₁, 0600, ⊥₂) is most general as it makes no additional assumptions about the nulls.
Towards good solutions

A solution is a database with nulls. Reminder: every such database T represents many possible complete databases, without null values:

Example

\[
\begin{array}{ccc}
A & B & C \\
1 & 2 & \bot_1 \\
\bot_2 & \bot_1 & 3 \\
\bot_3 & 5 & 1 \\
2 & \bot_3 & 3 \\
\end{array}
\]

Semantics via valuations

\[
\begin{array}{ccc}
A & B & C \\
1 & 2 & 4 \\
3 & 4 & 3 \\
5 & 5 & 1 \\
2 & 5 & 3 \\
3 & 7 & 8 \\
4 & 2 & 1 \\
\end{array}
\]

\[[T]_{owa} = \{ R \mid v(T) \subseteq R \text{ for some valuation } v \} \]
Good solutions

• An optimistic view – A good solution represents ALL other solutions:

\[[T]_{\text{owa}} = \{ R \mid R \text{ is a solution without nulls} \} \]

• Shouldn’t settle for less than – A good solution is at least as general as others:

\[[T]_{\text{owa}} \supseteq [T']_{\text{owa}} \text{ for every other solution } T' \]

• Good news: these two views are equivalent. Hence can take them as a definition of a good solutions.

• In data exchange, such solutions are called universal solutions.
Universal solutions: another description

• A homomorphism is a mapping \(h : \text{Nulls} \rightarrow \text{Nulls} \cup \text{Constants} \).
• For example, \(h(\perp_1) = B737 \), \(h(\perp_2) = 0845 \).
• If we have two solutions \(T_1 \) and \(T_2 \), then \(h \) is a homomorphism from \(T_1 \) into \(T_2 \) if for each tuple \(t \) in \(T_1 \), the tuple \(h(t) \) is in \(T_2 \).
• For example, if we have a tuple

\[
t = \text{Flight}(\text{Edinburgh, Amsterdam, } \perp_1, 0600, \perp_2)
\]

then

\[
h(t) = \text{Flight}(\text{Edinburgh, Amsterdam, B737, 0600, 0845})
\]

• A solution is universal if and only if there is a homomorphism from it into every other solution.
Universal solutions: still too many of them

• Take any $n > 0$ and consider the solution with n tuples:

 \[
 \text{Flight}(\text{Edinburgh, Amsterdam}, \bot_1, 0600, \bot_2) \\
 \text{Flight}(\text{Edinburgh, Amsterdam}, \bot_3, 0600, \bot_4) \\
 \vdots \\
 \text{Flight}(\text{Edinburgh, Amsterdam}, \bot_{2n-1}, 0600, \bot_{2n})
 \]

• It is universal too: take a homomorphism

 \[
 h'(\bot_i) = \begin{cases}
 \bot_1 & \text{if } i \text{ is odd} \\
 \bot_2 & \text{if } i \text{ is even}
 \end{cases}
 \]

• It sends this solution into

 \[
 \text{Flight}(\text{Edinburgh, Amsterdam}, \bot_1, 0600, \bot_2)
 \]

Universal solutions: cannot be distinguished by conjunctive queries

- There are queries that distinguish large and small universal solutions (e.g., does a relation have at least 2 tuples?)
- But these cannot be distinguished by conjunctive queries
- Because: if ⊥₁, ..., ⊥ₖ witness a conjunctive query, so do h(⊥₁), ..., h(⊥ₖ) — hence, one tuple suffices
- In general, if we have
 - a homomorphism \(h : T \rightarrow T' \),
 - a conjunctive query \(Q \)
 - a tuple \(t \) without nulls such that \(t \in Q(T) \)
- then \(t \in Q(T') \)
Universal solutions and conjunctive queries

• If
 o T and T' are two universal solutions
 o Q is a conjunctive query, and
 o t is a tuple without nulls,
 then
 \[t \in Q(T) \iff t \in Q(T') \]
 because we have homomorphisms $T \rightarrow T'$ and $T' \rightarrow T$.

• Furthermore, if
 o T is a universal solution, and T'' is an arbitrary solution,
 then
 \[t \in Q(T) \implies t \in Q(T'') \]
Universal solutions and conjunctive queries cont’d

• Now recall what we learned about answering conjunctive queries over databases with nulls:
 ○ T is a naive table
 ○ the set of tuples without nulls in $Q(T)$ is precisely certain(Q, T) – certain answers over T

• Hence if T is an arbitrary universal solution

 $$\text{certain}(Q, T) = \bigcap \{Q(T') \mid T' \text{ is a solution}\}$$

• $\bigcap \{Q(T') \mid T' \text{ is a solution}\}$ is the set of certain answers in data exchange under mapping M: certain$_M(Q, S)$. Thus

 $$\text{certain}_M(Q, S) = \text{certain}(Q, T)$$

 for every universal solution T for S under M.
Universal solutions cont’d

- To answer conjunctive queries, one needs an arbitrary universal solution.
- We saw some; intuitively, it is better to have:

 Flight(Edinburgh, Amsterdam, ⊥₁, 0600, ⊥₂)

 than

 Flight(Edinburgh, Amsterdam, ⊥₁, 0600, ⊥₂)
 Flight(Edinburgh, Amsterdam, ⊥₃, 0600, ⊥₄)
 ...
 Flight(Edinburgh, Amsterdam, ⊥₂ⁿ₋₁, 0600, ⊥₂ⁿ)

- We now define a canonical universal solution.
Canonical universal solution

• Convert each rule into a rule of the form:

\[\psi(x_1, \ldots, x_n, z_1, \ldots, z_k) \implies \varphi(x_1, \ldots, x_n, y_1, \ldots, y_m) \]

(for example,

\[\text{Flight}(c1, c2, _ _ _, \text{dept}, _ _ _) \implies \text{Route}(c1, c2, \text{dept}) \]

becomes

\[\text{Flight}(x_1, x_2, z_1, x_3, z_2) \implies \text{Route}(x_1, x_2, x_3) \]

• Evaluate \(\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m) \) in \(S \).

• For each tuple \((a_1, \ldots, a_n, b_1, \ldots, b_m)\) that belongs to the result (i.e.

\[\varphi(a_1, \ldots, a_n, b_1, \ldots, b_m) \] holds in \(S \),

do the following:
Canonical universal solution cont’d

• ... do the following:
 ◦ Create new (not previously used) null values \bot_1, \ldots, \bot_k
 ◦ Put tuples in target relations so that

$$\psi(a_1, \ldots, a_n, \bot_1, \ldots, \bot_k)$$

holds.

• What is ψ?

• It is normally assumed that ψ is a conjunction of atomic formulae, i.e.

$$R_1(\bar{x}_1, \bar{z}_1) \land \ldots \land R_l(\bar{x}_l, \bar{z}_l)$$

• Tuples are put in the target to satisfy these formulae
Canonical universal solution cont’d

• Example: no-direct-route airline:

\[
\text{Newroute}(x_1, z) \land \text{Newroute}(z, x_2) \quad :- \quad \text{Oldroute}(x_1, x_2)
\]

• If \((a_1, a_2) \in \text{Oldroute}(a_1, a_2)\), then create a new null \(-\) and put:

\[
\begin{align*}
\text{Newroute}(a_1, -) \\
\text{Newroute}(-, a_2)
\end{align*}
\]

into the target.

• Complexity of finding this solution: polynomial in the size of the source \(S\):

\[
O\left(\sum_{\text{rules } \psi \quad :- \quad \varphi} \text{Evaluation of } \varphi \text{ on } S \right)
\]
Canonical universal solution and conjunctive queries

• Canonical solution: $\text{CanSol}_M(S)$.

• We know that if Q is a conjunctive query, then $\text{certain}_M(Q, S) = \text{certain}(Q, T)$ for every universal solution T for S under M.

• Hence

$$\text{certain}_M(Q, S) = \text{certain}(Q, \text{CanSol}_M(S))$$

• Algorithm for answering Q:

 ○ Construct $\text{CanSol}_M(S)$

 ○ Apply naive evaluation to Q over $\text{CanSol}_M(S)$
Beyond conjunctive queries

• Everything still works the same way for $\sigma, \pi, \bowtie, \cup$ queries of relational algebra. Adding union is harmless.

• Adding difference (i.e. going to the full relational algebra) is not.

• Reason: same as before, can encode validity problem in logic.

• Single rule, saying “copy the source into the target”

\[T(x, y) \leftarrow S(x, y) \]

• If the source is empty, what can a target be? Anything!

• The meaning of $T(x, y) \leftarrow S(x, y)$ is

\[\forall x \forall y \left(S(x, y) \rightarrow T(x, y) \right) \]
Beyond conjunctive queries cont’d

• Look at $\varphi = \forall x \forall y (S(x, y) \rightarrow T(x, y))$

• $S(x, y)$ is always false (S is empty), hence $S(x, y) \rightarrow T(x, y)$ is true ($p \rightarrow q$ is $\neg p \lor q$)

• Hence φ is true.

• Even if T is empty, φ is true: universal quantification over the empty set evaluates to true:

 ○ Remember SQL’s ALL:

  ```sql
  SELECT * FROM R
  WHERE R.A > ALL (SELECT S.B FROM S)
  ```

 ○ The condition is true if SELECT S.B FROM S is empty.

L. Libkin 82
Beyond conjunctive queries cont’d

• Thus if S is empty and we have a rule $T(x, y) \leftarrow S(x, y)$, then all T’s are solutions.

• Let Q be a Boolean (yes/no) query. Then

$$\text{certain}_M(Q, S) = \text{true} \iff Q \text{ is valid}$$

• Valid = always true.

• Validity problem in logic: given a logical statement, is it:
 ○ valid, or
 ○ valid over finite databases

• Both are undecidable.
Beyond conjunctive queries cont’d

• If we want to answer queries by rewritings, i.e. find a query Q' so that

$$\text{certain}_M(Q, S) = Q'(\text{CanSol}_M(S))$$

then there is no algorithm that can construct Q' from Q!

• Hence a different approach is needed.
Key problem

- Our main problem:
 Solutions are open to adding new facts
- How to close them?
- By applying the CWA (Closed World Assumption) instead of the OWA (Open World Assumption)
More flexible query answering: dealing with incomplete information

- Key issue in dealing with incomplete information:
 - **Closed vs Open World Assumption** (CWA vs OWA)
- CWA: database is closed to adding new facts except those consistent with one of the incomplete tuples in it.
- OWA opens databases to such facts.
- In data exchange:
 - we move data from source to target;
 - query answering should be based on that data and **not** on tuples that might be added later.
- Hence in data exchange **CWA** seems more reasonable.
Solutions under CWA – informally

- Each null introduced in the target must be justified:
 - there must be a constraint \(\ldots T(\ldots, z, \ldots) \ldots :\rightharpoonup \varphi(\ldots) \) with \(\varphi \) satisfied in the source.

- The same justification shouldn’t generate multiple nulls:
 - for \(T(\ldots, z, \ldots) :\rightharpoonup \varphi(\bar{a}) \) only one new null \(\perp \) is generated in the target.

- No unjustified facts about targets should be invented:
 - assume we have \(T(x, z) :\rightharpoonup \varphi(x), \ T(z', x) :\rightharpoonup \psi(x) \) and \(\varphi(a), \psi(b) \) are true in the source.
 - Then we put \(T(a, \perp) \) and \(T(\perp', b) \) in the target but not \(T(a, \perp), T(\perp, b) \) which would invent a new “fact”: \(a \) and \(b \) are connected by a path of length \(2 \).
Solutions under the CWA: summary

- There are homomorphisms

\[h : \text{CanSol}(S) \rightarrow T \quad h' : T \rightarrow \text{CanSol}(S) \]

- so that \(T = h(\text{CanSol}(S)) \)

- \(T \) contains the core of \(\text{CanSol}(S) \)

- Core: the smallest \(C' \subseteq \text{CanSol}(S) \) such that there is a homomorphism from \(\text{CanSol}(S) \) to \(C' \).

- Often saves space, but takes time to compute.

- Data exchange systems try to move from \(\text{CanSol}(S) \) to the core but usually stop half-way due to the complexity of computation.
Query answering under the CWA

- Given
 - a source S,
 - a set of rules M,
 - a target query Q,

 a tuple t is in $\text{certain}_{M}^{\text{CWA}}(Q, S)$ if it is in $Q(R)$ for every
 - solution T under the CWA, and
 - $R \in [T]_{\text{owa}}$

- (i.e. no matter which solution we choose and how we interpret the nulls)
Query answering under the CWA – characterization

• Given a source S, a set of rules M, and a target query Q:
 $$\text{certain}_M^{\text{CWA}}(Q,S) = \text{certain}(Q, \text{CanSol}(S))$$

• That is, to compute the answer to query one needs to:
 ○ Compute the canonical solution $\text{CanSol}(S)$ – which has nulls in it
 ○ Find certain answers to Q over $\text{CanSol}(S)$

• If Q is a conjunctive query, this is exactly what we had before

• Under the CWA, the same evaluation strategy applies to all queries!
Data exchange and integrity constraints

- Integrity constraints are often specified over target schemas.
- In SQL’s data definition language one uses keys and foreign keys most often, but other constraints can be specified too.
- Adding integrity constraints in data exchange is often problematic, as some natural solutions – e.g., the canonical solution – may fail them.
Target constraints cause problems

• The simplest example:
 o Copy source to target
 o Impose a constraint on target not satisfied in the source

• Data exchange setting:
 o \(T(x, y) := S(x, y) \) and
 o Constraint: the first attribute is a key

• Instance \(S: \begin{array}{cc} 1 & 2 \\ 1 & 3 \end{array} \)

• Every target \(T \) must include these tuples and hence violates the key.
Target constraints: more problems

• A common problem: an attempt to repair violations of constraints leads to an sequence of adding tuples.

• Example:
 ○ Source \textit{DeptEmpl}(dept_id,manager_name,empl_id)
 ○ Target
 - \textit{Dept}(dept_id,manager_id,manager_name),
 - \textit{Empl}(empl_id,dept_id)
 ○ Rule \textit{Dept}(d, z, n), \textit{Empl}(e, d) \leftarrow \textit{DeptEmpl}(d, n, e)
 ○ Target constraints:
 - \textit{Dept}[manager_id] \subseteq \textit{Empl}[empl_id]
 - \textit{Empl}[dept_id] \subseteq \textit{Dept}[dept_id]
Target constraints: more problems cont’d

- Start with \((CS, \text{John}, 001)\) in DeptEmpl.
- Put \(\text{Dept}(CS, \bot_1, \text{John})\) and \(\text{Empl}(001, CS)\) in the target
- Use the first constraint and add a tuple \(\text{Empl}(\bot_1, \bot_2)\) in the target
- Use the second constraint and put \(\text{Dept}(\bot_2, \bot_3, \bot_3')\) into the target
- Use the first constraint and add a tuple \(\text{Empl}(\bot_3, \bot_4)\) in the target
- Use the second constraint and put \(\text{Dept}(\bot_4, \bot_5, \bot_5')\) into the target
- this never stops....
Target constraints: avoiding this problem

- Change the target constraints slightly:
 - Target constraints:
 - Dept[dept_id, manager_id] ⊆ Empl[empl_id, dept_id]
 - Empl[dept_id] ⊆ Dept[dept_id]

- Again start with (CS, John, 001) in DeptEmpl.
- Put Dept(CS, ⊥₁, John) and Empl(001, CS) in the target
- Use the first constraint and add a tuple Empl(⊥₁, CS)
- Now constraints are satisfied – we have a target instance!
- What’s the difference? In our first example constraints are very cyclic causing an infinite loop. There is less cyclicity in the second example.
- Bottom line: avoid cyclic constraints.
Schema mappings

• Rules used in data exchange specify mappings between schemas.
• To understand the evolution of data one needs to study operations on schema mappings.
• Most commonly we need to deal with two operations:
 ○ composition
 ○ inverse
Composition and inverse

\[S_1 \xrightarrow{\Sigma} S_2 \xrightarrow{\Delta} S_3 \]
Composition and inverse

\[\Sigma \circ \Delta \]

Diagram:

- **S1** → **S2** by \(\Sigma\)
- **S2** → **S3** by \(\Delta\)

\[\Sigma \circ \Delta \]
Composition and inverse

\[\Sigma \circ \Delta \]

\[
\begin{array}{ccc}
S1 & \xrightarrow{\Sigma} & S2 \\
\Gamma & \downarrow & \\
S1' & \xrightarrow{\Delta} & S3
\end{array}
\]
Composition and inverse

\[\Sigma \circ \Delta \]

\[S_1 \xrightarrow{\Sigma} S_2 \xrightarrow{\Delta} S_3 \]

\[\Gamma \]

\[\Gamma^{-1} \circ (\Sigma \circ \Delta) \]
Mappings

- Schema mappings are typically given by rules
 \[\psi(\bar{x}, \bar{z}) := \exists \bar{u} \ \varphi(\bar{x}, \bar{y}, \bar{u}) \]

 where
 - \(\psi \) is a conjunction of atoms over the target:
 \[T_1(\bar{x}_1, \bar{z}_1) \land \ldots \land T_m(\bar{x}_m, \bar{z}_m) \]
 - \(\varphi \) is a conjunction of atoms over the source:
 \[S_1(\bar{x}_1', \bar{y}_1, \bar{u}_1) \land \ldots \land S_k(\bar{x}_k', \bar{y}_k, \bar{u}_k) \]

- Example: \(Served(x_1, x_2, z_1, z_2) := \exists u_1, u_2 \ Route(x_1, u_1, u_2) \land BG(x_1, x_2) \)

L. Libkin

101
The closure problem

• Are mappings closed under
 ○ composition?
 ○ inverse?
• If not, what needs to be added?
• It turns out that mappings are not closed under inverses and composition.
• We next see what might need to be added to them.
Skolem functions

- Source: `EP(empl_name, dept, project)`
 Target: `EDPH(empl_id, dept, phone), DP(dept, project)`

- A natural mapping is:

 \[
 EDPH(z_1, x_2, z_3) \land DP(x_2, x_3) :\leftarrow EP(x_1, x_2, x_3)
 \]

- This is problematic: if we have tuples

 \[(John, CS, P_1) \quad (John, CS, P_2)\]

 in `EP`, the canonical solution would have

<table>
<thead>
<tr>
<th></th>
<th>CS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>_1</td>
<td></td>
<td>_1'</td>
</tr>
<tr>
<td>_2</td>
<td></td>
<td>_2'</td>
</tr>
</tbody>
</table>

 corresponding to two projects `P_1` and `P_2`.

- So `empl_id` is hardly an id!
Skolem functions cont’d

• Solution: make empl_id a function of empl_name.

• Such “invented” functions are called Skolem functions (see Logic 001 for a proper definition)

• Source: EP(empl_name,dept,project);
 Target: EDPH(empl_id,dept,phone), DP(dept,project)

• A new mapping is:

 \[\text{EDPH}(f(x_1), x_2, z_3) \land \text{DP}(x_2, x_3) \land \text{EP}(x_1, x_2, x_3) \]

• \(f \) assigns a unique id to every name.
Other possible additions

• One can look at more general queries used in mappings.
• Most generally, relational algebra queries, but to be more modest, one can start with just adding inequalities.
• One may also disjunctions: for example, if we want to invert

\[
\begin{align*}
T(x) & :\neg S_1(x) \\
T(x) & :\neg S_2(x)
\end{align*}
\]

it seems natural to introduce a rule

\[
S_1(x) \lor S_2(x) :\neg T(x)
\]
Composition: definition

- Recall the definition of composition of binary relations R and R':
 \[(x, z) \in R \circ R' \iff \exists y : (x, y) \in R \text{ and } (y, z) \in R'\]

- A schema mapping Σ for two schemas σ and τ is viewed as a binary relation
 \[\Sigma = \{(S, T) \mid \begin{array}{l}
 S \text{ is a } \sigma\text{-instance} \\
 T \text{ is a } \tau\text{-instance} \\
 T \text{ is a solution for } S
 \end{array}\}\]

- The composition of mappings Σ from σ to τ and Δ from τ to ω is now
 \[\Sigma \circ \Delta\]

- Question (closure): is there a mapping Γ between σ and ω so that
 \[\Gamma = \Sigma \circ \Delta\]
Composition: when it works

- If \sum
 - does not generate any nulls, and
 - no variables \bar{u} for source formulas

- Example:

 $\sum : \quad T(x_1, x_2) \wedge T(x_2, x_3) :\leftarrow S(x_1, x_2, x_3)$

 $\Delta : \quad W(x_1, x_2, z) :\leftarrow T(x_1, x_2)$

- First modify into:

 $\sum : \quad T(x_1, x_2) :\leftarrow S(x_1, x_2, x_3)$

 $\sum : \quad T(x_2, x_3) :\leftarrow S(x_1, x_2, x_3)$

 $\Delta : \quad W(x_1, x_2, z) :\leftarrow T(x_1, x_2)$

- Then substitute in the definition of W:
Composition: when it cont’d

\[
W(x_1, x_2, z) := S(x_1, x_2, y) \\
W(x_1, x_2, z) := S(y, x_1, x_2)
\]

to get \(\Sigma \circ \Delta \).

Explaining the second rule:

\[
W(x_1, x_2, z) \\
\rightarrow T(x_1, x_2) \quad \text{using} \quad T(var_1, var_2) := S(var_3, var_1, var_2) \\
\rightarrow S(y, x_1, x_2)
\]
Composition: when it doesn’t work

- Schema σ: Takes(st_name, course)
- Schema τ: Takes’(st_name, course), Nameld(st_name, st_id)
- Schema ω: Enroll(st_id, course)
- Mapping Σ from σ to τ:
 \[
 \begin{align*}
 \text{Takes}'(s, c) & : \leftarrow \text{Takes}(s, c) \\
 \text{Nameld}(s, i) & : \leftarrow \exists c \text{Takes}(s, c)
 \end{align*}
 \]

- Mapping Δ from τ to ω:
 \[
 \begin{align*}
 \text{Enroll}(i, c) & : \leftarrow \text{Nameld}(s, i) \land \text{Takes}'(s, c)
 \end{align*}
 \]

- A first attempt at the composition: $\text{Enroll}(i, c) : \leftarrow \text{Takes}(s, c)$
Composition: when it doesn’t work cont’d

• What’s wrong with Γ: $\text{Enroll}(i, c) :\leftarrow \text{Takes}(s, c)$?
• Student id i depends on both name and course!

\[
\begin{array}{c|c|c}
\text{Takes:} & \text{John} & \text{CS1} \\
& \text{John} & \text{CS2} \\
\hline
\sum & \Rightarrow & \text{Takes':} \\
\text{Nameld:} & \text{John} & \bot \\
\hline
\end{array}
\Rightarrow
\begin{array}{c|c|c}
\text{Takes':} & \text{John} & \text{CS1} \\
& \text{John} & \text{CS2} \\
\hline
\Delta & \Rightarrow & \text{Enroll:} \\
\bot & \text{CS1} \\
\bot & \text{CS2} \\
\hline
\end{array}
\]

But:

\[
\begin{array}{c|c|c}
\text{Takes:} & \text{John} & \text{CS1} \\
& \text{John} & \text{CS2} \\
\hline
\overset{\Gamma}{\Rightarrow} & \Rightarrow & \text{Enroll:} \\
\bot_1 & \text{CS1} \\
\bot_2 & \text{CS2} \\
\hline
\end{array}
\]

L. Libkin
Composition: when it doesn’t work cont’d

• Solution: Skolem functions.

• Γ': \(\text{Enroll}(f(s), c) \leftarrow \text{Takes}(s, c) \)

• Then:

\[
\begin{array}{c|c|c|c|}
\text{Takes:} & \text{John} & \text{CS1} & \text{John} & \text{CS2} \\
& \Rightarrow & & & \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|}
\text{Enroll:} & \bot & \text{CS1} & \bot & \text{CS2} \\
& & & & \\
\end{array}
\]

• where \(\bot = f(\text{John}) \)
Composition: another example

• Schema σ: Empl(eid)
• Schema τ: Mngr(eid,mngid)
• Schema ω: Mngr'(eid,mngid), SelfMng(id)
• Mapping Σ from σ to τ:

$\text{Mngr}(e,m) :\leftarrow \text{Empl}(e)$

• Mapping Δ from τ to ω:

$\text{Mngr}'(e,m) :\leftarrow \text{Mngr}(e,m)$
$\text{SelfMng}(e) :\leftarrow \text{Mngr}(e,e)$

• Composition:

$\text{Mngr}'(e, f(e)) :\leftarrow \text{Empl}(e)$
$\text{SelfMng}(e) :\leftarrow \text{Empl}(e) \land e = f(e)$
Composition and Skolem functions

- Schema mappings with Skolem functions \textit{compose!}

- Algorithm:

 - replace all nulls by Skolem functions
 - \(\text{Mngr}(e, f(e)) \rightarrow \text{Empl}(e) \)
 - \(\Delta \) stays as before

 - Use substitution:
 - \(\text{Mngr}'(e, m) \rightarrow \text{Mngr}(e, m) \) becomes
 \(\text{Mngr}'(e, f(e)) \rightarrow \text{Empl}(e) \)
 - \(\text{SelfMng}(e) \rightarrow \text{Mngr}(e, e) \) becomes
 \(\text{SelfMng}(e) \rightarrow \text{Empl}(e) \land e = f(e) \)
Inverting mappings

• Harder than composition.
• Intuition: $\Sigma \circ \Sigma^{-1} = \text{ID}$.
• But even what ID should be is not entirely clear.
• Some intuitive examples will follow.
Examples of inversion

- The inverse of projection is null invention:
 - $T(x) \Leftarrow S(x, y)$
 - $S(x, y) \Leftarrow T(x)$

- Inverse of union requires disjunction:
 - $T(x) \Leftarrow S(x)$ \hspace{1em} $T(x) \Leftarrow S'(x)$
 - $S(x) \lor S'(x) \Leftarrow T(x)$

- So reversing the rules doesn’t always work.
Examples of inversion cont’d

- Inverse of decomposition is join:
 - $T(x_1, x_2) \land T'(x_2, x_3) \leftarrow S(x_1, x_2, x_3)$
 - $S(x_1, x_2, x_3) \leftarrow T(x_1, x_2) \land T'(x_2, x_3)$

- But this is also an inverse of $T(x_1, x_2) \land T'(x_2, x_3) \leftarrow S(x_1, x_2, x_3)$:
 - $S(x_1, x_2, z) \leftarrow T(x_1, x_2)$
 - $S(z, x_2, x_3) \leftarrow T'(x_2, x_3)$
Examples of inversion cont’d

• One may need to distinguish nulls from values in inverses.
• Σ given by

$$
\begin{align*}
T_1(x) & \leftarrow S(x, x) \\
T_2(x, z) & \leftarrow S(x, y) \land S(y, x) \\
T_3(x_1, x_2, z) & \leftarrow S(x_1, x_2)
\end{align*}
$$

• Its inverse Σ^{-1} requires:

 ○ a predicate NotNull and

 ○ inequalities:

$$
\begin{align*}
S(x, x) & \leftarrow T_1(x) \land T_2(x, y_1) \land T_3(x, x, y_2) \land \text{NotNull}(x) \\
S(x_1, x_2) & \leftarrow T_3(x_1, x_2, y) \land (x_1 \neq x_2) \land \text{NotNull}(x_1) \land \text{NotNull}(x_2)
\end{align*}
$$
Integrating preferences/rankings

Problem statement

- Each object has \(m \) grades, one for each of \(m \) criteria.
- The grade of an object for field \(i \) is \(x_i \).
- Normally assume \(0 \leq x_i \leq 1 \).
 - Typically evaluations based on different criteria
 - The higher the value of \(x_i \), the better the object is according to the \(i \)th criterion
- The objects are given in \(m \) sorted lists
 - the \(i \)th list is sorted by \(x_i \) value
 - These lists correspond to different sources or to different criteria.
- Goal: find the top \(k \) objects.
Example

<table>
<thead>
<tr>
<th>Grade 1</th>
<th>Grade 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(17, 0.9936)</td>
<td>(235, 0.9996)</td>
</tr>
<tr>
<td>(1352, 0.9916)</td>
<td>(12, 0.9966)</td>
</tr>
<tr>
<td>(702, 0.9826)</td>
<td>(8201, 0.9926)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(12, 0.3256)</td>
<td>(17, 0.406)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Aggregation Functions

• Have an aggregation function F.
• Let x_1, \ldots, x_m be the grades of object R under the m criteria.
• Then $F(x_1, \ldots, x_m)$ is the overall grade of object R.
• Common choices for F:
 ◦ min
 ◦ average or sum
• An aggregation function F is monotone if
 \[F(x_1, \ldots, x_m) \leq F(x'_1, \ldots, x'_m) \]
 whenever $x_i \leq x'_i$ for all i.
Other Applications

- Information retrieval
- Objects R are documents.
- The m criteria are search terms s_1, \ldots, s_m.
- The grade x_i: how relevant document R is for search term s_i.
- Common to take the aggregation function F to be the sum

$$F(x_1, \ldots, x_m) = x_1 + \cdots + x_m.$$
Modes of Access

• **Sorted** access
 - Can obtain the next object with its grade in list L_i
 - cost c_S.

• **Random** access
 - Can obtain the grade of object R in list L_i
 - cost c_R.

• **Middleware cost:**
 $$c_S \cdot (\# \text{ of sorted accesses}) + c_R \cdot (\# \text{ of random accesses}).$$
Algorithms

• Want an algorithm for finding the top k objects.
• Naive algorithm:
 o compute the overall grade of every object;
 o return the top k answers.
• Too expensive.
Fagin’s Algorithm (FA)

1. Do sorted access in parallel to each of the m sorted lists L_i.
 - Stop when there are at least k objects, each of which have been seen in all the lists.

2. For each object R that has been seen:
 - Retrieve all of its fields x_1, \ldots, x_m by random access.
 - Compute $F(R) = F(x_1, \ldots, x_m)$.

3. Return the top k answers.
Fagin’s algorithm is correct

- Assume object R was not seen
 - its grades are x_1, \ldots, x_m.
- Assume object S is one of the answers returned by FA
 - its grades are y_1, \ldots, y_m.
- Then $x_i \leq y_i$ for each i
- Hence

$$F(R) = F(x_1, \ldots, x_m) \leq F(y_1, \ldots, y_m) = F(S).$$
Fagin’s algorithm: performance guarantees

- Typically probabilistic guarantees
- Orderings are independent
- Then with high probability the middleware cost is

\[O\left(N \cdot \frac{m}{\sqrt{N}} \sqrt{k/N} \right) \]

- i.e., sublinear
- But may perform poorly
 - e.g., if \(F \) is constant:
 - still takes \(O\left(N \cdot \frac{m}{\sqrt{N}} \sqrt{k/N} \right) \) instead of a constant time algorithm
Optimal algorithm: The Threshold Algorithm

1. Do sorted access in parallel to each of the m sorted lists L_i. As each object R is seen under sorted access:
 - Retrieve all of its fields x_1, \ldots, x_m by random access.
 - Compute $F(R) = F(x_1, \ldots, x_m)$.
 - If this is one of the top k answers so far, remember it.
 - Note: buffer of bounded size.

2. For each list L_i, let \hat{x}_i be the grade of the last object seen under sorted access.

3. Define the threshold value t to be $F(\hat{x}_1, \ldots, \hat{x}_m)$.

4. When k objects have been seen whose grade is at least t, then stop.

5. Return the top k answers.
Threshold Algorithm: correctness and optimality

• The Threshold Algorithm is correct for every monotone aggregate function F.

• Optimal in a very strong sense:
 ○ it is as good as any other algorithm on every instance
 ○ any other algorithm means: except pathological algorithms
 ○ as good means: within a constant factor
 ○ pathological means: making wild guesses.
Wild guesses can help

- An algorithm “makes a wild guess” if it performs random access on an object not previously encountered by sorted access.
- Neither FA nor TA make wild guesses, nor does any “natural” algorithm.
- Example: The aggregation function is \min; $k = 1$.

<table>
<thead>
<tr>
<th>LIST L_1</th>
<th>LIST L_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 1)</td>
<td>(2n+1, 1)</td>
</tr>
<tr>
<td>(2, 1)</td>
<td>(2n, 1)</td>
</tr>
<tr>
<td>(3, 1)</td>
<td>(2n-1, 1)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(n+1, 1)</td>
<td>(n+1, 1)</td>
</tr>
<tr>
<td>(n+2, 0)</td>
<td>(n, 0)</td>
</tr>
<tr>
<td>(n+3, 0)</td>
<td>(n-1, 0)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(2n+1, 0)</td>
<td>(1, 0)</td>
</tr>
</tbody>
</table>
Threshold Algorithm as an approximation algorithm

- Approximately finding top \(k \) answers.
- For \(\varepsilon > 0 \), an \(\varepsilon \)-approximation of top \(k \) answers is a collection of \(k \) objects \(R_1, \ldots, R_k \) so that
 - for each \(R \) not among them,
 \[
 (1 + \varepsilon) \cdot F(R_i) \geq F(R)
 \]

- Turning TA into an approximation algorithm:
- Simply change the stopping rule into:
 - When \(k \) objects have been seen whose grade is at least
 \[
 t \geq \frac{1}{1 + \varepsilon'},
 \]
 then stop.