
Incomplete Information: Null Values

• Often ruled out: not null in SQL.

• Essential when one integrates/exchanges data.

• Perhaps the most poorly designed and the most often criticized part of
SQL:

“... [this] topic cannot be described in a manner that is simulta-
neously both comprehensive and comprehensible.”

“... those SQL features are not fully consistent; indeed, in some
ways they are fundamentally at odds with the way the world be-
haves.”

“A recommendation: avoid nulls.”

“Use [nulls] properly and they work for you, but abuse them,
and they can ruin everything”

L. Libkin 1 Data Integration and Exchange

Part I: theory of incomplete information

• What is incomplete information?

• Which relational operations can be evaluated correctly in the presence
of incomplete information?

• What does “evaluated correctly” mean?

Part II: incomplete information in SQL

• Simplifies things too much.

• Leads to inconsistent answers.

• One needs to understand this for asking queries over integrated/exchanged
data.

L. Libkin 2 Data Integration and Exchange

Sometimes we don’t have all the information

• Null is used if we don’t have a value for a given attribute.

• What could null possibly mean?

◦ Value exists, but is unknown at the moment.

◦ Value does not exist.

◦ There is no information.

L. Libkin 3 Data Integration and Exchange

Representing relations with nulls: Codd tables

• In Codd tables, we put distinct variables for null values:

T

A B C

a1 b1 c1

a2 b2 c2

x b3 c3

y b4 c4

a5 z c5

• Semantics of a Codd table T is the set POSS(T) of all tables without
nulls it can represent.

• That is, we substitute values for all variables.

L. Libkin 4 Data Integration and Exchange

Tables in POSS(T)

• Closed World Assumption:

◦ simply replace each variable by a value

• Open World Assumption:

◦ replace each variable by a value

◦ and possibly add tuples

L. Libkin 5 Data Integration and Exchange

Querying Codd tables

• Suppose Q is a relational algebra, or SQL query, and T is a Codd table.
What is Q(T)?

• We only know how to apply Q to usual relations, so we can find:

Q̂(T) = {Q(R) | R ∈ POSS(T)}
• If there were a Codd table T ′ such that POSS(T ′) = Q̂(T), then we

would say that T ′ is Q(T). That is,

POSS(Q(T)) = {Q(R) | R ∈ POSS(T)}

• Question: Can we always find such a table T ′?

L. Libkin 6 Data Integration and Exchange

Strong representation systems

• Let L be a language (e.g. a fragment of relational algebra).

• Assume that for every query Q iin L, and every table T , we can find a
table T ′ so that

POSS(T ′) = {Q(R) | R ∈ POSS(T)}

• Then T ′ is the answer to Q on T .

• If we can do it, we say that Codd tables form a strong representation
system for L.

• Bad news: We may not have a strong representation system even for a
small subset of relational algebra.

L. Libkin 7 Data Integration and Exchange

No strong representation system for Codd tables

Table: T =
A B
0 1
x 2

Query: Q = σA=3(T)

Suppose there is T ′ such that POSS(T ′) = {Q(R) | R ∈ POSS(T)}.
Consider:

R1 =
A B
0 1
2 2

and R2 =
A B
0 1
3 2

and

Q(R1) = ∅, Q(R2) = {(3, 2)}, and hence T ′ cannot exist, because

∅ ∈ POSS(T ′) if and only if T ′ = ∅

L. Libkin 8 Data Integration and Exchange

Weak representation systems

• Idea: consider certain answers:

certain(Q,T1, . . . , Tn) =
⋂

{

Q(R1, . . . , Rn)

∣

∣

∣

∣

R1 ∈ POSS(T1),
. . . ,

Rn ∈ POSS(Tn)

}

• certain(T) – the set of tuples in T without null values.

• For a query language L, Codd tables form a weak representation system

if for any query Q in L,

certain
(

Q(T1, . . . , Tn)
)

= certain(Q,T1, . . . , Tn)

L. Libkin 9 Data Integration and Exchange

Weak representation systems cont’d

• Good news: Codd tables form a weak representation system for the
selection-projection queries in relational algebra.

• That is, Codd tables form a weak representation system for SQL queries
of the form SELECT-FROM-WHERE such that the FROM clause only has
one relation.

• Bad News: If we add either union or join (that is, allow UNION or
multiple relations in the FROM clause), then Codd tables no longer form
a weak representation system.

• Reason: we cannot use conditions of the form x = y, where x and y

are variables, and this causes problems in computing joins.

• Conclusion: SQL’s nulls semantics is very very problematic.

L. Libkin 10 Data Integration and Exchange

Naive tables

• Codd tables in which some of the variables can coincide. One often
refers to marked nulls.
A B C

a1 b1 c1

a2 b2 c2

x b3 c3

y b4 c4

a5 x c5

• Naive tables form a weak representation system for SPJU queries (that
is, π, σ, ⋊⋉,∪).

• In SQL terms: no INTERSECT, EXCEPT, NOT IN, NOT EXISTS

• Naive evaluation:
A B
1 x
2 y

⋊⋉

B C
x 3
y 4

=
A B C
1 x 3
2 y 4

• Heavily used in data exchange.

L. Libkin 11 Data Integration and Exchange

Naive evaluation of conjunctive queries

• Q is a conjunctive query

• T1, . . . , Tn are tables

• Compute Q(T1, . . . , Tn) naively.

• Remove all tuples containing nulls from the result.

• The result is certain(Q, T1, . . . , Tn)

L. Libkin 12 Data Integration and Exchange

Naive evaluation of conjunctive queries: example

R =
A B
1 x
2 y

S =
B C
x y
y 4

Q = πAC(R ⋊⋉B S)

Naive evaluation:

• R ⋊⋉B S =
A B C
1 x y
2 y 4

• πAC(R ⋊⋉B S) =
A C
1 y
2 4

• Remove tuples with nulls

• Get (2,4) as the certain answer.

L. Libkin 13 Data Integration and Exchange

Conditional tables

• Naive tables do not form a weak representation system for full relational
algebra

• Conditional tables do.

• Example:

A B C condition

a1 b1 c1 x > 1
a2 b2 c2

x b3 c3 t = 0
y b4 c4 t = 1
a5 x c5

x 6= 5 ∨ y = 1

• Query evaluation is quite complicated.

L. Libkin 14 Data Integration and Exchange

Theory of incomplete information: summary

• Simple representation: Codd tables. But we cannot even evaluate sim-
ple selections over them.

• If we settle for less – just certain answers must be represented correctly
– then σ and π can be evaluated over Codd tables, but not ∪,−, ⋊⋉.

• If we use naive tables (variables can coincide), then SPJU queries can
be evaluated.

• If we use conditional tables, all relational algebra queries can be evalu-
ated, but conditional tables are very hard to deal with.

• Tradeoff:

Semantic correctness vs Complexity of queries

L. Libkin 15 Data Integration and Exchange

Incomplete information in SQL

• SQL approach: there is a single general purpose NULL for all cases of
missing/inapplicable information

• Nulls occur as entries in tables; sometimes they are displayed as null,
sometimes as ’–’

• They immediately lead to comparison problems

• The union of
SELECT * FROM R WHERE R.A=1 and
SELECT * FROM R WHERE R.A<>1 should be the same as
SELECT * FROM R.

• But it is not.

• Because, if R.A is null, then neither R.A=1 nor R.A<>1 evaluates to
true.

L. Libkin 16 Data Integration and Exchange

Nulls cont’d

• R.A has three values: 1, null, and 2.

• SELECT * FROM R WHERE R.A=1 returns
A
1

• SELECT * FROM R WHERE R.A<>1 returns
A
2

• How to check = null? New comparison: IS NULL.

• SELECT * FROM R WHERE R.A IS NULL returns
A

null

• SELECT * FROM R is the union of
SELECT * FROM R WHERE R.A=1,
SELECT * FROM R WHERE R.A<>1, and
SELECT * FROM R WHERE R.A IS NULL.

L. Libkin 17 Data Integration and Exchange

Nulls and other operations

• What is 1+null? What is the truth value of ’3 = null’?

• Nulls cannot be used explicitly in operations and selections: WHERE R.A=NULL

or SELECT 5-NULL are illegal.

• For any arithmetic, string, etc. operation, if one argument is null, then
the result is null.

• For R.A={1,null}, S.B={2},
SELECT R.A + S.B

FROM R, S

returns {3, null}.
• What are the values of R.A=S.B? When R.A=1, S.B=2, it is false.

When R.A=null, S.B=2, it is unknown.

L. Libkin 18 Data Integration and Exchange

The logic of nulls

• How does unknown interact with Boolean connectives? What is NOT

unknown? What is unknown OR true?

•
x NOT x

true false
false true
unknown unknown

•
AND true false unknown
true true false unknown
false false false false
unknown unknown false unknown

•
OR true false unknown
true true true true
false true false unknown
unknown true unknown unknown

• Problem with null values: people rarely think in three-valued logic!

L. Libkin 19 Data Integration and Exchange

Nulls and aggregation

• Be ready for big surprises!

SELECT * FROM R

A

1

-

SELECT COUNT(*) FROM R

returns 2

SELECT COUNT(R.A) FROM R

returns 1

L. Libkin 20 Data Integration and Exchange

Nulls and aggregation

• One would expect nulls to propagate through arithmetic expressions

• SELECT SUM(R.A) FROM R is the sum

a1 + a2 + . . . + an

of all values in column A; if one is null, the result is null.

• But SELECT SUM(R.A) FROM R returns 1 if R.A={1,null}.
• Most common rule for aggregate functions:

first, ignore all nulls,

and then compute the value.

• The only exception: COUNT(*).

L. Libkin 21 Data Integration and Exchange

Nulls in subqueries: more surprises

• R1.A = {1,2} R2.A = {1,2,3,4}
• SELECT R2.A

FROM R2

WHERE R2.A NOT IN (SELECT R1.A

FROM R1)

• Result: {3,4}
• Now insert a null into R1: R1.A = {1,2, null}

and run the same query.

• The result is ∅!

L. Libkin 22 Data Integration and Exchange

Nulls in subqueries cont’d

• Although this result is counterintuitive, it is correct.

• What is the value of 3 NOT IN (SELECT R1.A FROM R1)?

3 NOT IN {1,2,null}
= NOT (3 IN {1,2,null})
= NOT((3 = 1) OR (3=2) OR (3=null))

= NOT(false OR false OR unknown)

= NOT (unknown)

= unknown

• Similarly, 4 NOT IN {1,2,null} evaluates to unknown, and 1 NOT

IN {1,2,null}, 2 NOT IN {1,2,null} evaluate to false.

• Thus, the query returns ∅.

L. Libkin 23 Data Integration and Exchange

Nulls in subqueries cont’d

• The result of

SELECT R2.A

FROM R2

WHERE R2.A NOT IN (SELECT R1.A

FROM R1)

can be represented as a conditional table:

A condition
3 x = 0
4 x 6= 0
3 y = 0
4 y = 0

L. Libkin 24 Data Integration and Exchange

Nulls could be dangerous!

• Imagine US national missile defense system, with the database of missile
targeting major cities, and missiles launched to intercept those.

• Query: Is there a missile targeting US that is not being intercepted?

SELECT M.#, M.target

FROM Missiles M

WHERE M.target IN (SELECT Name

FROM USCities) AND

M.# NOT IN (SELECT I.Missile

FROM Intercept I

WHERE I.Status = ’active’)

• Assume that a missile was launched to intercept, but its target wasn’t
properly entered in the database.

L. Libkin 25 Data Integration and Exchange

Nulls could be dangerous!

•
Missile Intercept

Target
M1 A
M2 B
M3 C

I# Missile Status
I1 M1 active
I2 null active

• {A, B, C} are in USCities

• The query returns the empty set:
M2 NOT IN {M1, null} and M3 NOT IN {M1, null}

evaluate to unknown.

• although either M2 or M3 is not being intercepted!

• Highly unlikely? Probably (and hopefully). But never forget what
caused the Mars Climate Orbiter to crash!

L. Libkin 26 Data Integration and Exchange

Complexity of nulls

• Several problems related to nulls.

• We shall look at two:

◦ recognizing relations in POSS(T)

◦ query answering (i.e., computing certain answers)

L. Libkin 27 Data Integration and Exchange

Recognising tables in POSS(T)

Input: a table T , relation R

Output:

{

1 if R ∈ POSS(T)

0 otherwise

Complexity depends on what type of table T is:

• If T is a Codd table, there is a polynomial O(n2
√

n) algorithm

◦ bipartite graph mathcing

• If T is a naive table, the problem is NP-complete

◦ 3-colorability reduction

• (blackboard)

L. Libkin 28 Data Integration and Exchange

Computing certain answers

Input: a table T , a tuple t

Output:

{

1 if t ∈ certain(Q,T)

0 otherwise

• Complexity: coNP-complete, under CWA.

◦ it is in coNP: just guess R ∈ POSS(T) so that t 6∈ Q(R)

◦ it is complete for coNP: 3-colourability

• Complexity: undecidable for relational algebra queries under OWA

◦ the same as validity problem in logic – undecidable

◦ but can be solved efficiently (polynomial time) for simpler classes of
queries (e.g. conjunctive or σ, π, ⋊⋉,∪-queries)

L. Libkin 29 Data Integration and Exchange

