XML Data Exchange

Data Exchange Setting: (σ, τ, Σ)

 σ : Source schema.

au: Target schema.

 Σ : Set of rules that specify relationship between the target and the source (source-to-target dependencies).

- Source-to-target dependency:

$$\psi_{\tau}(\bar{x},\bar{z}) \coloneqq \varphi_{\sigma}(\bar{x},\bar{y}).$$

- $\varphi_{\sigma}(\bar{x}, \bar{y})$: conjunction of atomic formulas over σ .
- $\psi_{\tau}(\bar{x}, \bar{z})$: conjunction of atomic formulas over τ .

Example: Relational Data Exchange Setting

•
$$\sigma = Book(Title, AName, Aff)$$

•
$$\tau = Writer(Name, BTitle, Year)$$

•
$$\Sigma = Writer(x_2, x_1, z_1) := Book(x_1, x_2, y_1).$$

Relational Data Exchange Problem

- Given a source instance S, find a target instance T such that (S,T) satisfies Σ .
 - (S,T) satisfies $\psi_{\tau}(\bar{x},\bar{z}) := \varphi_{\sigma}(\bar{x},\bar{y})$ if whenever S satisfies $\varphi_{\sigma}(\bar{a},\bar{b})$, there is a tuple \bar{c} such that T satisfies $\psi_{\tau}(\bar{a},\bar{c})$.
 - T is called a solution for S.
- Previous example:

	Book	Title	AName	Aff
S:		Algebra	Hungerford	U. Washington
		Real Analysis	Royden	Stanford

Relational Data Exchange Problem

Possible solutions:

	Writer	Name	BTitle	Year
T_1 :		Hungerford	Algebra	1974
		Royden	Real Analysis	1988
	Writer	Name	BTitle	Year
T_2 :		Hungerford	Algebra	\perp_1
		Royden	Real Analysis	\perp_2

Query Answering

• Q is a query over target schema.

What does it mean to answer Q?

$$\underline{\operatorname{certain}}(Q,S) = \bigcap_{T \text{ is a solution for } S} \bigcap_{R \in \mathsf{POSS}(T)} Q(R)$$

- Previous example:
 - $\underline{certain}(\exists y \exists z Writer(x, y, z), I) = \{ Hungerford, Royden \}$

XML Documents

XML Documents

$$\begin{array}{cccc} db & \to & book^+ \\ \mathsf{DTD}: & book & \to & author^+ \\ & author & \to & \varepsilon \end{array}$$

6

XML Documents

XML Data Exchange Settings

- Instead of source and target relational schemas, we have source and target DTDs.
- But what are the source-to-target dependencies?

To define them, we use tree patterns.

If a certain pattern is found in the source, another pattern has to be found in the target.

Collect tuples (x, y): (Algebra, Hungerford), (Real Analysis, Royden)

Tree Patterns

• Example: book(@title = x)[author(@name = y)].

 Language also includes wildcard _ (matching more than one symbol) and descendant operator //.

XML Source-to-target Dependencies

• Source-to-target dependency (STD):

 $\psi_{\tau}(\bar{x},\bar{z}) \coloneqq \varphi_{\sigma}(\bar{x},\bar{y}),$

where $\varphi_{\sigma}(\bar{x}, \bar{y})$ and $\psi_{\tau}(\bar{x}, \bar{z})$ are tree-patterns over the source and target DTDs, resp.

• Example:

XML Data Exchange Settings

XML Data Exchange Setting: $(D_{\sigma}, D_{\tau}, \Sigma)$

- D_{σ} : Source DTD.
- D_{τ} : Target DTD.
- Σ : Set of XML source-to-target dependencies.

Each constraint in Σ is of the form $\psi_{\tau}(\bar{x}, \bar{z}) := \varphi_{\sigma}(\bar{x}, \bar{y})$.

- $\varphi_{\sigma}(\bar{x}, \bar{y})$: tree-pattern over D_{σ} .
- $\psi_{\tau}(\bar{x}, \bar{z})$: tree-pattern over D_{τ} .

Example: XML Data Exchange Setting

- Source DTD:
- Target DTD:

• Σ :

$$writer(@name = y)[work(@title = x, @year = z)] :-$$
$$book(@title = x)[author(@name = y)].$$

- Given a source tree T, find a target tree T' such that (T,T') satisfies Σ .
 - (T,T') satisfies $\psi_{\tau}(\bar{x},\bar{z}) := \varphi_{\sigma}(\bar{x},\bar{y})$ if whenever T satisfies $\varphi_{\sigma}(\bar{a},\bar{b})$, there is a tuple \bar{c} such that T' satisfies $\psi_{\tau}(\bar{a},\bar{c})$.
 - T' is called a solution for T.

Let T be our original tree:

Another solution for T: bibwriterwriterwork @namework@name"Hungerford" "Royden" @title@year@title@year $" \perp 1"$ " \perp_2 " "Algebra" "Real Analysis"

16

Consistency of XML Data Exchange Settings

- What if we have target DTD $bib \rightarrow writer^+$ $writer \rightarrow novelist^*, poet^* writer \rightarrow @name$ $novelist \rightarrow work^+$ $poet \rightarrow work^+$ $work \rightarrow \varepsilon$ $work \rightarrow @title, @year$ in our previous example?
- The setting becomes inconsistent!
 - There are no T conforming to D_σ and T' conforming to D_τ such that (T,T') satisfies Σ .

Consistency of XML Data Exchange Settings

- An XML data exchange setting is inconsistent if it does not admit solutions for any given source tree. Otherwise it is consistent.
- A relational data exchange setting is always consistent.
- An XML data exchange setting is not always consistent.
 - What is the complexity of checking whether a setting is consistent?

Bad News: General Case

Theorem Checking if an XML data exchange setting is consistent necessarily takes exponential time.

Complexity-theoretic statement: EXPTIME-complete.

But the parameter is the size of the DTDs and constraints – typically not very large. Hence $2^{O(n)}$ is not too bad.

Good News: Consistency for Commonly used DTDs

DTDs that commonly occur in practice tend to be simple. In fact more than 50% of regular expressions are of this form:

$$\ell \rightarrow \hat{\ell}_1, \ldots, \hat{\ell}_m,$$

where all the ℓ_i 's are distinct, and $\hat{\ell}$ is one of the following: ℓ , or ℓ^* , or ℓ^+ , or ℓ ?

For example, book \rightarrow title, author⁺, chapter^{*}, publisher?

Theorem For non-recursive DTDs that only have these rules, checking if an XML data exchange setting is consistent is solvable in time $O((||D_{\sigma}|| + ||D_{\tau}||) \cdot ||\Sigma||^2)$.

Query Answering in XML Data Exchange

- Decision to make: what is our query language?
- XML query languages such as XQuery take XML trees and produce XML trees.
 - This makes it hard to talk about certain answers.
- For now we use a query language that produces tuples of values.

Conjunctive Tree Queries

• Query language $CTQ^{//}$ is defined by

$$Q \quad := \quad \varphi \quad | \quad Q \wedge Q \quad | \quad \exists x \, Q,$$

where φ ranges over tree-patterns.

• By disallowing descendant // we obtain restriction CTQ.

Example: Conjunctive Tree Query

List all pairs of authors that have written articles with the same title.

• Semantics: as in the relational case.

$$\underline{certain}(Q,T) = \bigcap_{T' \text{ is a solution for } T} Q(T').$$

• Given data exchange setting $(D_{\sigma}, D_{\tau}, \Sigma)$ and query Q:

PROBLEM:	$\operatorname{CertAnsw}(Q).$
INPUT:	Tree T conforming to D_{σ} and tuple \overline{a} .
QUESTION:	Is $\bar{a} \in \underline{certain}(Q,T)$?

It is not even clear if the problem is solvable.

Good news For every XML data exchange setting and $\mathcal{CTQ}^{//}$ -query Q, th problem $\operatorname{CERTANSW}(Q)$ is solvable in exponential time.

More precisely, it is in coNP .

Not so good news Sometimes exponential time is "unavoidable": There exist an XML data exchange setting and a $CTQ^{//}$ -query Q such that CERTANSW(Q) is coNP-complete.

We want to find cases that admit fast algorithms.

Computing Certain Answers: Eliminating bad cases

Suppose one of the following is allowed in tree patterns over the target in STDs:

- \bullet descendant operator //, or
- wildcard _, or
- patterns that do not start at the root.

Then one can find source and target DTDs (in fact, very simple DTDs) and a CTQ-query Q such that CERTANSW(Q) must take exponential time.

A more precise statement: is coNP-complete.

Fully specified constraints

- We disallow the three features that make query answering hard.
- This gives us fully-specified STDs:

We impose restrictions on tree patterns over target DTDs:

- no descendant relation //; and
- no wildcard _; and
- all patterns start at the root.

No restrictions imposed on tree patterns over source DTDs.

• Subsume non-relational data exchange handled by IBM.

An efficient case

- Recall relational data exchange and conjunctive queries: then $\underline{certain}(Q, S) = \text{certain}(Q, \text{CANSOL}(S)).$
- Idea: given a source tree T, compute a solution T^\star for T such that

 $\underline{certain}(Q,T) = remove_null_tuples(Q(T^{\star})).$

- T^{\star} is a canonical solution for T.
- We compute T^{\star} in two steps:
 - We use STDs to compute a canonical pre-solution cps(T) from T.
 - Then we use target DTD to compute T^{\star} from cps(T).

Example: XML Data Exchange Setting

- Source DTD:
- Target DTD:

• Σ :

$$\begin{split} r[C(@m = x)] & :- & A(@\ell = x), \\ r[C(@m = x)] & :- & B(@\ell = x). \end{split}$$

30

Canonical pre-solution:

Not yet a solution: it does not conform to the target DTD.

$$r \rightarrow (C,D)^*$$

$$r \rightarrow (C,D)^*$$

 $D \rightarrow E$

$$D \rightarrow E$$

 $E \rightarrow @n$

 $E \rightarrow @n$

 $D \rightarrow E$

 $D \rightarrow E$

 $E \rightarrow @n$

 $E \rightarrow @n$

32

Does this always work?

Depends on regular expressions in target DTDs.

- class of good regular expressions.
 - Examples: $(A|B)^*$, $A, B^+, C^*, D?$, $(A^*|B^*)$, $(C, D)^*$.
 - bad: A, (B|C).
 - exact definition: quite involved.

Does this always work? cont'd

- For target DTDs only using good regular expressions:
 - There exists a solution for a tree T iff there exists a canonical solution T^* for T.
 - Previous algorithm computes canonical solution T^{\star} for T in polynomial time.
 - $\underline{certain}(Q,T) = remove_null_tuples(Q(T^*))$, for every $\mathcal{CTQ}^{//}$ -query.
- Complexity: polynomial time.