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LECTURE 1: Review of Relational Databases

• Relational model

• Schemas

• Relational algebra

• Relational calculus

• SQL

• Constraints (keys, foreign keys)
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The relational model

• Data is organized in relations (tables)

• Relational database schema:

set of table names

list of attributes for each table

• Tables are specified as: <table name>:<list of attributes>

• Examples:

Account: number, branch, customerId

Movie: title, director, actor

Schedule: theater, title

• Attributes within a table have different names

• Tables have different names
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Declarative vs Procedural

• In our queries, we ask what we want to see in the output.

• But we do not say how we want to get this output.

• Thus, query languages are declarative: they specify what is needed in
the output, but do not say how to get it.

• Database system figures out how to get the result, and gives it to the
user.

• Database system operates internally with different, procedural lan-
guages, which specify how to get the result.
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Declarative vs Procedural: example

Declarative:

{ title | (title, director, actor) ∈ movies }

Procedural:

for each tuple T=(t,d,a) in relation movies do

output t

end

In relational algebra: πtitle(Movies).

in SQL:

SELECT title FROM Movies
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Relational Calculus

• Codd 1970: Relational databases are queried using first-order predicate
logic.

• Relational calculus: another name for it. Queries written in the logical
notation using:

relation names (e.g., Movies)

constants (e.g., ’Shining’, ’Nicholson’)

conjunction ∧, disjunction ∨

negation ¬

existential quantifiers ∃

universal quantifiers ∀

• ∧,∃,¬ suffice:

∀xF (x) = ¬∃x¬F (x)

F ∨G = ¬(¬F ∧ ¬G)
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Relational Calculus cont’d

• Bound variable: a variable x that occurs in ∃x or ∀x

• Free variable: a variable that is not bound.

• Free variables are those that go into the output of a query.

• Two ways to write a query:

Q(~x) = F , where ~x is the tuple of free variables

{~x | F}

• Examples:

{x, y | ∃z
(

R(x, z) ∧ S(z, y)
)

}

{x | ∀yR(x, y)}

{ dir | ∀ (th, tl) ∈ schedule
∃ (tl’, act): (tl’,dir,act) ∈ movies ∧ (th, tl’) ∈ schedule }
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Relational Algebra

• Procedural language

• Six ( = 5+ 1 ) operations:

◦ Projection π

◦ Selection σ

◦ Cartesian product ×

◦ Union ∪

◦ Difference −

◦ Renaming ρ

• Renaming changes names of attributes

• ρA←C,B←D(R) turns a relation with attributes C,D into a relation with
attributes A, B.
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Relational Algebra cont’d

• Projection: chooses some attributes in a relation

• πA1,...,An(R): only leaves attributes A1, . . . , An in relation R.

• Selection: Chooses tuples that satisfy some condition

• σc(R): only leaves tuples t for which c(t) is true

• Conditions: conjunctions of

R.A = R.A′ – two attributes are equal

R.A = constant – the value of an attribute is a given constant

Same as above but with 6= instead of =

• Examples:

Movies.Actor=Movies.Director

Movies.Actor=Movies.Director ∧ Movies.Actor=’Nicholson’
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Relational Algebra cont’d

• Cartesian Product: puts together two relations

• R1 ×R2 puts together each tuple t1 of R1 and each tuple t2 of R2

• Example:

R1 A B

a1 b1

a2 b2

×

R2 A C

a1 c1

a2 c2

a3 c3

=

R1.A R1.B R2.A R2.C

a1 b1 a1 c1

a1 b1 a2 c2

a1 b1 a3 c3

a2 b2 a1 c1

a2 b2 a2 c2

a2 b2 a3 c3
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Relational Algebra cont’d

• Union R ∪ S is the union of relations R and S

• R and S must have the same set of attributes.

• Difference R− S: tuples in R but not in S.

• Every declarative query has a procedural implementation:

Relational Calculus = Relational Algebra
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SQL

• Structured Query Language

• Developed originally at IBM in the late 70s

• First standard: SQL-86

• Second standard: SQL-92

• Latest standard: SQL-99, or SQL3, well over 1,000 pages

• De-facto standard of the relational database world – replaced all other
languages.
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Examples of SQL queries

• Find titles of current movies

SELECT Title

FROM Movies

• SELECT lists attributes that go into the output of a query

• FROM lists input relations
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Examples of SQL queries cont’d

• Find theaters showing movies in which Nicholson played:

SELECT Schedule.Theater

FROM Schedule, Movies

WHERE Movies.Title = Schedule.Title

AND Movies.Actor=’Nicholson’

Differences:

• SELECT now specifies which relation the attributes came from – because
we use more than one.

• FROM lists two relations

• WHERE specifies the condition for selecting a tuple.
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Joining relations

• WHERE allows us to join together several relations

• Consider a query: list directors, and theaters in which their movies are
playing

SELECT Movies.Director, Schedule.Theater

FROM Movies, Schedule

WHERE Movies.Title = Schedule.Title

• This operation is called join.

• Notation: Schedule ⋊⋉ Movies
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Join cont’d

• Join is not a new operation of relational algebra

• It is definable with π, σ,×

• Suppose R is a relation with attributes A1, . . . , An, B1, . . . , Bk

• S is a relation with attributes A1, . . . , An, C1, . . . , Cm

• R ⋊⋉ S has attributes A1, . . . , An, B1, . . . , Bk, C1, . . . , Cm

R ⋊⋉ S

= πA1,...,An, B1,...,Bk,C1,...,Cm(σR.A1=S.A1∧...∧R.An=S.An(R× S))
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Beyond simple queries

• So far we mostly used π, σ, ⋊⋉ in relational algebra.

• It is harder to do queries with “for all conditions”.

• Query: Find directors whose movies are playing in all theaters:

πdirector(M)−πdirector

(

πtheater(S)×πdirector(M)− πtheater,director(M ⋊⋉ S)
)

• They don’t look easy in relational algebra
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For all and negation in SQL

• Two main mechanisms: subqueries, and Boolean expressions

• Subqueries are often more natural

• SQL syntax for R ∩ S:

R INTERSECT S

• SQL syntax for R− S:

R EXCEPT S

• Find all actors who are
not directors: also directors:

SELECT Actor AS Person SELECT Actor AS Person

FROM Movies FROM Movies

EXCEPT INTERSECT

SELECT Director AS Person SELECT Director AS Person

FROM Movies FROM Movies
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For all and negation in SQL cont’d

• Find directors whose movies are playing in all theaters.

• SQL’s way of saying this: Find directors such that there does not exist
a theater where their movies do not play.

• Because: ∀x f(x) ⇔ ¬∃x ¬f(x).

SELECT M1.Director

FROM Movies M1

WHERE NOT EXISTS (SELECT S.Theater

FROM Schedule S

WHERE NOT EXISTS (SELECT M2.Director

FROM Movies M2

WHERE M2.Title=S.Title

AND

M1.Director=M2.Director))
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Other features of SQL

• Datatypes, type-specific operations

• Table declaration, constraint enforcement

• Aggregation
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Simple aggregate queries

Count the number of tuples in Movies

SELECT COUNT(*)

FROM Movies

Add up all movie lengths

SELECT SUM(Length)

FROM Movies

Find the number of directors.

SELECT COUNT(DISTINCT Director)

FROM Movies
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Aggregation and grouping

For each theaters playing at least one long (over 2 hours) movie, find the
average length of all movies played there:

SELECT S.Theater, AVG(M.Length)

FROM Schedule S, Movies M

WHERE S.Title=M.Title

GROUP BY S.Theater

HAVING MAX(M.Length) > 120
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Database Constraints

• In our examples we assumed that the title attribute identifies a movie.

• But this may not be the case:

title director actor
Dracula Browning Lugosi
Dracula Fischer Lee
Dracula Badham Langella
Dracula Coppola Oldman

• Database constraints: provide additional semantic information about
the data.

• Most common ones: functional and inclusion dependencies, and their
special cases: keys and foreign keys.
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Constraints cont’d

• If we want the title to identify a movie uniquely (i.e., no Dracula situ-
ation),
we express it as a functional dependency

title → director

• In general, a relation R satisfies a functional dependency A → B,
where A and B are attributes, if for every two tuples t1, t2 in R:

πA(t1) = πA(t2) implies πB(t1) = πB(t2)
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Functional dependencies and keys

• More generally, a functional dependency is X → Y where X, Y are
sequences of attributes. It holds in a relation R if for every two tuples
t1, t2 in R:

πX(t1) = πX(t2) implies πY (t1) = πY (t2)

• A very important special case: keys

• Let K be a set of attributes of R, and U the set of all attributes of
R. Then K is a key if R satisfies functional dependency K → U .

• In other words, a set of attributes K is a key in R if for any two tuples
t1, t2 in R,

πK(t1) = πK(t2) implies t1 = t2

• That is, a key is a set of attributes that uniquely identify a tuple in a
relation.
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Inclusion constraints

• We expect every Title listed in Schedule to be present in Movies.

• These are referential integrity constraints: they talk about attributes
of one relation (Schedule) but refer to values in another one (Movies).

• These particular constraints are called inclusion dependencies (ID).

• Formally, we have an inclusion dependency R[A] ⊆ S[B] when every
value of attribute A in R also occurs as a value of attribute B in S:

πA(R) ⊆ πB(S)

• As with keys, this extends to sets of attributes, but they must have the
same number of attributes.

• There is an inclusion dependency R[A1, . . . , An] ⊆ S[B1, . . . , Bn]
when

πA1,...,An(R) ⊆ πB1,...,Bn(S)
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Foreign keys

• Most often inclusion constraints occur as a part of a foreign key

• Foreign key is a conjunction of a key and an ID:

R[A1, . . . , An] ⊆ S[B1, . . . , Bn] and

{B1, . . . , Bn} → all attributes of S

• Meaning: we find a key for relation S in relation R.

• Example: Suppose we have relations:
Employee(EmplId, Name, Dept, Salary)

ReportsTo(Empl1,Empl2).

• We expect both Empl1 and Empl2 to be found in Employee; hence:
ReportsTo[Empl1] ⊆ Employee[EmplId]

ReportsTo[Empl2] ⊆ Employee[EmplId].

• If EmplId is a key for Employee, then these are foreign keys.
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