
Data Integration and Exchange

L. Libkin 1 Data Integration and Exchange

LECTURE 1: Review of Relational Databases

• Relational model

• Schemas

• Relational algebra

• Relational calculus

• SQL

• Constraints (keys, foreign keys)

L. Libkin 2 Data Integration and Exchange

The relational model

• Data is organized in relations (tables)

• Relational database schema:

set of table names

list of attributes for each table

• Tables are specified as: <table name>:<list of attributes>

• Examples:

Account: number, branch, customerId

Movie: title, director, actor

Schedule: theater, title

• Attributes within a table have different names

• Tables have different names

L. Libkin 3 Data Integration and Exchange

Declarative vs Procedural

• In our queries, we ask what we want to see in the output.

• But we do not say how we want to get this output.

• Thus, query languages are declarative: they specify what is needed in
the output, but do not say how to get it.

• Database system figures out how to get the result, and gives it to the
user.

• Database system operates internally with different, procedural lan-
guages, which specify how to get the result.

L. Libkin 4 Data Integration and Exchange

Declarative vs Procedural: example

Declarative:

{ title | (title, director, actor) ∈ movies }

Procedural:

for each tuple T=(t,d,a) in relation movies do

output t

end

In relational algebra: πtitle(Movies).

in SQL:

SELECT title FROM Movies

L. Libkin 5 Data Integration and Exchange

Relational Calculus

• Codd 1970: Relational databases are queried using first-order predicate
logic.

• Relational calculus: another name for it. Queries written in the logical
notation using:

relation names (e.g., Movies)

constants (e.g., ’Shining’, ’Nicholson’)

conjunction ∧, disjunction ∨

negation ¬

existential quantifiers ∃

universal quantifiers ∀

• ∧,∃,¬ suffice:

∀xF (x) = ¬∃x¬F (x)

F ∨G = ¬(¬F ∧ ¬G)

L. Libkin 6 Data Integration and Exchange

Relational Calculus cont’d

• Bound variable: a variable x that occurs in ∃x or ∀x

• Free variable: a variable that is not bound.

• Free variables are those that go into the output of a query.

• Two ways to write a query:

Q(~x) = F , where ~x is the tuple of free variables

{~x | F}

• Examples:

{x, y | ∃z
(

R(x, z) ∧ S(z, y)
)

}

{x | ∀yR(x, y)}

{ dir | ∀ (th, tl) ∈ schedule
∃ (tl’, act): (tl’,dir,act) ∈ movies ∧ (th, tl’) ∈ schedule }

L. Libkin 7 Data Integration and Exchange

Relational Algebra

• Procedural language

• Six (= 5+ 1) operations:

◦ Projection π

◦ Selection σ

◦ Cartesian product ×

◦ Union ∪

◦ Difference −

◦ Renaming ρ

• Renaming changes names of attributes

• ρA←C,B←D(R) turns a relation with attributes C,D into a relation with
attributes A, B.

L. Libkin 8 Data Integration and Exchange

Relational Algebra cont’d

• Projection: chooses some attributes in a relation

• πA1,...,An(R): only leaves attributes A1, . . . , An in relation R.

• Selection: Chooses tuples that satisfy some condition

• σc(R): only leaves tuples t for which c(t) is true

• Conditions: conjunctions of

R.A = R.A′ – two attributes are equal

R.A = constant – the value of an attribute is a given constant

Same as above but with 6= instead of =

• Examples:

Movies.Actor=Movies.Director

Movies.Actor=Movies.Director ∧ Movies.Actor=’Nicholson’

L. Libkin 9 Data Integration and Exchange

Relational Algebra cont’d

• Cartesian Product: puts together two relations

• R1 ×R2 puts together each tuple t1 of R1 and each tuple t2 of R2

• Example:

R1 A B

a1 b1

a2 b2

×

R2 A C

a1 c1

a2 c2

a3 c3

=

R1.A R1.B R2.A R2.C

a1 b1 a1 c1

a1 b1 a2 c2

a1 b1 a3 c3

a2 b2 a1 c1

a2 b2 a2 c2

a2 b2 a3 c3

L. Libkin 10 Data Integration and Exchange

Relational Algebra cont’d

• Union R ∪ S is the union of relations R and S

• R and S must have the same set of attributes.

• Difference R− S: tuples in R but not in S.

• Every declarative query has a procedural implementation:

Relational Calculus = Relational Algebra

L. Libkin 11 Data Integration and Exchange

SQL

• Structured Query Language

• Developed originally at IBM in the late 70s

• First standard: SQL-86

• Second standard: SQL-92

• Latest standard: SQL-99, or SQL3, well over 1,000 pages

• De-facto standard of the relational database world – replaced all other
languages.

L. Libkin 12 Data Integration and Exchange

Examples of SQL queries

• Find titles of current movies

SELECT Title

FROM Movies

• SELECT lists attributes that go into the output of a query

• FROM lists input relations

L. Libkin 13 Data Integration and Exchange

Examples of SQL queries cont’d

• Find theaters showing movies in which Nicholson played:

SELECT Schedule.Theater

FROM Schedule, Movies

WHERE Movies.Title = Schedule.Title

AND Movies.Actor=’Nicholson’

Differences:

• SELECT now specifies which relation the attributes came from – because
we use more than one.

• FROM lists two relations

• WHERE specifies the condition for selecting a tuple.

L. Libkin 14 Data Integration and Exchange

Joining relations

• WHERE allows us to join together several relations

• Consider a query: list directors, and theaters in which their movies are
playing

SELECT Movies.Director, Schedule.Theater

FROM Movies, Schedule

WHERE Movies.Title = Schedule.Title

• This operation is called join.

• Notation: Schedule ⋊⋉ Movies

L. Libkin 15 Data Integration and Exchange

Join cont’d

• Join is not a new operation of relational algebra

• It is definable with π, σ,×

• Suppose R is a relation with attributes A1, . . . , An, B1, . . . , Bk

• S is a relation with attributes A1, . . . , An, C1, . . . , Cm

• R ⋊⋉ S has attributes A1, . . . , An, B1, . . . , Bk, C1, . . . , Cm

R ⋊⋉ S

= πA1,...,An, B1,...,Bk,C1,...,Cm(σR.A1=S.A1∧...∧R.An=S.An(R× S))

L. Libkin 16 Data Integration and Exchange

Beyond simple queries

• So far we mostly used π, σ, ⋊⋉ in relational algebra.

• It is harder to do queries with “for all conditions”.

• Query: Find directors whose movies are playing in all theaters:

πdirector(M)−πdirector

(

πtheater(S)×πdirector(M)− πtheater,director(M ⋊⋉ S)
)

• They don’t look easy in relational algebra

L. Libkin 17 Data Integration and Exchange

For all and negation in SQL

• Two main mechanisms: subqueries, and Boolean expressions

• Subqueries are often more natural

• SQL syntax for R ∩ S:

R INTERSECT S

• SQL syntax for R− S:

R EXCEPT S

• Find all actors who are
not directors: also directors:

SELECT Actor AS Person SELECT Actor AS Person

FROM Movies FROM Movies

EXCEPT INTERSECT

SELECT Director AS Person SELECT Director AS Person

FROM Movies FROM Movies

L. Libkin 18 Data Integration and Exchange

For all and negation in SQL cont’d

• Find directors whose movies are playing in all theaters.

• SQL’s way of saying this: Find directors such that there does not exist
a theater where their movies do not play.

• Because: ∀x f(x) ⇔ ¬∃x ¬f(x).

SELECT M1.Director

FROM Movies M1

WHERE NOT EXISTS (SELECT S.Theater

FROM Schedule S

WHERE NOT EXISTS (SELECT M2.Director

FROM Movies M2

WHERE M2.Title=S.Title

AND

M1.Director=M2.Director))

L. Libkin 19 Data Integration and Exchange

Other features of SQL

• Datatypes, type-specific operations

• Table declaration, constraint enforcement

• Aggregation

L. Libkin 20 Data Integration and Exchange

Simple aggregate queries

Count the number of tuples in Movies

SELECT COUNT(*)

FROM Movies

Add up all movie lengths

SELECT SUM(Length)

FROM Movies

Find the number of directors.

SELECT COUNT(DISTINCT Director)

FROM Movies

L. Libkin 21 Data Integration and Exchange

Aggregation and grouping

For each theaters playing at least one long (over 2 hours) movie, find the
average length of all movies played there:

SELECT S.Theater, AVG(M.Length)

FROM Schedule S, Movies M

WHERE S.Title=M.Title

GROUP BY S.Theater

HAVING MAX(M.Length) > 120

L. Libkin 22 Data Integration and Exchange

Database Constraints

• In our examples we assumed that the title attribute identifies a movie.

• But this may not be the case:

title director actor
Dracula Browning Lugosi
Dracula Fischer Lee
Dracula Badham Langella
Dracula Coppola Oldman

• Database constraints: provide additional semantic information about
the data.

• Most common ones: functional and inclusion dependencies, and their
special cases: keys and foreign keys.

L. Libkin 23 Data Integration and Exchange

Constraints cont’d

• If we want the title to identify a movie uniquely (i.e., no Dracula situ-
ation),
we express it as a functional dependency

title → director

• In general, a relation R satisfies a functional dependency A → B,
where A and B are attributes, if for every two tuples t1, t2 in R:

πA(t1) = πA(t2) implies πB(t1) = πB(t2)

L. Libkin 24 Data Integration and Exchange

Functional dependencies and keys

• More generally, a functional dependency is X → Y where X, Y are
sequences of attributes. It holds in a relation R if for every two tuples
t1, t2 in R:

πX(t1) = πX(t2) implies πY (t1) = πY (t2)

• A very important special case: keys

• Let K be a set of attributes of R, and U the set of all attributes of
R. Then K is a key if R satisfies functional dependency K → U .

• In other words, a set of attributes K is a key in R if for any two tuples
t1, t2 in R,

πK(t1) = πK(t2) implies t1 = t2

• That is, a key is a set of attributes that uniquely identify a tuple in a
relation.

L. Libkin 25 Data Integration and Exchange

Inclusion constraints

• We expect every Title listed in Schedule to be present in Movies.

• These are referential integrity constraints: they talk about attributes
of one relation (Schedule) but refer to values in another one (Movies).

• These particular constraints are called inclusion dependencies (ID).

• Formally, we have an inclusion dependency R[A] ⊆ S[B] when every
value of attribute A in R also occurs as a value of attribute B in S:

πA(R) ⊆ πB(S)

• As with keys, this extends to sets of attributes, but they must have the
same number of attributes.

• There is an inclusion dependency R[A1, . . . , An] ⊆ S[B1, . . . , Bn]
when

πA1,...,An(R) ⊆ πB1,...,Bn(S)

L. Libkin 26 Data Integration and Exchange

Foreign keys

• Most often inclusion constraints occur as a part of a foreign key

• Foreign key is a conjunction of a key and an ID:

R[A1, . . . , An] ⊆ S[B1, . . . , Bn] and

{B1, . . . , Bn} → all attributes of S

• Meaning: we find a key for relation S in relation R.

• Example: Suppose we have relations:
Employee(EmplId, Name, Dept, Salary)

ReportsTo(Empl1,Empl2).

• We expect both Empl1 and Empl2 to be found in Employee; hence:
ReportsTo[Empl1] ⊆ Employee[EmplId]

ReportsTo[Empl2] ⊆ Employee[EmplId].

• If EmplId is a key for Employee, then these are foreign keys.

L. Libkin 27 Data Integration and Exchange

