GAV-sound with conjunctive queries

- Source and global schema as before:
 - source $R_1(A, B), R_2(B, C)$
 - Global schema: $T_1(A, C), T_2(B, C)$
- GAV mappings become sound:
 - $T_1 \supseteq \{x, y, z \mid R_1(x, y) \land R_2(y, z)\}$
 - $T_2 \supseteq R_2$
- Let D_{exact} be the unique database that arises from the exact setting (with \supseteq replaced by $=$)
- Then every database D_{sound} that satisfies the sound setting also satisfies
 $$D_{\text{exact}} \subseteq D_{\text{sound}}$$
Conjunctive queries are monotone:

\[D_1 \subseteq D_2 \quad \Rightarrow \quad Q(D_1) \subseteq Q(D_2) \]

Exact solution is a sound solution too, and is contained in every sound solution.

Hence certain answers for each conjunctive query

\[\text{certain}(D, Q) = \bigcap_{D_{\text{sound}}} Q(D_{\text{sound}}) = Q(D_{\text{exact}}) \]

The solution for GAV-exact gives us certain answers for GAV-sound, for conjunctive (and more generally, monotone) queries.
Query answering using views

- General setting: database relations R_1, \ldots, R_n.
- Several views V_1, \ldots, V_k are defined as results of queries over the R_i's.
- We have a query Q over R_1, \ldots, R_n.
- **Question**: Can Q be answered in terms of the views?
 - In other words, can Q be reformulated so it only refers to the data in V_1, \ldots, V_k?
Query answering using views in data integration

• LAV:
 ○ R_1, \ldots, R_n are global schema relations; Q is the global schema query
 ○ V_i’s are the sources defined over the global schema
 ○ We must answer Q based on the sources (virtual integration)

• GAV:
 ○ R_1, \ldots, R_n are the sources that are not fully available.
 ○ Q is a query in terms of the source (or a query that was reformulated in terms of the sources)
 ○ Must see if it is answerable from the available views V_1, \ldots, V_k.

• We know the problem is impossible to solve for full relational algebra, hence we concentrate on conjunctive queries.
Conjunctive queries: rule-based notation

- We often write conjunctive queries as logical statements:

\[\{ t, y, r \mid \exists d \ (\text{Movie}(t, d, y) \land \text{RV}(t, r) \land y > 2000) \} \]

- Rule-based:

\[Q(t, y, r) :– \text{Movie}(t, d, y), \text{RV}(t, r), y > 2000 \]

- \(Q(t, y, r) \) is the head of the rule
- \(\text{Movie}(t, d, y), \text{RV}(t, r), y > 2000 \) is its body
- conjunctions are replaced by commas
- variables that occur in the body but not in the head (\(d \)) are assumed to be existentially quantified
- essentially logic programming notation (without functions)
Query answering using views: example

- Two relations in the database: \texttt{Cites(A,B)} (if A cites B), and \texttt{SameTopic(A,B)} (if A, B work on the same topic)
- Query $Q(x, y) :– \text{SameTopic}(x, y), \text{Cites}(x, y), \text{Cites}(y, x)$
- Two views are given:
 - $V_1(x, y) :– \text{Cites}(x, y), \text{Cites}(y, x)$
 - $V_2(x, y) :– \text{SameTopic}(x, y), \text{Cites}(x, x'), \text{Cites}(y, y')$
- Suggested rewriting: $Q'(x, y) :– V_1(x, y), V_2(x, y)$
- Why? Unfold using the definitions:
 $Q'(x, y) :– \text{Cites}(x, y), \text{Cites}(y, x), \text{SameTopic}(x, y), \text{Cites}(x, x'), \text{Cites}(y, y')$
- Equivalent to Q
Query answering using views

- Need a formal technique (algorithm): cannot rely on the semantics.
- Query Q:

  ```sql
  SELECT R1.A
  FROM R R1, R R2, S S1, S S2
       AND R1.B = 1 and S2.B = 1
  ```

- $Q(x) \leftarrow R(x, y), R(x, 1), S(x, z), S(x, 1)$
- Equivalent to $Q(x) \leftarrow R(x, 1), S(x, 1)$
- So if we have a view
 - $V(x, y) \leftarrow R(x, y), S(x, y)$ (i.e. $V = R \cap S$), then
 - $Q = \pi_A(\sigma_{B=1}(V))$
 - Q can be rewritten (as a conjunctive query) in terms of V
Query rewriting

• Setting:
 ◦ Queries V_1, \ldots, V_k over the same schema σ (assume to be conjunctive; they define the views)
 ◦ Each Q_i is of arity n_i
 ◦ A schema ω with relations of arities n_1, \ldots, n_k

• Given:
 ◦ a query Q over σ
 ◦ a query Q' over ω

• Q' is a rewriting of Q if for every σ-database D,

$$Q(D) = Q'(V_1(D), \ldots, V_k(D))$$
Maximal rewriting

- Sometimes exact rewritings cannot be obtained
- \(Q' \) is a maximally-contained rewriting if:

 - it is contained in \(Q \):
 \[
 \forall D \quad Q'(V_1(D), \ldots, V_k(D)) \subseteq Q(D)
 \]

 - it is maximal such: if
 \[
 \forall D \quad Q''(V_1(D), \ldots, V_k(D)) \subseteq Q(D)
 \]

 for all \(D \), then
 \[
 Q'' \subseteq Q'
 \]
Side remark: query rewriting and certain answers

- If we have sources $R = (R_1, \ldots, R_k)$, we can view conditions
 \[
 V_1(D) = R_1, \ldots, V_k(D) = R_k
 \]
as an incomplete specification of a database D

- To answer Q over D, given R_1, \ldots, R_k, we want to compute certain answers:
 \[
 \text{certain}(Q, R) = \bigcap \{Q(D) \mid V_1(D) = R_1, \ldots, V_k(D) = R_k\}
 \]

- If for every such D we have $Q(D) = Q'(V_1(D), \ldots, V_k(D))$, then
 $\text{certain}(Q, R) = Q'$.

- But we may even look at a more general way of query answering by finding a rewriting Q' so that
 \[
 \text{certain}(Q, R) = Q'(R)
 \]
Query rewriting: a naive algorithm

- Given:
 - conjunctive queries V_1, \ldots, V_k over schema σ
 - a query Q over σ
- Algorithm:
 - guess a query Q' over the views
 - Unfold Q' in terms of the views
 - Check if the unfolding is contained in Q
- If one unfolding is equivalent to Q, then Q' is a rewriting
- Otherwise take the union of all unfoldings contained in Q
 - it is a maximally contained rewriting
Why is it not an algorithm yet?

- **Problem 1**: we do not yet know how to test containment and equivalence.
 - But we shall learn soon

- **Problem 2**: the guess stage.
 - There are infinitely many conjunctive queries.
 - We cannot check them all.
 - Solution: we only need to check a few.
Guessing rewritings

- A basic fact:
 - If there is a rewriting of Q using V_1, \ldots, V_k, then there is a rewriting with no more conjuncts than in Q.
 - E.g., if $Q(x) :– R(x, y), R(x, 1), S(x, z), S(x, 1)$, we only need to check conjunctive queries over V with at most 4 conjuncts.

- Moreover, maximally contained rewriting is obtained as the union of all conjunctive rewritings of length of Q or less.

- Complexity: enumerate all candidates (exponentially many); for each an NP (or exponential) algorithm. Hence exponential time is required.

- Cannot lower this due to NP-completeness.
Containment and optimization of conjunctive queries

- Reminder:

 conjunctive queries
 = SPJ queries
 = rule-based queries
 = simple SELECT-FROM-WHERE SQL queries
 (only AND and equality in the WHERE clause)

- Extremely common, and thus special optimization techniques have been developed

- Reminder: for two relational algebra expressions e_1, e_2, $e_1 = e_2$ is undecidable.

- But for conjunctive queries, even $e_1 \subseteq e_2$ is decidable.

- Main goal of optimizing conjunctive queries: reduce the number of joins.
Optimization of conjunctive queries: an example

• Given a relation R with two attributes A, B

• Two SQL queries:

 Q1

 SELECT R1.B, R1.A
 FROM R R1, R R2
 WHERE R2.A=R1.B

 Q2

 SELECT R3.A, R1.A
 FROM R R1, R R2, R R3

• Are they equivalent?

• If they are, we saved one join operation.

• In relational algebra:

 \[
 Q_1 = \pi_{2,1}(\sigma_{2=3}(R \times R))
 \]

 \[
 Q_2 = \pi_{5,1}(\sigma_{2=4 \land 4=5}(R \times R \times R))
 \]
Optimization of conjunctive queries cont’d

• Are \(Q_1 \) and \(Q_2 \) equivalent?
• If they are, we cannot show it by using equivalences for relational algebra expression.
• Because: they don’t decrease the number of \(\Join \) or \(\times \) operators, but \(Q_1 \) has 1 join, and \(Q_2 \) has 2.
• But \(Q_1 \) and \(Q_2 \) are equivalent. How can we show this?
• But representing queries as databases. This representation is very close to rule-based queries.

\[
Q_1(x, y) := R(y, x), R(x, z)
\]
\[
Q_2(x, y) := R(y, x), R(w, x), R(x, u)
\]
Conjunctive queries into tableaux

- Tableau: representing of a conjunctive query as a database
- We first consider queries over a single relation
- \(Q_1(x, y) :– R(y, x), R(x, z) \)
- \(Q_2(x, y) :– R(y, x), R(w, x), R(x, u) \)
- Tableaux:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>z</td>
</tr>
</tbody>
</table>

\(x \ y \leftarrow \) answer line

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>w</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>u</td>
</tr>
</tbody>
</table>

| x | y \leftarrow \) answer line

- Variables in the answer line are called distinguished
Tableau homomorphisms

- A homomorphism of two tableaux $f : T_1 \rightarrow T_2$ is a mapping

 \[f : \{ \text{variables of } T_1 \} \rightarrow \{ \text{variables of } T_2 \} \cup \{ \text{constants} \} \]

- For every distinguished x, $f(x) = x$

- For every row x_1, \ldots, x_k in T_1, $f(x_1), \ldots, f(x_k)$ is a row of T_2

- Query containment: $Q \subseteq Q'$ if $Q(D) \subseteq Q'(D)$ for every database D

- Homomorphism Theorem: Let Q, Q' be two conjunctive queries, and T, T' their tableaux. Then

 \[Q \subseteq Q' \]

 if and only if

 there exists a homomorphism $f : T' \rightarrow T$
Applying the Homomorphism Theorem: $Q_1 = Q_2$

\[
\begin{array}{cc}
T1 & T2 \\
\hline
A & B \\
y & x \\
x & z \\
\hline
x & y \\
\end{array}
\begin{array}{cc}
A & B \\
y & x \\
w & x \\
\hline
x & u \\
x & y \\
\end{array}
\]

\[
f(x) = x, f(y) = y, f(z) = u, f(w) = y
\]

Hence $Q_1 \subseteq Q_2$

\[
\begin{array}{cc}
T1 & T2 \\
\hline
A & B \\
y & x \\
x & z \\
\hline
x & y \\
\end{array}
\begin{array}{cc}
A & B \\
y & x \\
w & x \\
\hline
x & u \\
x & y \\
\end{array}
\]

\[
f(x) = x, f(y) = y, f(z) = u
\]

Hence $Q_2 \subseteq Q1$
Applying the Homomorphism Theorem: Complexity

- Given two conjunctive queries, how hard is it to test if $Q_1 = Q_2$?
- it is easy to transform them into tableaux, from either SPJ relational algebra queries, or SQL queries, or rule-based queries
- But testing the existence of a homomorphism between two tableaux is hard: NP-complete. Thus, a polynomial algorithm is unlikely to exists.
- However, queries are small, and conjunctive query optimization is possible in practice.
Minimizing conjunctive queries

• Goal: given a conjunctive query Q, find an equivalent conjunctive query Q' with the minimum number of joins.
• Assume Q is
 \[Q(\vec{x}) \leftarrow R_1(\vec{u}_1), \ldots, R_k(\vec{u}_k) \]
• Assume that there is an equivalent conjunctive query Q' of the form
 \[Q'(\vec{x}) \leftarrow S_1(\vec{v}_1), \ldots, S_l(\vec{v}_l) \]
 with $l < k$
• Then Q is equivalent to a query of the form
 \[Q'(\vec{x}) \leftarrow R_{i_1}(\vec{u}_{i_1}), \ldots, R_{i_l}(\vec{u}_{i_l}) \]
• In other words, to minimize a conjunctive query, one has to delete some subqueries on the right of :-
Minimizing conjunctive queries cont’d

- Given a conjunctive query Q, transform it into a tableau T.
- Let Q' be a minimal conjunctive query equivalent to Q. Then its tableau T' is a subset of T.
- Minimization algorithm:

 $$T' := T$$

 repeat until no change

 choose a row t in T'

 if there is a homomorphism $f : T' \rightarrow T' - \{t\}$

 then $T' := T' - \{t\}$

 end

- Note: if there exists a homomorphism $T' \rightarrow T' - \{t\}$, then the queries defined by T' and $T' - \{t\}$ are equivalent. Because: there is always a homomorphism from $T' - \{t\}$ to T'. (Why?)
Minimizing SPJ/conjunctive queries: example

- \(R \) with three attributes \(A, B, C \)
- SPJ query:
 \[
 Q = \pi_{AB}(\sigma_{B=4}(R)) \Join \pi_{BC}(\pi_{AB}(R) \Join \pi_{AC}(\sigma_{B=4}(R)))
 \]
- Equivalently, a SQL query:
  ```sql
  FROM R R1, R R2, R R3
  ```
- Translate into a conjunctive query:
 \[
 \exists x_1, z_1, z_2 (R(x, 4, z_1) \land R(x_1, 4, z_2) \land R(x_1, 4, z) \land y = 4)
 \]
- Rule-based:
 \[
 Q(x, y, z) :\neg R(x, 4, z_1), R(x_1, 4, z_2), R(x_1, 4, z), y = 4
 \]
Minimizing SPJ/conjunctive queries cont’d

- **Tableau** T:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>4</td>
<td>z_1</td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z_2</td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

- **Minimization, step 1**: is there a homomorphism from T to

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>4</td>
<td>z_2</td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

- **Answer**: No. For any homomorphism f, $f(x) = x$ (why?), thus the image of the first row is not in the small tableau.
Minimizing SPJ/conjunctive queries cont’d

• Step 2: Is \(T \) equivalent to

\[
\begin{array}{ccc}
A & B & C \\
x & 4 & z_1 \\
x_1 & 4 & z \\
x & 4 & z \\
\end{array}
\]

• Answer: Yes. Homomorphism \(f: f(z_2) = z \), all other variables stay the same.

• The new tableau is not equivalent to

\[
\begin{array}{ccc}
A & B & C \\
x & 4 & z_1 \\
x & 4 & z \\
\end{array}
\]

or

\[
\begin{array}{ccc}
A & B & C \\
x_1 & 4 & z \\
\end{array}
\]

• Because \(f(x) = x, f(z) = z \), and the image of one of the rows is not present.
Minimizing SPJ/conjunctive queries cont’d

- Minimal tableau:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z₁</td>
</tr>
<tr>
<td>x₁</td>
<td>4</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

- Back to conjunctive query:

\[
Q'(x, y, z) \leftarrow R(x, y, z₁), R(x₁, y, z), y = 4
\]

- An SPJ query:

\[
\pi_{AB}(\sigma_{B=4}(R)) \bowtie \pi_{BC}(\sigma_{B=4}(R))
\]

 FROM R R₁, R R₂
Review of the journey

• We started with

\[\pi_{AB}(\sigma_{B=4}(R)) \Join \pi_{BC}(\pi_{AB}(R) \Join \pi_{AC}(\sigma_{B=4}(R))) \]

• Translated into a conjunctive query
• Built a tableau and minimized it
• Translated back into conjunctive query and SPJ query
• Applied algebraic equivalences and obtained

\[\pi_{AB}(\sigma_{B=4}(R)) \Join \pi_{BC}(\sigma_{B=4}(R)) \]

• Savings: one join.
All minimizations are equivalent

• Let Q be a conjunctive query, and Q_1, Q_2 two conjunctive queries equivalent to Q.

• Assume that Q_1 and Q_2 are both minimal, and let T_1 and T_2 be their tableaux.

• Then T_1 and T_2 are isomorphic; that is, T_2 can be obtained from T_1 by renaming of variables.

• That is, all minimizations are equivalent.

• In particular, in the minimization algorithm, the order in which rows are considered, is irrelevant.
Equivalence of conjunctive queries: the general case

- So far we assumed that there is only one relation R, but what if there are many?
- Construct tableaux as before:

 \[
 Q(x, y): \neg B(x, y), R(y, z), R(y, w), R(w, y)
 \]

- Tableau:

<table>
<thead>
<tr>
<th>B:</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>y</td>
<td></td>
<td>y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R:</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>z</td>
<td>y</td>
<td>w</td>
</tr>
<tr>
<td>w</td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>

- Formally, a tableau is just a database where variables can appear in tuples, plus a set of distinguished variables.
Tableaux and multiple relations

• Given two tableaux T_1 and T_2 over the same set of relations, and the same distinguished variables, a homomorphism $h : T_1 \rightarrow T_2$ is a mapping
 \[f : \{\text{variables of } T_1\} \rightarrow \{\text{variables of } T_2\} \]
such that
 - $f(x) = x$ for every distinguished variable, and
 - for each row \vec{t} in R in T_1, $f(\vec{t})$ is in R in T_2.

• Homomorphism theorem: let Q_1 and Q_2 be conjunctive queries, and T_1, T_2 their tableaux. Then
 \[Q_2 \subseteq Q_1 \]
 if and only if there exists a homomorphism $f : T_1 \rightarrow T_2$
Minimization with multiple relations

- The algorithm is the same as before, but one has to try rows in different relations. Consider homomorphism $f(z) = w$, and f is the identity for other variables. Applying this to the tableau for Q yields

\[
\begin{array}{c|c|c}
A & B & \hline
x & y \\
\end{array}
\quad
\begin{array}{c|c|c}
A & B & \hline
y & w \\
\end{array}
\quad
\begin{array}{c|c|c}
B: & A & \hline
x & y & \hline
\end{array}
\quad
\begin{array}{c|c|c}
R: & A & \hline
y & w & \hline
w & y & \hline
x & y & \hline
\end{array}
\]

- This cannot be further reduced, as for any homomorphism f, $f(x) = x$, $f(y) = y$.

- Thus Q is equivalent to

\[
Q'(x, y) :\quad B(x, y), R(y, w), R(w, y)
\]

- One join is eliminated.
Query rewriting

• Recall the algorithm, for a given Q and view definitions V_1, \ldots, V_k:
 ○ Look at all rewritings that have as at most as many joins as Q
 ○ check if they are contained in Q
 ○ take the union of those that are

• This is the maximally contained rewriting

• There are algorithms that prune the search space and make looking for rewritings contained in Q more efficient
 ○ the bucket algorithm
 ○ MiniCon

• May see of them later
How hard is it to answer queries using views?

• Setting: we now have an actual content of the views.

• As before, a query is \(Q \) posed against \(D \), but must be answered using information in the views.

• Suppose \(I_1, \ldots, I_k \) are view instances. Two possibilities:
 - Exact mappings: \(I_j = V_j(D) \)
 - Sound mappings: \(I_j \subseteq V_j(D) \)

• We need certain answers for given \(\mathcal{I} = (I_1, \ldots, I_k) \):

\[
\text{certain}_{\text{exact}}(Q, \mathcal{I}) = \bigcap_{D: I_j = V_j(D) \text{ for all } j} Q(D)
\]

\[
\text{certain}_{\text{sound}}(Q, \mathcal{I}) = \bigcap_{D: I_j \subseteq V_j(D) \text{ for all } j} Q(D)
\]
How hard is it to answer queries using views?

- If certain\textsubscript{exact}(Q, I) or certain\textsubscript{sound}(Q, I) are impossible to obtain, we want maximally contained rewritings:
 - Q′(I) ⊆ certain\textsubscript{exact}(Q, I), and
 - if Q″(I) ⊆ certain\textsubscript{exact}(Q, I) then Q″(I) ⊆ Q′(I)
 - (and likewise for sound)

- How hard is it to compute this from I?

- In databases, we reason about complexity in two ways:
 - The big-O notation (O(n log n) vs O(n\(^2\)) vs O(2\(^n\)))
 - Complexity-theoretic notions: PTIME, NP, DLOGSPACE, etc

- Advantage of complexity-theoretic notions: if you have a O(2\(^n\)) algorithm, is it because the problem is inherently hard, or because we are not smart enough to come up with a better algorithm (or both)?
Complexity classes: what you always wanted to know but never dared to ask

- Or a 5/5-introduction: a five minute review that tells you what are likely to remember 5 years after taking a complexity theory course.
- The big divide: PTIME (computable in polynomial time, i.e. $O(n^k)$ for some fixed k)
- Inside PTIME: tractable queries (although high-degree polynomial are intractable)
- Outside PTIME: intractable queries (efficient algorithms are unlikely)
- Way outside PTIME: provably intractable queries (efficient algorithms do not exist)
 - EXPTIME: c^n-algorithms for a constant c. Could still be ok for not very large inputs
 - Even further – 2-EXPTIME: c^{cn}. Cannot be ok even for small inputs (compare 2^{10} and $2^{2^{10}}$).

L. Libkin
Inside PTIME

\[AC^0 \subsetneq TC^0 \subseteq NC^1 \subseteq DLOG \subseteq NLOG \subseteq PTIME \]

- **AC^0**: very efficient parallel algorithms (constant time, simple circuits)
 - relational calculus
- **TC^0**: very efficient parallel algorithms in a more powerful computational model with counting gates
 - basic SQL (relational calculus/grouping/aggregation)
- **NC^1**: efficient parallel algorithms
 - regular languages
- **DLOG**: very little \(O(\log n) \) – space is required
 - SQL + (restricted) transitive closure
- **NLOG**: \(O(\log n) \) space is required if nondeterminism is allowed
 - SQL + transitive closure (as in the SQL3 standard)
Beyond PTIME

\[
\text{PTIME} \subseteq \left\{ \begin{array}{c}
\text{NP} \\
\text{coNP}
\end{array} \right\} \subseteq \text{PSPACE}
\]

- **PTIME**: can solve a problem in polynomial time
- **NP**: can check a given candidate solution in polynomial time
 - another way of looking at it: guess a solution, and then verify if you guessed it right in polynomial time
- **coNP**: complement of NP – verify that all “reasonable” candidates are solutions to a given problem.
 - Appears to be harder than NP but the precise relationship isn’t known
- **PSPACE**: can be solved using memory of polynomial size (but perhaps an exponential-time algorithm)
Complete problems

- These are the hardest problems in a class.
- If our problem is as hard as a complete problem, it is very unlikely it can be done with lower complexity.
- For NP:
 - SAT (satisfiability of Boolean formulae)
 - many graph problems (e.g. 3-colourability)
 - Integer linear programming etc
- For PSPACE:
 - Quantified SAT
 - Two XML DTDs are equivalent
Complexity of query answering

- We want the complexity of finding
 \[\text{certain}_{\text{exact}}(Q, \mathcal{I}) \quad \text{or} \quad \text{certain}_{\text{sound}}(Q, \mathcal{I}) \]
 in terms of the size of \(\mathcal{I} \)
- If all view definitions are conjunctive queries and \(Q \) is a relational algebra or a SQL query, then the complexity is \(\text{coNP} \).
- (blackboard)
- This is too high!
- If all view definitions are conjunctive queries and \(Q \) is a conjunctive query, then the complexity is \(\text{PTIME} \).
 - Because: the maximally contained rewriting computes certain answers!
Complexity of query answering

<table>
<thead>
<tr>
<th>view language</th>
<th>CQ</th>
<th>CQ ≠</th>
<th>relational calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ</td>
<td>ptime</td>
<td>coNP</td>
<td>undecidable</td>
</tr>
<tr>
<td>CQ ≠</td>
<td>ptime</td>
<td>coNP</td>
<td>undecidable</td>
</tr>
<tr>
<td>relational calculus</td>
<td>undecidable</td>
<td>undecidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

CQ – conjunctive queries

CQ ≠ – conjunctive queries with **inequalities**

(for example, \(Q(x) :− R(x, y), S(y, z), x \neq z \))
Complexity of query answering: coNP-completeness idea

- Start with a graph G – this is our instance
- D is G together with a colouring, with 3 colours; each node is assigned one colour.
- Q asks if we have an edge (a, b) with $a \neq b$ and a, b of the same colour.
- If G is not 3-colourable, then every instance D would satisfy Q
- Otherwise, if G is 3-colourable, we can find extensions that are and that are not 3-colourable – hence certain answers are empty.
- Thus if we can compute certain answers, we can test non-3-colourability \Rightarrow coNP-completeness.