Integrating rankings: Problem statement

• Each object has \(m \) grades, one for each of \(m \) criteria.

• The grade of an object for field \(i \) is \(x_i \).

• Normally assume \(0 \leq x_i \leq 1 \).

 ○ Typically evaluations based on different criteria
 ○ The higher the value of \(x_i \), the better the object is according to the \(i \)th criterion

• The objects are given in \(m \) sorted lists

 ○ the \(i \)th list is sorted by \(x_i \) value
 ○ These lists correspond to different sources or to different criteria.

• Goal: find the top \(k \) objects.
Example

<table>
<thead>
<tr>
<th>Grade 1</th>
<th>Grade 2 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(17, 0.9936)</td>
<td>(235, 0.9996)</td>
</tr>
<tr>
<td>(1352, 0.9916)</td>
<td>(12, 0.9966)</td>
</tr>
<tr>
<td>(702, 0.9826)</td>
<td>(8201, 0.9926)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(12, 0.3256)</td>
<td>(17, 0.406)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Aggregation Functions

• Have an aggregation function F.
• Let x_1, \ldots, x_m be the grades of object R under the m criteria.
• Then $F(x_1, \ldots, x_m)$ is the overall grade of object R.
• Common choices for F:
 - min
 - average or sum
• An aggregation function F is monotone if
 \[F(x_1, \ldots, x_m) \leq F(x'_1, \ldots, x'_m) \]
 whenever $x_i \leq x'_i$ for all i.
Other Applications

• Information retrieval
• Objects \(R \) are documents.
• The \(m \) criteria are search terms \(s_1, \ldots, s_m \).
• The grade \(x_i \): how relevant document \(R \) is for search term \(s_i \).
• Common to take the aggregation function \(F \) to be the sum

\[
F(x_1, \ldots, x_m) = x_1 + \cdots + x_m.
\]
Modes of Access

- **Sorted** access
 - Can obtain the next object with its grade in list L_i
 - Cost c_S.

- **Random** access
 - Can obtain the grade of object R in list L_i
 - Cost c_R.

- **Middleware cost**:
 \[c_S \cdot (\text{# of sorted accesses}) + c_R \cdot (\text{# of random accesses}). \]
 Algorithms

• Want an algorithm for finding the top k objects.

• Naive algorithm:
 ◦ compute the overall grade of every object;
 ◦ return the top k answers.

• Too expensive.
Fagin’s Algorithm (FA)

1. Do **sorted access** in parallel to each of the \(m \) sorted lists \(L_i \).
 - Stop when there are at least \(k \) objects, each of which have been seen in all the lists.

2. For each object \(R \) that has been seen:
 - Retrieve all of its fields \(x_1, \ldots, x_m \) by **random access**.
 - Compute \(F(R) = F(x_1, \ldots, x_m) \).

3. Return the top \(k \) answers.
Fagin’s algorithm is correct

- Assume object R was not seen
 - its grades are x_1, \ldots, x_m.
- Assume object S is one of the answers returned by FA
 - its grades are y_1, \ldots, y_m.
- Then $x_i \leq y_i$ for each i
- Hence
 $$F(R) = F(x_1, \ldots, x_m) \leq F(y_1, \ldots, y_m) = F(S).$$
Fagin’s algorithm: performance guarantees

- Typically probabilistic guarantees
- Orderings are independent
- Then with high probability the middleware cost is
 \[O\left(N \cdot \frac{m \sqrt{k}}{N}\right) \]
 - i.e., sublinear
- But may perform poorly
 - e.g., if \(F \) is constant:
 - still takes \(O\left(N \cdot \frac{m \sqrt{k}}{N}\right) \) instead of a constant time algorithm
Optimal algorithm: The Threshold Algorithm

1. Do sorted access in parallel to each of the \(m \) sorted lists \(L_i \). As each object \(R \) is seen under sorted access:
 - Retrieve all of its fields \(x_1, \ldots, x_m \) by random access.
 - Compute \(F(R) = F(x_1, \ldots, x_m) \).
 - If this is one of the top \(k \) answers so far, remember it.
 - Note: buffer of bounded size.

2. For each list \(L_i \), let \(\hat{x}_i \) be the grade of the last object seen under sorted access.

3. Define the threshold value \(t \) to be \(F(\hat{x}_1, \ldots, \hat{x}_m) \).

4. When \(k \) objects have been seen whose grade is at least \(t \), then stop.

5. Return the top \(k \) answers.
Threshold Algorithm: correctness and optimality

- The Threshold Algorithm is correct for every monotone aggregate function F.

- Optimal in a very strong sense:
 - it is as good as any other algorithm on every instance
 - any other algorithm means: except pathological algorithms
 - as good means: within a constant factor
 - pathological means: making wild guesses.
Wild guesses can help

• An algorithm “makes a wild guess” if it performs random access on an object not previously encountered by sorted access.

• Neither FA nor TA make wild guesses, nor does any “natural” algorithm.

• Example: The aggregation function is min; $k = 1$.

<table>
<thead>
<tr>
<th>LIST L_1</th>
<th>LIST L_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 1)</td>
<td>(2n+1, 1)</td>
</tr>
<tr>
<td>(2, 1)</td>
<td>(2n, 1)</td>
</tr>
<tr>
<td>(3, 1)</td>
<td>(2n-1, 1)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(n+1, 1)</td>
<td>(n+1, 1)</td>
</tr>
<tr>
<td>(n+2, 0)</td>
<td>(n, 0)</td>
</tr>
<tr>
<td>(n+3, 0)</td>
<td>(n-1, 0)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(2n+1, 0)</td>
<td>(1, 0)</td>
</tr>
</tbody>
</table>
Threshold Algorithm as an approximation algorithm

- Approximately finding top k answers.
- For $\varepsilon > 0$, an ε-approximation of top k answers is a collection of k objects R_1, \ldots, R_k so that
 - for each R not among them,
 $$ (1 + \varepsilon) \cdot F(R_i) \geq F(R) $$

- Turning TA into an approximation algorithm:
 - Simply change the stopping rule into:
 - When k objects have been seen whose grade is at least
 $$ \frac{t}{1 + \varepsilon}, $$
 then stop.