Integrating rankings: Problem statement

- Each object has m grades, one for each of m criteria.
- The grade of an object for field i is x_i .
- Normally assume $0 \le x_i \le 1$.
 - \circ Typically evaluations based on different criteria
 - \circ The higher the value of x_i , the better the object is according to the $i{\rm th}$ criterion
- The objects are given in m sorted lists
 - \circ the *i*th list is sorted by x_i value
 - \circ These lists correspond to different sources or to different criteria.
- Goal: find the top k objects.

Example

Grade 1	Grade 2 2
(17, 0.9936)	(235, 0.9996)
(1352,0.9916)	(12, 0.9966)
(702,0.9826)	(8201, 0.9926)
(12, 0.3256)	(17, 0.406)

Aggregation Functions

- Have an aggregation function F.
- Let x_1, \ldots, x_m be the grades of object R under the m criteria.
- Then $F(x_1, \ldots, x_m)$ is the overall grade of object R.
- Common choices for F:

 \circ min

• average or sum

 \bullet An aggregation function F is monotone if

$$F(x_1,\ldots,x_m) \le F(x'_1,\ldots,x'_m)$$

whenever $x_i \leq x'_i$ for all *i*.

Other Applications

- Information retrieval
- Objects R are documents.
- The *m* criteria are search terms s_1, \ldots, s_m .
- The grade x_i : how relevant document R is for search term s_i .
- \bullet Common to take the aggregation function F to be the sum

 $F(x_1,\ldots,x_m)=x_1+\cdots+x_m.$

Modes of Access

• Sorted access

• Can obtain the next object with its grade in list L_i • cost c_S .

• Random access

 \circ Can obtain the grade of object R in list L_i

- \circ cost c_R .
- Middleware cost:

 $c_S \cdot (\# \text{ of sorted accesses}) + c_R \cdot (\# \text{ of random accesses}).$

Algorithms

- Want an algorithm for finding the top k objects.
- Naive algorithm:
 - compute the overall grade of every object;
 - \circ return the top k answers.
- Too expensive.

Fagin's Algorithm (FA)

1. Do sorted access in parallel to each of the m sorted lists L_i .

- Stop when there are at least k objects, each of which have been seen in all the lists.
- 2. For each object R that has been seen:
 - Retrieve all of its fields x_1, \ldots, x_m by random access.
 - Compute $F(R) = F(x_1, ..., x_m)$.
- 3. Return the top k answers.

Fagin's algorithm is correct

• Assume object R was not seen

 \circ its grades are x_1, \ldots, x_m .

 \bullet Assume object S is one of the answers returned by FA

 \circ its grades are y_1, \ldots, y_m .

- Then $x_i \leq y_i$ for each i
- Hence

$$F(R) = F(x_1, \ldots, x_m) \le F(y_1, \ldots, y_m) = F(S).$$

Fagin's algorithm: performance guarantees

- Typically probabilistic guarantees
- Orderings are independent
- Then with high probability the middleware cost is

$$O\left(N \cdot \sqrt[m]{\frac{k}{N}}\right)$$

- i.e., sublinear
- But may perform poorly

 \circ e.g., if F is constant: \circ still takes $O\Big(N\cdot\sqrt[m]{k/N}\Big)$ instead of a constant time algorithm

Optimal algorithm: The Threshold Algorithm

- 1. Do sorted access in parallel to each of the m sorted lists L_i . As each object R is seen under sorted access:
 - Retrieve all of its fields x_1, \ldots, x_m by random access.
 - Compute $F(R) = F(x_1, \ldots, x_m)$.
 - If this is one of the top k answers so far, remember it.
 - Note: buffer of bounded size.
- 2. For each list L_i , let \hat{x}_i be the grade of the last object seen under sorted access.
- 3. Define the *threshold value* t to be $F(\hat{x}_1, \ldots, \hat{x}_m)$.
- 4. When k objects have been seen whose grade is at least t, then stop.
- 5. Return the top k answers.

Threshold Algorithm: correctness and optimality

- The Threshold Algorithm is correct for every monotone aggregate function *F*.
- Optimal in a very strong sense:

it is as good as any other algorithm on every instance
any other algorithm means: except pathological algorithms
as good means: within a constant factor
pathological means: making wild guesses.

Wild guesses can help

- An algorithm "makes a wild guess" if it performs random access on an object not previously encountered by sorted access.
- Neither FA nor TA make wild guesses, nor does any "natural" algorithm.
- Example: The aggregation function is min; k = 1.

Threshold Algorithm as an approximation algorithm

- Approximately finding top k answers.
- For $\varepsilon > 0$, an ε -approximation of top k answers is a collection of k objects R_1, \ldots, R_k so that

 \circ for each R not among them,

 $(1+\varepsilon) \cdot F(R_i) \geq F(R)$

- Turning TA into an approximation algorithm:
- Simply change the stopping rule into:

 \circ When k objects have been seen whose grade is at least

$$\frac{t}{1+\varepsilon},$$

then stop.