
Integrating rankings: Problem statement

• Each object has m grades, one for each of m criteria.

• The grade of an object for field i is xi.

• Normally assume 0 ≤ xi ≤ 1.

◦ Typically evaluations based on different criteria

◦ The higher the value of xi, the better the object is according to the
ith criterion

• The objects are given in m sorted lists

◦ the ith list is sorted by xi value

◦ These lists correspond to different sources or to different criteria.

• Goal: find the top k objects.

L. Libkin 1 Data Integration and Exchange



Example

Grade 1
(17, 0.9936)
(1352,0.9916)
(702,0.9826)
. . .
(12, 0.3256)
. . .

Grade 2 2
(235, 0.9996)
(12, 0.9966)
(8201, 0.9926)
. . .
(17, 0.406)
. . .

L. Libkin 2 Data Integration and Exchange



Aggregation Functions

• Have an aggregation function F .

• Let x1, . . . , xm be the grades of object R under the m criteria.

• Then F (x1, . . . , xm) is the overall grade of object R.

• Common choices for F :

◦ min

◦ average or sum

• An aggregation function F is monotone if

F (x1, . . . , xm) ≤ F (x′
1, . . . , x

′
m)

whenever xi ≤ x′
i for all i.

L. Libkin 3 Data Integration and Exchange



Other Applications

• Information retrieval

• Objects R are documents.

• The m criteria are search terms s1, . . . , sm.

• The grade xi: how relevant document R is for search term si.

• Common to take the aggregation function F to be the sum

F (x1, . . . , xm) = x1 + · · · + xm.

L. Libkin 4 Data Integration and Exchange



Modes of Access

• Sorted access

◦ Can obtain the next object with its grade in list Li

◦ cost cS.

• Random access

◦ Can obtain the grade of object R in list Li

◦ cost cR.

• Middleware cost:

cS · (# of sorted accesses) + cR · (# of random accesses).

L. Libkin 5 Data Integration and Exchange



Algorithms

• Want an algorithm for finding the top k objects.

• Naive algorithm:

◦ compute the overall grade of every object;

◦ return the top k answers.

• Too expensive.

L. Libkin 6 Data Integration and Exchange



Fagin’s Algorithm (FA)

1. Do sorted access in parallel to each of the m sorted lists Li.

• Stop when there are at least k objects, each of which have been
seen in all the lists.

2. For each object R that has been seen:

• Retrieve all of its fields x1, . . . , xm by random access.

• Compute F (R) = F (x1, . . . , xm).

3. Return the top k answers.

L. Libkin 7 Data Integration and Exchange



Fagin’s algorithm is correct

• Assume object R was not seen

◦ its grades are x1, . . . , xm.

• Assume object S is one of the answers returned by FA

◦ its grades are y1, . . . , ym.

• Then xi ≤ yi for each i

• Hence

F (R) = F (x1, . . . , xm) ≤ F (y1, . . . , ym) = F (S).

L. Libkin 8 Data Integration and Exchange



Fagin’s algorithm: performance guarantees

• Typically probabilistic guarantees

• Orderings are independent

• Then with high probability the middleware cost is

O
(
N · m

√
k

N

)

• i.e., sublinear

• But may perform poorly

◦ e.g., if F is constant:

◦ still takes O
(
N · m

√
k/N

)
instead of a constant time algorithm

L. Libkin 9 Data Integration and Exchange



Optimal algorithm: The Threshold Algorithm

1. Do sorted access in parallel to each of the m sorted lists Li. As each
object R is seen under sorted access:

• Retrieve all of its fields x1, . . . , xm by random access.

• Compute F (R) = F (x1, . . . , xm).

• If this is one of the top k answers so far, remember it.

• Note: buffer of bounded size.

2. For each list Li, let x̂i be the grade of the last object seen under sorted
access.

3. Define the threshold value t to be F (x̂1, . . . , x̂m).

4. When k objects have been seen whose grade is at least t, then stop.

5. Return the top k answers.

L. Libkin 10 Data Integration and Exchange



Threshold Algorithm: correctness and optimality

• The Threshold Algorithm is correct for every monotone aggregate func-
tion F .

• Optimal in a very strong sense:

◦ it is as good as any other algorithm on every instance

◦ any other algorithm means: except pathological algorithms

◦ as good means: within a constant factor

◦ pathological means: making wild guesses.

L. Libkin 11 Data Integration and Exchange



Wild guesses can help

• An algorithm “makes a wild guess” if it performs random access on an
object not previously encountered by sorted access.

• Neither FA nor TA make wild guesses, nor does any “natural” algorithm.

• Example: The aggregation function is min; k = 1.

LIST L1

(1, 1)
(2, 1)
(3, 1)
. . .
(n+1, 1)
(n+2, 0)
(n+3, 0)
. . .
(2n+1, 0)

LIST L2

(2n+1, 1)
(2n, 1)
(2n-1, 1)
. . .
(n+1, 1)
(n, 0)
(n-1, 0)
. . .
(1, 0)

L. Libkin 12 Data Integration and Exchange



Threshold Algorithm as an approximation algorithm

• Approximately finding top k answers.

• For ε > 0, an ε-approximation of top k answers is a collection of k
objects R1, . . . , Rk so that

◦ for each R not among them,

(1 + ε) · F (Ri) ≥ F (R)

• Turning TA into an approximation algorithm:

• Simply change the stopping rule into:

◦ When k objects have been seen whose grade is at least
t

1 + ε
,

then stop.

L. Libkin 13 Data Integration and Exchange


