Background knowledge

- Conjunctive queries: the basis for data integration/exchange, metadata management, ontology-based data access, a very important class of database queries
- Chase: reasoning about constraints and a way to build new database instances
- Datalog: a recursive database language
Optimization of conjunctive queries

• Reminder:

 conjunctive queries
 = SPJ queries
 = rule-based queries
 = simple SELECT-FROM-WHERE SQL queries
 (only AND and equality in the WHERE clause)

• Extremely common, and thus special optimization techniques have been developed

• Reminder: for two relational algebra expressions e_1, e_2, $e_1 = e_2$ is undecidable.

• But for conjunctive queries, even $e_1 \subseteq e_2$ is decidable.

• Main goal of optimizing conjunctive queries: reduce the number of joins.
Optimization of conjunctive queries: an example

- Given a relation R with two attributes A, B
- Two SQL queries:
 \[
 Q_1 \quad \text{SELECT R1.B, R1.A} \\
 \text{FROM R R1, R R2} \\
 \text{WHERE R2.A=R1.B}
 \]
 \[
 Q_2 \quad \text{SELECT R3.A, R1.A} \\
 \text{FROM R R1, R R2, R R3} \\
 \]
- Are they equivalent?
- If they are, we saved one join operation.
- In relational algebra:
 \[
 Q_1 = \pi_{2,1}(\sigma_{2=3}(R \times R))
 \]
 \[
 Q_2 = \pi_{5,1}(\sigma_{2=4 \land 4=5}(R \times R \times R))
 \]
Optimization of conjunctive queries cont’d

• Are Q_1 and Q_2 equivalent?

• If they are, we cannot show it by using equivalences for relational algebra expression.

• Because: they don’t decrease the number of \land or \times operators, but Q_1 has 1 join, and Q_2 has 2.

• But Q_1 and Q_2 are equivalent. How can we show this?

• But representing queries as databases. This representation is very close to rule-based queries.

$$Q_1(x, y) \ := \ R(y, x), R(x, z)$$

$$Q_2(x, y) \ := \ R(y, x), R(w, x), R(x, u)$$
Conjunctive queries into tableaux

- Tableau: representing of a conjunctive query as a database
- We first consider queries over a single relation
 - $Q_1(x, y) : \neg R(y, x), R(x, z)$
 - $Q_2(x, y) : \neg R(y, x), R(w, x), R(x, u)$
- Tableaux:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>z</td>
</tr>
</tbody>
</table>
 | x | y | ← answer line

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>w</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>u</td>
</tr>
</tbody>
</table>
| x | y | ← answer line

- Variables in the answer line are called distinguished
Tableau homomorphisms

- A homomorphism of two tableaux $f : T_1 \rightarrow T_2$ is a mapping

 $$f : \{\text{variables of } T_1\} \rightarrow \{\text{variables of } T_2\} \cup \{\text{constants}\}$$

- For every distinguished x, $f(x) = x$

- For every row x_1, \ldots, x_k in T_1, $f(x_1), \ldots, f(x_k)$ is a row of T_2

- Query containment: $Q \subseteq Q'$ if $Q(D) \subseteq Q'(D)$ for every database D

- **Homomorphism Theorem**: Let Q, Q' be two conjunctive queries, and T, T' their tableaux. Then

 $$Q \subseteq Q'$$

 if and only if

 there exists a homomorphism $f : T' \rightarrow T$
Applying the Homomorphism Theorem: $Q_1 = Q_2$

Hence $Q_1 \subseteq Q_2$

Hence $Q_2 \subseteq Q_1$
Applying the Homomorphism Theorem: Complexity

• Given two conjunctive queries, how hard is it to test if $Q_1 = Q_2$?
• It is easy to transform them into tableaux, from either SPJ relational algebra queries, or SQL queries, or rule-based queries.
• But testing the existence of a homomorphism between two tableaux is hard: NP-complete. Thus, a polynomial algorithm is unlikely to exists.
• However, queries are small, and conjunctive query optimization is possible in practice.
Minimizing conjunctive queries

• Goal: given a conjunctive query Q, find an equivalent conjunctive query Q' with the minimum number of joins.

• Assume Q is

$$Q(\vec{x}) \leftarrow R_1(\vec{u}_1), \ldots, R_k(\vec{u}_k)$$

• Assume that there is an equivalent conjunctive query Q' of the form

$$Q'(\vec{x}) \leftarrow S_1(\vec{v}_1), \ldots, S_l(\vec{v}_l)$$

with $l < k$

• Then Q is equivalent to a query of the form

$$Q'(\vec{x}) \leftarrow R_{i_1}(\vec{u}_{i_1}), \ldots, R_{i_l}(\vec{u}_{i_l})$$

• In other words, to minimize a conjunctive query, one has to delete some subqueries on the right of :-
Minimizing conjunctive queries cont’d

• Given a conjunctive query Q, transform it into a tableau T.

• Let Q' be a minimal conjunctive query equivalent to Q. Then its tableau T' is a subset of T.

• Minimization algorithm:

 $T' := T$

 repeat until no change

 choose a row t in T'

 if there is a homomorphism $f : T' \rightarrow T' \setminus \{t\}$

 then $T' := T' \setminus \{t\}$

 end

• Note: if there exists a homomorphism $T' \rightarrow T' \setminus \{t\}$, then the queries defined by T' and $T' \setminus \{t\}$ are equivalent. Because: there is always a homomorphism from $T' \setminus \{t\}$ to T'. (Why?)
Minimizing SPJ/conjunctive queries: example

- \(R \) with three attributes \(A, B, C \)
- SPJ query
 \[
 Q = \pi_{AB}(\sigma_{B=4}(R)) \Join \pi_{BC}(\pi_{AB}(R) \Join \pi_{AC}(\sigma_{B=4}(R)))
 \]
- Translate into relational calculus:
 \[
 (\exists z_1 R(x, y, z_1) \land y = 4) \land \exists x_1 ((\exists z_2 R(x_1, y, z_2)) \land (\exists y_1 R(x_1, y_1, z) \land y_1 = 4))
 \]
- Simplify, by substituting the constant, and putting quantifiers forward:
 \[
 \exists x_1, z_1, z_2 (R(x, 4, z_1) \land R(x_1, 4, z_2) \land R(x_1, 4, z) \land y = 4)
 \]
- Conjunctive query:
 \[
 Q(x, y, z) :\neg R(x, 4, z_1), R(x_1, 4, z_2), R(x_1, 4, z), y = 4
 \]
Minimizing SPJ/conjunctive queries cont’d

• Tableau T:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
<td>z_1</td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z_2</td>
<td></td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
<td></td>
</tr>
</tbody>
</table>

• Minimization, step 1: is there a homomorphism from T to

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>4</td>
<td>z_2</td>
<td></td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
<td></td>
</tr>
</tbody>
</table>

• Answer: No. For any homomorphism f, $f(x) = x$ (why?), thus the image of the first row is not in the small tableau.
Minimizing SPJ/conjunctive queries cont’d

\[
\begin{array}{ccc}
A & B & C \\
\hline
\text{x} & 4 & \text{z}_1 \\
\text{x}_1 & 4 & \text{z} \\
\text{x} & 4 & \text{z} \\
\end{array}
\]

• Step 2: Is \(T \) equivalent to

• Answer: Yes. Homomorphism \(f: f(\text{z}_2) = \text{z}, \) all other variables stay the same.

• The new tableau is not equivalent to

\[
\begin{array}{ccc}
A & B & C \\
\hline
\text{x} & 4 & \text{z}_1 \\
\text{x} & 4 & \text{z} \\
\text{x} & 4 & \text{z} \\
\end{array}
\]
\[
\begin{array}{ccc}
A & B & C \\
\hline
\text{x}_1 & 4 & \text{z} \\
\text{x} & 4 & \text{z} \\
\end{array}
\]

• Because \(f(\text{x}) = \text{x}, f(\text{z}) = \text{z}, \) and the image of one of the rows is not present.
Minimizing SPJ/conjunctive queries cont’d

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>4</td>
<td>z₁</td>
<td></td>
</tr>
<tr>
<td>x₁</td>
<td>4</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
<td></td>
</tr>
</tbody>
</table>

• Minimal tableau:

• Back to conjunctive query:

\[Q'(x, y, z) :\neg R(x, y, z₁), R(x₁, y, z), y = 4 \]

• An SPJ query:

\[\sigma_{B=4} (\pi_{AB}(R) \Join \pi_{BC}(R)) \]

• Pushing selections:

\[\pi_{AB}(\sigma_{B=4}(R)) \Join \pi_{BC}(\sigma_{B=4}(R)) \]
Review of the journey

• We started with

\[\pi_{AB}(\sigma_{B=4}(R)) \Join \pi_{BC}(\pi_{AB}(R) \Join \pi_{AC}(\sigma_{B=4}(R))) \]

• Translated into a conjunctive query

• Built a tableau and minimized it

• Translated back into conjunctive query and SPJ query

• Applied algebraic equivalences and obtained

\[\pi_{AB}(\sigma_{B=4}(R)) \Join \pi_{BC}(\sigma_{B=4}(R)) \]

• Savings: one join.
All minimizations are equivalent

• Let Q be a conjunctive query, and Q_1, Q_2 two conjunctive queries equivalent to Q.

• Assume that Q_1 and Q_2 are both minimal, and let T_1 and T_2 be their tableaux.

• Then T_1 and T_2 are isomorphic; that is, T_2 can be obtained from T_1 by renaming of variables.

• That is, all minimizations are equivalent.

• In particular, in the minimization algorithm, the order in which rows are considered, is irrelevant.
Equivalence of conjunctive queries: the general case

• So far we assumed that there is only one relation R, but what if there are many?

• Construct tableaux as before:

$$Q(x, y) : \neg B(x, y), R(y, z), R(y, w), R(w, y)$$

• Tableau:

\[
\begin{array}{c|cc}
B: & A & B \\
\hline
x & y \\
\end{array}
\quad
\begin{array}{c|cc}
R: & A & B \\
\hline
y & z \\
y & w \\
w & y \\
\hline
x & y \\
\end{array}
\]

• Formally, a tableau is just a database where variables can appear in tuples, plus a set of distinguished variables.
Tableaux and multiple relations

• Given two tableaux T_1 and T_2 over the same set of relations, and the same distinguished variables, a homomorphism $h : T_1 \rightarrow T_2$ is a mapping

\[f : \{ \text{variables of } T_1 \} \rightarrow \{ \text{variables of } T_2 \} \]

such that

- $f(x) = x$ for every distinguished variable, and
- for each row \vec{t} in R in T_1, $f(\vec{t})$ is in R in T_2.

• Homomorphism theorem: let Q_1 and Q_2 be conjunctive queries, and T_1, T_2 their tableaux. Then

\[Q_2 \subseteq Q_1 \]

if and only if

there exists a homomorphism $f : T_1 \rightarrow T_2$
Minimization with multiple relations

- The algorithm is the same as before, but one has to try rows in different relations. Consider homomorphism $f(z) = w$, and f is the identity for other variables. Applying this to the tableau for Q yields

$$
\begin{array}{c|c|c}
\text{B:} & A & B \\
\hline
x & y & \\
\end{array}
\begin{array}{c|c|c}
\text{R:} & A & B \\
\hline
y & w & w \\
\end{array}
\begin{array}{c|c|c}
 & x & y \\
\end{array}
\begin{array}{c|c|c}
 & w & y \\
\end{array}
$$

- This cannot be further reduced, as for any homomorphism f, $f(x) = x$, $f(y) = y$.

- Thus Q is equivalent to

$$Q'(x, y) := B(x, y), R(y, w), R(w, y)$$

- One join is eliminated.
Static analysis of conjunctive queries: complexity

- Problem: given queries Q_1, Q_2, is Q_1 contained in Q_2?
- For full relational calculus, undecidable.
- For conjunctive queries, there is an algorithm:
 - guess a mapping h between the tableaux of Q_2 and Q_1
 - check if it is a homomorphism.
 - Thus it is in NP.
- The problem is in fact NP-complete (sketch: blackboard).
- Hence efficient algorithms unlikely to exist unless P=NP.
- But the input is a query, not a database, hence algorithms are quite practical (heavily used in data integration)
 - still in the worst case they need exponential time
Query optimization and integrity constraints

- Additional equivalences can be inferred if integrity constraints are known
- Example: Let \(R \) have attributes \(A, B, C \). Assume that \(R \) satisfies \(A \rightarrow B \).
- Then \(R \) satisfies \(A \rightarrow B \) and thus
 \[
 R = \pi_{AB}(R) \bowtie \pi_{AC}(R)
 \]
- Tableaux can help with these optimizations!
- \(\pi_{AB}(R) \bowtie \pi_{AC}(R) \) as a conjunctive query:
 \[
 Q(x, y, z) : \neg R(x, y, z_1), R(x, y_1, z)
 \]
Query optimization and integrity constraints cont'd

- **Tableau:**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z_1</td>
</tr>
<tr>
<td>x</td>
<td>y_1</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
</tbody>
</table>

- Using the FD $A \rightarrow B$ infer $y = y_1$

- Next, minimize the resulting tableau

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z_1</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
</tbody>
</table>

\rightarrow

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
</tbody>
</table>

- And this says that the query is equivalent to $Q'(x, y, z): \neg R(x, y, z)$, that is, R.
Query optimization and integrity constraints cont'd

- General idea: simplify the tableau using functional dependencies and then minimize.
- Given: a conjunctive query Q, and a set of FDs F
- Algorithm:

 Step 1. Compute the tableau T for Q.

 Step 2. Apply algorithm $\text{CHASE}(T, F)$.

 Step 3. Minimize output of $\text{CHASE}(T, F)$.

 Step 4. Construct a query from the tableau produced in Step 3.
The CHASE

Assume that all FDs are of the form $X \rightarrow A$, where A is an attribute.

for each $X \rightarrow A$ in F do
 for each t_1, t_2 in T such that $t_1.X = t_2.X$ and $t_1.A \neq t_2.A$ do
 case $t_1.A, t_2.A$ of
 both nondistinguished \Rightarrow
 replace one by the other
 one distinguished, one nondistinguished \Rightarrow
 replace nondistinguished by distinguished
 one constant, one variable \Rightarrow
 replace variable by constant
 both constants \Rightarrow
 output \emptyset and STOP
 end
 end
end
Query optimization and integrity constraints: example

- \(R \) is over \(A, B, C \); \(F \) contains \(B \rightarrow A \)
- \(Q = \pi_{BC}(\sigma_{A=4}(R)) \land \pi_{AB}(R) \)
- \(Q \) as a conjunctive query:
 \[Q(x, y, z) :– R(4, y, z), R(x, y, z_1) \]

- Tableau:
 \[
 \begin{array}{ccc}
 A & B & C \\
 4 & y & z \\
 x & y & z_1 \\
 x & y & z \\
 \end{array}
 \quad \xrightarrow{\text{CHASE}} \quad
 \begin{array}{ccc}
 A & B & C \\
 4 & y & z \\
 4 & y & z_1 \\
 4 & y & z \\
 \end{array}
 \]

- Final result: \(Q(x, y, z) :– R(x, y, z), x = 4 \), that is, \(\sigma_{A=4}(R) \).
Query optimization and integrity constraints: example

- Same R and F; the query is:
 \[Q = \pi_{BC}(\sigma_{A=4}(R)) \land \pi_{AB}(\sigma_{A=5}(R)) \]

- As a conjunctive query:
 \[Q(x, y, z) :\leftarrow R(4, y, z), R(x, y, z_1), x = 5 \]

- Tableau:

 \[
 \begin{array}{ccc}
 A & B & C \\
 4 & y & z \\
 5 & y & z_1 \\
 5 & y & z
 \end{array}
 \]

 CHASE $\rightarrow \emptyset$

- Final result: \emptyset

- This equivalence is not true without the FD $B \rightarrow A$
Query optimization and integrity constraints: example

• Sometimes simplifications are quite dramatic

• Same \(R \), FD is \(A \rightarrow B \), the query is

\[
Q = \pi_{AB}(R) \land \pi_A(\sigma_{B=4}(R)) \land \pi_{AB}(\pi_{AC}(R) \land \pi_{BC}(R))
\]

• Convert into conjunctive query:

\[
Q(x, y) :– R(x, y, z_1), R(x, y_1, z), R(x_1, y, z), R(x, 4, z_2)
\]

• Tableau:

\[
\begin{array}{ccc}
A & B & C \\
 x & y & z_1 \\
 x & y_1 & z \\
 x_1 & y & z \\
 x & 4 & z_2 \\
x & y
\end{array}
\rightarrow
\begin{array}{ccc}
A & B & C \\
x & 4 & z_1 \\
x_1 & 4 & z \\
x & 4 & z_2 \\
x & 4
\end{array}
\]

minimize

\[
\begin{array}{ccc}
A & B & C \\
x & 4 & z \\
x & 4 \\
x & 4
\end{array}
\]
Query optimization and integrity constraints: example cont’d

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

is translated into

\[Q(x, y) := R(x, y, z), y = 4 \]

• or, equivalently \(\pi_{AB}(\sigma_{B=4}(R)) \).

• Thus,

\[\pi_{AB}(R) \Join \pi_A(\sigma_{B=4}(R)) \Join \pi_{AB}(\pi_{AC}(R) \Join \pi_{BC}(R)) = \pi_{AB}(\sigma_{B=4}(R)) \]

in the presence of FD \(A \rightarrow B \).

• Savings: 3 joins!

• This cannot be derived by algebraic manipulations, nor conjunctive query minimization without using CHASE.
Chase procedures

• In general, CHASE may refer to a family of procedures of a similar flavor: keep changing entries in a database instance as dictated by constraints

• Main uses:
 ○ checking constraints satisfiability and implication (and thus important for reasoning about metadata)
 ○ building instances that satisfy constraints (e.g., in data exchange)

• Many papers refer to CHASE procedures; we now review the classical one for implication of functional and join dependencies
FD and JD implication by CHASE

- Reminder: JDs are join dependencies
- A JD: \(\Join [X_1, \ldots, X_m] \)
- It holds in a relation \(R \) iff
 \[
 R = \pi_{X_1}(R) \Join \ldots \Join \pi_{X_m}(R)
 \]
- Important for decomposing relations and normalizing databases
- An FD \(X \rightarrow Y \) over attributes \(U \) implies a JD \(\Join [XY, X(U - Y)] \)
 - a simple exercise
- Let \(F \) be a set of FDs, \(J \) a set of JDs, and \(\theta \) a dependency (FD or JD)
- \(F, J \models \theta \) (in words, \(F \) and \(J \) imply \(\theta \)) if for every relation \(R \), if all of \(F \) and \(J \) dependencies are true in \(R \), then \(\theta \) is true in \(R \).
CHASE: tableaux and rules

- CHASE procedure consists of CHASE steps that apply to instances or tableaux. In tableaux, we shall mark distinguished variables in bold:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x₁</td>
<td></td>
</tr>
<tr>
<td>x₂</td>
<td>y</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>x₂</td>
<td>y</td>
<td>x₃</td>
<td></td>
</tr>
</tbody>
</table>

- Rules for FDs we have already seen
CHASE: JD rule

Let \mathcal{J} contain a join dependency $\bowtie [X_1, \ldots, X_m]$ and let T be a tableau.

If u is a tuple not in T such that there are tuples $u_1, \ldots, u_n \in T$ such that $u_i[X_i] = u[X_i]$ for every $i \in [1, m]$, then the result of applying this JD over T is the new tableau $T' = T \cup \{u\}$.
CHASE sequences

- A CHASE sequence of T by a set of FDs and JDs is a sequence of tableaux $T = T_0, T_1, T_2, \ldots$, such that for each $i \geq 0$, T_{i+1} is the result of applying some dependency to T_i.

- For JDs and FDs, all such sequences are finite (in other cases they won't be, and chase termination is a very important issue, particularly in data exchange).

- A sequence terminates when no more rules apply.

- No matter how we apply the rules, sequences terminate with the same tableau (up to renaming of non-distinguished variables).

- This tableau is denoted by $\text{chase}_{\mathcal{F}, \mathcal{J}}(T)$
CHASE for dependency implication

To check if $\mathcal{F}, \mathcal{J} \models \theta$:

- Construct a tableau T_θ
- Compute $\text{chase}_{\mathcal{F}, \mathcal{J}}(T_\theta)$
- Check if a certain condition is satisfied.

If $\theta = A_1, \ldots, A_k \rightarrow A_{k+1}$ (attributes are A_1, \ldots, A_m):

- T_θ has two rows: (x_1, \ldots, x_m) and $(x_1, \ldots, x_k, y_{k+1}, \ldots, y_m)$
- Condition: $\text{chase}_{\mathcal{F}, \mathcal{J}}(T_\theta)$ has only distinguished variables for A_{k+1}
Example: \{\bowtie [AB, AC], AB \to C\} \models A \to C

\[\begin{array}{ccc}
A & B & C \\
x & y & z \\
x & x_1 & x_2 \\
\end{array}\]

\[\begin{array}{ccc}
A & B & C \\
x & y & z \\
x & x_1 & x_2 \\
x & y & x_2 \\
\end{array}\]

Chase sequence: use \(\bowtie [AB, AC]\) and get:

Then use \(AB \to C\) and get

Only distinguished variables in column \(C\).
CHASE for JDs

- Let θ be $\Join [X_1, \ldots, X_n]$.
- T_θ has n rows.
- The ith row has distinguished variables in the X_i-columns and non-distinguished variables in the remaining columns.
- Each non-distinguished variable appears exactly once.
- Condition: $\text{chase}_{\mathcal{F}, \mathcal{J}}(T)$ has a row with all distinguished variables.
Length of chase sequences

- In general, could be exponential
- An important question is when it is polynomial
- Then implication is solved in polynomial time
- Conditions known: essentially acyclicity of JDs
- We shall come back to the idea of acyclicity and polynomial chase termination in data exchange: this is how instances of exchanged data are constructed
Complexity classes: a very brief intro

- In databases, we reason about complexity in two ways:
 - The big-O notation ($O(n \log n)$ vs $O(n^2)$ vs $O(2^n)$)
 - Complexity-theoretic notions: PTIME, NP, DLOGSPACE, etc
- You see a lot of the latter in the literature
- Advantage of complexity-theoretic notions: if you have a $O(2^n)$ algorithm, is it because the problem is inherently hard, or because we are not smart enough to come up with a better algorithm (or both)?
The big divide

PTIME (computable in polynomial time, i.e. \(O(n^k)\) for some fixed \(k\))

Inside PTIME: tractable queries (although high-degree polynomial are real-life intractable)

Outside PTIME: intractable queries (efficient algorithms are unlikely)

Way outside PTIME: provably intractable queries (efficient algorithms do not exist)

- EXPTIME: \(c^n\)-algorithms for a constant \(c\). Could still be ok for not very large inputs

- Even further – 2-EXPTIME: \(c^{c^n}\). Cannot be ok even for small inputs (compare \(2^{10}\) and \(2^{2^{10}}\)).
Inside PTIME

\[\text{AC}^0 \subsetneq \text{TC}^0 \subseteq \text{NC}^1 \subseteq \text{DLOG} \subseteq \text{NLOG} \subseteq \text{PTIME} \]

- \text{AC}^0: very efficient parallel algorithms (constant time, simple circuits)
 - relational calculus
- \text{TC}^0: very efficient parallel algorithms in a more powerful computational model with counting gates
 - basic SQL (relational calculus/grouping/aggregation)
- \text{NC}^1: efficient parallel algorithms
 - regular languages
- \text{DLOG}: very little \(O(\log n) \) – space is required
 - SQL + (restricted) transitive closure
- \text{NLOG}: \(O(\log n) \) space is required if nondeterminism is allowed
 - SQL + transitive closure (as in the SQL3 standard)
Beyond PTIME

\[\text{PTIME} \subseteq \left\{ \begin{array}{c} \text{NP} \\ \text{coNP} \end{array} \right\} \subseteq \text{PSPACE} \]

- **PTIME**: can solve a problem in polynomial time
- **NP**: can check a given candidate solution in polynomial time
 - another way of looking at it: guess a solution, and then verify if you guessed it right in polynomial time
- **coNP**: complement of NP – verify that all “reasonable” candidates are solutions to a given problem.
 - Appears to be harder than NP but the precise relationship isn’t known
- **PSPACE**: can be solved using memory of polynomial size (but perhaps an exponential-time algorithm)
Complete problems

- These are the hardest problems in a class.
- If our problem is as hard as a complete problem, it is very unlikely it can be done with lower complexity.

- For NP:
 - SAT (satisfiability of Boolean formulae)
 - many graph problems (e.g. 3-colourability)
 - Integer linear programming etc

- For PSPACE:
 - Quantified SAT
 - Are two regular languages equivalent?
 - Many games, e.g., Geography.
Measuring complexity in databases

Problem: Given a database D, and a query Q, find $Q(D)$.

Complexity measurements are defined for decision problems, so: Given D, Q, and a tuple u, is $u \in Q(D)$?

- Combined complexity: all D, Q, u are inputs to the problem.
- Data complexity: Q is fixed.
 - Rationale: Q is much smaller than D, can disregard it
Limitations of SQL

• Reachability queries:

<table>
<thead>
<tr>
<th>Flights</th>
<th>Src</th>
<th>Dest</th>
</tr>
</thead>
<tbody>
<tr>
<td>'EDI'</td>
<td>'LHR'</td>
<td></td>
</tr>
<tr>
<td>'EDI'</td>
<td>'EWR'</td>
<td></td>
</tr>
<tr>
<td>'EWR'</td>
<td>'LAX'</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

• Query: Find pairs of cities \((A, B)\) such that one can fly from \(A\) to \(B\) with at most one stop:

\[
\begin{align*}
&\text{SELECT } F1.\text{Src}, F2.\text{Dest} \\
&\text{FROM Flights } F1, \text{Flights } F2 \\
&\text{WHERE } F1.\text{Dest}=F2.\text{Src} \\
&\text{UNION} \\
&\text{SELECT } \ast \text{FROM Flights}
\end{align*}
\]
Reachability queries cont’d

• Query: Find pairs of cities \((A, B)\) such that one can fly from \(A\) to \(B\) with at most two stops:

\[
\begin{align*}
&\text{SELECT F1.Src, F3.Dest} \\
&\text{FROM Flights F1, Flights F2, Flights F3} \\
&\text{UNION} \\
&\text{SELECT F1.Src, F2.Dest} \\
&\text{FROM Flights F1, Flights F2} \\
&\text{WHERE F1.Dest=F2.Src} \\
&\text{UNION} \\
&\text{SELECT * FROM Flights}
\end{align*}
\]
Reachability queries cont’d

• For any fixed number \(k \), we can write the query

 Find pairs of cities \((A, B)\) such that one can fly from \(A \) to \(B \) with at most \(k \) stops

 in SQL.

• What about the general reachability query:

 Find pairs of cities \((A, B)\) such that one can fly from \(A \) to \(B \).

• SQL cannot express this query.

• Solution: SQL3 adds a new construct that helps express reachability queries. (May not yet exist in some products.)
Reachability queries cont’d

- To understand the reachability query, we formulate it as a rule-based query:

\[
\text{reach}(x, y) := \text{flights}(x, y) \\
\text{reach}(x, y) := \text{flights}(x, z), \text{reach}(z, y)
\]

- One of these rules is recursive: \text{reach} refers to itself.

- Evaluation:

 - Step 0: \text{reach}^0 is initialized as the empty set.
 - Step \(i + 1\): Compute
 \[
 \text{reach}^i(x, y) := \text{flights}(x, y) \\
 \text{reach}^i(x, y) := \text{flights}(x, z), \text{reach}^i(z, y)
 \]
 - Stop condition: If \(\text{reach}^{i+1} = \text{reach}^i\), then it is the answer to the query.
Evaluation of recursive queries

• Example: assume that \textit{flights} contains \((a, b), (b, c), (c, d)\).

• Step 0: \textit{reach} = \emptyset

• Step 1: \textit{reach} becomes \\{(a, b), (b, c), (c, d)\}.

• Step 2: \textit{reach} becomes \\{(a, b), (b, c), (c, d), (a, c), (b, d)\}.

• Step 3: \textit{reach} becomes \\{(a, b), (b, c), (c, d), (a, c), (b, d), (a, d)\}.

• Step 4: one attempts to use the rules, but infers no new values for \textit{reach}. The final answer is thus:

\[
\{(a, b), (b, c), (c, d), (a, c), (b, d), (a, d)\}
\]
Recursion in SQL3

- SQL3 syntax mimics that of recursive rules:

\[
\text{WITH RECURSIVE Reach(Src,Dest) AS} \\
\quad (\\
\quad \quad \text{SELECT * FROM Flights} \\
\quad \quad \text{UNION} \\
\quad \quad \text{SELECT F.Src, R.Dest} \\
\quad \quad \text{FROM Flights F, Reach R} \\
\quad \quad \text{WHERE F.Dest= R.Src} \\
\quad) \\
\quad \text{SELECT * FROM Reach}
\]
Recursion in SQL3: syntactic restrictions

- There is another way to do reachability as a recursive rule-based query:
 \[
 \text{reach}(x, y) := \text{flights}(x, y) \\
 \text{reach}(x, y) := \text{reach}(x, z), \text{reach}(z, y)
 \]

- This translates into an SQL3 query:

  ```sql
  WITH RECURSIVE Reach(Src,Dest) AS
  ( SELECT * FROM Flights
    UNION
    SELECT R1.Src, R2.Dest
    FROM Reach R1, Reach R2
    WHERE R1.Dest=R2.Src )
  SELECT * FROM Reach
  ```

- However, most implementations will disallow this, since they support only linear recursion: recursively defined relation is only mentioned once in the FROM line.
Recursion in SQL3 cont’d

• A slight modification: suppose Flights has another attribute aircraft.
• Query: find cities reachable from Edinburgh.

WITH Cities AS SELECT Src, Dest FROM Flights
RECURSIVE Reach(Src, Dest) AS
(
 SELECT * FROM Cities
 UNION
 SELECT C.Src, R.Dest FROM Cities C, Reach R WHERE C.Dest = R.Src
)
SELECT R.Dest FROM Reach R WHERE R.Src = 'EDI'
A note on negation

- Problematic recursion:

```sql
WITH RECURSIVE R(A) AS
  (SELECT S.A
   FROM S
   WHERE S.A NOT IN
     SELECT R.A FROM R)

SELECT * FROM R
```

- Formulated as a rule:

\[
r(x) \leftarrow s(x), \neg r(x)
\]
A note on negation cont’d

• Let s contain $\{1, 2\}$.

• Evaluation:

 After step 0: $r_0 = \emptyset$;

 After step 1: $r_1 = \{1, 2\}$;

 After step 2: $r_2 = \emptyset$;

 After step 3: $r_3 = \{1, 2\}$;

 ...

 After step $2n$: $r_{2n} = \emptyset$;

 After step $2n + 1$: $r_{2n+1} = \{1, 2\}$.

• Problem: it does not terminate!

• What causes this problem? Answer: Negation (that is, NOT IN).
A note on negation cont’d

• Other instances of negation:

 EXCEPT

 NOT EXISTS

• SQL3 has a set of very complicated rules that specify when the above operations can be used in WITH RECURSIVE definitions.

• A general rule: it is best to avoid negation in recursive queries.
Notes on proposed papers

 Criterion for CQ containment/equivalence

 Notion of acyclicity of CQs and fast evaluation scheme based on it

 An in-depth study of acyclicity

 A hierarchy of classes of efficient CQs, the bottom level of which is acyclic queries
 A different way of characterizing efficiency of CQs, this time via the notion of bounded treewidth

 Different types of complexity of database queries, and a language for PTIME

 A finer way of measuring complexity, between data and combined

 Query languages that correspond to complexity classes

We can capture PTIME on some databases if they satisfy certain structural (graph-theoretic) restrictions

An intriguing connection between conjunctive queries and a central AI problem of constraint satisfaction

A general account of connections between structural properties of databases and languages that capture efficient queries over them

A toolbox for reasoning about expressivity and complexity of query languages

and a specific application for SQL

The paper that proposed CHASE

and the paper that looked at how to make it efficient more often