Data integration – general setting

- A source schema S:
 - relational schema, XML Schema (DTD), etc.
- A global schema G:
 - could be of many different types too
- A mapping M between S and G:
 - many ways to specify it, e.g. by queries that mention S and T
- A general condition: the source and our view of the global schema should satisfy the conditions imposed by the mapping M.
Data integration – general setting cont’d

- Assume we have a source database D.
- We are interested in databases D' over the global schema such that (D, D') satisfies the conditions of the mapping M.
- There are many possible ways to specify the mapping.
- The set of such databases D' is denoted by $[D]_M$.
- If we have a query Q, we want certain answers that are true in all possible databases D':

$$\text{certain}_M(Q, D) = \bigcap_{D' \in [D]_M} Q(D').$$
Data integration – general setting cont’d

- Depending on a type of mapping \(M \), the set \([D]_M\) could be very large — or even infinite.
- That makes \(\text{certain}_M(Q, D) \) prohibitively expensive or even impossible to compute.
- Hence we need a rewriting \(Q' \) so that

\[
\text{certain}_M(Q, D) = Q'(D)
\]

or even

\[
\text{certain}_M(Q, D) = Q'(V)
\]

if \(V \) is the set of views that the database \(D \) makes available.
Types of mappings: Two major parameters

• Source-central vs global schema-central:
 ◦ Source is defined in terms of the global schema
 – Known as local-as-view (LAV)
 ◦ The global schema is defined in terms of the source
 – Known as global-as-view (GAV)
 ◦ Combinations are possible (GLAV, P2P, to be seen later)

• Exact vs sound definitions
 ◦ Exact definition specify precise relationships that must hold between the source and the global schema database
 ◦ Sound definitions leave that description potentially incomplete: we know some relationships but not all of them.
 – potentially many more instances in $[D]^M$
Example

• Source schema:
 ◦ EM50(title, year, director)
 – meaning: European movies made since 1950
 ◦ RV10(movie, review)
 – reviews for the past 10 years

• Global schema:
 ◦ Movie(title, director, year)
 ◦ ED(name, country, dob) (European directors)
 ◦ RV(movie, review) (reviews)
Example – LAV setting

- We define the source (local) in terms of the global schema – hence local is a view.

- Two possibilities for $D' \in [D]_M$:
 - Exact: $D = Q(D')$, where Q is a query over the global schema.
 - Sound: $D \subseteq Q(D')$.
 - In other words, if a fact is present in D, it must be derivable from the global schema by means of Q.

- More generally, for each n-ary relation R in the source schema, there is a query Q_R over the global schema such that
 - $R = Q_R(D')$ (exact)
 - $R \subseteq Q_R(D')$ (sound)
Sound LAV setting

\[
\text{EM50}(T,Y,D) \subseteq \left\{ (t,y,d) \mid \exists n, do\exists \left(\text{Movie}(t,y,d) \land \text{ED}(d,n,do) \land y \geq 1950 \right) \right\}
\]

\[
\text{RV10}(t,r) \subseteq \left\{ (t,r) \mid \exists y, d \left(\text{Movie}(t,y,d) \land \text{RV}(t,r) \land y \geq 1998 \right) \right\}
\]

Right-hand sides are simple SQL queries involving joins and simple selection predicates:

```
SELECT M.title, RV.review
FROM Movie M, RV
WHERE M.title=RV.title AND M.year >= 1998
```
Exact LAV setting

\[EM50(T,Y,D) = \{ (t, y, d) \mid \exists n, dob \left(\begin{array}{c}
\text{Movie}(t, y, d) \\
\wedge ED(d, n, dob) \\
\wedge y \geq 1950
\end{array} \right) \} \]

\[RV10(t, r) = \{ (t, r) \mid \exists y, d \left(\begin{array}{c}
\text{Movie}(t, y, d) \\
\wedge RV(t, r) \\
\wedge y \geq 1998
\end{array} \right) \} \]

All the data from the global database must be reflected in the source.
LAV setting – queries

Consider a global schema query

```
SELECT M.title, R.review
FROM Movie M, RV R
WHERE M.title=R.title AND M.year = 2000
```

(Movies from 2000 and their reviews)

This is rewritten as a relational calculus query:

```
\{t, r \mid \exists d, y \text{ Movie}(t, d, y) \land \text{RV}(t, r) \land y = 2000\}
```
LAV setting:
\{ t, r \mid \exists d, y \ \text{Movie}(t, d, y) \land \text{RV}(t, r) \land y = 2000 \}

Idea: re-express in terms of predicates of the source schema. The following seems to be the best possible way:

\{ t, r \mid \exists d, y \text{EM50}(t, y, d) \land \text{RV10}(t, r) \land y = 2000 \}

and back to SQL:

```
SELECT EM50.title, RV10.review
FROM EM50, RV10
WHERE EM50.title=RV10.title AND EM50.year = 2000
```

- Is this always possible?
- In what sense is this the best way?
GAV settings

- Global schema is defined in terms of sources.
- Sound GAV:
 - \(D' \supseteq Q(D) \)
 - the global database contains the result of a query over the source
- Exact GAV:
 - \(D' = Q(D) \)
 - the global database is obtained as the result of a query over the source
- Note: in exact GAV, \([D]_M\) contains a unique database!
GAV example

- Change the schema slightly: \(ED'(name) \) (i.e. we only keep names of European directors)
- A sound GAV setting:
 - Movie \(\supseteq \) EM50
 - \(ED' \supseteq \{d | \exists t, y \ \text{EM50}(t, d, y)\} \)
 - RV \(\supseteq \) RV10

Look at a SQL query:

```sql
SELECT M.title, RV.review
FROM Movie M, RV
WHERE M.title=RV.title AND M.year = 2000
```

(Movies from 2000 and their reviews)
GAV example

- Query: \(\{ t, r \mid \exists d, y \ M(t, d, y) \land RV(t, r) \land y = 2000 \} \)

- Substitute the definitions from the mapping and get:

 \(\{ t, r \mid \exists d, y \ EM50(t, d, y) \land RV10(t, r) \land y = 2000 \} \)

- This is called unfolding.

- Does this always work? Can queries become too large?
Integration with views

• We have assumed that all source databases are available.
• But often we only get views that they publish.
• If only views are available, can queries be:
 – answered?
 – approximated?
• Assume that in EM50 directors are omitted. Then nothing is affected.
• But if titles are omitted in EM50, we cannot answer the query.
Towards view-based query answering

• Suppose only a view of the source is available. Can queries be answered?
• It depends on the query language.
• Start with relational algebra/calculus.
• Suppose we have either a LAV or a GAV setting, and we want to answer queries over the global schema using the view over the source.
• Problem: given the setting, and a query, can it be answered?
• This is **undecidable**!
• Two undecidable relational algebra problems:
 • If e is a relational algebra expression, does it always produce \emptyset (i.e., on every database)?
 • Closely related: if e_1 and e_2 are two relational algebra expressions, is it true that $e_1(D) = e_2(D)$ for every database?
Equivalence of relational algebra expressions

• A side note – this is the basis of query optimisation.
• But it can only be sound, never complete.
• Equivalence is undecidable for the full relational algebra
 ○ \(\pi, \sigma, \nabla, \cup, -\)
• The good news: it is decidable for \(\pi, \sigma, \nabla, \cup\)
• And quite efficiently for \(\pi, \sigma, \nabla\)
• And the latter form a very important class of queries, to be seen soon.
View-based query answering – relational algebra

- A very simple setting: exact LAV (and GAV)
 - the source schema and the target schema are identical (say, for each $R(A, B, C, \ldots)$ in the source there is $R'(A', B', C', \ldots)$ in the target)
 - The constraints in M state that they are the same.
 - The source does not publish any views: i.e. $V = \emptyset$.
- If we can answer queries in this setting, it means they have to be answered independently of the data in the source.
- The only way it happens: $Q(D_1) = Q(D_2)$ for all databases D_1, D_2; we output this answer without even looking at the view \emptyset.
- But this $(Q(D_1) = Q(D_2)$ for all databases $D_1, D_2)$ is undecidable.
A better class of queries

- Conjunctive queries
- They are the building blocks for SQL queries:

\[
\text{SELECT } \ldots \ldots \text{\ FROM R1, \ldots, Rn } \\
\text{WHERE } <\text{conjunction of equalities}>
\]

- For example:

\[
\text{SELECT M.title, RV.review} \\
\text{FROM Movie M, RV} \\
\text{WHERE M.title=RV.title AND M.year = 2000}
\]

- In relational calculus:

\[
\{ t, r \mid \exists d, y \text{ Movie}(t, d, y) \land \text{RV}(t, r) \land y = 2000 \}
\]
Conjunctive queries

- \{ t, r \mid \exists d, y \text{ Movie}(t, d, y) \land \text{RV}(t, r) \land y = 2000 \}

- Written using only conjunction and existential quantification – hence the name.

- In relational algebra:
 \[\pi_{t,r} \left(\sigma_{y=2000} \left(\text{Movie} \bowtie_{\text{Movie}.t = \text{RV}.t} \text{RV} \right) \right) \]

- Also called SPJ-queries (Select-Project-Join)

- These are all equivalent (exercise – why?)
Conjunctive queries: good properties

- **QUERY CONTAINMENT:**
 - Input: two queries Q_1 and Q_2
 - Output: true if $Q_1(D) \subseteq Q_2(D)$ for all databases D

- **QUERY EQUIVALENCE:**
 - Input: two queries Q_1 and Q_2
 - Output: true if $Q_1(D) = Q_2(D)$ for all databases D

- For relational algebra queries, both are undecidable.
- For conjunctive queries, both are decidable.
- Complexity: NP. This gives an $O(2^n)$ algorithm.
- Can often be reasonable in practice – queries are small.
Conjunctive queries: good properties

- For each conjunctive query, one can find an equivalent query with the minimum number of joins.
- \[\text{SELECT } R2.A \]
 \[\text{FROM } R \text{ R1, R R2} \]
 \[\text{WHERE } R1.A=R2.A \text{ AND } R1.B=2 \text{ AND } R1.C=1 \]
- In relational algebra: \(\pi_{\ldots}(\sigma_{\ldots}(R \times R)) \)
- \(\{ x \mid \exists y, z \ R(x, 2, 1) \land R(x, y, z) \} \)
- Looking at it carefully, this is equivalent to \(\{ x \mid R(x, 2, 1) \} \), or \(\pi_A(\sigma_{B=2\land C=1}(R)) \)
- The join is saved:
 \[\text{SELECT } R.A \]
 \[\text{FROM } R \text{ WHERE } R.B=2 \text{ AND } R.C=1 \]
Conjunctive queries: complexity

• Can one find a polynomial algorithm? Unlikely.
• Reminder: NP-completeness.
• Take a graph $G = (V, E)$:
 - $V = \{a_1, \ldots, a_n\}$ the set of vertices;
 - E is the set of edges (a_i, a_j)
• and define a conjunctive query

$$Q_G = \exists x_1, \ldots x_n \bigwedge_{(a_i, a_j) \in E} E(x_i, x_j)$$

• Then G' satisfies Q_G iff there is a homomorphism from G to G'.
• A homomorphism from G to $\{(r, b), (r, g), (g, b), (g, r), (b, r), (b, g)\}$
 \Leftrightarrow the graph is 3-colourable.
Conjunctive queries: summary

- A nicely-behaved class
- Basic building blocks of SQL queries
- Easy to reason about
 - Another important property: monotonicity:
 - if $D_1 \subseteq D_2$ then $Q(D_1) \subseteq Q(D_2)$
- Heavily used in data integration/exchange
GAV-exact with conjunctive queries

- Source: \(R_1(A, B), R_2(B, C) \)
- Global schema: \(T_1(A, B, C), T_2(B, C) \)
- Exact GAV mapping:
 - \(T_1 = \{x, y, z \mid R_1(x, y) \land R_2(y, z)\} \) (or \(R_1 \bowtie_B R_2 \))
 - \(T_2 = \{x, y \mid R_2(x, y)\} \)
- Query \(Q \):

  ```
  SELECT T1.A, T1.B, T2.C
  FROM T1, T2
  ```
- As conjunctive query: \(\{x, y, z \mid T_1(x, y, z) \land T_2(y, z)\} \)
GAV-exact with conjunctive queries cont’d

• Take \(\{ x, y, z \mid T_1(x, y, z) \land T_2(y, z) \} \) and unfold:
 \[
 \{ x, y, z \mid R_1(x, y) \land R_2(y, z) \land R_2(y, z) \}
 \]
 • or \(R_1 \bowtie R_2 \bowtie R_2 \)

• This is of course \(R_1 \bowtie R_2 \).

• Bottom line: optimise after unfolding – save joins.
GAV-sound with conjunctive queries

• Source and global schema as before:
 ◦ source \(R_1(A, B), R_2(B, C) \)
 ◦ Global schema: \(T_1(A, B, C), T_2(B, C) \)

• GAV mappings become sound:
 ◦ \(T_1 \supseteq \{ x, y, z \mid R_1(x, y) \land R_2(y, z) \} \)
 ◦ \(T_2 \supseteq R_2 \)

• Let \(D_{exact} \) be the unique database that arises from the exact setting (with \(\supseteq \) replaced by \(= \))

• Then every database \(D_{sound} \) that satisfies the sound setting also satisfies

\[
D_{exact} \subseteq D_{sound}
\]
GAV-sound with conjunctive queries cont’d

• Conjunctive queries are monotone:

\[D_1 \subseteq D_2 \implies Q(D_1) \subseteq Q(D_2) \]

• Exact solution is a sound solution too, and is contained in every sound solution.

• Hence certain answers for each conjunctive query

\[\text{certain}(D, Q) = \bigcap_{D_{\text{sound}}} Q(D_{\text{sound}}) = Q(D_{\text{exact}}) \]

• The solution for GAV-exact gives us certain answers for GAV-sound, for conjunctive (and more generally, monotone) queries.