Data Integration and Exchange
LECTURE 1: Review of Relational Databases

- Relational model
- Schemas
- Relational algebra
- Relational calculus
- SQL
- Constraints (keys, foreign keys)
The relational model

• Data is organized in relations (tables)
• Relational database schema:
 set of table names
 list of attributes for each table
• Tables are specified as: <table name>:<list of attributes>
• Examples:
 Account: number, branch, customerId
 Movie: title, director, actor
 Schedule: theater, title
• Attributes within a table have different names
• Tables have different names
Declarative vs Procedural

- In our queries, we ask **what** we want to see in the output.
- But we do not say **how** we want to get this output.
- Thus, query languages are **declarative**: they specify what is needed in the output, but do not say how to get it.
- Database system figures out **how** to get the result, and gives it to the user.
- Database system operates internally with different, **procedural** languages, which specify how to get the result.
Declarative vs Procedural: example

Declarative:

\{ \text{title} \mid (\text{title}, \text{director}, \text{actor}) \in \text{movies} \}

Procedural:

for each tuple \(T=(t,d,a) \) in relation movies do
 output \(t \)
end

In relational algebra: \(\pi_{\text{title}}(Movies) \).

in SQL:

SELECT title FROM Movies
Relational Calculus

- Codd 1970: Relational databases are queried using first-order predicate logic.
- Relational calculus: another name for it. Queries written in the logical notation using:
 - relation names (e.g., Movies)
 - constants (e.g., 'Shining', 'Nicholson')
 - conjunction \land, disjunction \lor
 - negation \neg
 - existential quantifiers \exists
 - universal quantifiers \forall
- \land, \exists, \neg suffice:
 - $\forall x F(x) = \neg \exists x \neg F(x)$
 - $F \lor G = \neg (\neg F \land \neg G)$
Relational Calculus cont’d

- Bound variable: a variable \(x \) that occurs in \(\exists x \) or \(\forall x \)
- Free variable: a variable that is not bound.
- Free variables are those that go into the output of a query.
- Two ways to write a query:
 \[
 Q(\vec{x}) = F, \text{ where } \vec{x} \text{ is the tuple of free variables}
 \]
 \[
 \{ \vec{x} \mid F \}
 \]
- Examples:
 \[
 \{ x, y \mid \exists z \ R(x, z) \land S(z, y) \}
 \]
 \[
 \{ x \mid \forall y R(x, y) \}
 \]
 \[
 \{ \text{dir} \mid \forall (\text{th}, \text{tl}) \in \text{schedule} \}
 \]
 \[
 \exists (\text{tl}', \text{act}): (\text{tl}', \text{dir}, \text{act}) \in \text{movies} \land (\text{th}, \text{tl}') \in \text{schedule} \}
 \]
Relational Algebra

• Procedural language

• Six (= 5 + 1) operations:
 ○ Projection π
 ○ Selection σ
 ○ Cartesian product \times
 ○ Union \cup
 ○ Difference $-$
 ○ Renaming ρ

• Renaming changes names of attributes

• $\rho_{A \leftarrow C, B \leftarrow D}(R)$ turns a relation with attributes C, D into a relation with attributes A, B.
Relational Algebra cont’d

• Projection: chooses some attributes in a relation
• $\pi_{A_1,\ldots,A_n}(R)$: only leaves attributes A_1,\ldots,A_n in relation R.
• Selection: Chooses tuples that satisfy some condition
• $\sigma_c(R)$: only leaves tuples t for which $c(t)$ is true
• Conditions: conjunctions of
 - $R.A = R.A'$ – two attributes are equal
 - $R.A = \text{constant}$ – the value of an attribute is a given constant
 Same as above but with \neq instead of $=$
• Examples:
 - $\text{Movies.Actor} = \text{Movies.Director}$
 - $\text{Movies.Actor} = \text{Movies.Director} \land \text{Movies.Actor} = '\text{Nicholson}'$
Relational Algebra cont’d

- Cartesian Product: puts together two relations
- $R_1 \times R_2$ puts together each tuple t_1 of R_1 and each tuple t_2 of R_2
- Example:

\[
\begin{array}{c|cc}
R_1 & A & B \\
\hline
a_1 & b_1 \\
\hline
a_2 & b_2 \\
\hline
a_3 & c_3 \\
\end{array} \times \begin{array}{c|cc}
R_2 & A & C \\
\hline
a_1 & c_1 \\
\hline
a_2 & c_2 \\
\hline
a_3 & c_3 \\
\end{array} = \begin{array}{cccc}
\hline
a_1 & b_1 & a_1 & c_1 \\
\hline
a_1 & b_1 & a_2 & c_2 \\
\hline
a_1 & b_1 & a_3 & c_3 \\
\hline
a_2 & b_2 & a_1 & c_1 \\
\hline
a_2 & b_2 & a_2 & c_2 \\
\hline
a_2 & b_2 & a_3 & c_3 \\
\end{array}
\]
Relational Algebra cont’d

- Union \(R \cup S \) is the union of relations \(R \) and \(S \)
- \(R \) and \(S \) must have the same set of attributes.
- Difference \(R - S \): tuples in \(R \) but not in \(S \).

- Every declarative query has a procedural implementation:

 \[
 \text{Relational Calculus} \quad = \quad \text{Relational Algebra}
 \]
SQL

• Structured Query Language
• Developed originally at IBM in the late 70s
• First standard: SQL-86
• Second standard: SQL-92
• Latest standard: SQL-99, or SQL3, well over 1,000 pages
• De-facto standard of the relational database world – replaced all other languages.
Examples of SQL queries

• Find titles of current movies

SELECT Title
FROM Movies

• SELECT lists attributes that go into the output of a query
• FROM lists input relations
Examples of SQL queries cont’d

• Find theaters showing movies in which Nicholson played:

```sql
SELECT Schedule.Theater
FROM Schedule, Movies
WHERE Movies.Title = Schedule.Title
    AND Movies.Actor = 'Nicholson'
```

Differences:

• SELECT now specifies which relation the attributes came from – because we use more than one.
• FROM lists two relations
• WHERE specifies the condition for selecting a tuple.
Joining relations

• WHERE allows us to join together several relations

• Consider a query: list directors, and theaters in which their movies are playing

\[
\text{SELECT Movies.Director, Schedule.Theater}
\text{FROM Movies, Schedule}
\text{WHERE Movies.Title = Schedule.Title}
\]

• This operation is called \textit{join}.

• Notation: Schedule \bowtie Movies
Join cont’d

• Join is not a new operation of relational algebra
• It is definable with π, σ, \times
• Suppose R is a relation with attributes $A_1, \ldots, A_n, B_1, \ldots, B_k$
• S is a relation with attributes $A_1, \ldots, A_n, C_1, \ldots, C_m$
• $R \bowtie S$ has attributes $A_1, \ldots, A_n, B_1, \ldots, B_k, C_1, \ldots, C_m$

\[
R \bowtie S = \pi_{A_1, \ldots, A_n, B_1, \ldots, B_k, C_1, \ldots, C_m}(\sigma_{R.A_1 = S.A_1 \land \ldots \land R.A_n = S.A_n}(R \times S))
\]
Beyond simple queries

• So far we mostly used π, σ, \bowtie in relational algebra.
• It is harder to do queries with “for all conditions”.
• Query: *Find directors whose movies are playing in all theaters:*

\[
\pi_{\text{director}}(M) - \pi_{\text{director}}\left(\pi_{\text{theater}}(S) \times \pi_{\text{director}}(M) - \pi_{\text{theater,director}}(M \bowtie S)\right)
\]

• They don’t look easy in relational algebra
For all and negation in SQL

- Two main mechanisms: subqueries, and Boolean expressions
- Subqueries are often more natural
- SQL syntax for $R \cap S$:
 $$R \text{ INTERSECT } S$$
- SQL syntax for $R - S$:
 $$R \text{ EXCEPT } S$$
- Find all actors who are not directors: also directors:

 SELECT Actor AS Person FROM Movies EXCEPT SELECT Director AS Person FROM Movies INTERSECT
 SELECT Actor AS Person FROM Movies SELECT Director AS Person FROM Movies
For all and negation in SQL cont’d

- Find directors whose movies are playing in all theaters.
- SQL’s way of saying this: Find directors such that there does not exist a theater where their movies do not play.
- Because: $\forall x \ f(x) \iff \neg \exists x \ \neg f(x)$.

```
SELECT M1.Director
FROM Movies M1
WHERE NOT EXISTS (SELECT S.Theater
                   FROM Schedule S
                   WHERE NOT EXISTS (SELECT M2.Director
                                      FROM Movies M2
                                      WHERE M2.Title=S.Title
                                      AND M1.Director=M2.Director))
```
Other features of SQL

- Datatypes, type-specific operations
- Table declaration, constraint enforcement
- Aggregation
Simple aggregate queries

Count the number of tuples in Movies

```sql
SELECT COUNT(*)
FROM Movies
```

Add up all movie lengths

```sql
SELECT SUM(Length)
FROM Movies
```

Find the number of directors.

```sql
SELECT COUNT(DISTINCT Director)
FROM Movies
```
Aggregation and grouping

For each theaters playing at least one long (over 2 hours) movie, find the average length of all movies played there:

```
SELECT S.Theater, AVG(M.Length)
FROM Schedule S, Movies M
WHERE S.Title=M.Title
GROUP BY S.Theater
HAVING MAX(M.Length) > 120
```
Database Constraints

- In our examples we assumed that the *title* attribute identifies a movie.
- But this may not be the case:

<table>
<thead>
<tr>
<th>title</th>
<th>director</th>
<th>actor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dracula</td>
<td>Browning</td>
<td>Lugosi</td>
</tr>
<tr>
<td>Dracula</td>
<td>Fischer</td>
<td>Lee</td>
</tr>
<tr>
<td>Dracula</td>
<td>Badham</td>
<td>Langella</td>
</tr>
<tr>
<td>Dracula</td>
<td>Coppola</td>
<td>Oldman</td>
</tr>
</tbody>
</table>

- Database constraints: provide additional semantic information about the data.
- Most common ones: functional and inclusion dependencies, and their special cases: *keys* and *foreign keys*.
Constraints cont’d

- If we want the title to identify a movie uniquely (i.e., no Dracula situation), we express it as a functional dependency

 title → director

- In general, a relation R satisfies a functional dependency $A \rightarrow B$, where A and B are attributes, if for every two tuples t_1, t_2 in R:

 $\pi_A(t_1) = \pi_A(t_2)$ implies $\pi_B(t_1) = \pi_B(t_2)$
Functional dependencies and keys

- More generally, a functional dependency is $X \rightarrow Y$ where X, Y are sequences of attributes. It holds in a relation R if for every two tuples t_1, t_2 in R:
 $\pi_X(t_1) = \pi_X(t_2)$ implies $\pi_Y(t_1) = \pi_Y(t_2)$

- A very important special case: keys

- Let K be a set of attributes of R, and U the set of all attributes of R. Then K is a key if R satisfies functional dependency $K \rightarrow U$.

- In other words, a set of attributes K is a key in R if for any two tuples t_1, t_2 in R,
 $\pi_K(t_1) = \pi_K(t_2)$ implies $t_1 = t_2$

- That is, a key is a set of attributes that uniquely identify a tuple in a relation.
Inclusion constraints

• We expect every Title listed in Schedule to be present in Movies.
• These are **referential** integrity constraints: they talk about attributes of one relation (Schedule) but refer to values in another one (Movies).
• These particular constraints are called **inclusion dependencies** (ID).
• Formally, we have an inclusion dependency \(R[A] \subseteq S[B] \) when every value of attribute \(A \) in \(R \) also occurs as a value of attribute \(B \) in \(S \):
 \[
 \pi_A(R) \subseteq \pi_B(S)
 \]
• As with keys, this extends to sets of attributes, but they must have the same number of attributes.
• There is an inclusion dependency \(R[A_1, \ldots, A_n] \subseteq S[B_1, \ldots, B_n] \) when
 \[
 \pi_{A_1, \ldots, A_n}(R) \subseteq \pi_{B_1, \ldots, B_n}(S)
 \]
Foreign keys

- Most often inclusion constraints occur as a part of a foreign key
- Foreign key is a conjunction of a key and an ID:
 \[R[A_1, \ldots, A_n] \subseteq S[B_1, \ldots, B_n] \quad \text{and} \quad \{B_1, \ldots, B_n\} \rightarrow \text{all attributes of } S \]
- Meaning: we find a key for relation \(S \) in relation \(R \).
- Example: Suppose we have relations:
 \[
 \begin{align*}
 \text{Employee}(\text{EmplId, Name, Dept, Salary}) \\
 \text{ReportsTo}(\text{Empl1}, \text{Empl2}).
 \end{align*}
 \]
- We expect both \text{Empl1} and \text{Empl2} to be found in \text{Employee}; hence:
 \[
 \begin{align*}
 \text{ReportsTo[Empl1]} & \subseteq \text{Employee[EmplId]} \\
 \text{ReportsTo[Empl2]} & \subseteq \text{Employee[EmplId]}. \\
 \end{align*}
 \]
- If \text{EmplId} is a key for \text{Employee}, then these are foreign keys.