Incomplete Information: Null Values

- Often ruled out: not null in SQL.
- Essential when one integrates/exchanges data.
- Perhaps the most poorly designed and the most often criticized part of SQL:

"... [this] topic cannot be described in a manner that is simultaneously both comprehensive and comprehensible."

"... those SQL features are not fully consistent; indeed, in some ways they are fundamentally at odds with the way the world behaves."

"A recommendation: avoid nulls."

"Use [nulls] properly and they work for you, but abuse them, and they can ruin everything"

Part I: theory of incomplete information

- What is incomplete information?
- Which relational operations can be evaluated correctly in the presence of incomplete information?
- What does "evaluated correctly" mean?

Part II: incomplete information in SQL

- Simplifies things too much.
- Leads to inconsistent answers.
- One needs to understand this for asking queries over integrated/exchanged data.

Sometimes we don't have all the information

- Null is used if we don't have a value for a given attribute.
- What could null possibly mean?
 - \circ Value exists, but is unknown at the moment.
 - \circ Value does not exist.
 - \circ There is no information.

Representing relations with nulls: Codd tables

• In Codd tables, we put distinct variables for null values:

- \bullet Semantics of a Codd table T is the set ${\sf POSS}(T)$ of all tables without nulls it can represent.
- That is, we substitute values for all variables.

T

Tables in POSS(T)

- Closed World Assumption:
 - \circ simply replace each variable by a value
- Open World Assumption:
 - \circ replace each variable by a value
 - \circ and possibly add tuples

Querying Codd tables

- \bullet Suppose Q is a relational algebra, or SQL query, and T is a Codd table. What is Q(T)?
- We only know how to apply Q to usual relations, so we can find:

 $\hat{Q}(T) = \{Q(R) \mid R \in \mathsf{POSS}(T)\}$

• If there were a Codd table T' such that ${\rm POSS}(T')=\hat{Q}(T),$ then we would say that T' is Q(T). That is,

 $\mathsf{POSS}(Q(T)) = \{Q(R) \mid R \in \mathsf{POSS}(T)\}$

• Question: Can we always find such a table T'?

Strong representation systems

- Let L be a language (e.g. a fragment of relational algebra).
- \bullet Assume that for every query Q iin L, and every table T, we can find a table T' so that

$$\mathsf{POSS}(T') = \{Q(R) \mid R \in \mathsf{POSS}(T)\}$$

- Then T' is the answer to Q on T.
- If we can do it, we say that Codd tables form a strong representation system for *L*.
- Bad news: We may not have a strong representation system even for a small subset of relational algebra.

No strong representation system for Codd tables

Table:
$$T = \begin{array}{c} A & B \\ \hline 0 & 1 \\ x & 2 \end{array}$$

Query:
$$Q = \sigma_{A=3}(T)$$

Suppose there is T' such that $\mathsf{POSS}(T') = \{Q(R) \mid R \in \mathsf{POSS}(T)\}.$ Consider:

$$R_1 = \begin{array}{ccc} A & B \\ \hline 0 & 1 \\ 2 & 2 \end{array} \quad \text{and} \quad R_2 = \begin{array}{ccc} A & B \\ \hline 0 & 1 \\ 3 & 2 \end{array} \quad \text{and} \quad A = \begin{array}{ccc} A & B \\ \hline 0 & 1 \\ 3 & 2 \end{array} \quad \text{and} \quad A = \begin{array}{ccc} A & B \\ \hline 0 & 1 \\ 3 & 2 \end{array}$$

 $Q(R_1) = \emptyset$, $Q(R_2) = \{(3, 2)\}$, and hence T' cannot exist, because $\emptyset \in \mathsf{POSS}(T')$ if and only if $T' = \emptyset$

Weak representation systems

• Idea: consider certain answers:

$$\operatorname{certain}(Q, T_1, \dots, T_n) = \bigcap \left\{ Q(R_1, \dots, R_n) \middle| \begin{array}{c} R_1 \in \operatorname{POSS}(T_1), \\ \dots, \\ R_n \in \operatorname{POSS}(T_n) \end{array} \right\}$$

- $\bullet \mbox{ certain}(T)$ the set of tuples in T without null values.
- For a query language L, Codd tables form a *weak representation system* if for any query Q in L,

 $\operatorname{certain}(Q(T_1,\ldots,T_n)) = \operatorname{certain}(Q,T_1,\ldots,T_n)$

Weak representation systems cont'd

- Good news: Codd tables form a weak representation system for the selection-projection queries in relational algebra.
- That is, Codd tables form a weak representation system for SQL queries of the form SELECT-FROM-WHERE such that the FROM clause only has one relation.
- Bad News: If we add either union or join (that is, allow UNION or multiple relations in the FROM clause), then Codd tables no longer form a weak representation system.
- Reason: we cannot use conditions of the form x = y, where x and y are variables, and this causes problems in computing joins.
- Conclusion: SQL's nulls semantics is very very problematic.

Naive tables

• Codd tables in which some of the variables can coincide. One often refers to *marked nulls*.

A	В	С
a_1	b_1	c_1
a_2	b_2	c_2
x	b_3	C_3
y	b_4	c_4
a_5	x	\overline{C}_{5}

- Naive tables form a weak representation system for SPJU queries (that is, $\pi, \sigma, \bowtie, \cup$).
- In SQL terms: no INTERSECT, EXCEPT, NOT IN, NOT EXISTS

• Naive evaluation:
$$\frac{A B}{1 x} \bowtie \frac{B C}{x 3} = \frac{A B C}{1 x 3}$$
$$2 y y 4 = 2 y 4$$

• Heavily used in data exchange.

Naive evaluation of conjunctive queries

- $\bullet \ Q$ is a conjunctive query
- T_1, \ldots, T_n are tables
- Compute $Q(T_1, \ldots, T_n)$ naively.
- Remove all tuples containing nulls from the result.
- The result is certain (Q, T_1, \ldots, T_n)

Naive evaluation of conjunctive queries: example

$$R = \begin{array}{ccc} A & B \\ \hline 1 & x \\ 2 & y \end{array} \qquad S = \begin{array}{ccc} B & C \\ \hline x & y \\ y & 4 \end{array}$$

 $Q = \pi_{AC}(R \bowtie_B S)$

Naive evaluation:

•
$$R \bowtie_B S = \frac{A \ B \ C}{1 \ x \ y}$$

2 y 4
• $\pi_{AC}(R \bowtie_B S) = \frac{A \ C}{1 \ y}$
2 4

- Remove tuples with nulls
- Get (2,4) as the certain answer.

Conditional tables

- Naive tables do not form a weak representation system for full relational algebra
- Conditional tables do.
- Example:

Α	В	С	condition
a_1	b_1	c_1	x > 1
a_2	b_2	c_2	
x	b_3	c_3	t = 0
y	b_4	c_4	t = 1
a_5	x	C_5	
$\overline{x \neq 5} \lor y = 1$			

• Query evaluation is quite complicated.

Theory of incomplete information: summary

- Simple representation: Codd tables. But we cannot even evaluate simple selections over them.
- If we settle for less just certain answers must be represented correctly then σ and π can be evaluated over Codd tables, but not $\cup, -, \bowtie$.
- If we use naive tables (variables can coincide), then SPJU queries can be evaluated.
- If we use conditional tables, all relational algebra queries can be evaluated, but conditional tables are very hard to deal with.
- Tradeoff:

Semantic correctness vs Complexity of queries

Incomplete information in SQL

- SQL approach: there is a single general purpose NULL for all cases of missing/inapplicable information
- Nulls occur as entries in tables; sometimes they are displayed as null, sometimes as '-'
- They immediately lead to comparison problems
- The union of SELECT * FROM R WHERE R.A=1 and SELECT * FROM R WHERE R.A<>1 should be the same as SELECT * FROM R.
- But it is not.
- Because, if R.A is null, then neither R.A=1 nor R.A<>1 evaluates to *true*.

Nulls cont'd

- R.A has three values: 1, null, and 2.
- SELECT * FROM R WHERE R.A=1 returns $\frac{A}{1}$

• SELECT * FROM R WHERE R.A<>1 returns
$$\frac{A}{2}$$

- How to check = null? New comparison: IS NULL.
- SELECT * FROM R WHERE R.A IS NULL returns $\frac{A}{null}$
- SELECT * FROM R is the union of SELECT * FROM R WHERE R.A=1, SELECT * FROM R WHERE R.A<>1, and SELECT * FROM R WHERE R.A IS NULL.

Nulls and other operations

- What is 1+null? What is the truth value of '3 = null'?
- Nulls cannot be used explicitly in operations and selections: WHERE R.A=NULL or SELECT 5-NULL are illegal.
- For any arithmetic, string, etc. operation, if one argument is null, then the result is null.
- For $R.A = \{1, null\}, S.B = \{2\},\$

```
SELECT R.A + S.B
FROM R, S
```

```
returns \{3, null\}.
```

• What are the values of R.A=S.B? When R.A=1, S.B=2, it is *false*. When R.A=null, S.B=2, it is *unknown*.

The logic of nulls

• How does *unknown* interact with Boolean connectives? What is NOT *unknown*? What is *unknown* OR *true*?

	X	NOT x false true		AND	true	false	unknown
-	true			true	true	false	unknown
•	false			false	false	false	false
	unknown	unknown		unknown	unknown	false	unknown
	OR	true false	un	known			
•	true	true true	tru	ie			
	false	true false	un	known			
	unknown	true unknow	n un	known			

• Problem with null values: people rarely think in three-valued logic!

Nulls and aggregation

Be ready for big surprises!
 SELECT * FROM R

 A
 1

SELECT COUNT(*) FROM R

returns 2

SELECT COUNT(R.A) FROM R

returns 1

Nulls and aggregation

- One would expect nulls to propagate through arithmetic expressions
- SELECT SUM(R.A) FROM R is the sum

 $a_1 + a_2 + \ldots + a_n$

of all values in column A; if one is null, the result is null.

- But SELECT SUM(R.A) FROM R returns 1 if $R.A = \{1, null\}$.
- Most common rule for aggregate functions: first, ignore all nulls, and then compute the value.
- The only exception: COUNT(*).

Nulls in subqueries: more surprises

- R1.A = $\{1,2\}$ R2.A = $\{1,2,3,4\}$
- SELECT R2.A FROM R2 WHERE R2.A NOT IN (SELECT R1.A FROM R1)
- Result: {3,4}
- Now insert a null into R1: R1.A = {1,2, null} and run the same query.
- The result is $\emptyset!$

Nulls in subqueries cont'd

- Although this result is counterintuitive, it is correct.
- What is the value of 3 NOT IN (SELECT R1.A FROM R1)?
 - 3 NOT IN {1,2,null}
 - = NOT (3 IN {1,2,null})
 - = NOT((3 = 1) OR (3=2) OR (3=null))
 - = NOT(false OR false OR unknown)
 - = NOT (unknown)
 - = unknown
- Similarly, 4 NOT IN {1,2,null} evaluates to unknown, and 1 NOT IN {1,2,null}, 2 NOT IN {1,2,null} evaluate to false.
- Thus, the query returns \emptyset .

Nulls in subqueries cont'd

• The result of

```
SELECT R2.A
FROM R2
WHERE R2.A NOT IN (SELECT R1.A
FROM R1)
```

can be represented as a conditional table:

A condition $3 \ x = 0$ $4 \ x \neq 0$ $3 \ y = 0$ $4 \ y = 0$

Nulls could be dangerous!

- Imagine US national missile defense system, with the database of missile targeting major cities, and missiles launched to intercept those.
- Query: Is there a missile targeting US that is not being intercepted?

• Assume that a missile was launched to intercept, but its target wasn't properly entered in the database.

Nulls could be dangerous!

Missile			Inter	cept
# Target M1 A M2 B M3 C	I# 1 2	Missile M1 null	Status active active	

- \bullet {A, B, C} are in USCities
- The query returns the empty set: M2 NOT IN {M1, null} and M3 NOT IN {M1, null} evaluate to *unknown*.
- although either M2 or M3 is not being intercepted!
- Highly unlikely? Probably (and hopefully). But never forget what caused the Mars Climate Orbiter to crash!

Complexity of nulls

- Several problems related to nulls.
- We shall look at two:
 - \circ recognizing relations in $\mathsf{POSS}(T)$
 - query answering (i.e., computing certain answers)

Recognising tables in POSS(T)

INPUT:	a table T , relation R	
Output:	$\int 1 \text{if } R \in POSS(T)$	
	0 otherwise	

Complexity depends on what type of table T is:

- If T is a Codd table, there is a polynomial $O(n^2\sqrt{n})$ algorithm \circ bipartite graph mathcing
- \bullet If T is a naive table, the problem is NP-complete
 - \circ 3-colorability reduction
- (blackboard)

Computing certain answers

INPUT:a table T, a tuple tOUTPUT:
$$\begin{cases} 1 & \text{if } t \in \text{certain}(Q,T) \\ 0 & \text{otherwise} \end{cases}$$

- Complexity: **coNP**-complete, under CWA.
 - \circ it is in coNP: just guess $R \in \mathsf{POSS}(T)$ so that $t \not \in Q(R)$
 - \circ it is complete for coNP: 3-colourability
- Complexity: undecidable for relational algebra queries under OWA
 - \circ the same as validity problem in logic undecidable
 - but can be solved efficiently (polynomial time) for simpler classes of queries (e.g. conjunctive or $\sigma, \pi, \bowtie, \cup$ -queries)