Data exchange

- Source schema, target schema; need to transfer data between them.
- A typical scenario:
 - Two organizations have their legacy databases, schemas cannot be changed.
 - \circ Data from one organization 1 needs to be transferred to data from organization 2.
 - Queries need to be answered against the transferred data.

Data Exchange

Source Schema S

Target Schema ${\cal T}$

Data Exchange

Data exchange: an example

• We want to create a target database with the schema

```
Flight(city1,city2,aircraft,departure,arrival)
Served(city,country,population,agency)
```

 We don't start from scratch: there is a source database containing relations

```
Route(source, destination,, departure)
BG(country, city)
```

We want to transfer data from the source to the target.

Data exchange – relationships between the source and the target

How to specify the relationship?

Relationships between the source and the target

- Formal specification: we have a *relational calculus query* over both the source and the target schema.
- The query is of a restricted form, and can be thought of as a sequence of rules:

```
Flight(c1, c2, __, dept, __) :- Route(c1, c2, dept)

Served(city, country, __, __) :- Route(city, __, __), BG(city, country)

Served(city, country, __, __) :- Route(__, city, __), BG(city, country)
```

- Target instances should satisfy the rules.
- What does it mean to satisfy a rule?
- Formally, if we take:

then it is satisfied by a source S and a target T if the constraint

$$\forall c_1, c_2, d \Big(\textit{Route}(c_1, c_2, d) \rightarrow \exists a_1, a_2 \; \big(\textit{Flight}(c_1, c_2, a_1, d, a_2) \big) \Big)$$

 This constraint is a relational calculus query that evaluates to true or false

- What happens if there no values for some attributes, e.g. *aircraft*, *arrival*?
- We put in null values or some real values.
- But then we may have multiple solutions!

Source Database:

ROUTE:

Source	Destination	Departure
Edinburgh	Amsterdam	0600
Edinburgh	London	0615
Edinburgh	Frankfurt	0700

BG:

Country	City	
UK	London	
UK	Edinburgh	
NL	Amsterdam	
GER	Frankfurt	

Look at the rule

The right hand side is satisfied by

But what can we put in the target?

```
Rule: Flight(c1, c2, \_, dept, \_) := Route(c1, c2, dept)
```

Satisfied by: Route(Edinburgh, Amsterdam, 0600)

Possible targets:

- Flight(Edinburgh, Amsterdam, \perp_1 , 0600, \perp_2)
- Flight(Edinburgh, Amsterdam, B737, 0600, ⊥)
- Flight(Edinburgh, Amsterdam, ⊥, 0600, 0845)
- Flight(Edinburgh, Amsterdam, \perp , 0600, \perp)
- Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

They all satisfy the constraints!

Which target to choose

- One of them happens to be right:
 - Flight(Edinburgh, Amsterdam, B737, 0600, 0845)
- But in general we do not know this; it looks just as good as
 - Flight(Edinburgh, Amsterdam, 'The Spirit of St Louis', 0600, 1300),
 or
 - Flight(Edinburgh, Amsterdam, F16, 0600, 0620).
- Goal: look for the "most general" solution.
- How to define "most general": can be mapped into any other solution.
- It is not unique either, but the space of solution is greatly reduced.
- In our case Flight(Edinburgh, Amsterdam, \perp_1 , 0600, \perp_2) is most general as it makes no additional assumptions about the nulls.

Universal solutions

- ullet A homomorphism is a mapping $h: \mathsf{Nulls} \to \mathsf{Nulls} \cup \mathsf{Constants}$.
- For example, $h(\perp_1) = B737$, $h(\perp_2) = 0845$.
- If we have two solutions T_1 and T_2 , then h is a homomorphism from T_1 into T_2 if for each tuple t in T_1 , the tuple h(t) is in T_2 .
- For example, if we have a tuple

```
t = \mathsf{Flight}(\mathsf{Edinburgh}, \, \mathsf{Amsterdam}, \bot_1, \mathsf{0600}, \bot_2)
```

then

```
h(t) = \text{Flight}(\text{Edinburgh}, \text{Amsterdam}, \text{B737}, 0600, 0845).
```

- A solution is universal if there is a homomorphism from it into every other solution.
- (We shall revisit this definition later, to deal with nulls properly.)

Universal solutions: still too many of them

• Take any n > 0 and consider the solution with n tuples:

Flight(Edinburgh, Amsterdam,
$$\bot_1$$
, 0600, \bot_2)
Flight(Edinburgh, Amsterdam, \bot_3 , 0600, \bot_4)
...
Flight(Edinburgh, Amsterdam, \bot_{2n-1} , 0600, \bot_{2n})

• It is universal too: take a homomorphism

$$h'(\perp_i) = \begin{cases} \perp_1 & \text{if } i \text{ is odd} \\ \perp_2 & \text{if } i \text{ is even} \end{cases}$$

It sends this solution into

Flight(Edinburgh, Amsterdam,
$$\perp_1$$
, 0600, \perp_2)

Universal solutions: cannot be distinguished by conjunctive queries

- There are queries that distinguish large and small universal solutions (e.g., does a relation have at least 2 tuples?)
- But these cannot be distinguished by conjunctive queries
- Because: if $\bot_{i_1}, \ldots, \bot_{i_k}$ witness a conjunctive query, so do $h(\bot_{i_1}), \ldots, h(\bot_{i_k})$ hence, one tuple suffices
- In general, if we have
 - \circ a homomorphism $h: T \to T'$,
 - \circ a conjunctive query Q
 - \circ a tuple t without nulls such that $t \in Q(T)$
- then $t \in Q(T')$

Universal solutions and conjunctive queries

- If
 - $\circ T$ and T' are two universal solutions
 - $\circ Q$ is a conjunctive query, and
 - \circ t is a tuple without nulls,

then

$$t \in Q(T) \Leftrightarrow t \in Q(T')$$

because we have homomorphisms $T \to T'$ and $T' \to T$.

- Furthermore, if
 - \circ T is a universal solution, and $T^{\prime\prime}$ is an arbitrary solution, then

$$t \in Q(T) \Rightarrow t \in Q(T'')$$

Universal solutions and conjunctive queries cont'd

- Now recall what we learned about answering conjunctive queries over databases with nulls:
 - $\circ T$ is a naive table
 - \circ the set of tuples without nulls in Q(T) is precisely $\operatorname{certain}(Q,T)$ certain answers over T
- Hence if T is an arbitrary universal solution

$$\operatorname{certain}(Q,T) = \bigcap \{Q(T') \mid T' \text{ is a solution}\}$$

ullet \cap $\{Q(T') \mid T' \text{ is a solution}\}$ is the set of certain answers in data exchange under mapping M: certain $_M(Q,S)$. Thus

$$\operatorname{certain}_M(Q,S) = \operatorname{certain}(Q,T)$$

for every universal solution T for S under M.

Universal solutions cont'd

- To answer conjunctive queries, one needs an arbitrary universal solution.
- We saw some; intuitively, it is better to have:

```
Flight(Edinburgh, Amsterdam, \perp_1, 0600, \perp_2)
```

than

```
Flight(Edinburgh, Amsterdam, \bot_1, 0600, \bot_2)
Flight(Edinburgh, Amsterdam, \bot_3, 0600, \bot_4)
...
Flight(Edinburgh, Amsterdam, \bot_{2n-1}, 0600, \bot_{2n})
```

• We now define a canonical universal solution.

Canonical universal solution

• Convert each rule into a rule of the form:

$$\psi(x_1,\ldots,x_n,\ z_1,\ldots,z_k) := \varphi(x_1,\ldots,x_n,\ y_1,\ldots,y_m)$$
 (for example, Flight(c1, c2, __, dept, __) :- Route(c1, c2, dept) becomes Flight(x_1, x_2, z_1, x_3, z_2) :- Route(x_1, x_2, x_3))

- Evaluate $\varphi(x_1,\ldots,x_n,\ y_1,\ldots,y_m)$ in S.
- For each tuple $(a_1, \ldots, a_n, b_1, \ldots, b_m)$ that belongs to the result (i.e.

$$\varphi(a_1,\ldots,a_n,\ b_1,\ldots,b_m)$$
 holds in S ,

do the following:

Canonical universal solution cont'd

- ... do the following:
 - \circ Create new (not previously used) null values \bot_1, \ldots, \bot_k
 - Put tuples in target relations so that

$$\psi(a_1,\ldots,a_n,\perp_1,\ldots,\perp_k)$$

holds.

- What is ψ ?
- ullet It is normally assumed that ψ is a conjunction of atomic formulae, i.e.

$$R_1(\bar{x}_1,\bar{z}_1) \wedge \ldots \wedge R_l(\bar{x}_l,\bar{z}_l)$$

• Tuples are put in the target to satisfy these formulae

Canonical universal solution cont'd

• Example: no-direct-route airline:

$$\mathsf{Newroute}(x_1, z) \land \mathsf{Newroute}(z, x_2) :- \mathsf{Oldroute}(x_1, x_2)$$

• If $(a_1, a_2) \in \mathsf{Oldroute}(a_1, a_2)$, then create a new null \bot and put:

Newroute
$$(a_1, \perp)$$

Newroute (\perp, a_2)

into the target.

Complexity of finding this solution: polynomial in the size of the source
 S:

$$O(\sum_{\text{rules } \psi \text{ :- } \varphi} \text{Evaluation of } \varphi \text{ on } S)$$

Canonical universal solution and conjunctive queries

- Canonical solution: $CanSol_M(S)$.
- ullet We know that if Q is a conjunctive query, then ${\rm certain}_M(Q,S)={\rm certain}(Q,T)$ for every universal solution T for S under M.
- Hence

$$\operatorname{certain}_M(Q, S) = \operatorname{certain}(Q, \operatorname{CanSol}_M(S))$$

- Algorithm for answering Q:
 - \circ Construct $CanSol_M(S)$
 - \circ Apply naive evaluation to Q over $\mathrm{CanSol}_M(S)$

Beyond conjunctive queries

- Everything still works the same way for $\sigma, \pi, \bowtie, \cup$ queries of relational algebra. Adding union is harmless.
- Adding difference (i.e. going to the full relational algebra) is not.
- Reason: same as before, can encode validity problem in logic.
- Single rule, saying "copy the source into the target"

$$T(x,y) := S(x,y)$$

- If the source is empty, what can a target be? Anything!
- The meaning of T(x,y) := S(x,y) is

$$\forall x \forall y \ \left(S(x,y) \to T(x,y) \right)$$

Beyond conjunctive queries cont'd

- Look at $\varphi = \forall x \forall y \ \big(S(x,y) \to T(x,y) \big)$
- S(x,y) is always false (S is empty), hence $S(x,y) \to T(x,y)$ is true $(p \to q \text{ is } \neg p \lor q)$
- Hence φ is true.
- ullet Even if T is empty, φ is true: universal quantification over the empty set evaluates to true:
 - Remember SQL's ALL:

```
SELECT * FROM R
WHERE R.A > ALL (SELECT S.B FROM S)
```

• The condition is true if SELECT S.B FROM S is empty.

Beyond conjunctive queries cont'd

- ullet Thus if S is empty and we have a rule T(x,y) := S(x,y), then all T's are solutions.
- Let Q be a Boolean (yes/no) query. Then

$$\operatorname{certain}_M(Q,S) = \operatorname{true} \Leftrightarrow Q \text{ is valid}$$

- Valid = always true.
- Validity problem in logic: given a logical statement, is it:
 - o valid, or
 - valid over finite databases
- Both are undecidable.

Beyond conjunctive queries cont'd

ullet If we want to answer queries by rewritings, i.e. find a query Q' so that

$$\operatorname{certain}_{M}(Q, S) = Q'(\operatorname{CanSol}_{M}(S))$$

then there is no algorithm that can construct Q' from Q!

• Hence a different approach is needed.

Key problem

• Our main problem:

Solutions are open to adding new facts

- How to close them?
- By applying the CWA (Closed World Assumption) instead of the OWA (Open World Assumption)

More flexible query answering: dealing with incomplete information

- Key issue in dealing with incomplete information:
 - Closed vs Open World Assumption (CWA vs OWA)
- CWA: database is closed to adding new facts except those consistent with one of the incomplete tuples in it.
- OWA opens databases to such facts.
- In data exchange:
 - we move data from source to target;
 - query answering should be based on that data and not on tuples that might be added later.
- Hence in data exchange CWA seems more reasonable.

Solutions under CWA – informally

- Each null introduced in the target must be justified:
 - there must be a constraint $\dots T(\dots, z, \dots) \dots := \varphi(\dots)$ with φ satisfied in the source.
- The same justification shouldn't generate multiple nulls:
 - for $T(\ldots,z,\ldots)$:— $\varphi(\bar{a})$ only one new null \bot is generated in the target.
- No unjustified facts about targets should be invented:
 - assume we have T(x,z):- $\varphi(x)$, T(z',x):- $\psi(x)$ and $\varphi(a)$, $\psi(b)$ are true in the source.
 - Then we put $T(a, \perp)$ and $T(\perp', b)$ in the target but not $T(a, \perp), T(\perp, b)$ which would invent a new "fact": a and b are connected by a path of length 2.

How to formalize this - idea

Source-to-target dependencies of the form:

$$\psi_i(\bar{a}, z_1, \dots, z_j, \dots, z_k) := \varphi_i(\bar{a}, \bar{b})$$

Justification for a null consists of:

- \bullet a dependency (i)
- a witness (\bar{a}, \bar{b}) for $\varphi_i(\bar{a}, \bar{b})$
- a position (j) of a null in the head of the rule.

Example

- Rule: Flight(c1, c2, z1, dept, z2) := Route(c1, c2, dept)
- Witness: Route(Edinburgh, Amsterdam, 0600)
- This justifies up to two nulls:

```
Flight(Edinburgh, Amsterdam, \perp_1, 0600, \perp_2) or Flight(Edinburgh, Amsterdam, \perp, 0600, \perp)
```

but not

```
Flight(Edinburgh, Amsterdam, \bot_1, 0600, \bot_2)
Flight(Edinburgh, Amsterdam, \bot_3, 0600, \bot_4)
...
Flight(Edinburgh, Amsterdam, \bot_{2n-1}, 0600, \bot_{2n})
```

Solutions under the CWA

- Each justification generates a null in CanSol(S)
- ullet Hence for each solution T under CWA there is a homomorphism

$$h: \operatorname{CanSol}(S) \to T$$

```
so that T = h(CANSOL(S))
```

• The third requirement rules out tuples like

- It invents a new fact: the same null is used twice in a tuple.
 - Not justified by the source and the rules

Solutions under the CWA

- The third requirement implies two facts:
 - \circ There is a homomorphism $h': T \to CANSOL(S)$
 - $\circ T$ contains the core of T
- What is the core?
- Suppose the Route relation has an extra attribute, in addition to source, destination, and departure time: it is flight#
- The same actual flight can have many flight numbers due to "code-sharing" so we might have

```
Route(Edinburgh, Amsterdam, 0600, KLM 123)
Route(Edinburgh, Amsterdam, 0600, AF 456)
Route(Edinburgh, Amsterdam, 0600, CSA 789)
```

Solutions under the CWA and cores cont'd

• The canonical solution then is:

Flight(Edinburgh, Amsterdam,
$$\perp_1$$
, 0600, \perp_2)
Flight(Edinburgh, Amsterdam, \perp_3 , 0600, \perp_4)
Flight(Edinburgh, Amsterdam, \perp_5 , 0600, \perp_6)

• The core collapses it by means of a homomorphism

$$h(\perp_1) = h(\perp_3) = h(\perp_5) = \perp_1$$
 $h(\perp_2) = h(\perp_4) = h(\perp_6) = \perp_2$

to

Flight(Edinburgh, Amsterdam,
$$\perp_1$$
, 0600, \perp_2)

• Core: A minimal subinstance T of CanSol(S) so that there is a homomorphism $h: CanSol(S) \to T$

Cores and CWA

- Cores are universal solutions too.
 - Advantage: space savings
 - Disadvantage: harder to compute
 - but still in polynomial time
- Basic fact: solutions under the CWA contain the core.
- Hence tuples such as

```
Flight(Edinburgh, Amsterdam, \perp, 0600, \perp)
```

are disallowed.

Solutions under the CWA: summary

• There are homomorphisms

$$h: \operatorname{CanSol}(S) \to T$$
 $h': T \to \operatorname{CanSol}(S)$

$$\circ$$
 so that $T = h(CANSOL(S))$

ullet T contains the core of $\mathrm{CanSol}(S)$

Query answering under the CWA

Given

```
 \begin{array}{c} \circ \text{ a source } S, \\ \circ \text{ a set of rules } M, \\ \circ \text{ a target query } Q, \\ \text{a tuple } t \text{ is in } \\ & \text{certain}_M^{\text{CWA}}(Q,S) \\ \text{if it is in } Q(R) \text{ for every} \\ \circ \text{ solution } T \text{ under the CWA, and} \\ \circ R \in \text{POSS}(T) \\ \end{array}
```

• (i.e. no matter which solution we choose and how we interpret the nulls)

Query answering under the CWA – characterization

ullet Given a source S, a set of rules M, and a target query Q:

$$\operatorname{certain}_{M}^{\operatorname{CWA}}(Q,S) = \operatorname{certain}(Q,\operatorname{CanSol}(S))$$

- That is, to compute the answer to query one needs to:
 - \circ Compute the canonical solution $\operatorname{CanSol}(S)$ which has nulls in it
 - \circ Find certain answers to Q over $\mathrm{CanSol}(S)$
- ullet If Q is a conjunctive query, this is exactly what we had before
- Under the CWA, the same evaluation strategy applies to all queries!

Query answering under the CWA cont'd

• Finding certain answers is possible for many classes of queries, e.g. for all relational algebra queries.

Complexity of finding certain
$${
m CWA} (Q,S)$$

=

complexity of finding certain answers to a query over a table with nulls

- polynomial time for conjunctive queries
- coNP-complete for relational algebra queries

CWA vs OWA: a comparison

• Recall the problematic case we had before:

$$T(x,y) := S(x,y)$$

- Possible targets are extensions of the source
- ullet Hence finding certain answers to an arbitrary relational algebra query Q was undecidable.
- Under the CWA:
 - \circ The only solution is a copy of S itself (and hence it is the canonical solution)
 - \circ So certain answers to Q are just Q(S) i.e. we copy S, and evaluate queries over it, as suggested by the rule.

Data exchange and integrity constraints

- Integrity constraints are often specified over target schemas
- In SQL's data definition language one uses keys and foreign keys most often, but other constraints can be specified too.
- Adding integrity constraints in data exchange is often problematic, as some natural solutions e.g., the canonical solution may fail them.
- Plan:
 - o review most commonly used database constraints
 - see how they may create problems in data exchange

Functional dependencies and keys

Functional dependency:

$$X \rightarrow Y$$

where X, Y are sequences of attributes. It holds in a relation R if for every two tuples t_1, t_2 in R:

$$\pi_X(t_1) = \pi_X(t_2)$$
 implies $\pi_Y(t_1) = \pi_Y(t_2)$

- The most important special case: keys
- ullet $K \to U$, where U is the set of all attributes:

$$\pi_K(t_1) = \pi_K(t_2)$$
 implies $t_1 = t_2$

• That is, a key is a set of attributes that uniquely identify a tuple in a relation.

Inclusion constraints

- Referential integrity constraints: they talk about attributes of one relation but refer to values in another.
- An inclusion dependency

$$R[A_1,\ldots,A_n]\subseteq S[B_1,\ldots,B_n]$$

It holds when

$$\pi_{A_1,\ldots,A_n}(R) \subseteq \pi_{B_1,\ldots,B_n}(S)$$

Foreign keys

- Most often inclusion constraints occur as a part of a foreign key
- Foreign key is a conjunction of a key and an ID:

$$R[A_1, \dots, A_n] \subseteq S[B_1, \dots, B_n]$$
 and $\{B_1, \dots, B_n\} \to \text{all attributes of } S$

- ullet Meaning: we find a key for relation S in relation R.
- Example: Suppose we have relations:
 Employee(EmplId, Name, Dept, Salary)
 ReportsTo(Empl1, Empl2).
- We expect both Empl1 and Empl2 to be found in Employee; hence: ReportsTo[Empl1] ⊆ Employee[EmplId]
 ReportsTo[Empl2] ⊆ Employee[EmplId].
- If EmplId is a key for Employee, then these are foreign keys.

Target constraints cause problems

- The simplest example:
 - Copy source to target
 - Impose a constraint on target not satisfied in the source
- Data exchange setting:
 - $\circ T(x,y) := S(x,y)$ and
 - o Constraint: the first attribute is a key
- Every target T must include these tuples and hence violates the key.

Target constraints: more problems

- A common problem: an attempt to repair violations of constraints leads to an sequence of adding tuples.
- Example:
 - Source DeptEmpl(dept_id,manager_name,empl_id)
 - Target
 - Dept(dept_id,manager_id,manager_name),
 - Empl(empl_id,dept_id)
 - \circ Rule $\mathsf{Dept}(d, \mathbf{z}, n), \mathsf{Empl}(e, d) :- \mathsf{DeptEmpl}(d, n, e)$
 - Target constraints:
 - $Dept[manager_id] \subseteq Empl[empl_id]$
 - $Empl[dept_id] \subseteq Dept[dept_id]$

Target constraints: more problems cont'd

- Start with (CS, John, 001) in DeptEmpl.
- Put Dept(CS, \perp_1 , John) and Empl(001, CS) in the target
- Use the first constraint and add a tuple $\mathsf{Empl}(\bot_1, \bot_2)$ in the target
- Use the second constraint and put $Dept(\perp_2, \perp_3, \perp_3')$ into the target
- Use the first constraint and add a tuple $\text{Empl}(\perp_3, \perp_4)$ in the target
- Use the second constraint and put $Dept(\perp_4, \perp_5, \perp_5')$ into the target
- this never stops....

Target constraints: avoiding this problem

- Change the target constraints slightly:
 - Target constraints:
 - Dept[dept_id,manager_id]
 ⊆ Empl[empl_id, dept_id]
 - Empl[dept_id] ⊆ Dept[dept_id]
- Again start with (CS, John, 001) in DeptEmpl.
- Put Dept(CS, \perp_1 , John) and Empl(001, CS) in the target
- Use the first constraint and add a tuple Empl(\perp_1 , CS)
- Now constraints are satisfied we have a target instance!
- What's the difference? In our first example constraints are very cyclic causing an infinite loop. There is less cyclicity in the second example. Bottom line: avoid cyclic constraints.