GAV-sound with conjunctive queries

- Source and global schema as before:
 - \circ source $R_1(A,B), R_2(B,C)$
 - \circ Global schema: $T_1(A,C)$, $T_2(B,C)$
- GAV mappings become sound:

 $\circ T_1 \supseteq \{x, y, z | R_1(x, y) \land R_2(y, z)\}$ $\circ T_2 \supseteq R_2$

- Let D_{exact} be the unique database that arises from the *exact* setting (with \supseteq replaced by =)
- Then every database D_{sound} that satisfies the sound setting also satisfies

$$D_{exact} \subseteq D_{sound}$$

GAV-sound with conjunctive queries cont'd

• Conjunctive queries are monotone:

 $D_1 \subseteq D_2 \quad \Rightarrow \quad Q(D_1) \subseteq Q(D_2)$

- Exact solution is a sound solution too, and is contained in every sound solution.
- Hence certain answers for each conjunctive query

$$\operatorname{certain}(D,Q) = \bigcap_{D_{sound}} Q(D_{sound}) = Q(D_{exact})$$

• The solution for GAV-exact gives us certain answers for GAV-sound, for conjunctive (and more generally, monotone) queries.

Query answering using views

- General setting: database relations R_1, \ldots, R_n .
- Several views V_1, \ldots, V_k are defined as results of queries over the R_i 's.
- We have a query Q over R_1, \ldots, R_n .
- Question: Can Q be answered in terms of the views?
 - \circ In other words, can Q be reformulated so it only refers to the data in V_1,\ldots,V_k ?

Query answering using views in data integration

- LAV:
 - $\circ \; R_1, \ldots, R_n$ are global schema relations; Q is the global schema query
 - $\circ~V_i{}^\prime {\rm s}$ are the sources defined over the global schema
 - \circ We must answer Q based on the sources (virtual integration)
- GAV:
 - $\circ R_1, \ldots, R_n$ are the sources that are not fully available.
 - $\circ Q$ is a query in terms of the source (or a query that was reformulated in terms of the sources)
 - \circ Must see if it is answerable from the available views V_1, \ldots, V_k .
- We know the problem is impossible to solve for full relational algebra, hence we concentrate on conjunctive queries.

Conjunctive queries: rule-based notation

• We often write conjunctive queries as logical statements:

$$\{t, y, r \mid \exists d \; \big(\mathsf{Movie}(t, d, y) \land \mathsf{RV}(t, r) \land y > 2000\big)\}$$

• Rule-based:

$$Q(t,y,r) \hspace{.1in} :- \hspace{.1in} \operatorname{Movie}(t,d,y), \operatorname{RV}(t,r), y > 2000$$

- $\circ \; Q(t,y,r)$ is the head of the rule
- $\circ \ \mathrm{Movie}(t,d,y), \mathsf{RV}(t,r), y > 2000 \ \mathrm{is \ its \ body}$
- \circ conjunctions are replaced by commas
- \circ variables that occur in the body but not in the head (d) are assumed to be existentially quantified
- essentially logic programming notation (without functions)

Query answering using views: example

- Two relations in the database: Cites(A,B) (if A cites B), and SameTopic(A,B) (if A, B work on the same topic)
- $\bullet \ \mathsf{Query} \ Q(x,y) \ :- \ \mathsf{SameTopic}(x,y), \mathsf{Cites}(x,y), \mathsf{Cites}(y,x) \\$
- Two views are given:

 $\begin{array}{lll} \circ \ V_1(x,y) & := & \mathsf{Cites}(x,y), \mathsf{Cites}(y,x) \\ \circ \ V_2(x,y) & := & \mathsf{SameTopic}(x,y), \mathsf{Cites}(x,x'), \mathsf{Cites}(y,y') \end{array}$

- Suggested rewriting: Q'(x,y) :- $V_1(x,y), V_2(x,y)$
- Why? Unfold using the definitions:

 $Q'(x,y) \: := \: \mathsf{Cites}(x,y), \mathsf{Cites}(y,x), \mathsf{SameTopic}(x,y), \mathsf{Cites}(x,x'), \mathsf{Cites}(y,y') \:$

 \bullet Equivalent to Q

Query answering using views

- Need a formal technique (algorithm): cannot rely on the semantics.
- Query Q:

```
SELECT R1.A
FROM R R1, R R2, S S1, S S2
WHERE R1.A=R2.A AND S1.A=S2.A AND R1.A=S1.A
AND R1.B=1 and S2.B=1
```

- $\bullet \; Q(x) \; := \; R(x,y), R(x,1), S(x,z), S(x,1)$
- \bullet Equivalent to Q(x) :- R(x,1),S(x,1)
- So if we have a view
 - ∘ V(x,y) :- R(x,y), S(x,y) (i.e. $V = R \cap S$), then ∘ $Q = \pi_A(\sigma_{B=1}(V))$
 - $\circ \ Q$ can be rewritten (as a conjunctive query) in terms of V

L. Libkin

Query rewriting

• Setting:

• Queries V_1, \ldots, V_k over the same schema σ (assume to be conjunctive; they define the views)

 \circ Each Q_i is of arity n_i

 \circ A schema ω with relations of arities n_1, \ldots, n_k

• Given:

- \circ a query Q over σ
- \circ a query Q' over ω
- Q' is a rewriting of Q if for every σ -database D,

$$Q(D) = Q'(V_1(D), \ldots, V_k(D))$$

Maximal rewriting

- Sometimes exact rewritings cannot be obtained
- Q' is a maximally-contained rewriting if:
 - \circ it is contained in Q:

$$Q'(V_1(D),\ldots,V_k(D)) \subseteq Q(D)$$

for all \boldsymbol{D}

 \circ it is maximal such: if

$$Q''(V_1(D),\ldots,V_k(D)) \subseteq Q(D)$$

for all D, then

$$Q'' \subseteq Q'$$

Side remark: query rewriting and certain answers

• If we have sources $\mathbf{R} = (R_1, \ldots, R_k)$, we can view conditions

$$V_1(D) = R_1, \ldots, V_k(D) = R_k$$

as an incomplete specification of a database ${\cal D}$

• To answer Q over D, given R_1, \ldots, R_k , we want to compute certain answers:

certain $(Q, \mathbf{R}) = \bigcap \{Q(D) \mid V_1(D) = R_1, \ldots, V_k(D) = R_k \}$

- If for every such D we have $Q(D)=Q'(V_1(D),\ldots,V_k(D)),$ then ${\rm certain}(Q,{\bf R})=Q'.$
- \bullet But we may even look at a more general way of query answering by finding a rewriting Q' so that

$$\operatorname{certain}(Q,\mathbf{R})=Q'(\mathbf{R})$$

Query rewriting: a naive algorithm

• Given:

 \circ conjunctive queries V_1, \ldots, V_k over schema σ

- \circ a query Q over σ
- Algorithm:
 - \circ guess a query Q^\prime over the views
 - \circ Unfold Q^\prime in terms of the views
 - \circ Check if the unfolding is contained in Q
- \bullet If one unfolding is equivalent to Q, then Q' is a rewriting
- \bullet Otherwise take the union of all unfoldings contained in Q
 - it is a maximally contained rewriting

Why is it not an algorithm yet?

- Problem 1: we do not yet know how to test containment and equivalence.
 - \circ But we shall learn soon
- Problem 2: the guess stage.
 - \circ There are infinitely many conjunctive queries.
 - \circ We cannot check them all.
 - \circ Solution: we only need to check a few.

Guessing rewritings

- A basic fact:
 - If there is a rewriting of Q using V_1, \ldots, V_k , then there is a rewriting with no more conjuncts than in Q.
 - \circ E.g., if Q(x) := R(x,y), R(x,1), S(x,z), S(x,1), we only need to check conjunctive queries over V with at most 4 conjuncts.
- Moreover, maximally contained rewriting is obtained as the union of all conjunctive rewritings of length of Q or less.
- Complexity: enumerate all candidates (exponentially many); for each an NP (or exponential) algorithm. Hence exponential time is required.
- Cannot lower this due to NP-completeness.

Containment and optimization of conjunctive queries

- Reminder:
 - conjunctive queries
 - = SPJ queries
 - = rule-based queries
 - simple SELECT-FROM-WHERE SQL queries
 (only AND and equality in the WHERE clause)
- Extremely common, and thus special optimization techniques have been developed
- Reminder: for two relational algebra expressions e_1, e_2 , $e_1 = e_2$ is undecidable.
- But for conjunctive queries, even $e_1 \subseteq e_2$ is decidable.
- Main goal of optimizing conjunctive queries: reduce the number of joins.

Optimization of conjunctive queries: an example

 \bullet Given a relation R with two attributes A,B

 Two SQL queries: 	
Q1	Q2
SELECT R1.B, R1.A	SELECT R3.A, R1.A
FROM R R1, R R2	FROM R R1, R R2, R R3
WHERE R2.A=R1.B	WHERE R1.B=R2.B AND R2.B=R3.A

- Are they equivalent?
- If they are, we saved one join operation.
- In relational algebra:

$$Q_{1} = \pi_{2,1}(\sigma_{2=3}(R \times R))$$
$$Q_{2} = \pi_{5,1}(\sigma_{2=4 \land 4=5}(R \times R \times R))$$

Optimization of conjunctive queries cont'd

- Are Q_1 and Q_2 equivalent?
- If they are, we cannot show it by using equivalences for relational algebra expression.
- Because: they don't decrease the number of \bowtie or \times operators, but Q_1 has 1 join, and Q_2 has 2.
- But Q_1 and Q_2 are equivalent. How can we show this?
- But representing queries as databases. This representation is very close to rule-based queries.

$$\begin{array}{rcl} Q_1(x,y) & \coloneqq & R(y,x), R(x,z) \\ \\ Q_2(x,y) & \coloneqq & R(y,x), R(w,x), R(x,u) \end{array}$$

Conjunctive queries into tableaux

- Tableau: representing of a conjunctive query as a database
- We first consider queries over a single relation

•
$$Q_1(x,y)$$
 :- $R(y,x), R(x,z)$

•
$$Q_2(x,y) := R(y,x), R(w,x), R(x,u)$$

• Tableaux:

• Variables in the answer line are called distinguished

Tableau homomorphisms

• A homomorphism of two tableaux $f: T_1 \rightarrow T_2$ is a mapping

 $f: \{ \text{variables of } T_1 \} \rightarrow \{ \text{variables of } T_2 \} \bigcup \{ \text{constants} \}$

- For every distinguished x, f(x) = x
- For every row x_1, \ldots, x_k in T_1 , $f(x_1), \ldots, f(x_k)$ is a row of T_2
- \bullet Query containment: $Q\subseteq Q'$ if $Q(D)\subseteq Q'(D)$ for every database D
- Homomorphism Theorem: Let Q,Q^\prime be two conjunctive queries, and T,T^\prime their tableaux. Then

$$\label{eq:Q} Q \subseteq Q'$$
 if and only if there exists a homomorphism $f:T' \to T$

Applying the Homomorphism Theorem: $Q_1 = Q_2$

Applying the Homomorphism Theorem: Complexity

- Given two conjunctive queries, how hard is it to test if $Q_1 = Q_2$?
- it is easy to transform them into tableaux, from either SPJ relational algebra queries, or SQL queries, or rule-based queries
- But testing the existence of a homomorphism between two tableaux is hard: NP-complete. Thus, a polynomial algorithm is unlikely to exists.
- However, queries are small, and conjunctive query optimization is possible in practice.

Minimizing conjunctive queries

- Goal: given a conjunctive query Q, find an equivalent conjunctive query Q' with the minimum number of joins.
- \bullet Assume Q is

$$Q(\vec{x}) := R_1(\vec{u}_1), \dots, R_k(\vec{u}_k)$$

 \bullet Assume that there is an equivalent conjunctive query Q^\prime of the form

$$Q'(\vec{x}) := S_1(\vec{v}_1), \dots, S_l(\vec{v}_l)$$

with l < k

• Then Q is equivalent to a query of the form

$$Q'(\vec{x}) := R_{i_1}(\vec{u}_{i_1}), \dots, R_l(\vec{u}_{i_l})$$

• In other words, to minimize a conjunctive query, one has to delete some subqueries on the right of :-

Minimizing conjunctive queries cont'd

- \bullet Given a conjunctive query Q, transform it into a tableau T
- Let Q' be a minimal conjunctive query equivalent to Q. Then its tableau T' is a subset of T.
- Minimization algorithm:

```
\begin{array}{l} T':=T\\ \text{repeat until no change}\\ \text{choose a row }t \text{ in }T'\\ \text{if there is a homomorphism }f:T'\to T'-\{t\}\\ \text{then }T':=T'-\{t\}\\ \text{end} \end{array}
```

• Note: if there exists a homomorphism $T' \to T' - \{t\}$, then the queries defined by T' and $T' - \{t\}$ are equivalent. Because: there is always a homomorphism from $T' - \{t\}$ to T'. (Why?)

Minimizing SPJ/conjunctive queries: example

- $\bullet \; R$ with three attributes A,B,C
- SPJ query

 $Q = \pi_{AB}(\sigma_{B=4}(R)) \bowtie \pi_{BC}(\pi_{AB}(R) \bowtie \pi_{AC}(\sigma_{B=4}(R)))$

• Equivalently, a SQL query:

SELECT R1.A, R2.B, R3.C FROM R R1, R R2, R R3 WHERE R1.B=4 AND R2.A=R3.A AND R3.B=4 AND R2.B=R1.B

• Translate into a conjunctive query:

 $\exists x_1, z_1, z_2 \left(R(x, 4, z_1) \land R(x_1, 4, z_2) \land R(x_1, 4, z) \land y = 4 \right)$

• Rule-based:

$$Q(x, y, z) := R(x, 4, z_1), R(x_1, 4, z_2), R(x_1, 4, z), y = 4$$

Minimizing SPJ/conjunctive queries cont'd

- Tableau *T*:
- Minimization, step 1: is there a homomorphism from T to $\frac{A \quad B \quad C}{x_1 \quad 4 \quad z_2}$ $x_1 \quad 4 \quad z$
 - $\begin{array}{c|cccc} x_1 & 4 & z \\ \hline x & 4 & z \end{array}$
- Answer: No. For any homomorphism f, f(x) = x (why?), thus the image of the first row is not in the small tableau.

Minimizing SPJ/conjunctive queries cont'd

• Step 2: Is T equivalent to
$$\begin{array}{c|c} A & B & C \\ \hline x & 4 & z_1 \\ \hline x_1 & 4 & z \\ \hline x & 4 & z \end{array}$$

- Answer: Yes. Homomorphism $f: f(z_2) = z$, all other variables stay the same.
- The new tableau is not equivalent to

A	В	C		A	В	C
x	4	z_1	or	x_1	4	z
x	4	z		x	4	z

 \bullet Because f(x)=x, f(z)=z, and the image of one of the rows is not present.

Minimizing SPJ/conjunctive queries cont'd

• Minimal tableau:
$$\begin{array}{c|cc} A & B & C \\ \hline x & 4 & z_1 \\ \hline x_1 & 4 & z \\ \hline x & 4 & z \end{array}$$

• Back to conjunctive query:

$$Q'(x, y, z) := R(x, y, z_1), R(x_1, y, z), y = 4$$

• An SPJ query:

$$\pi_{AB}(\sigma_{B=4}(R)) \ \bowtie \ \pi_{BC}(\sigma_{B=4}(R))$$

Review of the journey

• We started with

 $\pi_{AB}(\sigma_{B=4}(R)) \bowtie \pi_{BC}(\pi_{AB}(R) \bowtie \pi_{AC}(\sigma_{B=4}(R)))$

- Translated into a conjunctive query
- Built a tableau and minimized it
- Translated back into conjunctive query and SPJ query
- Applied algebraic equivalences and obtained

 $\pi_{AB}(\sigma_{B=4}(R)) \ \bowtie \ \pi_{BC}(\sigma_{B=4}(R))$

• Savings: one join.

All minimizations are equivalent

- \bullet Let Q be a conjunctive query, and $Q_1,\ Q_2$ two conjunctive queries equivalent to Q
- Assume that Q_1 and Q_2 are both minimal, and let T_1 and T_2 be their tableaux.
- Then T_1 and T_2 are isomorphic; that is, T_2 can be obtained from T_1 by renaming of variables.
- That is, all minimizations are equivalent.
- In particular, in the minimization algorithm, the order in which rows are considered, is irrelevant.

Equivalence of conjunctive queries: the general case

- So far we assumed that there is only one relation *R*, but what if there are many?
- Construct tableaux as before:

$$Q(x,y) \hbox{:-} B(x,y), R(y,z), R(y,w), R(w,y)$$

ΛR

• Tableau:

• Formally, a tableau is just a database where variables can appear in tuples, plus a set of distinguished variables.

Tableaux and multiple relations

• Given two tableaux T_1 and T_2 over the same set of relations, and the same distinguished variables, a homomorphism $h: T_1 \to T_2$ is a mapping

$$f: \{ \text{variables of } T_1 \} \rightarrow \{ \text{variables of } T_2 \}$$

such that

- f(x) = x for every distinguished variable, and
- for each row \vec{t} in R in T_1 , $f(\vec{t})$ is in R in T_2 .
- Homomorphism theorem: let Q_1 and Q_2 be conjunctive queries, and T_1, T_2 their tableaux. Then

$$\label{eq:Q2} \begin{array}{l} Q_2 \subseteq Q_1 \\ \text{if and only if} \\ \text{there exists a homomorphism } f:T_1 \to T_2 \end{array}$$

Minimization with multiple relations

• The algorithm is the same as before, but one has to try rows in different relations. Consider homomorphism f(z) = w, and f is the identity for other variables. Applying this to the tableau for Q yields

- \bullet This cannot be further reduced, as for any homomorphism $f,\,f(x)=x,\,f(y)=y.$
- \bullet Thus Q is equivalent to

$$Q'(x,y) \ \coloneqq \ B(x,y), R(y,w), R(w,y)$$

• One join is eliminated.

Query rewriting

- Recall the algorithm, for a given Q and view definitions V₁,..., V_k:
 Look at all rewritings that have as at most as many joins as Q
 check if they are contained in Q
 take the union of those that are
- This is the maximally contained rewriting
- \bullet There are algorithms that prune the search space and make looking for rewritings contained in Q more efficient
 - \circ the bucket algorithm
 - $\circ \ {\sf MiniCon}$
- May see of them later

How hard is it to answer queries using views?

- Setting: we now have an actual content of the views.
- As before, a query is Q posed against D, but must be answered using information in the views.
- Suppose I_1, \ldots, I_k are view instances. Two possibilities:
 - Exact mappings: $I_j = V_j(D)$
 - Sound mappings: $I_j \subseteq V_j(D)$
- We need certain answers for given $\mathcal{I} = (I_1, \ldots, I_k)$:

$$\begin{aligned} \operatorname{certain}_{exact}(Q,\mathcal{I}) &= \bigcap_{D: \ I_j = V_j(D) \ \text{for all } j} Q(D) \\ \operatorname{certain}_{sound}(Q,\mathcal{I}) &= \bigcap_{D: \ I_j \subseteq V_j(D) \ \text{for all } j} Q(D) \end{aligned}$$

How hard is it to answer queries using views?

- If $certain_{exact}(Q, \mathcal{I})$ or $certain_{sound}(Q, \mathcal{I})$ are impossible to obtain, we want maximally contained rewritings:
 - $\circ Q'(\mathcal{I}) \subseteq \operatorname{certain}_{exact}(Q, \mathcal{I}), \text{ and} \\ \circ \text{ if } Q''(\mathcal{I}) \subseteq \operatorname{certain}_{exact}(Q, \mathcal{I}) \text{ then } Q''(\mathcal{I}) \subseteq Q'(\mathcal{I}) \\ \circ \text{ (and likewise for } sound)$
- How hard is it to compute this from \mathcal{I} ?
- In databases, we reason about complexity in two ways:
 - \circ The big-O notation ($O(n \log n)$ vs $O(n^2)$ vs $O(2^n)$)
 - Complexity-theoretic notions: PTIME, NP, DLOGSPACE, etc
- Advantage of complexity-theoretic notions: if you have a $O(2^n)$ algorithm, is it because the problem is inherently hard, or because we are not smart enough to come up with a better algorithm (or both)?

Complexity classes: what you always wanted to know but never dared to ask

- Or a 5/5-introduction: a five minute review that tells you what are likely to remember 5 years after taking a complexity theory course.
- The big divide: PTIME (computable in polynomial time, i.e. $O(n^k)$ for some fixed k)
- Inside PTIME: tractable queries (although high-degree polynomial are intractable)
- Outside PTIME: intractable queries (efficient algorithms are unlikely)
- Way outside PTIME: provably intractable queries (efficient algorithms do not exist)
 - \circ EXPTIME: c^n -algorithms for a constant c. Could still be ok for not very large inputs
 - Even further 2-EXPTIME: c^{c^n} . Cannot be ok even for small inputs (compare 2^{10} and $2^{2^{10}}$).

Inside PTIME

$\mathsf{AC}^0 \ \subsetneq \ \mathsf{TC}^0 \ \subseteq \ \mathsf{NC}^1 \ \subseteq \ \mathsf{DLOG} \ \subseteq \ \mathsf{NLOG} \ \subseteq \ \mathsf{PTIME}$

- AC⁰: very efficient parallel algorithms (constant time, simple circuits) - relational calculus
- TC⁰: very efficient parallel algorithms in a more powerful computational model with counting gates
 - basic SQL (relational calculus/grouping/aggregation)
- NC¹: efficient parallel algorithms
 - regular languages
- \bullet DLOG: very little $O(\log n)$ space is required
 - SQL + (restricted) transitive closure
- \bullet NLOG: $O(\log n)$ space is required if nondeterminism is allowed
 - SQL + transitive closure (as in the SQL3 standard)

Beyond PTIME

$$\mathsf{PTIME} \ \subseteq \ \left\{ \begin{array}{l} \mathsf{NP} \\ \mathsf{coNP} \end{array} \right\} \ \subseteq \ \mathsf{PSPACE}$$

- PTIME: can solve a problem in polynomial time
- NP: can check a given candidate solution in polynomial time
 - \circ another way of looking at it: guess a solution, and then verify if you guessed it right in polynomial time
- coNP: complement of NP verify that all "reasonable" candidates are solutions to a given problem.
 - Appears to be harder than NP but the precise relationship isn't known
- PSPACE: can be solved using memory of polynomial size (but perhaps an exponential-time algorithm)

Complete problems

- These are the hardest problems in a class.
- If our problem is as hard as a complete problem, it is very unlikely it can be done with lower complexity.
- For NP:
 - SAT (satisfiability of Boolean formulae)
 - many graph problems (e.g. 3-colourability)
 - \circ Integer linear programming etc
- For PSPACE:
 - \circ Quantified SAT
 - \circ Two XML DTDs are equivalent

Complexity of query answering

• We want the complexity of finding

$$\operatorname{certain}_{\mathit{exact}}(Q,\mathcal{I}) \quad \text{ or } \quad \operatorname{certain}_{\mathit{sound}}(Q,\mathcal{I})$$

in terms of the size of ${\cal I}$

- If all view definitions are conjunctive queries and Q is a relational algebra or a SQL query, then the complexity is coNP.
- (blackboard)
- This is too high!
- If all view definitions are conjunctive queries and Q is a conjunctive query, then the complexity is PTIME.
 - Because: the maximally contained rewriting computes certain answers!

Complexity of query answering

query language

view language	CQ	$CQ^{ eq}$	relational calculus
CQ	ptime	coNP	undecidable
CQ^{\neq}	ptime	coNP	undecidable
relational calculus	undecidable	undecidable	undecidable

CQ – conjunctive queries

 CQ^{\neq} – conjunctive queries with inequalities (for example, Q(x) :– $R(x,y), S(y,z), x \neq z$)

Complexity of query answering: coNP-completeness idea

- \bullet Start with a graph G this is our instance
- *D* is *G* together with a colouring, with 3 colours; each node is assigned one colour.
- Q asks if we have an edge (a, b) with $a \neq b$ and a, b of the same colour.
- \bullet If G is not 3-colourable, then every instance D would satisfy Q
- Otherwise, if G is 3-colourable, we can find extensions that are and that are not 3-colourable hence certain answers are empty.
- Thus if we can compute certain answers, we can test non-3-colourability \Rightarrow coNP-completeness.