
Data exchange

• Source schema, target schema; need to transfer data between them.

• A typical scenario:

◦ Two organizations have their legacy databases, schemas cannot be
changed.

◦ Data from one organization 1 needs to be transfered to data from
organization 2.

◦ Queries need to be answered against the transferred data.

L. Libkin 1 Data Integration and Exchange

Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T

L. Libkin 2 Data Integration and Exchange

Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T

TARGET

DATABASE
?????

L. Libkin 3 Data Integration and Exchange

Data exchange: an example

• We want to create a target database with the schema

Flight(city1,city2,aircraft,departure,arrival)
Served(city,country,population,agency)

• We don’t start from scratch: there is a source database containing
relations

Route(source,destination,,departure)
BG(country,city)

• We want to transfer data from the source to the target.

L. Libkin 4 Data Integration and Exchange

Data exchange – relationships between the source
and the target

How to specify the relationship?

SERVED

ROUTE Source Dest Departure FLIGHTcity1 city2 aircraft departure arrival

Country CityBG agencypopulationcountrycity

L. Libkin 5 Data Integration and Exchange

Relationships between the source and the target

• Formal specification: we have a relational calculus query over both the
source and the target schema.

• The query is of a restricted form, and can be thought of as a sequence
of rules:

Flight(c1, c2, , dept,) :– Route(c1, c2, dept)

Served(city, country, ,) :– Route(city, ,), BG(city, country)

Served(city, country, ,) :– Route(, city,), BG(city, country)

L. Libkin 6 Data Integration and Exchange

Data exchange – targets

• Target instances should satisfy the rules.

• What does it mean to satisfy a rule?

• Formally, if we take:

Flight(c1, c2, , dept,) :– Route(c1, c2, dept)

then it is satisfied by a source S and a target T if the constraint

∀c1, c2, d
(
Route(c1, c2, d) → ∃a1, a2

(
Flight(c1, c2, a1, d, a2)

))
• This constraint is a relational calculus query that evaluates to true or

false

L. Libkin 7 Data Integration and Exchange

Data exchange – targets

• What happens if there no values for some attributes, e.g. aircraft,
arrival?

• We put in null values or some real values.

• But then we may have multiple solutions!

L. Libkin 8 Data Integration and Exchange

Data exchange – targets

Source Database:

ROUTE:

Source Destination Departure
Edinburgh Amsterdam 0600
Edinburgh London 0615
Edinburgh Frankfurt 0700

BG:

Country City
UK London
UK Edinburgh
NL Amsterdam

GER Frankfurt

Look at the rule

Flight(c1, c2, , dept,) :– Route(c1, c2, dept)

The right hand side is satisfied by

Route(Edinburgh, Amsterdam, 0600)

But what can we put in the target?

L. Libkin 9 Data Integration and Exchange

Data exchange – targets

Rule: Flight(c1, c2, , dept,) :– Route(c1, c2, dept)

Satisfied by: Route(Edinburgh, Amsterdam, 0600)

Possible targets:

• Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

• Flight(Edinburgh, Amsterdam, B737, 0600, ⊥)

• Flight(Edinburgh, Amsterdam, ⊥, 0600, 0845)

• Flight(Edinburgh, Amsterdam, ⊥, 0600, ⊥)

• Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

They all satisfy the constraints!

L. Libkin 10 Data Integration and Exchange

Which target to choose

• One of them happens to be right:

– Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

• But in general we do not know this; it looks just as good as

– Flight(Edinburgh, Amsterdam, ’The Spirit of St Louis’, 0600, 1300),
or

– Flight(Edinburgh, Amsterdam, F16, 0600, 0620).

• Goal: look for the “most general” solution.

• How to define “most general”: can be mapped into any other solution.

• It is not unique either, but the space of solution is greatly reduced.

• In our case Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2) is most gen-
eral as it makes no additional assumptions about the nulls.

L. Libkin 11 Data Integration and Exchange

Universal solutions

• A homomorphism is a mapping h : Nulls → Nulls ∪ Constants.

• For example, h(⊥1) = B737, h(⊥2) = 0845.

• If we have two solutions T1 and T2, then h is a homomorphism from
T1 into T2 if for each tuple t in T1, the tuple h(t) is in T2.

• For example, if we have a tuple

t = Flight(Edinburgh, Amsterdam,⊥1, 0600,⊥2)

then

h(t) = Flight(Edinburgh, Amsterdam, B737, 0600, 0845).

• A solution is universal if there is a homomorphism from it into every
other solution.

• (We shall revisit this definition later, to deal with nulls properly.)

L. Libkin 12 Data Integration and Exchange

Universal solutions: still too many of them

• Take any n > 0 and consider the solution with n tuples:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
. . .
Flight(Edinburgh, Amsterdam, ⊥2n−1, 0600, ⊥2n)

• It is universal too: take a homomorphism

h′(⊥i) =

{
⊥1 if i is odd

⊥2 if i is even

• It sends this solution into

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

L. Libkin 13 Data Integration and Exchange

Universal solutions: cannot be distinguished by
conjunctive queries

• There are queries that distinguish large and small universal solutions
(e.g., does a relation have at least 2 tuples?)

• But these cannot be distinguished by conjunctive queries

• Because: if ⊥i1, . . . ,⊥ik witness a conjunctive query, so do h(⊥i1), . . . , h(⊥ik)
— hence, one tuple suffices

• In general, if we have

◦ a homomorphism h : T → T ′,
◦ a conjunctive query Q

◦ a tuple t without nulls such that t ∈ Q(T)

• then t ∈ Q(T ′)

L. Libkin 14 Data Integration and Exchange

Universal solutions and conjunctive queries

• If

◦ T and T ′ are two universal solutions

◦ Q is a conjunctive query, and

◦ t is a tuple without nulls,

then
t ∈ Q(T) ⇔ t ∈ Q(T ′)

because we have homomorphisms T → T ′ and T ′ → T .

• Furthermore, if

◦ T is a universal solution, and T ′′ is an arbitrary solution,

then
t ∈ Q(T) ⇒ t ∈ Q(T ′′)

L. Libkin 15 Data Integration and Exchange

Universal solutions and conjunctive queries cont’d

• Now recall what we learned about answering conjunctive queries over
databases with nulls:

◦ T is a naive table

◦ the set of tuples without nulls in Q(T) is precisely certain(Q,T) –
certain answers over T

• Hence if T is an arbitrary universal solution

certain(Q,T) =
⋂

{Q(T ′) | T ′ is a solution}

• ⋂{Q(T ′) | T ′ is a solution} is the set of certain answers in data
exchange under mapping M : certainM(Q,S). Thus

certainM(Q,S) = certain(Q,T)

for every universal solution T for S under M .

L. Libkin 16 Data Integration and Exchange

Universal solutions cont’d

• To answer conjunctive queries, one needs an arbitrary universal solution.

• We saw some; intuitively, it is better to have:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

than

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
. . .
Flight(Edinburgh, Amsterdam, ⊥2n−1, 0600, ⊥2n)

• We now define a canonical universal solution.

L. Libkin 17 Data Integration and Exchange

Canonical universal solution

• Convert each rule into a rule of the form:

ψ(x1, . . . , xn, z1, . . . , zk) :– ϕ(x1, . . . , xn, y1, . . . , ym)

(for example,
Flight(c1, c2, , dept,) :– Route(c1, c2, dept)

becomes

Flight(x1, x2, z1, x3, z2) :– Route(x1, x2, x3))

• Evaluate ϕ(x1, . . . , xn, y1, . . . , ym) in S.

• For each tuple (a1, . . . , an, b1, . . . , bm) that belongs to the result (i.e.

ϕ(a1, . . . , an, b1, . . . , bm) holds in S,

do the following:

L. Libkin 18 Data Integration and Exchange

Canonical universal solution cont’d

• . . . do the following:

◦ Create new (not previously used) null values ⊥1, . . . ,⊥k

◦ Put tuples in target relations so that

ψ(a1, . . . , an, ⊥1, . . . ,⊥k)

holds.

• What is ψ?

• It is normally assumed that ψ is a conjunction of atomic formulae, i.e.

R1(x̄1, z̄1) ∧ . . . ∧Rl(x̄l, z̄l)

• Tuples are put in the target to satisfy these formulae

L. Libkin 19 Data Integration and Exchange

Canonical universal solution cont’d

• Example: no-direct-route airline:

Newroute(x1, z) ∧ Newroute(z, x2) :– Oldroute(x1, x2)

• If (a1, a2) ∈ Oldroute(a1, a2), then create a new null ⊥ and put:

Newroute(a1,⊥)
Newroute(⊥, a2)

into the target.

• Complexity of finding this solution: polynomial in the size of the source
S:

O(
∑

rules ψ :- ϕ
Evaluation of ϕ on S)

L. Libkin 20 Data Integration and Exchange

Canonical universal solution and conjunctive queries

• Canonical solution: CanSolM(S).

• We know that if Q is a conjunctive query, then certainM(Q,S) =
certain(Q, T) for every universal solution T for S under M .

• Hence
certainM(Q,S) = certain(Q,CanSolM(S))

• Algorithm for answering Q:

◦ Construct CanSolM(S)

◦ Apply naive evaluation to Q over CanSolM(S)

L. Libkin 21 Data Integration and Exchange

Beyond conjunctive queries

• Everything still works the same way for σ, π,��,∪ queries of relational
algebra. Adding union is harmless.

• Adding difference (i.e. going to the full relational algebra) is not.

• Reason: same as before, can encode validity problem in logic.

• Single rule, saying “copy the source into the target”

T (x, y) :– S(x, y)

• If the source is empty, what can a target be? Anything!

• The meaning of T (x, y) :– S(x, y) is

∀x∀y (
S(x, y) → T (x, y)

)

L. Libkin 22 Data Integration and Exchange

Beyond conjunctive queries cont’d

• Look at ϕ = ∀x∀y (
S(x, y) → T (x, y)

)
• S(x, y) is always false (S is empty), hence S(x, y) → T (x, y) is true

(p→ q is ¬p ∨ q)
• Hence ϕ is true.

• Even if T is empty, ϕ is true: universal quantification over the empty
set evaluates to true:

◦ Remember SQL’s ALL:

SELECT * FROM R

WHERE R.A > ALL (SELECT S.B FROM S)

◦ The condition is true if SELECT S.B FROM S is empty.

L. Libkin 23 Data Integration and Exchange

Beyond conjunctive queries cont’d

• Thus if S is empty and we have a rule T (x, y) :– S(x, y), then all
T ’s are solutions.

• Let Q be a Boolean (yes/no) query. Then

certainM(Q,S) = true ⇔ Q is valid

• Valid = always true.

• Validity problem in logic: given a logical statement, is it:

◦ valid, or

◦ valid over finite databases

• Both are undecidable.

L. Libkin 24 Data Integration and Exchange

Beyond conjunctive queries cont’d

• If we want to answer queries by rewritings, i.e. find a query Q′ so that

certainM(Q,S) = Q′(CanSolM(S))

then there is no algorithm that can construct Q′ from Q!

• Hence a different approach is needed.

L. Libkin 25 Data Integration and Exchange

Key problem

• Our main problem:

Solutions are open to adding new facts

• How to close them?

• By applying the CWA (Closed World Assumption) instead of the OWA
(Open World Assumption)

L. Libkin 26 Data Integration and Exchange

More flexible query answering: dealing with
incomplete information

• Key issue in dealing with incomplete information:

- Closed vs Open World Assumption (CWA vs OWA)

• CWA: database is closed to adding new facts except those consistent
with one of the incomplete tuples in it.

• OWA opens databases to such facts.

• In data exchange:

- we move data from source to target;

- query answering should be based on that data and not on tuples
that might be added later.

• Hence in data exchange CWA seems more reasonable.

L. Libkin 27 Data Integration and Exchange

Solutions under CWA – informally

• Each null introduced in the target must be justified:

- there must be a constraint . . . T (. . . , z, . . .) . . . :– ϕ(. . .) with ϕ
satisfied in the source.

• The same justification shouldn’t generate multiple nulls:

- for T (. . . , z, . . .) :– ϕ(ā) only one new null ⊥ is generated in the
target.

• No unjustified facts about targets should be invented:

- assume we have T (x, z):– ϕ(x), T (z′, x):–ψ(x) and ϕ(a), ψ(b)
are true in the source.

- Then we put T (a,⊥) and T (⊥′, b) in the target but not
T (a,⊥), T (⊥, b) which would invent a new “fact”: a and b are
connected by a path of length 2.

L. Libkin 28 Data Integration and Exchange

How to formalize this – idea

Source-to-target dependencies of the form:

ψi(ā, z1, . . . , zj, . . . , zk) :– ϕi(ā, b̄)

Justification for a null consists of:

• a dependency (i)

• a witness (ā, b̄) for ϕi(ā, b̄)

• a position (j) of a null in the head of the rule.

L. Libkin 29 Data Integration and Exchange

Example

• Rule: Flight(c1, c2, z1, dept, z2) :– Route(c1, c2, dept)

• Witness: Route(Edinburgh, Amsterdam, 0600)

• This justifies up to two nulls:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
or

Flight(Edinburgh, Amsterdam, ⊥, 0600, ⊥)

• but not

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
. . .
Flight(Edinburgh, Amsterdam, ⊥2n−1, 0600, ⊥2n)

L. Libkin 30 Data Integration and Exchange

Solutions under the CWA

• Each justification generates a null in CanSol(S)

• Hence for each solution T under CWA there is a homomorphism

h : CanSol(S) → T

so that T = h(CanSol(S))

• The third requirement rules out tuples like

Flight(Edinburgh, Amsterdam, ⊥, 0600, ⊥)

• It invents a new fact: the same null is used twice in a tuple.

◦ Not justified by the source and the rules

L. Libkin 31 Data Integration and Exchange

Solutions under the CWA

• The third requirement implies two facts:

◦ There is a homomorphism h′ : T → CanSol(S)

◦ T contains the core of T

• What is the core?

• Suppose the Route relation has an extra attribute, in addition to source,
destination, and departure time: it is flight#

• The same actual flight can have many flight numbers due to “code-
sharing” so we might have

Route(Edinburgh, Amsterdam, 0600, KLM 123)
Route(Edinburgh, Amsterdam, 0600, AF 456)
Route(Edinburgh, Amsterdam, 0600, CSA 789)

L. Libkin 32 Data Integration and Exchange

Solutions under the CWA and cores cont’d

• The canonical solution then is:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
Flight(Edinburgh, Amsterdam, ⊥5, 0600, ⊥6)

• The core collapses it by means of a homomorphism

h(⊥1) = h(⊥3) = h(⊥5) = ⊥1 h(⊥2) = h(⊥4) = h(⊥6) = ⊥2

to

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

• Core: A minimal subinstance T of CanSol(S) so that there is a
homomorphism h : CanSol(S) → T

L. Libkin 33 Data Integration and Exchange

Cores and CWA

• Cores are universal solutions too.

◦ Advantage: space savings

◦ Disadvantage: harder to compute

- but still in polynomial time

• Basic fact: solutions under the CWA contain the core.

• Hence tuples such as

Flight(Edinburgh, Amsterdam, ⊥, 0600, ⊥)

are disallowed.

L. Libkin 34 Data Integration and Exchange

Solutions under the CWA: summary

• There are homomorphisms

h : CanSol(S) → T h′ : T → CanSol(S)

◦ so that T = h(CanSol(S))

• T contains the core of CanSol(S)

L. Libkin 35 Data Integration and Exchange

Query answering under the CWA

• Given

◦ a source S,

◦ a set of rules M ,

◦ a target query Q,

a tuple t is in
certainCWA

M (Q,S)

if it is in Q(R) for every

◦ solution T under the CWA, and

◦ R ∈ POSS(T)

• (i.e. no matter which solution we choose and how we interpret the
nulls)

L. Libkin 36 Data Integration and Exchange

Query answering under the CWA – characterization

• Given a source S, a set of rules M , and a target query Q:

certainCWA
M (Q,S) = certain(Q,CanSol(S))

• That is, to compute the answer to query one needs to:

◦ Compute the canonical solution CanSol(S) – which has nulls in
it

◦ Find certain answers to Q over CanSol(S)

• If Q is a conjunctive query, this is exactly what we had before

• Under the CWA, the same evaluation strategy applies to all queries!

L. Libkin 37 Data Integration and Exchange

Query answering under the CWA cont’d

• Finding certain answers is possible for many classes of queries, e.g. for
all relational algebra queries.

•
Complexity of finding certainCWA

M (Q,S)
=

complexity of finding certain answers to a query over a table with nulls

• polynomial time for conjunctive queries

• coNP-complete for relational algebra queries

L. Libkin 38 Data Integration and Exchange

CWA vs OWA: a comparison

• Recall the problematic case we had before:

T (x, y) :– S(x, y)

• Possible targets are extensions of the source

• Hence finding certain answers to an arbitrary relational algebra query
Q was undecidable.

• Under the CWA:

◦ The only solution is a copy of S itself (and hence it is the canonical
solution)

◦ So certain answers toQ are justQ(S) – i.e. we copy S, and evaluate
queries over it, as suggested by the rule.

L. Libkin 39 Data Integration and Exchange

Data exchange and integrity constraints

• Integrity constraints are often specified over target schemas

• In SQL’s data definition language one uses keys and foreign keys most
often, but other constraints can be specified too.

• Adding integrity constraints in data exchange is often problematic, as
some natural solutions – e.g., the canonical solution – may fail them.

• Plan:

◦ review most commonly used database constraints

◦ see how they may create problems in data exchange

L. Libkin 40 Data Integration and Exchange

Functional dependencies and keys

• Functional dependency:
X → Y

where X, Y are sequences of attributes. It holds in a relation R if for
every two tuples t1, t2 in R:

πX(t1) = πX(t2) implies πY (t1) = πY (t2)

• The most important special case: keys

• K → U , where U is the set of all attributes:

πK(t1) = πK(t2) implies t1 = t2

• That is, a key is a set of attributes that uniquely identify a tuple in a
relation.

L. Libkin 41 Data Integration and Exchange

Inclusion constraints

• Referential integrity constraints: they talk about attributes of one re-
lation but refer to values in another.

• An inclusion dependency

R[A1, . . . , An] ⊆ S[B1, . . . , Bn]

It holds when
πA1,...,An(R) ⊆ πB1,...,Bn(S)

L. Libkin 42 Data Integration and Exchange

Foreign keys

• Most often inclusion constraints occur as a part of a foreign key

• Foreign key is a conjunction of a key and an ID:

R[A1, . . . , An] ⊆ S[B1, . . . , Bn] and

{B1, . . . , Bn} → all attributes of S

• Meaning: we find a key for relation S in relation R.

• Example: Suppose we have relations:
Employee(EmplId, Name, Dept, Salary)

ReportsTo(Empl1,Empl2).

• We expect both Empl1 and Empl2 to be found in Employee; hence:
ReportsTo[Empl1] ⊆ Employee[EmplId]

ReportsTo[Empl2] ⊆ Employee[EmplId].

• If EmplId is a key for Employee, then these are foreign keys.

L. Libkin 43 Data Integration and Exchange

Target constraints cause problems

• The simplest example:

◦ Copy source to target

◦ Impose a constraint on target not satisfied in the source

• Data exchange setting:

◦ T (x, y) :– S(x, y) and

◦ Constraint: the first attribute is a key

• Instance S:
1 2
1 3

• Every target T must include these tuples and hence violates the key.

L. Libkin 44 Data Integration and Exchange

Target constraints: more problems

• A common problem: an attempt to repair violations of constraints leads
to an sequence of adding tuples.

• Example:

◦ Source DeptEmpl(dept id,manager name,empl id)

◦ Target

- Dept(dept id,manager id,manager name),

- Empl(empl id,dept id)

◦ Rule Dept(d, z, n), Empl(e, d) :– DeptEmpl(d, n, e)

◦ Target constraints:

- Dept[manager id] ⊆ Empl[empl id]

- Empl[dept id] ⊆ Dept[dept id]

L. Libkin 45 Data Integration and Exchange

Target constraints: more problems cont’d

• Start with (CS, John, 001) in DeptEmpl.

• Put Dept(CS, ⊥1, John) and Empl(001, CS) in the target

• Use the first constraint and add a tuple Empl(⊥1, ⊥2) in the target

• Use the second constraint and put Dept(⊥2, ⊥3, ⊥3’) into the target

• Use the first constraint and add a tuple Empl(⊥3, ⊥4) in the target

• Use the second constraint and put Dept(⊥4, ⊥5, ⊥5’) into the target

• this never stops....

L. Libkin 46 Data Integration and Exchange

Target constraints: avoiding this problem

• Change the target constraints slightly:

◦ Target constraints:

- Dept[dept id,manager id] ⊆ Empl[empl id, dept id]

- Empl[dept id] ⊆ Dept[dept id]

• Again start with (CS, John, 001) in DeptEmpl.

• Put Dept(CS, ⊥1, John) and Empl(001, CS) in the target

• Use the first constraint and add a tuple Empl(⊥1, CS)

• Now constraints are satisfied – we have a target instance!

• What’s the difference? In our first example constraints are very cyclic
causing an infinite loop. There is less cyclicity in the second example.
Bottom line: avoid cyclic constraints.

L. Libkin 47 Data Integration and Exchange

