Query answering using views

- General setting: database relations R_1, \ldots, R_n.
- Several views V_1, \ldots, V_k are defined as results of queries over the R_i’s.
- We have a query Q over R_1, \ldots, R_n.

Question: Can Q be answered in terms of the views?

- In other words, can Q be reformulated so it only refers to the data in V_1, \ldots, V_k?
Query answering using views in data integration

• LAV:
 ○ R_1, \ldots, R_n are global schema relations; Q is the global schema query
 ○ V_i’s are the sources defined over the global schema
 ○ We must answer Q based on the sources (virtual integration)

• GAV:
 ○ R_1, \ldots, R_n are the sources that are not fully available.
 ○ Q is a query in terms of the source (or a query that was reformulated in terms of the sources)
 ○ Must see if it is answerable from the available views V_1, \ldots, V_k.

• We know the problem is impossible to solve for full relational algebra, hence we concentrate on conjunctive queries.
Conjunctive queries: rule-based notation

- We often write conjunctive queries as logical statements:
 \[\{ t, y, r \mid \exists d \ (\text{Movie}(t, d, y) \land \text{RV}(t, r) \land y > 2000) \} \]

- Rule-based:
 \[Q(t, y, r) \ := \ \text{Movie}(t, d, y), \ \text{RV}(t, r), \ y > 2000 \]
 - \(Q(t, y, r) \) is the **head** of the rule
 - \(\text{Movie}(t, d, y), \ \text{RV}(t, r), \ y > 2000 \) is its **body**
 - conjunctions are replaced by commas
 - variables that occur in the body but not in the head (\(d \)) are assumed to be existentially quantified
 - essentially logic programming notation (without functions)
Query answering using views: example

- Two relations in the database: \textit{Cites}(A,B) (if A cites B), and
 \textit{SameTopic}(A,B) (if A, B work on the same topic)

- Query \(Q(x, y) \) :– \textit{SameTopic}(x, y), \textit{Cites}(x, y), \textit{Cites}(y, x)

- Two views are given:
 \begin{itemize}
 \item \(V_1(x, y) \) :– \textit{Cites}(x, y), \textit{Cites}(y, x) \\
 \item \(V_2(x, y) \) :– \textit{SameTopic}(x, y), \textit{Cites}(x, x'), \textit{Cites}(y, y')
 \end{itemize}

- Suggested rewriting: \(Q'(x, y) \) :– \(V_1(x, y), V_2(x, y) \)

- Why? Unfold using the definitions:
 \(Q'(x, y) \) :– \textit{Cites}(x, y), \textit{Cites}(y, x), \textit{SameTopic}(x, y), \textit{Cites}(x, x'), \textit{Cites}(y, y')

- Equivalent to \(Q \)
Query answering using views

• Need a formal technique (algorithm): cannot rely on the semantics.

• Query Q:

 \[
 \]

• $Q(x) :\quad R(x, 1), R(x, 1), S(x, z), S(x, 1)$

• Equivalent to $Q(x) :\quad R(x, 1), S(x, 1)$

• So if we have a view

 - $V(x, y) :\quad R(x, y), S(x, y)$ (i.e. $V = R \cap S$), then
 - $Q = \pi_A(\sigma_{B=1}(V))$
 - Q can be rewritten (as a conjunctive query) in terms of V
Query rewriting

• Setting:
 ◦ Queries V_1, \ldots, V_k over the same schema σ (assume to be conjunctive; they define the views)
 ◦ Each Q_i is of arity n_i
 ◦ A schema ω with relations of arities n_1, \ldots, n_k

• Given:
 ◦ a query Q over σ
 ◦ a query Q' over ω

• Q' is a rewriting of Q if for every σ-database D,

$$Q(D) = Q'(V_1(D), \ldots, V_k(D))$$
Maximal rewriting

- Sometimes exact rewritings cannot be obtained
- Q' is a maximally-contained rewriting if:
 - it is contained in Q:
 \[
 Q'(V_1(D), \ldots, V_k(D)) \subseteq Q(D)
 \]
 for all D
 - it is maximal such: if
 \[
 Q''(V_1(D), \ldots, V_k(D)) \subseteq Q(D)
 \]
 for all D, then
 \[
 Q'' \subseteq Q'
 \]
Query rewriting: a naive algorithm

• Given:
 ◦ conjunctive queries V_1, \ldots, V_k over schema σ
 ◦ a query Q over σ

• Algorithm:
 ◦ guess a query Q' over the views
 ◦ Unfold Q' in terms of the views
 ◦ Check if the unfolding is contained in Q

• If one unfolding is equivalent to Q, then Q' is a rewriting
 • Otherwise take the union of all unfoldings contained in Q
 – it is a maximally contained rewriting
Why is it not an algorithm yet?

- **Problem 1**: we do not yet know how to test containment and equivalence.
 - But we shall learn soon

- **Problem 2**: the guess stage.
 - There are infinitely many conjunctive queries.
 - We cannot check them all.
 - Solution: we only need to check a few.
Guessing rewritings

- A basic fact:
 - If there is a rewriting of Q using V_1, \ldots, V_k, then there is a rewriting with no more conjuncts than in Q.
 - E.g., if $Q(x) := R(x, y), R(x, 1), S(x, z), S(x, 1)$, we only need to check conjunctive queries over V with at most 4 conjuncts.

- Moreover, maximally contained rewriting is obtained as the union of all conjunctive rewritings of length of Q or less.

- Complexity: enumerate all candidates (exponentially many); for each an NP (or exponential) algorithm. Hence exponential time is required.

- Cannot lower this due to NP-completeness.
Containment and optimization of conjunctive queries

• Reminder:
 conjunctive queries
 = SPJ queries
 = rule-based queries
 = simple SELECT-FROM-WHERE SQL queries
 (only AND and equality in the WHERE clause)
• Extremely common, and thus special optimization techniques have been developed
• Reminder: for two relational algebra expressions e_1, e_2, $e_1 = e_2$ is undecidable.
• But for conjunctive queries, even $e_1 \subseteq e_2$ is decidable.
• Main goal of optimizing conjunctive queries: reduce the number of joins.
Optimization of conjunctive queries: an example

• Given a relation R with two attributes A, B

• Two SQL queries:

 Q1

  ```sql
  SELECT R1.B, R1.A
  FROM R R1, R R2
  WHERE R2.A=R1.B
  ```

 Q2

  ```sql
  SELECT R3.A, R1.A
  FROM R R1, R R2, R R3
  ```

• Are they equivalent?

• If they are, we saved one join operation.

• In relational algebra:

 $$Q_1 = \pi_{2,1}(\sigma_{2=3}(R \times R))$$

 $$Q_2 = \pi_{5,1}(\sigma_{2=4 \land 4=5}(R \times R \times R))$$
Optimization of conjunctive queries cont’d

• Are Q_1 and Q_2 equivalent?

• If they are, we cannot show it by using equivalences for relational algebra expression.

• Because: they don’t decrease the number of \times or \Join operators, but Q_1 has 1 join, and Q_2 has 2.

• But Q_1 and Q_2 are equivalent. How can we show this?

• But representing queries as databases. This representation is very close to rule-based queries.

$$Q_1(x, y) \leftarrow R(y, x), R(x, z)$$

$$Q_2(x, y) \leftarrow R(y, x), R(w, x), R(x, u)$$
Conjunctive queries into tableaux

• Tableau: representing of a conjunctive query as a database

• We first consider queries over a single relation

\[Q_1(x, y) : \neg R(y, x), R(x, z) \]

\[Q_2(x, y) : \neg R(y, x), R(w, x), R(x, u) \]

• Tableaux:

\[
\begin{array}{c|c}
A & B \\
\hline
y & x \\
x & z \\
x & y \leftarrow \text{answer line}
\end{array}
\]

\[
\begin{array}{c|c}
A & B \\
\hline
y & x \\
w & x \\
x & u \\
x & y \leftarrow \text{answer line}
\end{array}
\]

• Variables in the answer line are called distinguished
Tableau homomorphisms

• A homomorphism of two tableaux $f : T_1 \rightarrow T_2$ is a mapping

 $$f : \{\text{variables of } T_1\} \rightarrow \{\text{variables of } T_2\} \cup \{\text{constants}\}$$

• For every distinguished x, $f(x) = x$

• For every row x_1, \ldots, x_k in T_1, $f(x_1), \ldots, f(x_k)$ is a row of T_2

• Query containment: $Q \subseteq Q'$ if $Q(D) \subseteq Q'(D)$ for every database D

• Homomorphism Theorem: Let Q, Q' be two conjunctive queries, and T, T' their tableaux. Then

 $$Q \subseteq Q'$$

 if and only if

 there exists a homomorphism $f : T' \rightarrow T$
Applying the Homomorphism Theorem: $Q_1 = Q_2$

$f(x)=x, f(y)=y$

$$f(u)=z, f(w)=y$$

Hence $Q_1 \subseteq Q_2$

$f(x)=x, f(y)=y$

$f(z)=u$

Hence $Q_2 \subseteq Q_1$
Applying the Homomorphism Theorem: Complexity

• Given two conjunctive queries, how hard is it to test if $Q_1 = Q_2$?

• It is easy to transform them into tableaux, from either SPJ relational algebra queries, or SQL queries, or rule-based queries.

• But testing the existence of a homomorphism between two tableaux is hard: NP-complete. Thus, a polynomial algorithm is unlikely to exist.

• However, queries are small, and conjunctive query optimization is possible in practice.
Minimizing conjunctive queries

• Goal: given a conjunctive query Q, find an equivalent conjunctive query Q' with the minimum number of joins.

• Assume Q is

$$Q(\overline{x}) \ :- \ R_1(\overline{u}_1), \ldots, R_k(\overline{u}_k)$$

• Assume that there is an equivalent conjunctive query Q' of the form

$$Q'(\overline{x}) \ :- \ S_1(\overline{v}_1), \ldots, S_l(\overline{v}_l)$$

with $l < k$

• Then Q is equivalent to a query of the form

$$Q'(\overline{x}) \ :- \ R_{i_1}(\overline{u}_{i_1}), \ldots, R_{i_l}(\overline{u}_{i_l})$$

• In other words, to minimize a conjunctive query, one has to delete some subqueries on the right of :-
Minimizing conjunctive queries cont’d

- Given a conjunctive query Q, transform it into a tableau T
- Let Q' be a minimal conjunctive query equivalent to Q. Then its tableau T' is a subset of T.
- Minimization algorithm:

 $T' := T$

 repeat until no change

 choose a row t in T'

 if there is a homomorphism $f : T' \rightarrow T' - \{t\}$

 then $T' := T' - \{t\}$

 end

- Note: if there exists a homomorphism $T' \rightarrow T' - \{t\}$, then the queries defined by T' and $T' - \{t\}$ are equivalent. Because: there is always a homomorphism from $T' - \{t\}$ to T'. (Why?)
Minimizing SPJ/conjunctive queries: example

- R with three attributes A, B, C

- SPJ query

 $Q = \pi_{AB}(\sigma_{B=4}(R)) \bowtie \pi_{BC}(\pi_{AB}(R) \bowtie \pi_{AC}(\sigma_{B=4}(R)))$

- Equivalently, a SQL query:

  ```sql
  FROM R R1, R R2, R R3
  ```

- Translate into a conjunctive query:

 \[
 \exists x_1, z_1, z_2 \ (R(x, 4, z_1) \land R(x_1, 4, z_2) \land R(x_1, 4, z) \land y = 4)
 \]

- Rule-based:

 \[
 Q(x, y, z) :\neg R(x, 4, z_1), R(x_1, 4, z_2), R(x_1, 4, z), y = 4
 \]
Minimizing SPJ/conjunctive queries cont’d

- Tableau T:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>4</td>
<td>z_1</td>
</tr>
<tr>
<td>2</td>
<td>x_1</td>
<td>4</td>
<td>z_2</td>
</tr>
<tr>
<td>3</td>
<td>x_1</td>
<td>4</td>
<td>z</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

- Minimization, step 1: is there a homomorphism from T to

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x_1</td>
<td>4</td>
<td>z_2</td>
</tr>
<tr>
<td>2</td>
<td>x_1</td>
<td>4</td>
<td>z</td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

- Answer: No. For any homomorphism f, $f(x) = x$ (why?), thus the image of the first row is not in the small tableau.
Minimizing SPJ/conjunctive queries cont’d

• Step 2: Is T equivalent to

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>4</td>
<td>z_1</td>
</tr>
<tr>
<td>x_1</td>
<td>4</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

• Answer: Yes. Homomorphism f: $f(z_2) = z$, all other variables stay the same.

• The new tableau is not equivalent to

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>4</td>
<td>z_1</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>4</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

• Because $f(x) = x$, $f(z) = z$, and the image of one of the rows is not present.
Minimizing SPJ/conjunctive queries cont’d

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>4</td>
<td>z₁</td>
</tr>
<tr>
<td></td>
<td>x₁</td>
<td>4</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>4</td>
<td>z</td>
</tr>
</tbody>
</table>

• Minimal tableau:

• Back to conjunctive query:

\[Q'(x, y, z) \leftarrow R(x, y, z_1), R(x_1, y, z), y = 4 \]

• An SPJ query:

\[\pi_{AB}(\sigma_{B=4}(R)) \bowtie \pi_{BC}(\sigma_{B=4}(R)) \]

• SELECT R1.A, R1.B, R2.C
 FROM R R1, R R2
Review of the journey

• We started with

\[\pi_{AB}(\sigma_{B=4}(R)) \Join \pi_{BC}(\pi_{AB}(R) \Join \pi_{AC}(\sigma_{B=4}(R))) \]

• Translated into a conjunctive query

• Built a tableau and minimized it

• Translated back into conjunctive query and SPJ query

• Applied algebraic equivalences and obtained

\[\pi_{AB}(\sigma_{B=4}(R)) \Join \pi_{BC}(\sigma_{B=4}(R)) \]

• Savings: one join.
All minimizations are equivalent

- Let Q be a conjunctive query, and Q_1, Q_2 two conjunctive queries equivalent to Q.
- Assume that Q_1 and Q_2 are both minimal, and let T_1 and T_2 be their tableaux.
- Then T_1 and T_2 are isomorphic; that is, T_2 can be obtained from T_1 by renaming of variables.
- That is, all minimizations are equivalent.
- In particular, in the minimization algorithm, the order in which rows are considered, is irrelevant.
Equivalence of conjunctive queries: the general case

- So far we assumed that there is only one relation R, but what if there are many?

- Construct tableaux as before:

 $$Q(x, y) : \neg B(x, y), R(y, z), R(y, w), R(w, y)$$

- Tableau:

 $B: \begin{array}{cc}
 A & B \\
 \hline
 x & y \\
 \end{array}

 R: \begin{array}{cc}
 A & B \\
 \hline
 y & z \\
 y & w \\
 w & y \\
 \end{array}$

- Formally, a tableau is just a database where variables can appear in tuples, plus a set of distinguished variables.
Tableaux and multiple relations

- Given two tableaux T_1 and T_2 over the same set of relations, and the same distinguished variables, a homomorphism $h : T_1 \rightarrow T_2$ is a mapping

 \[f : \{ \text{variables of } T_1 \} \rightarrow \{ \text{variables of } T_2 \} \]

 such that
 - $f(x) = x$ for every distinguished variable, and
 - for each row \vec{t} in R in T_1, $f(\vec{t})$ is in R in T_2.

- **Homomorphism theorem**: let Q_1 and Q_2 be conjunctive queries, and T_1, T_2 their tableaux. Then
 \[
 Q_2 \subseteq Q_1 \text{ if and only if there exists a homomorphism } f : T_1 \rightarrow T_2
 \]
Minimization with multiple relations

- The algorithm is the same as before, but one has to try rows in different relations. Consider homomorphism \(f(z) = w \), and \(f \) is the identity for other variables. Applying this to the tableau for \(Q \) yields

\[
\begin{array}{c|c|c}
A & B & x \\
B & x & y
\end{array}
\quad
\begin{array}{c|c|c}
A & B & y \\
R & w & y
\end{array}
\]

- This cannot be further reduced, as for any homomorphism \(f \), \(f(x) = x \), \(f(y) = y \).

- Thus \(Q \) is equivalent to

\[
Q'(x, y) := B(x, y), R(y, w), R(w, y)
\]

- One join is eliminated.
Query rewriting

- Recall the algorithm, for a given Q and view definitions V_1, \ldots, V_k:
 - Look at all rewritings that have as at most as many joins as Q
 - check if they are contained in Q
 - take the union of those that are
- This is the maximally contained rewriting
- There are algorithms that prune the search space and make looking for rewritings contained in Q more efficient
 - the bucket algorithm
 - MiniCon
How hard is it to answer queries using views?

• Setting: we now have an actual content of the views.

• As before, a query is \(Q \) posed against \(D \), but must be answered using information in the views.

• Suppose \(I_1, \ldots, I_k \) are view instances. Two possibilities:

 ◦ Exact mappings: \(I_j = V_j(D) \)
 ◦ Sound mappings: \(I_j \subseteq V_j(D) \)

• We need certain answers for given \(\mathcal{I} = (I_1, \ldots, I_k) \):

\[
\text{certain}_{\text{exact}}(Q, \mathcal{I}) = \bigcap_{D: I_j = V_j(D) \text{ for all } j} Q(D)
\]

\[
\text{certain}_{\text{sound}}(Q, \mathcal{I}) = \bigcap_{D: I_j \subseteq V_j(D) \text{ for all } j} Q(D)
\]
How hard is it to answer queries using views?

- If certain_{\text{exact}}(Q, I) or certain_{\text{sound}}(Q, I) are impossible to obtain, we want maximally contained rewritings:
 - $Q'(I) \subseteq \text{certain}_{\text{exact}}(Q, I)$, and
 - if $Q''(I) \subseteq \text{certain}_{\text{exact}}(Q, I)$ then $Q''(I) \subseteq Q'(I)$
 - (and likewise for sound)

- How hard is it to compute this from I?

- In databases, we reason about complexity in two ways:
 - The big-O notation ($O(n \log n)$ vs $O(n^2)$ vs $O(2^n)$)
 - Complexity-theoretic notions: PTIME, NP, DLOGSPACE, etc

- Advantage of complexity-theoretic notions: if you have a $O(2^n)$ algorithm, is it because the problem is inherently hard, or because we are not smart enough to come up with a better algorithm (or both)?
Complexity classes: what you always wanted to know but never dared to ask

- Or a 5/5-introduction: a five minute review that tells you what are likely to remember 5 years after taking a complexity theory course.
- The big divide: \(\text{PTIME} \) (computable in polynomial time, i.e. \(O(n^k) \) for some fixed \(k \))
- Inside \(\text{PTIME} \): tractable queries (although high-degree polynomial are intractable)
- Outside \(\text{PTIME} \): intractable queries (efficient algorithms are unlikely)
- Way outside \(\text{PTIME} \): provably intractable queries (efficient algorithms do not exist)
 - \(\text{EXPTIME} \): \(c^n \)-algorithms for a constant \(c \). Could still be ok for not very large inputs
 - Even further – \(2\text{-EXPTIME} \): \(c^{c^n} \). Cannot be ok even for small inputs (compare \(2^{10} \) and \(2^{2^{10}} \)).
Inside PTIME

\[AC^0 \subsetneq TC^0 \subseteq NC^1 \subseteq DLOG \subseteq NLOG \subseteq PTIME \]

- **AC^0**: very efficient parallel algorithms (constant time, simple circuits)
 - relational calculus
- **TC^0**: very efficient parallel algorithms in a more powerful computational model with counting gates
 - basic SQL (relational calculus/grouping/aggregation)
- **NC^1**: efficient parallel algorithms
 - regular languages
- **DLOG**: very little – \(O(\log n) \) – space is required
 - SQL + (restricted) transitive closure
- **NLOG**: \(O(\log n) \) space is required if nondeterminism is allowed
 - SQL + transitive closure (as in the SQL3 standard)
Beyond PTIME

PTIME \subseteq \left\{ \begin{array}{c} \text{NP} \\ \text{coNP} \end{array} \right\} \subseteq \text{PSPACE}

- **PTIME**: can solve a problem in polynomial time
- **NP**: can check a given candidate solution in polynomial time
 - another way of looking at it: guess a solution, and then verify if you guessed it right in polynomial time
- **coNP**: complement of NP – verify that all “reasonable” candidates are solutions to a given problem.
 - Appears to be harder than NP but the precise relationship isn’t known
- **PSPACE**: can be solved using memory of polynomial size (but perhaps an exponential-time algorithm)
Complete problems

• These are the hardest problems in a class.
• If our problem is as hard as a complete problem, it is very unlikely it can be done with lower complexity.

• For NP:
 ○ SAT (satisfiability of Boolean formulae)
 ○ many graph problems (e.g. 3-colourability)
 ○ Integer linear programming etc

• For PSPACE:
 ○ Quantified SAT
 ○ Two XML DTDs are equivalent
Complexity of query answering

- We want the complexity of finding
 \[\text{certain}_{\text{exact}}(Q, \mathcal{I}) \quad \text{or} \quad \text{certain}_{\text{sound}}(Q, \mathcal{I}) \]
 in terms of the size of \(\mathcal{I} \).

- If all view definitions are conjunctive queries and \(Q \) is a relational algebra or a SQL query, then the complexity is \text{coNP}.

- (blackboard)

- This is too high!

- If all view definitions are conjunctive queries and \(Q \) is a conjunctive query, then the complexity is \text{PTIME}.

 - Because: the maximally contained rewriting computes certain answers!
Complexity of query answering

<table>
<thead>
<tr>
<th>view language</th>
<th>CQ</th>
<th>CQ ≠</th>
<th>relational calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ</td>
<td>ptime</td>
<td>coNP</td>
<td>undecidable</td>
</tr>
<tr>
<td>CQ ≠</td>
<td>ptime</td>
<td>coNP</td>
<td>undecidable</td>
</tr>
<tr>
<td>relational calculus</td>
<td>undecidable</td>
<td>undecidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

CQ – conjunctive queries

CQ ≠ – conjunctive queries with *inequalities* (for example, \(Q(x) :– R(x, y), S(y, z), x \neq z \))
Complexity of query answering: coNP-completeness idea

• Start with a graph G – this is our instance

• D is G together with a colouring, with 3 colours; each node is assigned one colour.

• Q asks if we have an edge (a, b) with $a \neq b$ and a, b of the same colour.

• If G is not 3-colourable, then every instance D would satisfy Q

• Otherwise, if G is 3-colourable, we can find extensions that are and that are not 3-colourable – hence certain answers are empty.

• Thus if we can compute certain answers, we can test non-3-colourability \Rightarrow coNP-completeness.