
XML Data Exchange

Relational Data Exchange Settings

Data Exchange Setting: (σ, τ,Σ)

σ: Source schema.

τ : Target schema.

Σ : Set of rules that specify relationship between the target

and the source (source-to-target dependencies).

- Source-to-target dependency:

ψτ (x̄, z̄) :– ϕσ(x̄, ȳ).

- ϕσ(x̄, ȳ): conjunction of atomic formulas over σ.

- ψτ (x̄, z̄): conjunction of atomic formulas over τ .

1

Example: Relational Data Exchange Setting

• σ = Book(Title,AName ,Aff)

• τ = Writer(Name,BTitle,Year)

• Σ = Writer(x2, x1, z1) :– Book(x1, x2, y1).

2

Relational Data Exchange Problem

• Given a source instance S, find a target instance T such

that (S, T) satisfies Σ .

- (S, T) satisfies ψτ (x̄, z̄) :– ϕσ(x̄, ȳ) if whenever S satisfies

ϕσ(ā, b̄), there is a tuple c̄ such that T satisfies ψτ (ā, c̄).

- T is called a solution for S.

• Previous example:

S:

Book Title AName Aff

Algebra Hungerford U. Washington

Real Analysis Royden Stanford

3

Relational Data Exchange Problem

Possible solutions:

T1:

Writer Name BTitle Year

Hungerford Algebra 1974

Royden Real Analysis 1988

T2:

Writer Name BTitle Year

Hungerford Algebra ⊥1

Royden Real Analysis ⊥2

4

Query Answering

• Q is a query over target schema.

What does it mean to answer Q?

certain(Q,S) =
⋂

T is a solution for S

⋂

R∈POSS(T)

Q(R)

• Previous example:

- certain(∃y∃zWriter(x, y, z), I) = {Hungerford, Royden}

5

XML Documents

db

book book

@title
“Algebra”

@title
“Real Analysis”

author author

@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

6

XML Documents

db

book book

@title
“Algebra”

@title
“Real Analysis”

author author

@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

db → book+

DTD : book → author+

author → ε

6

XML Documents

db

book book

@title
“Algebra”

@title
“Real Analysis”

author author

@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

db → book+

DTD : book → author+ book → @title

author → ε author → @name, @aff

6

XML Data Exchange Settings

• Instead of source and target relational schemas, we have

source and target DTDs.

• But what are the source-to-target dependencies?

To define them, we use tree patterns.

If a certain pattern is found in the source, another pattern

has to be found in the target.

7

Tree Patterns: Example

db

book

author

@name
“Hungerford”

. . .book

@title
x

author

@name
y

8

Tree Patterns: Example

db

book

@title
“Algebra”

author

@name @aff
“Hungerford” “U. Washington”

. . .book

@title
x

author

@name
y

8

Tree Patterns: Example

db

book

“Real Analysis”
author

@name @aff
“Royden” “Stanford”

@title

. . .book

@title
x

author

@name
y

8

Tree Patterns: Example

db

book

“Real Analysis”
author

@name @aff
“Royden” “Stanford”

@title

. . .book

@title
x

author

@name
y

Collect tuples (x, y): (Algebra, Hungerford), (Real Analysis, Royden)

8

Tree Patterns

• Example: book(@title = x)[author(@name = y)].

• Language also includes wildcard (matching more than one

symbol) and descendant operator //.

9

XML Source-to-target Dependencies

• Source-to-target dependency (STD):

ψτ (x̄, z̄) :– ϕσ(x̄, ȳ),

where ϕσ(x̄, ȳ) and ψτ (x̄, z̄) are tree-patterns over the

source and target DTDs, resp.

• Example:

:–

writer

@name
y

work

@title
x z

@year

book

@title
x

author

@name
y

10

XML Data Exchange Settings

XML Data Exchange Setting: (Dσ,Dτ ,Σ)

Dσ: Source DTD.

Dτ : Target DTD.

Σ : Set of XML source-to-target dependencies.

Each constraint in Σ is of the form ψτ (x̄, z̄) :– ϕσ(x̄, ȳ).

- ϕσ(x̄, ȳ): tree-pattern over Dσ.

- ψτ (x̄, z̄): tree-pattern over Dτ .

11

Example: XML Data Exchange Setting

• Source DTD:

db → book+

book → author+ book → @title

author → ε author → @name, @aff

• Target DTD:

bib → writer+

writer → work+ writer → @name

work → ε work → @title, @year

• Σ :

writer(@name = y)[work(@title = x,@year = z)] :–

book(@title = x)[author(@name = y)].

12

XML Data Exchange Problem

• Given a source tree T , find a target tree T ′ such that

(T, T ′) satisfies Σ .

- (T, T ′) satisfies ψτ (x̄, z̄) :– ϕσ(x̄, ȳ) if whenever T satisfies

ϕσ(ā, b̄), there is a tuple c̄ such that T ′ satisfies ψτ (ā, c̄).

- T ′ is called a solution for T .

13

XML Data Exchange Problem

Let T be our original tree:

db

book book

@title
“Algebra”

@title
“Real Analysis”

author author

@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

14

XML Data Exchange Problem

A solution for T :

bib

@year
“1988”

writer writer

@name

@title

work work

@title

@name

@year

“Hungerford”

“Algebra”

“Royden”

“Real Analysis”“1974”

15

XML Data Exchange Problem

Another solution for T :

bib

@year
“⊥2”

writer writer

@name

@title

work work

@title

@name

@year

“Hungerford”

“Algebra”

“Royden”

“Real Analysis”“⊥1”

16

Consistency of XML Data Exchange Settings

• What if we have target DTD

bib → writer+

writer → novelist∗, poet∗ writer → @name

novelist → work+

poet → work+

work → ε work → @title, @year

in our previous example?

• The setting becomes inconsistent!

- There are no T conforming to Dσ and T ′ conforming to Dτ such

that (T, T ′) satisfies Σ .

17

Consistency of XML Data Exchange Settings

• An XML data exchange setting is inconsistent if it does not

admit solutions for any given source tree. Otherwise it is

consistent.

• A relational data exchange setting is always consistent.

• An XML data exchange setting is not always consistent.

- What is the complexity of checking whether a setting is consistent?

18

Bad News: General Case

Theorem Checking if an XML data exchange setting is

consistent necessarily takes exponential time.

Complexity-theoretic statement: EXPTIME-complete.

But the parameter is the size of the DTDs and constraints –

typically not very large. Hence 2O(n) is not too bad.

19

Good News: Consistency for Commonly used DTDs

DTDs that commonly occur in practice tend to be simple. In

fact more than 50% of regular expressions are of this form:

ℓ → ℓ̂1, . . . , ℓ̂m,

where all the ℓi’s are distinct, and ℓ̂ is one of the following: ℓ,

or ℓ∗, or ℓ+, or ℓ?

For example, book → title, author+, chapter∗, publisher?

Theorem For non-recursive DTDs that only have these rules,

checking if an XML data exchange setting is consistent is

solvable in time O
(

(‖Dσ‖ + ‖Dτ‖) · ‖Σ ‖2
)

.

20

Query Answering in XML Data Exchange

• Decision to make: what is our query language?

• XML query languages such as XQuery take XML trees and

produce XML trees.

- This makes it hard to talk about certain answers.

• For now we use a query language that produces tuples of

values.

21

Conjunctive Tree Queries

• Query language CTQ// is defined by

Q := ϕ | Q ∧Q | ∃xQ,

where ϕ ranges over tree-patterns.

• By disallowing descendant // we obtain restriction CTQ.

22

Example: Conjunctive Tree Query

List all pairs of authors that have written articles with the same title.

Q(x, y) :=

∧@name
x

work

@title
z

writer

@name
y

work

@title
z

writer

∃z ()

23

Computing Certain Answers

• Semantics: as in the relational case.

certain(Q,T) =
⋂

T ′ is a solution for T

Q(T ′).

• Given data exchange setting (Dσ,Dτ ,Σ) and query Q:

PROBLEM: CertAnsw(Q).

INPUT: Tree T conforming to Dσ and tuple ā.

QUESTION: Is ā ∈ certain(Q, T)?

24

Computing Certain Answers: General Picture

It is not even clear if the problem is solvable.

Good news For every XML data exchange setting and

CTQ//-query Q, th problem CertAnsw(Q) is solvable in

exponential time.

More precisely, it is in coNP.

Not so good news Sometimes exponential time is

“unavoidable”: There exist an XML data exchange setting and a

CTQ//-query Q such that CertAnsw(Q) is coNP-complete.

We want to find cases that admit fast algorithms.

25

Computing Certain Answers: Eliminating bad cases

Suppose one of the following is allowed in tree patterns over the target

in STDs:

• descendant operator //, or

• wildcard , or

• patterns that do not start at the root.

Then one can find source and target DTDs (in fact, very simple

DTDs) and a CTQ-query Q such that CertAnsw(Q) must take

exponential time.

A more precise statement: is coNP-complete.

26

Fully specified constraints

• We disallow the three features that make query answering

hard.

• This gives us fully-specified STDs:

We impose restrictions on tree patterns over target DTDs:

- no descendant relation //; and

- no wildcard ; and

- all patterns start at the root.

No restrictions imposed on tree patterns over source DTDs.

• Subsume non-relational data exchange handled by IBM.

27

An efficient case

• Recall relational data exchange and conjunctive queries:

then certain(Q,S) = certain(Q,CanSol(S)).

• Idea: given a source tree T , compute a solution T ⋆ for T

such that

certain(Q,T) = remove null tuples(Q(T ⋆)).

• T ⋆ is a canonical solution for T .

• We compute T ⋆ in two steps:

- We use STDs to compute a canonical pre-solution cps(T) from T .

- Then we use target DTD to compute T ⋆ from cps(T).

28

Example: XML Data Exchange Setting

• Source DTD:

r → A∗, B∗

A → ε A → @ℓ

B → ε B → @ℓ

• Target DTD:

r → (C,D)∗

C → ε C → @m

D → E

E → ε E → @n

• Σ :

r[C(@m = x)] :– A(@ℓ = x),

r[C(@m = x)] :– B(@ℓ = x).

29

Example: Computing Canonical Pre-solution

r

A B

@ℓ @ℓ
“1” “2”

r

A B

@ℓ @ℓ
“1” “2”

:–

@m @ℓ

C

@m

r

“2”

C

r

x

B

x

:–

@m @ℓ

C

@m

r

“1”

C

r

A

x x

30

Example: Computing Canonical Pre-solution

r

A B

@ℓ @ℓ
“1” “2”

r

A B

@ℓ @ℓ
“1” “2”

:–

@m @ℓ

C

@m

r

“2”

C

r

x

B

x

:–

@ℓ

C

@m

r

“1”

C

r

A

x x
@m

30

Example: Computing Canonical Pre-solution

r

A B

@ℓ @ℓ
“1” “2”

r

A B

@ℓ @ℓ
“1” “2”

:–

@m @ℓ

C

@m

r

“2”

C

r

x

B

x

:–

@ℓ

C

@m

r

“1”

C

r

A

x x
@m

30

Example: Computing Canonical Pre-solution

r

A B

@ℓ @ℓ
“1” “2”

r

A B

@ℓ @ℓ
“1” “2”

:–

@m @ℓ

C

@m

r

“2”

C

r

x

B

x

:–

@ℓ

C

@m

r

“1”

C

r

A

x x
@m

30

Example: Computing Canonical Pre-solution

r

A B

@ℓ @ℓ
“1” “2”

r

A B

@ℓ @ℓ
“1” “2”

:–

@m @ℓ

C

@m

r

“2”

C

r

x

B

x

:–

@ℓ

C

@m

r

“1”

C A

x x
@m

r

30

Example: Computing Canonical Pre-solution

r

A B

@ℓ @ℓ
“1” “2”

r

A B

@ℓ @ℓ
“1” “2”

:–

@m @ℓ

C

@m

r

“2”

C

r

x

B

x

:–

@ℓ

C

@m

r

“1”

C A

x x
@m

r

30

Example: Computing Canonical Pre-solution

r

A B

@ℓ @ℓ
“1” “2”

r

A B

@ℓ @ℓ
“1” “2”

:–

@m @ℓ

C

@m

r

“2”

C

r

x

B

x

:–

@ℓ

C

@m

r

“1”

C A

x x
@m

r

30

Example: Computing Canonical Pre-solution

r

A B

@ℓ @ℓ
“1” “2”

r

A B

@ℓ @ℓ
“1” “2”

:–

@m @ℓ

C

@m

r

“2”

C

r

x

B

x

:–

@ℓ

C

@m

r

“1”

C A

x x
@m

r

30

Example: Computing Canonical Pre-solution

r

A B

@ℓ @ℓ
“1” “2”

r

A B

@ℓ @ℓ
“1” “2”

:–

@m @ℓ

C

@m

r

“2”

C

r

x

B

x

:–

@ℓ

C

@m

r

“1”

C A

x x
@m

r

30

Example: Computing Canonical Pre-solution

r

A B

@ℓ @ℓ
“1” “2”

r

A B

@ℓ @ℓ
“1” “2”

:–

@m @ℓ

C

@m

r

“2”

C

r

x

B

x

:–

@ℓ

C

@m

r

“1”

C A

x x
@m

r

30

Example: Computing Canonical Pre-solution

Canonical pre-solution:

C

@m
“1”

C

@m
“2”

r

Not yet a solution: it does not conform to the target DTD.

31

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

r → (C,D)∗

32

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

r → (C,D)∗

32

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

r → (C,D)∗

32

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

D → E

32

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

D → E

32

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

32

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

32

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

D → E

32

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

D → E

32

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

32

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

32

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

32

Does this always work?

Depends on regular expressions in target DTDs.

• class of good regular expressions.

- Examples: (A|B)∗, A,B+, C∗, D?, (A∗|B∗), (C,D)∗.

- bad: A, (B|C).

- exact definition: quite involved.

33

Does this always work? cont’d

• For target DTDs only using good regular expressions:

- There exists a solution for a tree T iff there exists a canonical

solution T ⋆ for T .

- Previous algorithm computes canonical solution T ⋆ for T in

polynomial time.

- certain(Q,T) = remove null tuples(Q(T ⋆)), for every

CTQ//-query.

• Complexity: polynomial time.

34

