
GAV-sound with conjunctive queries

• Source and global schema as before:

◦ source R1(A, B), R2(B,C)

◦ Global schema: T1(A, C), T2(B,C)

• GAV mappings become sound:

◦ T1 ⊇ {x, y, z|R1(x, y) ∧ R2(y, z)}

◦ T2 ⊇ R2

• Let Dexact be the unique database that arises from the exact setting
(with ⊇ replaced by =)

• Then every database Dsound that satisfies the sound setting also satisfies

Dexact ⊆ Dsound

L. Libkin 1 Data Integration and Exchange

GAV-sound with conjunctive queries cont’d

• Conjunctive queries are monotone:

D1 ⊆ D2 ⇒ Q(D1) ⊆ Q(D2)

• Exact solution is a sound solution too, and is contained in every sound
solution.

• Hence certain answers for each conjunctive query

certain(D,Q) =
⋂

Dsound

Q(Dsound) = Q(Dexact)

• The solution for GAV-exact gives us certain answers for GAV-sound, for
conjunctive (and more generally, monotone) queries.

L. Libkin 2 Data Integration and Exchange

Query answering using views

• General setting: database relations R1, . . . , Rn.

• Several views V1, . . . , Vk are defined as results of queries over the Ri’s.

• We have a query Q over R1, . . . , Rn.

• Question: Can Q be answered in terms of the views?

◦ In other words, can Q be reformulated so it only refers to the data
in V1, . . . , Vk?

L. Libkin 3 Data Integration and Exchange

Query answering using views in data integration

• LAV:

◦ R1, . . . , Rn are global schema relations; Q is the global schema
query

◦ Vi’s are the sources defined over the global schema

◦ We must answer Q based on the sources (virtual integration)

• GAV:

◦ R1, . . . , Rn are the sources that are not fully available.

◦ Q is a query in terms of the source (or a query that was reformulated
in terms of the sources)

◦ Must see if it is answerable from the available views V1, . . . , Vk.

• We know the problem is impossible to solve for full relational algebra,
hence we concentrate on conjunctive queries.

L. Libkin 4 Data Integration and Exchange

Conjunctive queries: rule-based notation

• We often write conjunctive queries as logical statements:

{t, y, r | ∃d
(

Movie(t, d, y) ∧ RV(t, r) ∧ y > 2000
)

}

• Rule-based:

Q(t, y, r) :– Movie(t, d, y), RV(t, r), y > 2000

◦ Q(t, y, r) is the head of the rule

◦ Movie(t, d, y), RV(t, r), y > 2000 is its body

◦ conjunctions are replaced by commas

◦ variables that occur in the body but not in the head (d) are assumed
to be existentially quantified

◦ essentially logic programming notation (without functions)

L. Libkin 5 Data Integration and Exchange

Query answering using views: example

• Two relations in the database: Cites(A,B) (if A cites B), and
SameTopic(A,B) (if A, B work on the same topic)

• Query Q(x, y) :– SameTopic(x, y), Cites(x, y), Cites(y, x)

• Two views are given:

◦ V1(x, y) :– Cites(x, y), Cites(y, x)

◦ V2(x, y) :– SameTopic(x, y), Cites(x, x′), Cites(y, y′)

• Suggested rewriting: Q′(x, y) :– V1(x, y), V2(x, y)

• Why? Unfold using the definitions:

Q′(x, y) :– Cites(x, y), Cites(y, x), SameTopic(x, y), Cites(x, x′), Cites(y, y′)

• Equivalent to Q

L. Libkin 6 Data Integration and Exchange

Query answering using views

• Need a formal technique (algorithm): cannot rely on the semantics.

• Query Q:

SELECT R1.A

FROM R R1, R R2, S S1, S S2

WHERE R1.A=R2.A AND S1.A=S2.A AND R1.A=S1.A

AND R1.B=1 and S2.B=1

• Q(x) :– R(x, y), R(x, 1), S(x, z), S(x, 1)

• Equivalent to Q(x) :– R(x, 1), S(x, 1)

• So if we have a view

◦ V (x, y) :– R(x, y), S(x, y) (i.e. V = R ∩ S), then

◦ Q = πA(σB=1(V))

◦ Q can be rewritten (as a conjunctive query) in terms of V

L. Libkin 7 Data Integration and Exchange

Query rewriting

• Setting:

◦ Queries V1, . . . , Vk over the same schema σ (assume to be conjunc-
tive; they define the views)

◦ Each Qi is of arity ni

◦ A schema ω with relations of arities n1, . . . , nk

• Given:

◦ a query Q over σ

◦ a query Q′ over ω

• Q′ is a rewriting of Q if for every σ-database D,

Q(D) = Q′
(

V1(D), . . . , Vk(D)
)

L. Libkin 8 Data Integration and Exchange

Maximal rewriting

• Sometimes exact rewritings cannot be obtained

• Q′ is a maximally-contained rewriting if:

◦ it is contained in Q:

Q′
(

V1(D), . . . , Vk(D)
)

⊆ Q(D)

for all D

◦ it is maximal such: if

Q′′
(

V1(D), . . . , Vk(D)
)

⊆ Q(D)

for all D, then
Q′′ ⊆ Q′

L. Libkin 9 Data Integration and Exchange

Side remark: query rewriting and certain answers

• If we have sources R = (R1, . . . , Rk), we can view conditions

V1(D) = R1, . . . , Vk(D) = Rk

as an incomplete specification of a database D

• To answer Q over D, given R1, . . . , Rk, we want to compute certain
answers:

certain(Q,R) =
⋂

{

Q(D) | V1(D) = R1, . . . , Vk(D) = Rk

}

• If for every such D we have Q(D) = Q′(V1(D), . . . , Vk(D)), then
certain(Q,R) = Q′.

• But we may even look at a more general way of query answering by
finding a rewriting Q′ so that

certain(Q,R) = Q′(R)

L. Libkin 10 Data Integration and Exchange

Query rewriting: a naive algorithm

• Given:

◦ conjunctive queries V1, . . . , Vk over schema σ

◦ a query Q over σ

• Algorithm:

◦ guess a query Q′ over the views

◦ Unfold Q′ in terms of the views

◦ Check if the unfolding is contained in Q

• If one unfolding is equivalent to Q, then Q′ is a rewriting

• Otherwise take the union of all unfoldings contained in Q

– it is a maximally contained rewriting

L. Libkin 11 Data Integration and Exchange

Why is it not an algorithm yet?

• Problem 1: we do not yet know how to test containment and equiva-
lence.

◦ But we shall learn soon

• Problem 2: the guess stage.

◦ There are infinitely many conjunctive queries.

◦ We cannot check them all.

◦ Solution: we only need to check a few.

L. Libkin 12 Data Integration and Exchange

Guessing rewritings

• A basic fact:

◦ If there is a rewriting of Q using V1, . . . , Vk, then there is a rewriting
with no more conjuncts than in Q.

◦ E.g., if Q(x) :– R(x, y), R(x, 1), S(x, z), S(x, 1), we only need to
check conjunctive queries over V with at most 4 conjuncts.

• Moreover, maximally contained rewriting is obtained as the union of all
conjunctive rewritings of length of Q or less.

• Complexity: enumerate all candidates (exponentially many); for each
an NP (or exponential) algorithm. Hence exponential time is required.

• Cannot lower this due to NP-completeness.

L. Libkin 13 Data Integration and Exchange

Containment and optimization of conjunctive queries

• Reminder:

conjunctive queries
= SPJ queries
= rule-based queries
= simple SELECT-FROM-WHERE SQL queries

(only AND and equality in the WHERE clause)

• Extremely common, and thus special optimization techniques have been
developed

• Reminder: for two relational algebra expressions e1, e2, e1 = e2 is un-
decidable.

• But for conjunctive queries, even e1 ⊆ e2 is decidable.

• Main goal of optimizing conjunctive queries: reduce the number of
joins.

L. Libkin 14 Data Integration and Exchange

Optimization of conjunctive queries: an example

• Given a relation R with two attributes A, B

• Two SQL queries:
Q1 Q2

SELECT R1.B, R1.A SELECT R3.A, R1.A

FROM R R1, R R2 FROM R R1, R R2, R R3

WHERE R2.A=R1.B WHERE R1.B=R2.B AND R2.B=R3.A

• Are they equivalent?

• If they are, we saved one join operation.

• In relational algebra:

Q1 = π2,1(σ2=3(R×R))

Q2 = π5,1(σ2=4∧4=5(R×R×R))

L. Libkin 15 Data Integration and Exchange

Optimization of conjunctive queries cont’d

• Are Q1 and Q2 equivalent?

• If they are, we cannot show it by using equivalences for relational algebra
expression.

• Because: they don’t decrease the number of ⋊⋉ or × operators, but Q1

has 1 join, and Q2 has 2.

• But Q1 and Q2 are equivalent. How can we show this?

• But representing queries as databases. This representation is very close
to rule-based queries.

Q1(x, y) :– R(y, x), R(x, z)

Q2(x, y) :– R(y, x), R(w, x), R(x, u)

L. Libkin 16 Data Integration and Exchange

Conjunctive queries into tableaux

• Tableau: representing of a conjunctive query as a database

• We first consider queries over a single relation

• Q1(x, y) :– R(y, x), R(x, z)

• Q2(x, y) :– R(y, x), R(w, x), R(x, u)

• Tableaux:

A B
y x
x z
x y ← answer line

A B
y x
w x
x u
x y ← answer line

• Variables in the answer line are called distinguished

L. Libkin 17 Data Integration and Exchange

Tableau homomorphisms

• A homomorphism of two tableaux f : T1→ T2 is a mapping

f : {variables of T1} → {variables of T2}
⋃

{constants}

• For every distinguished x, f(x) = x

• For every row x1, . . . , xk in T1, f(x1), . . . , f(xk) is a row of T2

• Query containment: Q ⊆ Q′ if Q(D) ⊆ Q′(D) for every database D

• Homomorphism Theorem: Let Q,Q′ be two conjunctive queries, and
T, T ′ their tableaux. Then

Q ⊆ Q′

if and only if
there exists a homomorphism f : T ′ → T

L. Libkin 18 Data Integration and Exchange

Applying the Homomorphism Theorem: Q1 = Q2

A B

y x

x z

x y

A B

y x

w x

x u

T1 T2

x y

A B

y x

x z

x y

A B

y x

w x

x u

T1 T2

x y

f(x)=x, f(y)=y

f(u)=z, f(w)=y

Hence Q1 Q2

f(x)=x, f(y)=y

f(z)=u

Hence Q2 Q1

L. Libkin 19 Data Integration and Exchange

Applying the Homomorphism Theorem: Complexity

• Given two conjunctive queries, how hard is it to test if Q1 = Q2?

• it is easy to transform them into tableaux, from either SPJ relational
algebra queries, or SQL queries, or rule-based queries

• But testing the existence of a homomorphism between two tableaux is
hard: NP-complete. Thus, a polynomial algorithm is unlikely to exists.

• However, queries are small, and conjunctive query optimization is pos-
sible in practice.

L. Libkin 20 Data Integration and Exchange

Minimizing conjunctive queries

• Goal: given a conjunctive query Q, find an equivalent conjunctive query
Q′ with the minimum number of joins.

• Assume Q is
Q(~x) :– R1(~u1), . . . , Rk(~uk)

• Assume that there is an equivalent conjunctive query Q′ of the form

Q′(~x) :– S1(~v1), . . . , Sl(~vl)

with l < k

• Then Q is equivalent to a query of the form

Q′(~x) :– Ri1(~ui1), . . . , Rl
(~uil)

• In other words, to minimize a conjunctive query, one has to delete some
subqueries on the right of :–

L. Libkin 21 Data Integration and Exchange

Minimizing conjunctive queries cont’d

• Given a conjunctive query Q, transform it into a tableau T

• Let Q′ be a minimal conjunctive query equivalent to Q. Then its
tableau T ′ is a subset of T .

• Minimization algorithm:

T ′ := T
repeat until no change

choose a row t in T ′

if there is a homomorphism f : T ′ → T ′ − {t}
then T ′ := T ′ − {t}

end

• Note: if there exists a homomorphism T ′ → T ′−{t}, then the queries
defined by T ′ and T ′ − {t} are equivalent. Because: there is always a
homomorphism from T ′ − {t} to T ′. (Why?)

L. Libkin 22 Data Integration and Exchange

Minimizing SPJ/conjunctive queries: example

• R with three attributes A, B,C

• SPJ query

Q = πAB(σB=4(R)) ⋊⋉ πBC(πAB(R) ⋊⋉ πAC(σB=4(R)))

• Equivalently, a SQL query:

SELECT R1.A, R2.B, R3.C

FROM R R1, R R2, R R3

WHERE R1.B=4 AND R2.A=R3.A AND

R3.B=4 AND R2.B=R1.B

• Translate into a conjunctive query:

∃x1, z1, z2 (R(x, 4, z1) ∧R(x1, 4, z2) ∧R(x1, 4, z) ∧ y = 4)

• Rule-based:

Q(x, y, z) :–R(x, 4, z1), R(x1, 4, z2), R(x1, 4, z), y = 4

L. Libkin 23 Data Integration and Exchange

Minimizing SPJ/conjunctive queries cont’d

• Tableau T :
A B C
x 4 z1

x1 4 z2

x1 4 z
x 4 z

• Minimization, step 1: is there a homomorphism from T to
A B C
x1 4 z2

x1 4 z
x 4 z

• Answer: No. For any homomorphism f , f(x) = x (why?), thus the
image of the first row is not in the small tableau.

L. Libkin 24 Data Integration and Exchange

Minimizing SPJ/conjunctive queries cont’d

• Step 2: Is T equivalent to

A B C
x 4 z1

x1 4 z
x 4 z

• Answer: Yes. Homomorphism f : f(z2) = z, all other variables stay
the same.

• The new tableau is not equivalent to
A B C
x 4 z1

x 4 z
or

A B C
x1 4 z
x 4 z

• Because f(x) = x, f(z) = z, and the image of one of the rows is not
present.

L. Libkin 25 Data Integration and Exchange

Minimizing SPJ/conjunctive queries cont’d

• Minimal tableau:

A B C
x 4 z1

x1 4 z
x 4 z

• Back to conjunctive query:

Q′(x, y, z) :– R(x, y, z1), R(x1, y, z), y = 4

• An SPJ query:

πAB(σB=4(R)) ⋊⋉ πBC(σB=4(R))

• SELECT R1.A, R1.B, R2.C

FROM R R1, R R2

WHERE R1.B=R2.B AND R1.B=4

L. Libkin 26 Data Integration and Exchange

Review of the journey

• We started with

πAB(σB=4(R)) ⋊⋉ πBC(πAB(R) ⋊⋉ πAC(σB=4(R)))

• Translated into a conjunctive query

• Built a tableau and minimized it

• Translated back into conjunctive query and SPJ query

• Applied algebraic equivalences and obtained

πAB(σB=4(R)) ⋊⋉ πBC(σB=4(R))

• Savings: one join.

L. Libkin 27 Data Integration and Exchange

All minimizations are equivalent

• Let Q be a conjunctive query, and Q1, Q2 two conjunctive queries
equivalent to Q

• Assume that Q1 and Q2 are both minimal, and let T1 and T2 be their
tableaux.

• Then T1 and T2 are isomorphic; that is, T2 can be obtained from T1 by
renaming of variables.

• That is, all minimizations are equivalent.

• In particular, in the minimization algorithm, the order in which rows are
considered, is irrelevant.

L. Libkin 28 Data Integration and Exchange

Equivalence of conjunctive queries: the general case

• So far we assumed that there is only one relation R, but what if there
are many?

• Construct tableaux as before:

Q(x, y):–B(x, y), R(y, z), R(y, w), R(w, y)

• Tableau:

B:
A B
x y

R:

A B
y z
y w
w y

x y

• Formally, a tableau is just a database where variables can appear in
tuples, plus a set of distinguished variables.

L. Libkin 29 Data Integration and Exchange

Tableaux and multiple relations

• Given two tableaux T1 and T2 over the same set of relations, and the
same distinguished variables, a homomorphism h : T1 → T2 is a map-
ping

f : {variables of T1} → {variables of T2}

such that

- f(x) = x for every distinguished variable, and

- for each row ~t in R in T1, f(~t) is in R in T2.

• Homomorphism theorem: let Q1 and Q2 be conjunctive queries,
and T1, T2 their tableaux. Then

Q2 ⊆ Q1

if and only if
there exists a homomorphism f : T1→ T2

L. Libkin 30 Data Integration and Exchange

Minimization with multiple relations

• The algorithm is the same as before, but one has to try rows in different
relations. Consider homomorphism f(z) = w, and f is the identity for
other variables. Applying this to the tableau for Q yields

B:
A B
x y

R:
A B
y w
w y

x y

• This cannot be further reduced, as for any homomorphism f , f(x) = x,
f(y) = y.

• Thus Q is equivalent to

Q′(x, y) :– B(x, y), R(y, w), R(w, y)

• One join is eliminated.

L. Libkin 31 Data Integration and Exchange

Query rewriting

• Recall the algorithm, for a given Q and view definitions V1, . . . , Vk:

◦ Look at all rewritings that have as at most as many joins as Q

◦ check if they are contained in Q

◦ take the union of those that are

• This is the maximally contained rewriting

• There are algorithms that prune the search space and make looking for
rewritings contained in Q more efficient

◦ the bucket algorithm

◦ MiniCon

• May see of them later

L. Libkin 32 Data Integration and Exchange

How hard is it to answer queries using views?

• Setting: we now have an actual content of the views.

• As before, a query is Q posed against D, but must be answered using
information in the views.

• Suppose I1, . . . , Ik are view instances. Two possibilities:

◦ Exact mappings: Ij = Vj(D)

◦ Sound mappings: Ij ⊆ Vj(D)

• We need certain answers for given I = (I1, . . . , Ik):

certainexact(Q,I) =
⋂

D: Ij=Vj(D) for all j

Q(D)

certainsound(Q,I) =
⋂

D: Ij⊆Vj(D) for all j

Q(D)

L. Libkin 33 Data Integration and Exchange

How hard is it to answer queries using views?

• If certainexact(Q,I) or certainsound(Q,I) are impossible to obtain, we
want maximally contained rewritings:

◦ Q′(I) ⊆ certainexact(Q,I), and

◦ if Q′′(I) ⊆ certainexact(Q,I) then Q′′(I) ⊆ Q′(I)

◦ (and likewise for sound)

• How hard is it to compute this from I?

• In databases, we reason about complexity in two ways:

◦ The big-O notation (O(n log n) vs O(n2) vs O(2n))

◦ Complexity-theoretic notions: PTIME, NP, DLOGSPACE, etc

• Advantage of complexity-theoretic notions: if you have a O(2n) algo-
rithm, is it because the problem is inherently hard, or because we are
not smart enough to come up with a better algorithm (or both)?

L. Libkin 34 Data Integration and Exchange

Complexity classes: what you always wanted to know
but never dared to ask

• Or a 5/5-introduction: a five minute review that tells you what are
likely to remember 5 years after taking a complexity theory course.

• The big divide: PTIME (computable in polynomial time, i.e. O(nk) for
some fixed k)

• Inside PTIME: tractable queries (although high-degree polynomial are
intractable)

• Outside PTIME: intractable queries (efficient algorithms are unlikely)

• Way outside PTIME: provably intractable queries (efficient algorithms
do not exist)

◦ EXPTIME: cn-algorithms for a constant c. Could still be ok for not
very large inputs

◦ Even further – 2-EXPTIME: ccn. Cannot be ok even for small inputs
(compare 210 and 2210

).

L. Libkin 35 Data Integration and Exchange

Inside PTIME

AC0 (TC0 ⊆ NC1 ⊆ DLOG ⊆ NLOG ⊆ PTIME

• AC0: very efficient parallel algorithms (constant time, simple circuits)

– relational calculus

• TC0: very efficient parallel algorithms in a more powerful computational
model with counting gates

– basic SQL (relational calculus/grouping/aggregation)

• NC1: efficient parallel algorithms

– regular languages

• DLOG: very little – O(log n) – space is required

– SQL + (restricted) transitive closure

• NLOG: O(log n) space is required if nondeterminism is allowed

– SQL + transitive closure (as in the SQL3 standard)

L. Libkin 36 Data Integration and Exchange

Beyond PTIME

PTIME ⊆

{

NP
coNP

}

⊆ PSPACE

• PTIME: can solve a problem in polynomial time

• NP: can check a given candidate solution in polynomial time

◦ another way of looking at it: guess a solution, and then verify if you
guessed it right in polynomial time

• coNP: complement of NP – verify that all “reasonable” candidates are
solutions to a given problem.

◦ Appears to be harder than NP but the precise relationship isn’t
known

• PSPACE: can be solved using memory of polynomial size (but perhaps
an exponential-time algorithm)

L. Libkin 37 Data Integration and Exchange

Complete problems

• These are the hardest problems in a class.

• If our problem is as hard as a complete problem, it is very unlikely it
can be done with lower complexity.

• For NP:

◦ SAT (satisfiability of Boolean formulae)

◦ many graph problems (e.g. 3-colourability)

◦ Integer linear programming etc

• For PSPACE:

◦ Quantified SAT

◦ Two XML DTDs are equivalent

L. Libkin 38 Data Integration and Exchange

Complexity of query answering

• We want the complexity of finding

certainexact(Q,I) or certainsound(Q,I)

in terms of the size of I

• If all view definitions are conjunctive queries and Q is a relational algebra
or a SQL query, then the complexity is coNP.

• (blackboard)

• This is too high!

• If all view definitions are conjunctive queries and Q is a conjunctive
query, then the complexity is PTIME.

◦ Because: the maximally contained rewriting computes certain an-
swers!

L. Libkin 39 Data Integration and Exchange

Complexity of query answering

query language

view language CQ CQ 6= relational calculus
CQ ptime coNP undecidable

CQ 6= ptime coNP undecidable
relational calculus undecidable undecidable undecidable

CQ – conjunctive queries

CQ 6= – conjunctive queries with inequalities
(for example, Q(x) :– R(x, y), S(y, z), x 6= z)

L. Libkin 40 Data Integration and Exchange

Complexity of query answering: coNP-completeness
idea

• Start with a graph G – this is our instance

• D is G together with a colouring, with 3 colours; each node is assigned
one colour.

• Q asks if we have an edge (a, b) with a 6= b and a, b of the same colour.

• If G is not 3-colourable, then every instance D would satisfy Q

• Otherwise, if G is 3-colourable, we can find extensions that are and
that are not 3-colourable – hence certain answers are empty.

• Thus if we can compute certain answers, we can test non-3-colourability
⇒ coNP-completeness.

L. Libkin 41 Data Integration and Exchange

