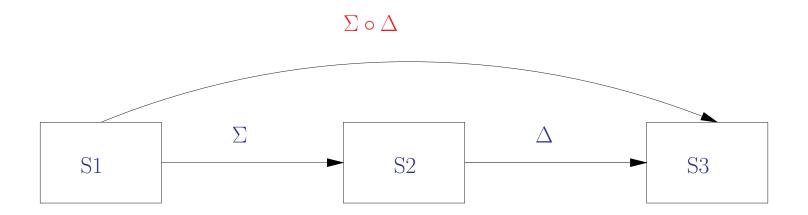
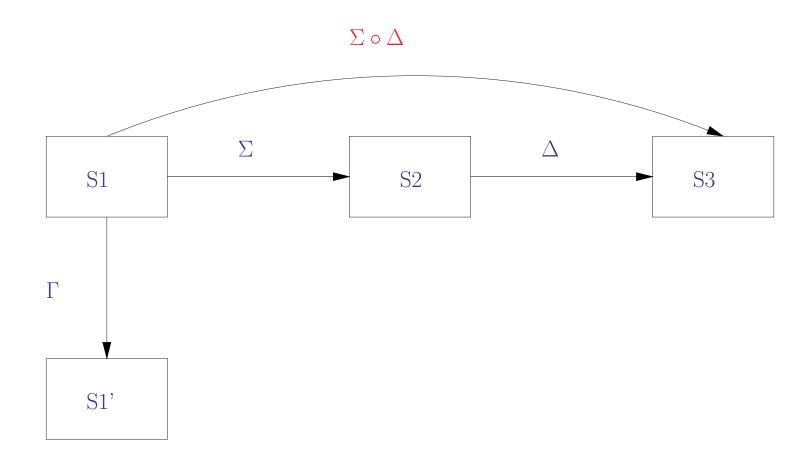
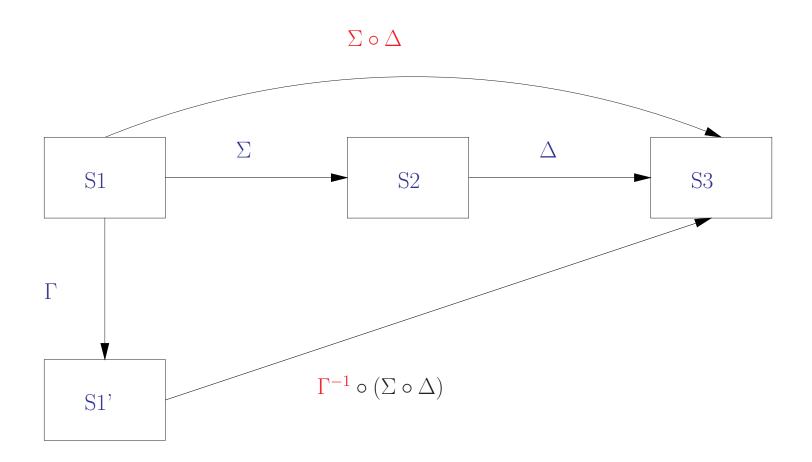
Schema mappings

- Rules used in data exchange specify mappings between schemas.
- To understand the evolution of data one needs to study operations on schema mappings.
- Most commonly we need to deal with two operations:
 - o composition
 - o inverse







Mappings

• Schema mappings are typically given by rules

$$\psi(\bar{x},\bar{z}) := \exists \bar{u} \ \varphi(\bar{x},\bar{y},\bar{u})$$

where

 $\circ \psi$ is a conjunction of atoms over the target:

$$T_1(\bar{x}_1,\bar{z}_1) \wedge \ldots \wedge T_m(\bar{x}_m,\bar{z}_m)$$

 $\circ \varphi$ is a conjunction of atoms over the source:

$$S_1(\bar{x}_1', \bar{y}_1, \bar{u}_1) \wedge \ldots \wedge S_k(\bar{x}_k', \bar{y}_k, \bar{u}_k)$$

• Example: $Served(x_1, x_2, z_1, z_2) := \exists u_1, u_2 \; Route(x_1, u_1, u_2) \land BG(x_1, x_2)$

The closure problem

- Are mappings closed under
 - o composition?
 - o inverse?
- If not, what needs to be added?
- It turns out that mappings are not closed under inverses and composition.
- We next see what might need to be added to them.

Skolem functions

- Source: EP(empl_name,dept,project);
 Target: EDPH(empl_id,dept,phone), DP(dept,project)
- A natural mapping is:

$$\mathsf{EDPH}(z_1, x_2, z_3) \land \mathsf{DP}(x_2, x_3) := \mathsf{EP}(x_1, x_2, x_3)$$

• This is problematic: if we have tuples

(John, CS,
$$P_1$$
) (John, CS, P_2)

in EP, the canonical solution would have

EDPH
$$\begin{array}{c|c} \bot_1 & \mathsf{CS} & \bot_1' \\ \hline \bot_2 & \mathsf{CS} & \bot_2' \end{array}$$

corresponding to two projects P_1 and P_2 .

So empl_id is hardly an id!

Skolem functions cont'd

- Solution: make empl_id a function of empl_name.
- Such "invented" functions are called Skolem functions (see Logic 001 for a proper definition)
- Source: EP(empl_name,dept,project);
 Target: EDPH(empl_id,dept,phone), DP(dept,project)
- A new mapping is:

$$\mathsf{EDPH}(f(x_1), x_2, z_3) \land \mathsf{DP}(x_2, x_3) := \mathsf{EP}(x_1, x_2, x_3)$$

• f assigns a unique id to every name.

Other possible additions

- One can look at more general queries used in mappings.
- Most generally, relational algebra queries, but to be more modest, one can start with just adding inequalities.
- One may also disjunctions: for example, if we want to invert

$$T(x) := S_1(x)$$

 $T(x) := S_2(x)$

it seems natural to introduce a rule

$$S_1(x) \vee S_2(x) := T(x)$$

Composition: definition

• Recall the definition of composition of binary relations R and R':

$$(x,z) \in R \circ R' \Leftrightarrow \exists y : (x,y) \in R \text{ and } (y,z) \in R'$$

 \bullet A schema mapping Σ for two schemas σ and τ is viewed as a binary relation

$$\Sigma \ = \ \left\{ (S,T) \;\middle|\; \begin{array}{l} S \text{ is a } \sigma\text{-instance} \\ T \text{ is a } \tau\text{-instance} \\ T \text{ is a solution for } S \end{array} \right\}$$

ullet The composition of mappings Σ from σ to au and Δ from au to ω is now

$$\Sigma \circ \Delta$$

ullet Question (closure): is there a mapping Γ between σ and ω so that

$$\Gamma = \Sigma \circ \Delta$$

Composition: when it works

- \bullet If Σ
 - o does not generate any nulls, and
 - \circ no variables \bar{u} for source formulas
- Example:

$$\Sigma: T(x_1, x_2) \wedge T(x_2, x_3) := S(x_1, x_2, x_3)$$

 $\Delta: W(x_1, x_2, z) := T(x_1, x_2)$

• First modify into:

$$\Sigma: \qquad T(x_1, x_2) := S(x_1, x_2, x_3)$$

 $\Sigma: \qquad T(x_2, x_3) := S(x_1, x_2, x_3)$
 $\Delta: \qquad W(x_1, x_2, z) := T(x_1, x_2)$

• Then substitute in the definition of W:

Composition: when it cont'd

$$W(x_1, x_2, z) := S(x_1, x_2, y)$$

 $W(x_1, x_2, z) := S(y, x_1, x_2)$

to get $\Sigma \circ \Delta$.

Explaining the second rule:

$$W(x_1, x_2, z)$$

$$\to T(x_1, x_2) \quad \text{using } T(var_1, var_2) :- S(var_3, var_1, var_2)$$

$$\to S(y, x_1, x_2)$$

Composition: when it doesn't work

- Schema σ : Takes(st_name, course)
- Schema τ : Takes'(st_name, course), Nameld(st_name, st_id)
- Schema ω : Enroll(st_id, course)
- Mapping Σ from σ to τ :

$$\mathsf{Takes}'(s,c) := \mathsf{Takes}(s,c)$$

$$\mathsf{Nameld}(s, \mathbf{i}) := \exists c \; \mathsf{Takes}(s,c)$$

• Mapping Δ from τ to ω :

$$\mathsf{Enroll}(i,c) := \mathsf{Nameld}(s,i) \wedge \mathsf{Takes}'(s,c)$$

ullet A first attempt at the composition: $\mathsf{Enroll}(i,c) := \mathsf{Takes}(s,c)$

Composition: when it doesn't work cont'd

- What's wrong with Γ : Enroll(i, c) :- Takes(s, c)?
- ullet Student id i depends on both name and course!

But:

Composition: when it doesn't work cont'd

- Solution: Skolem functions.
- Γ' : Enroll(f(s), c) :- Takes(s, c)
- Then:

• where $\bot = f(\mathsf{John})$

Composition: another example

- Schema σ : Empl(eid)
- Schema τ : Mngr(eid,mngid)
- Schema ω : Mngr'(eid,mngid), SelfMng(id)
- Mapping Σ from σ to τ :

$$\mathsf{Mngr}(e,m) := \mathsf{Empl}(e)$$

• Mapping Δ from τ to ω :

$$\mathsf{Mngr'}(e,m) := \mathsf{Mngr}(e,m)$$
 $\mathsf{SelfMng}(e) := \mathsf{Mngr}(e,e)$

• Composition:

$$\mathsf{Mngr'}(e, f(e)) := \mathsf{Empl}(e)$$
 $\mathsf{SelfMng}(e) := \mathsf{Empl}(e) \land e = f(e)$

Composition and Skolem functions

- Schema mappings with Skolem functions compose!
- Algorithm:
 - replace all nulls by Skolem functions
 - $\mathsf{Mngr}(e, f(e)) := \mathsf{Empl}(e)$
 - Δ stays as before
 - Use substitution:
 - $\mathsf{Mngr'}(e,m) \coloneq \mathsf{Mngr}(e,m)$ becomes $\mathsf{Mngr'}(e,f(e)) \coloneq \mathsf{Empl}(e)$
 - SelfMng(e) :- Mngr(e,e) becomes SelfMng(e) :- Empl $(e) \land e = f(e)$

Inverting mappings

- Harder than composition.
- Intuition: $\Sigma \circ \Sigma^{-1} = \mathbf{ID}$.
- But even what ID should be is not entirely clear.
- Some intuitive examples will follow.

Examples of inversion

• The inverse of projection is null invention:

$$T(x) := S(x, y)$$

$$S(x, y) := T(x)$$

• Inverse of union requires disjunction:

$$\circ T(x) := S(x) \qquad T(x) := S'(x)$$

$$\circ S(x) \lor S'(x) := T(x)$$

• So reversing the rules doesn't always work.

Examples of inversion cont'd

• Inverse of decomposition is join:

• But this is also an inverse of $T(x_1, x_2) \wedge T'(x_2, x_3) := S(x_1, x_2, x_3)$:

$$\circ S(x_1, x_2, \mathbf{z}) := T(x_1, x_2)$$

$$\circ S(\mathbf{z}, x_2, x_3) := T'(x_2, x_3)$$

Examples of inversion cont'd

- One may need to distinguish nulls from values in inverses.
- ullet Σ given by

$$T_1(x) := S(x,x)$$
 $T_2(x, \mathbf{z}) := S(x,y) \wedge S(y,x)$
 $T_3(x_1, x_2, \mathbf{z}) := S(x_1, x_2)$

- ullet Its inverse Σ^{-1} requires:
 - o a predicate NotNull and
 - o inequalities:

$$S(x,x) := T_1(x) \wedge T_2(x,y_1) \wedge T_3(x,y_1,y_2) \wedge \mathsf{NotNull}(x)$$

$$S(x_1, x_2) := T_3(x_1, x_2, y) \land (x_1 \neq x_2) \land \mathsf{NotNull}(x_1) \land \mathsf{NotNull}(x_2)$$