Review of Relational Databases

- Relational model
- Schemas
- Relational algebra
- Relational calculus
- SQL
- Constraints (keys, foreign keys)
The relational model

- Data is organized in relations (tables)
- Relational database schema:
 - set of table names
 - list of attributes for each table
- Tables are specified as: `<table name>:<list of attributes>`
- Examples:
 - Account: number, branch, customerId
 - Movie: title, director, actor
 - Schedule: theater, title
- Attributes within a table have different names
- Tables have different names
Declarative vs Procedural

- In our queries, we ask **what** we want to see in the output.
- But we do not say **how** we want to get this output.
- Thus, query languages are **declarative**: they specify what is needed in the output, but do not say how to get it.
- Database system figures out **how** to get the result, and gives it to the user.
- Database system operates internally with different, **procedural** languages, which specify how to get the result.
Declarative vs Procedural: example

Declarative:

\{ \text{title} \mid (\text{title, director, actor}) \in \text{movies} \}\}

Procedural:

for each tuple T=(t,d,a) in relation movies do
 output t
end

In relational algebra: \(\pi_{\text{title}}(\text{Movies})\).

in SQL:

SELECT title FROM Movies
Relational Calculus

• Codd 1970: Relational databases are queried using first-order predicate logic.

• Relational calculus: another name for it. Queries written in the logical notation using:
 relation names (e.g., Movies)
 constants (e.g., 'Shining', 'Nicholson')
 conjunction \land, disjunction \lor, negation \neg
 existential quantifiers \exists, universal quantifiers \forall

\land, \exists, \neg suffice:

$\forall x F(x) = \neg \exists x \neg F(x)$

$F \lor G = \neg (\neg F \land \neg G)$
Relational Calculus cont’d

- Bound variable: a variable x that occurs in $\exists x$ or $\forall x$
- Free variable: a variable that is not bound.
- Free variables are those that go into the output of a query.
- Two ways to write a query:
 $$Q(\vec{x}) = F,$$
 where \vec{x} is the tuple of free variables
 $$\{\vec{x} \mid F\}$$
- Examples:
 $$\{x, y \mid \exists z \ (R(x, z) \land S(z, y))\}$$
 $$\{x \mid \forall y R(x, y)\}$$
 $$\{\text{dir} \mid \forall (\text{th}, \text{tl}) \in \text{schedule} \exists (\text{tl}', \text{act}): (\text{tl}', \text{dir}, \text{act}) \in \text{movies} \land (\text{th}, \text{tl}') \in \text{schedule} \}$$
Relational Algebra

- Procedural language
- Six (= 5 + 1) operations:
 - Projection π
 - Selection σ
 - Cartesian product \times
 - Union \cup
 - Difference $-$
 - Renaming ρ

- Renaming changes names of attributes

- $\rho_{A\leftarrow C,B\leftarrow D}(R)$ turns a relation with attributes C, D into a relation with attributes A, B.
Relational Algebra cont’d

- Projection: chooses some attributes in a relation
- \(\pi_{A_1, \ldots, A_n}(R) \): only leaves attributes \(A_1, \ldots, A_n \) in relation \(R \).
- Selection: Chooses tuples that satisfy some condition
- \(\sigma_c(R) \): only leaves tuples \(t \) for which \(c(t) \) is true
- Conditions: conjunctions of
 - \(R.A = R.A' \) – two attributes are equal
 - \(R.A = \text{constant} \) – the value of an attribute is a given constant
 Same as above but with \(\neq \) instead of \(= \)
Relational Algebra cont’d

- Cartesian Product: puts together two relations
- \(R_1 \times R_2 \) puts together each tuple \(t_1 \) of \(R_1 \) and each tuple \(t_2 \) of \(R_2 \)
- Example:

\[
\begin{align*}
R_1 & | A & B \\
 | a_1 & b_1 \\
 | a_2 & b_2 \\
\end{align*}
\times
\begin{align*}
R_2 & | A & C \\
 | a_1 & c_1 \\
 | a_2 & c_2 \\
 | a_3 & c_3 \\
\end{align*}
= \\
\begin{align*}
 & a_1 & b_1 & a_1 & c_1 \\
 & a_1 & b_1 & a_2 & c_2 \\
 & a_1 & b_1 & a_3 & c_3 \\
 & a_2 & b_2 & a_1 & c_1 \\
 & a_2 & b_2 & a_2 & c_2 \\
 & a_2 & b_2 & a_3 & c_3 \\
\end{align*}
\]
Relational Algebra cont’d

• Union $R \cup S$ is the union of relations R and S
• R and S must have the same set of attributes.
• Difference $R - S$: tuples in R but not in S.

• Every declarative query has a procedural implementation:

\[
\text{Relational Calculus} = \text{Relational Algebra}
\]
SQL

- Structured Query Language
- Developed originally at IBM in the late 70s
- First standard: SQL-86
- De-facto standard of the relational database world – replaced all other languages.
Examples of SQL queries

- Find titles of current movies

SELECT Title
FROM Movies

- SELECT lists attributes that go into the output of a query
- FROM lists input relations
Examples of SQL queries cont’d

• Find theaters showing movies in which Nicholson played:

```sql
SELECT Schedule.Theater
FROM Schedule, Movies
WHERE Movies.Title = Schedule.Title
    AND Movies.Actor='Nicholson'
```

Differences:

• SELECT now specifies which relation the attributes came from – because we use more than one.

• FROM lists two relations

• WHERE specifies the condition for selecting a tuple.
Joining relations

• `WHERE` allows us to join together several relations

• Consider a query: list directors, and theaters in which their movies are playing

  ```sql
  SELECT Movies.Director, Schedule.Theater
  FROM Movies, Schedule
  WHERE Movies.Title = Schedule.Title
  ```

• This operation is called `join`.

• Notation: `Schedule \Join Movies`
Join cont’d

- Join is not a new operation of relational algebra
- It is defifiable with π, σ, \times
- Suppose R is a relation with attributes $A_1, \ldots, A_n, B_1, \ldots, B_k$
- S is a relation with attributes $A_1, \ldots, A_n, C_1, \ldots, C_m$
- $R \Join S$ has attributes $A_1, \ldots, A_n, B_1, \ldots, B_k, C_1, \ldots, C_m$

$$R \Join S = \pi_{A_1, \ldots, A_n, B_1, \ldots, B_k, C_1, \ldots, C_m}(\sigma_{R.A_1=S.A_1 \land \ldots \land R.A_n=S.A_n}(R \times S))$$
Conjunctive queries

- Also known as select-project-join queries
- Fragment of relational algebra that consists of σ, π, \Join (or σ, π, \times)
- In logic, \exists and \wedge
- Theaters showing movies where Nicholson played:
 \[
 \pi_{theater}(\sigma_{actor=Nicholson}(Movies \Join Schedule))
 \]
 (hence called SPJ – select, project, join – queries)

 \[
 \exists t \exists d \Movies(t, d, Nicholson) \land \Schedule(t, th)
 \]

 often write as rules:

 \[
 Q(th) \leftarrow \Movies(t, d, Nicholson), \Schedule(t, th)
 \]
Beyond simple queries

• So far we mostly used π, σ, \Join in relational algebra.
• It is harder to do queries with “for all conditions”.
• Query: Find directors whose movies are playing in all theaters:

\[
\pi_{\text{director}}(M) - \pi_{\text{director}}(\pi_{\text{theater}}(S) \times \pi_{\text{director}}(M) - \pi_{\text{theater,director}}(M \Join S))
\]

• They don’t look easy in relational algebra
For all and negation in SQL

- Find directors whose movies are playing in all theaters.
- SQL's way of saying this: Find directors such that there does not exist a theater where their movies do not play.
- Because: \(\forall x \ f(x) \iff \neg \exists x \ \neg f(x) \).

```
SELECT M1.Director
FROM Movies M1
WHERE NOT EXISTS (SELECT S.Theater
    FROM Schedule S
    WHERE NOT EXISTS (SELECT M2.Director
        FROM Movies M2
        WHERE M2.Title=S.Title
        AND
        M1.Director=M2.Director))
```
Other features of SQL

- Datatypes, type-specific operations
- Table declaration, constraint enforcement
- Aggregation
Simple aggregate queries

Count the number of tuples in Movies

\[
\text{SELECT COUNT(*)} \\
\text{FROM Movies}
\]

Add up all movie lengths

\[
\text{SELECT SUM(Length)} \\
\text{FROM Movies}
\]

Find the number of directors.

\[
\text{SELECT COUNT(DISTINCT Director)} \\
\text{FROM Movies}
\]
Aggregation and grouping

For each theaters playing at least one long (over 2 hours) movie, find the average length of all movies played there:

SELECT S.Theater, AVG(M.Length)
FROM Schedule S, Movies M
WHERE S.Title=M.Title
GROUP BY S.Theater
HAVING MAX(M.Length) > 120
Database Constraints

- In our examples we assumed that the *title* attribute identifies a movie.
- But this may not be the case:

<table>
<thead>
<tr>
<th>title</th>
<th>director</th>
<th>actor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dracula</td>
<td>Browning</td>
<td>Lugosi</td>
</tr>
<tr>
<td>Dracula</td>
<td>Fischer</td>
<td>Lee</td>
</tr>
<tr>
<td>Dracula</td>
<td>Badham</td>
<td>Langella</td>
</tr>
<tr>
<td>Dracula</td>
<td>Coppola</td>
<td>Oldman</td>
</tr>
</tbody>
</table>

- Database constraints: provide additional semantic information about the data.
- Most common ones: functional and inclusion dependencies, and their special cases: keys and foreign keys.
Constraints cont’d

• If we want the title to identify a movie uniquely (i.e., no Dracula situation), we express it as a **functional dependency**

 \[\text{title} \rightarrow \text{director}\]

• In general, a relation \(R\) satisfies a functional dependency \(A \rightarrow B\), where \(A\) and \(B\) are attributes, if for every two tuples \(t_1, t_2\) in \(R\):

\[\pi_A(t_1) = \pi_A(t_2) \quad \text{implies} \quad \pi_B(t_1) = \pi_B(t_2)\]
Functional dependencies and keys

• More generally, a functional dependency is $X \rightarrow Y$ where X, Y are sequences of attributes. It holds in a relation R if for every two tuples t_1, t_2 in R:

$$\pi_X(t_1) = \pi_X(t_2) \quad \text{implies} \quad \pi_Y(t_1) = \pi_Y(t_2)$$

• A very important special case: keys

• Let K be a set of attributes of R, and U the set of all attributes of R. Then K is a key if R satisfies functional dependency $K \rightarrow U$.

• In other words, a set of attributes K is a key in R if for any two tuples t_1, t_2 in R,

$$\pi_K(t_1) = \pi_K(t_2) \quad \text{implies} \quad t_1 = t_2$$

• That is, a key is a set of attributes that uniquely identify a tuple in a relation.
Inclusion constraints

- We expect every Title listed in Schedule to be present in Movies.
- These are **referential** integrity constraints: they talk about attributes of one relation (Schedule) but refer to values in another one (Movies).
- These particular constraints are called **inclusion dependencies** (ID).
- Formally, we have an inclusion dependency $R[A] \subseteq S[B]$ when every value of attribute A in R also occurs as a value of attribute B in S:

 $$\pi_A(R) \subseteq \pi_B(S')$$

- As with keys, this extends to sets of attributes, but they must have the same number of attributes.
- There is an inclusion dependency $R[A_1, \ldots, A_n] \subseteq S[B_1, \ldots, B_n]$ when

 $$\pi_{A_1, \ldots, A_n}(R) \subseteq \pi_{B_1, \ldots, B_n}(S')$$
Foreign keys

- Most often inclusion constraints occur as a part of a foreign key.
- Foreign key is a conjunction of a key and an ID:

\[R[A_1, \ldots, A_n] \subseteq S[B_1, \ldots, B_n] \quad \text{and} \]
\[\{B_1, \ldots, B_n\} \rightarrow \text{all attributes of } S \]

- Meaning: we find a key for relation \(S \) in relation \(R \).

- Example: Suppose we have relations:

 \begin{align*}
 \text{Employee(EmplId, Name, Dept, Salary)} \\
 \text{ReportsTo(Empl1,Empl2)}.
 \end{align*}

- We expect both Empl1 and Empl2 to be found in Employee; hence:

 \begin{align*}
 \text{ReportsTo[Empl1]} & \subseteq \text{Employee[EmplId]} \\
 \text{ReportsTo[Empl2]} & \subseteq \text{Employee[EmplId]}.
 \end{align*}

- If EmplId is a key for Employee, then these are foreign keys.