Data Integration and Exchange
Traditional approach to databases

- A single large repository of data.
- Database administrator in charge of access to data.
- Users interact with the database through application programs.
- Programmers write those (embedded SQL, other ways of combining general purpose programming languages and DBMSs).
- Queries dominate; updates less common.
- DMBS takes care of lots of things for you such as
 - query processing and optimisation
 - concurrency control
 - enforcing database integrity
Traditional approach to databases cont’d

• This model works very within a single organisation that either
 ◦ does not interact much with the outside world, or
 ◦ the interaction is heavily controlled by the DB administrators

• What do we expect from such a system?

 1. Data is relatively **clean**; little incompleteness
 2. Data is **consistent** (enforced by the DMBS)
 3. Data is **there** (resides on the disk)
 4. Well-defined **semantics of query answering** (if you ask a query, you know what you want to get)
 5. Access to data is **controlled**
The world is changing

- The traditional model still dominates, but the world is changing.
- Many huge repositories are publicly available
 - In fact many are well-organised databases, e.g., imdb.com, the CIA World Factbook, many genome databases, the DBLP server of CS publications, etc etc etc)
- Many queries **cannot** be answered using a single source.
- Often data from various sources needs to be combined, e.g.
 - company mergers
 - restructuring databases within a single organisation
 - combining data from several private and public sources
Course info

• No text.
 ◦ Because there is no text at this time...
• Slides will be posted on the course webpage:
 http://homepages.inf.ed.ac.uk/libkin/teach/dataintegr09
• Tutorials by Lenzerini and Kolaitis (see links on the webpage)
• 3 assignments
• final exam
• Office hours: by appointment (usually works better for UG4/MSc courses)
Why do you need this course

• Databases are everywhere these days (> $2 \cdot 10^{10}$/year business — whatever that means today)
• Every enterprise has a database; they merge, combine data – hence data integration
• In addition, a lot of data is available on the web, but often one needs many sources to answer a query
• Hence (almost) everyone needs to integrate data
• Huge investment from leading companies, IBM, Oracle, Microsoft
• Very ad hoc solutions; but finally we understand what the real problems in data integration are, and have some solutions (but not all!)
Background

• Requirement: Database Systems (3rd year)
• or fluency in relational databases:
 ◦ relational model
 ◦ relational algebra/calculus
 ◦ SQL
• An understanding of the basic mathematical tools that serve as the foundation of computer science:
 ◦ basic set theory,
 ◦ graph theory,
 ◦ theory of computation,
 ◦ first-order logic.
Outline of the course

• Introduction to the problems of data integration and exchange. Key new components:
 ○ incomplete information
 ○ query rewriting
 ○ certain answers

• Data integration scenarios:
 ○ global-as-view, local-as-view, combined
 ○ virtual vs materialized

• How to distinguish easy queries from hard queries?

• Query answering in data integration scenarios:
 ○ view-based rewritings
Outline of the course cont’d

• Incomplete information in databases
 ◦ theory, tables, complexity
 ◦ practice (the ugly reality – SQL)
 ◦ Open and closed worlds

• Data exchange: settings, source-to-target constraints, solutions

• Data exchange query answering:
 ◦ conjunctive (select-project-join) queries
 ◦ full relational algebra queries
 closed vs open worlds
Outline of the course cont’d

• Data exchange: XML data
 ○ tree patterns
 ○ consistency problems
 ○ query answering

• Schema management:
 ○ composition, other operations, schema evolution

• Inconsistent databases, repairs, query answering

• If time permits: ranking queries
Query answering from multiple sources

- Data resides in several different databases
- They may have different structures, different access policies etc
- Our view of the world may be very different from the view of the databases we need to use.
- Only portions of the data from some database could be available.
- That is, the sources do not conform to the schema of the database into which the data will be loaded.
What industry offers now: ETL tools

- ETL stands for Extract–Transform–Load
 - Extract data from multiple sources
 - Transform it so it is compatible with the schema
 - Load it into a database

- Many self-built tools in the 80s and the 90s; through acquisition fewer products exist now

- The big players – IBM, Microsoft, Oracle – all have their ETL products; Microsoft and Oracle offer them with their database products.

- A few independent vendors, e.g. Informatica PowerCenter.

- Several open source products exist, e.g. Clover ETL.
ETL tools

• Focus:
 ◦ Data profiling
 ◦ Data cleaning
 ◦ Simple transformations
 ◦ Bulk loading
 ◦ Latency requirements

• What they don’t do yet:
 ◦ nontrivial transformations
 ◦ query answering

• But techniques now exist for interesting data integration and for query answering – and we shall learn them.

• They soon will be reflected in products (IBM and Microsoft are particularly active in this area)
Data profiling/cleaning

• Data profiling: gives the user a view of data:
 ◦ Samples over large tables
 ◦ statistics (how many different values etc)
 ◦ Graphical tools for exploring the database

• Cleaning:
 ◦ Same properties may have different names
 e.g. Last_Name, L_Name, LastName
 ◦ Same data may have different representations
 ● e.g. (0131)555-1111 vs 01315551111,
 ● George Str. vs George Street
 ◦ Some data may be just wrong
Data transformation

- Most transformation rules tend to be simple:
 - Copy attribute LName to Last_Name
 - Set age to be current_year - DOB

- Heavy emphasis on industry specific formats

- For example, Informatica B2B Data Exchange product offers versions for Healthcare and Financial services as well as specialised tools for formats including:
 - MS Word, Excel, PDF, UN/EDIFACT (Data Interchange For Administration, Commerce, and Transport), RosettaNet for B2B, and many specialised healthcare and financial form.

- These are format/industry specific and have little to do with the general tasks of data integration.
Data integration, scenario 1

GLOBAL SCHEMA

QUERY: Q?
Data integration

GLOBAL SCHEMA

QUERY: Q?
Data integration

Answer to Q is obtained by querying the views V_1, \ldots, V_n
Data integration, query answering

- We have our view of the world (the Global Schema)
- We can access (parts of) databases DB_1, \ldots, DB_n to get relevant data.
- It comes in the form of views, V_1, \ldots, V_n
- Our query against the global schema must be reformulated as a query against the views V_1, \ldots, V_n
- The approach is completely virtual: we never create a database that conforms to the global schema.
Data integration, query answering, a toy example

- List courses taught by permanent teaching staff during Winter 2007
- We have two databases:
 - \(D_1(\text{name, age, salary}) \) of permanent staff
 - \(D_2(\text{teacher, course, semester, enrollment}) \) of courses
- \(D_1 \) only publishes the value of the name attribute
- \(D_2 \) does not reveal enrollments
- The views:
 \[
 V_1 = \pi_{\text{name}}(D_1)
 \]
 \[
 V_2 = \pi_{\text{teacher, course, semester}}(D_2)
 \]
- Next step: establish correspondence between attributes name of \(V_1 \) and teacher of \(V_2 \)
Data integration, query answering, a toy example cont’d

• To answer query, we need to import the following data:

\[V_1 \]

\[W_2 = \sigma_{semester='Winter 2007'}(V_2) \]

• Answering query:

\(\{ course \mid \exists name, sem \ V_1(name) \land W_2(name, course, sem) \} \)

• Or, in relational algebra

\[\pi_{course}(V_1 \bowtie_{name=teacher} W_2) \]
Toy example, lessons learned

- We don’t have access to all the data
- Some human intervention is essential (someone needs to tell us that teacher and name refer to the same entity)
- We don’t run a query against a single database. Instead, we
 - run queries against different databases based on restrictions they impose
 - get results to use them locally
 - run another query against those results
Toy example, things getting more complicated

• Find informatics permanent staff who taught during the Winter 2007 semester, and their phone numbers

• We have additional personnel databases:
 ◦ an informatics database \(D_3(\text{employee, phone, office}) \), and
 ◦ a university-wide database \(D_4(\text{employee, school, phone}) \)
 ◦ for simplicity, assume all this information is public

• Now we have a choice:
 ◦ use \(D_3 \) to get information about phones
 ◦ use \(D_4 \) to get information about phones
 ◦ use both \(D_3 \) and \(D_4 \) to get information about phones
Toy example cont’d

• First, we need some human involvement to see that employee, name, and teacher refer to the same category of objects.

• If one uses D_3, then the query is

$$\{ \text{name, phone} \mid \exists \text{sem, office } V_1(\text{name}) \land W_2(\text{name, course, sem}) \land D_3(\text{name, phone, office}) \}$$

• If one uses D_4, then the query is

$$\{ \text{name, phone} \mid \exists \text{sem, school } V_1(\text{name}) \land W_2(\text{name, course, sem}) \land D_4(\text{name, school, phone}) \}$$

• But what if one uses both D_3 and D_4?
Toy example cont’d

• We could insist on the phone number being:
 ○ in either D_3 or D_4
 ○ in both D_3 and D_4, but not necessarily the same
 ○ in both D_3 and D_4, and the same in both databases

• One can write queries for all the cases, but which one should we use?

• New lessons:
 ○ databases that are being integrated are often **inconsistent**
 ○ query answering is by no means unique – there could be **several ways**
 to answer a query
 ○ different possibilities for answering queries are a result of **inconsistencies and incomplete information**
Toy example cont’d

• Suppose phone numbers in D_3 and D_4 are different.
• What is a sensible query answer then?
• A common approach is to use certain answers – these are guaranteed to be true.
• Another question: what if there is no record at all for the phone number in D_3 and D_4?
• Then we have an instance of incomplete information.
A different scenario

• So far we looked at virtual integration: no database of the global schema was created.

• Sometimes we need such a database to be created, for example, if many queries are expected to be asked against it.

• In general, this is a common problem with data integration: materialize vs federate.

• Materialize = create a new database based on integrating data from different sources.

• Federate = the virtual approach: obtain data from various sources and use them to answer queries.
Virtual vs Materialization

- A common situation for the materialization approach: merger of different organizations.
- A common situation for the federated approach: we don’t have full access to the data, and the data changes often.
Common tasks in data integration

- How do we represent information?
 - Global schema, attributes, constraints
 - data formats of attributes
 - reconciling data from different sources
 - abbreviations, terminology, ontologies

- How do we deal with imperfect information?
 - resolve overlaps
 - handling missing data
 - handling inconsistencies
Common tasks in data integration cont’d

• How do we answer queries?
 ◦ what information is available?
 ◦ Can we get the answer?
 ◦ if not, what is the semantics of query answering?
 ◦ Is query answering feasible?
 ◦ Is it possible to compute query answers at all?
 ◦ If now, how do we approximate?

• Materialize or federate?
Common tasks in data integration cont’d

• Do it from scratch or use commercial tools?
 ○ many are available (just google for “data integration”)
 ○ but do we fully understand them?
 ○ lots of them are very ad hoc, with poorly defined semantics
 ○ this is why it is so important to understand what really happens in data integration
Data Exchange

Source Schema S Target Schema T
Data Exchange

Source Schema S \hspace{2cm} Target Schema T
Data Exchange

Query over the target schema: \[Q \]

How to answer \(Q \) so that the answer is consistent with the data in the source database?
Data exchange vs Data integration

Data exchange appears to be an easier problem:

- there is only one source database;
- and one has complete access to the source data.

But there could be many different target instances.

Problem: which one to use for query answering?
When do we have the need for data exchange

- A typical scenario:
 - Two organizations have their legacy databases, schemas cannot be changed.
 - Data from one organization 1 needs to be transferred to data from organization 2.
 - Queries need to be answered against the transferred data.
Data exchange – towards multiple instances

• A simple example: we want to create a target database with the schema

\[
\text{Flight}(\text{city1}, \text{city2}, \text{aircraft}, \text{departure}, \text{arrival})
\]
\[
\text{Served}(\text{city}, \text{country}, \text{population}, \text{agency})
\]

• We don’t start from scratch: there is a source database containing relations

\[
\text{Route}(\text{source}, \text{destination}, \text{departure})
\]
\[
\text{BG}(\text{country}, \text{city})
\]

• We want to transfer data from the source to the target.
Data exchange – relationships between the source and the target

How to specify the relationship?

Semantics??? For example, arrows from \textit{city} – is the meaning \textit{and} or \textit{or}?
Data exchange – relationships between the source and the target

- Formal specification: we have a *relational calculus query* over both the source and the target schema.
- The query is of a restricted form, and can be thought of as a sequence of rules:

 \[
 \text{Flight}(c_1, c_2, _, \text{dept}, _) \Leftarrow \text{Route}(c_1, c_2, \text{dept})
 \]

 \[
 \text{Served}(\text{city}, \text{country}, _, _) \Leftarrow \text{Route}(\text{city}, _, _), \text{BG}(\text{city}, \text{country})
 \]

 \[
 \text{Served}(\text{city}, \text{country}, _, _) \Leftarrow \text{Route}(_, \text{city}, _), \text{BG}(\text{city}, \text{country})
 \]
Data exchange – targets

• Target instances should satisfy the rules.
• What does it mean to satisfy a rule?
• Formally, if we take:

\[\text{Flight}(c_1, c_2, _, \text{dept}, _) \rightarrow \text{Route}(c_1, c_2, \text{dept}) \]

then it is satisfied by a source \(S \) and a target \(T \) if the constraint

\[\forall c_1, c_2, d (\text{Route}(c_1, c_2, d) \rightarrow \exists a_1, a_2 (\text{Flight}(c_1, c_2, a_1, d, a_2))) \]

• This constraint is a relational calculus query that evaluates to \text{true} or \text{false}
Data exchange – targets

• What happens if there no values for some attributes, e.g. *aircraft*, *arrival*?

• We put in **null values** or some real values.

• But then we may have multiple solutions!
Data exchange – targets

Source Database:

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edinburgh</td>
<td>Amsterdam</td>
<td>0600</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>London</td>
<td>0615</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>Frankfurt</td>
<td>0700</td>
</tr>
</tbody>
</table>

BG:

<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>London</td>
</tr>
<tr>
<td>UK</td>
<td>Edinburgh</td>
</tr>
<tr>
<td>NL</td>
<td>Amsterdam</td>
</tr>
<tr>
<td>GER</td>
<td>Frankfurt</td>
</tr>
</tbody>
</table>

Look at the rule

\[Flight(c_1, c_2, _, dept, _) \iff Route(c_1, c_2, dept) \]

The right hand side is satisfied by

\[Route(Edinburgh, Amsterdam, 0600) \]

But what can we put in the target?
Data exchange – targets

Rule: \(\text{Flight}(c1, c2, ___, \text{dept}, ___) \text{ :- } \text{Route}(c1, c2, \text{dept}) \)

Satisfied by: \(\text{Route}(\text{Edinburgh}, \text{Amsterdam}, 0600) \)

Possible targets:

- Flight(Edinburgh, Amsterdam, ____1, 0600, ____2)
- Flight(Edinburgh, Amsterdam, ____ B737, 0600, ___)
- Flight(Edinburgh, Amsterdam, _____, 0600, 0845)
- Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

They all satisfy the constraints!
Data exchange – queries

- Now consider two queries:
 - Q_1: Is there a flight from Edinburgh to Amsterdam that departs before 7am?
 - Q_2: Is there a flight from Edinburgh to Amsterdam that arrives before 9am?

- What is the difference?
 - Q_1 can be answered with certainty: in every solution we have a tuple $\text{Flight}(\text{Edinburgh}, \text{Amsterdam}, __, \text{0600}, __)$
 - Q_2 cannot be answered with certainty: in some solutions we don’t have a tuple $\text{Flight}(\text{Edinburgh}, \text{Amsterdam}, a, t_1, t_2)$ with t_2 earlier than 9am.

- Our goal is to find certain answers.
Data exchange – queries

• But computing certain answers requires checking seemingly an infinite number of databases!

• How else can we do it?

• Create a **good** target instance T_{good} so that:

 ◦ for a query Q we can define a query Q_r (its *rewriting*)
 ◦ that satisfies the property:

 $$\text{certain answers to } Q = Q_r(T_{good})$$

• Questions:

 ◦ can we always find such a T_{good} and a rewriting algorithm $Q \mapsto Q_r$?
 ◦ and if not, what restrictions do we impose on data exchange settings and/or queries?
Inconsistencies in databases

- If we integrate data, we shall always have inconsistencies:
 - One database says that we have John Smith with salary 20K in office 100
 - another says that we have John Smith with salary 30K in office 100
 - and the database must satisfy a key constraint: the name field is a key.

- Hence if we put

<table>
<thead>
<tr>
<th>Name</th>
<th>Office</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Smith</td>
<td>100</td>
<td>20K</td>
</tr>
<tr>
<td>John Smith</td>
<td>100</td>
<td>30K</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>

in our database, we have inconsistent data.
Inconsistencies in databases: query answering

- Q_1: Does John Smith sit in office 100?
- Q_2: Does John Smith make 20K?

• Difference:
 - Q_1 can be answered with certainty;
 - Q_2 cannot be.

• What does it mean to answer a query with certainty?

• If we repair a database so that it satisfies the constraints, the answer is true – no matter how we repair it.
Inconsistencies in databases: query answering

- In our example, two ways to repair:

<table>
<thead>
<tr>
<th>Name</th>
<th>Office</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Smith</td>
<td>100</td>
<td>20K</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Office</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Smith</td>
<td>100</td>
<td>30K</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>

- Q_1 is always true, Q_2 is not.
- But – the number of repairs could be very large (exponential – why?).
- Hence prohibitively expensive query answering algorithm.
- Question: when can query answering be made efficient?
- Perhaps it involves a rewriting of the original query.
- The key idea: query rewriting to obtain certain answers.
Schema mappings

- Last subject we deal with in this course.
- Still the least understood, but extremely important.
- Schema evolution: schema changes over time.
- Question – how to transfer data?
- Single step – data exchange.
- But what if we go through many steps? How do we transfer data, how do we answer queries?
Schema mappings

• Two data exchange scenarios:
 \[
 \text{Schema}_1 \quad \text{Schema}_2 \quad \text{Constraints}_{12} \\
 \text{Schema}_2 \quad \text{Schema}_3 \quad \text{Constraints}_{23}
 \]

• Suppose we know how to move data from \text{Schema}_1 to \text{Schema}_2, and then from \text{Schema}_2 to \text{Schema}_3?

• Can we describe this by a single set of schema constraints:
 \[
 \text{Schema}_1 \quad \text{Schema}_3 \quad \text{Constraints}_{13}
 \]

• This turns out to be a very nontrivial task, but it occurs very often in database schema management.

• And there are other operations – inverse, for example:
 \[
 (\text{Schema}_1 \quad \text{Schema}_2 \quad \text{Constraints}_{12}) \\
 \Downarrow \\
 (\text{Schema}_2 \quad \text{Schema}_1 \quad \text{Constraints}_{21})
 \]