
Data exchange

• Source schema, target schema; need to transfer data between them.

• A typical scenario:

◦ Two organizations have their legacy databases, schemas cannot be
changed.

◦ Data from one organization 1 needs to be transfered to data from
organization 2.

◦ Queries need to be answered against the transferred data.
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Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T
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Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T

TARGET

DATABASE
?????
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Data exchange: an example

• We want to create a target database with the schema

Flight(city1,city2,aircraft,departure,arrival)
Served(city,country,population,agency)

• We don’t start from scratch: there is a source database containing
relations

Route(source,destination,departure)
BG(country,city)

• We want to transfer data from the source to the target.
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Data exchange – relationships between the source

and the target

How to specify the relationship?

SERVED

ROUTE Source Dest Departure FLIGHTcity1 city2 aircraft departure arrival

Country CityBG agencypopulationcountrycity
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Relationships between the source and the target

• Formal specification: we have a relational calculus query over both the
source and the target schema.

• The query is of a restricted form, and can be thought of as a sequence
of rules:

Flight(c1, c2, , dept, ) :– Route(c1, c2, dept)

Served(city, country, , ) :– Route(city, , ), BG(country, city)

Served(city, country, , ) :– Route( , city, ), BG(country, city)
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Data exchange – targets

• Target instances should satisfy the rules.

• What does it mean to satisfy a rule?

• Formally, if we take:

Flight(c1, c2, , dept, ) :– Route(c1, c2, dept)

then it is satisfied by a source S and a target T if the constraint

∀c1, c2, d
(

Route(c1, c2, d) → ∃a1, a2

(

Flight(c1, c2, a1, d, a2)
)

)

• This constraint is a relational calculus query that evaluates to true or
false
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Data exchange – targets

• What happens if there no values for some attributes, e.g. aircraft,
arrival?

• We put in null values or some real values.

• But then we may have multiple solutions!
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Data exchange – targets

Source Database:

ROUTE:

Source Destination Departure
Edinburgh Amsterdam 0600
Edinburgh London 0615
Edinburgh Frankfurt 0700

BG:

Country City
UK London
UK Edinburgh
NL Amsterdam

GER Frankfurt

Look at the rule

Flight(c1, c2, , dept, ) :– Route(c1, c2, dept)

The right hand side is satisfied by

Route(Edinburgh, Amsterdam, 0600)

But what can we put in the target?
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Data exchange – targets

Rule: Flight(c1, c2, , dept, ) :– Route(c1, c2, dept)

Satisfied by: Route(Edinburgh, Amsterdam, 0600)

Possible targets:

• Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

• Flight(Edinburgh, Amsterdam, B737, 0600, ⊥)

• Flight(Edinburgh, Amsterdam, ⊥, 0600, 0845)

• Flight(Edinburgh, Amsterdam, ⊥, 0600, ⊥)

• Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

They all satisfy the constraints!
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Which target to choose

• One of them happens to be right:

– Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

• But in general we do not know this; it looks just as good as

– Flight(Edinburgh, Amsterdam, ’The Spirit of St Louis’, 0600, 1300),
or

– Flight(Edinburgh, Amsterdam, F16, 0600, 0620).

• Goal: look for the “most general” solution.

• How to define “most general”: can be mapped into any other solution.

• It is not unique either, but the space of solution is greatly reduced.

• In our case Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2) is most gen-
eral as it makes no additional assumptions about the nulls.
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Towards good solutions

A solution is a database with nulls.
Reminder: every such database T represents many possible complete databases,
without null values:

Example
Semantics via
valuations

A B C

1 2 ⊥1

⊥2 ⊥1 3
⊥3 5 1
2 ⊥3 3

v(⊥1) = 4
v(⊥2) = 3
v(⊥3) = 5

=⇒

A B C

1 2 4
3 4 3
5 5 1
2 5 3
3 7 8
4 2 1

POSS(T ) = {R | v(T ) ⊆ R for some valuation v}
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Good solutions

• An optimistic view – A good solution represents ALL other solutions:

POSS(T ) = {R | R is a solution without nulls}

• Shouldn’t settle for less than – A good solution is at least as general
as others:

POSS(T ) ⊇ POSS(T ′) for every other solution T ′

• Good news: these two views are equivalent. Hence can take them as a
definition of a good solutions.

• In data exchange, such solutions are called universal solutions.
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Universal solutions: another description

• A homomorphism is a mapping h : Nulls → Nulls ∪ Constants.

• For example, h(⊥1) = B737, h(⊥2) = 0845.

• If we have two solutions T1 and T2, then h is a homomorphism from
T1 into T2 if for each tuple t in T1, the tuple h(t) is in T2.

• For example, if we have a tuple

t = Flight(Edinburgh, Amsterdam,⊥1, 0600,⊥2)

then

h(t) = Flight(Edinburgh, Amsterdam, B737, 0600, 0845).

• A solution is universal if and only if there is a homomorphism from it
into every other solution.
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Universal solutions: still too many of them

• Take any n > 0 and consider the solution with n tuples:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
. . .
Flight(Edinburgh, Amsterdam, ⊥2n−1, 0600, ⊥2n)

• It is universal too: take a homomorphism

h′(⊥i) =

{

⊥1 if i is odd

⊥2 if i is even

• It sends this solution into

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
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Universal solutions: cannot be distinguished by

conjunctive queries

• There are queries that distinguish large and small universal solutions
(e.g., does a relation have at least 2 tuples?)

• But these cannot be distinguished by conjunctive queries

• Because: if ⊥i1, . . . ,⊥ik witness a conjunctive query, so do h(⊥i1), . . . , h(⊥ik)
— hence, one tuple suffices

• In general, if we have

◦ a homomorphism h : T → T ′,

◦ a conjunctive query Q

◦ a tuple t without nulls such that t ∈ Q(T )

• then t ∈ Q(T ′)
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Universal solutions and conjunctive queries

• If

◦ T and T ′ are two universal solutions

◦ Q is a conjunctive query, and

◦ t is a tuple without nulls,

then
t ∈ Q(T ) ⇔ t ∈ Q(T ′)

because we have homomorphisms T → T ′ and T ′ → T .

• Furthermore, if

◦ T is a universal solution, and T ′′ is an arbitrary solution,

then
t ∈ Q(T ) ⇒ t ∈ Q(T ′′)
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Universal solutions and conjunctive queries cont’d

• Now recall what we learned about answering conjunctive queries over
databases with nulls:

◦ T is a naive table

◦ the set of tuples without nulls in Q(T ) is precisely certain(Q,T ) –
certain answers over T

• Hence if T is an arbitrary universal solution

certain(Q,T ) =
⋂

{Q(T ′) | T ′ is a solution}

•
⋂

{Q(T ′) | T ′ is a solution} is the set of certain answers in data
exchange under mapping M : certainM(Q,S). Thus

certainM(Q,S) = certain(Q,T )

for every universal solution T for S under M .
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Universal solutions cont’d

• To answer conjunctive queries, one needs an arbitrary universal solution.

• We saw some; intuitively, it is better to have:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

than

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
. . .
Flight(Edinburgh, Amsterdam, ⊥2n−1, 0600, ⊥2n)

• We now define a canonical universal solution.
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Canonical universal solution

• Convert each rule into a rule of the form:

ψ(x1, . . . , xn, z1, . . . , zk) :– ϕ(x1, . . . , xn, y1, . . . , ym)

(for example,
Flight(c1, c2, , dept, ) :– Route(c1, c2, dept)

becomes

Flight(x1, x2, z1, x3, z2) :– Route(x1, x2, x3) )

• Evaluate ϕ(x1, . . . , xn, y1, . . . , ym) in S.

• For each tuple (a1, . . . , an, b1, . . . , bm) that belongs to the result (i.e.

ϕ(a1, . . . , an, b1, . . . , bm) holds in S,

do the following:
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Canonical universal solution cont’d

• . . . do the following:

◦ Create new (not previously used) null values ⊥1, . . . ,⊥k

◦ Put tuples in target relations so that

ψ(a1, . . . , an, ⊥1, . . . ,⊥k)

holds.

• What is ψ?

• It is normally assumed that ψ is a conjunction of atomic formulae, i.e.

R1(x̄1, z̄1) ∧ . . . ∧Rl(x̄l, z̄l)

• Tuples are put in the target to satisfy these formulae
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Canonical universal solution cont’d

• Example: no-direct-route airline:

Newroute(x1, z) ∧ Newroute(z, x2) :– Oldroute(x1, x2)

• If (a1, a2) ∈ Oldroute(a1, a2), then create a new null ⊥ and put:

Newroute(a1,⊥)
Newroute(⊥, a2)

into the target.

• Complexity of finding this solution: polynomial in the size of the source
S:

O(
∑

rules ψ :- ϕ
Evaluation of ϕ on S)
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Canonical universal solution and conjunctive queries

• Canonical solution: CanSolM(S).

• We know that if Q is a conjunctive query, then certainM(Q,S) =
certain(Q, T ) for every universal solution T for S under M .

• Hence
certainM(Q,S) = certain(Q,CanSolM(S))

• Algorithm for answering Q:

◦ Construct CanSolM(S)

◦ Apply naive evaluation to Q over CanSolM(S)
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Beyond conjunctive queries

• Everything still works the same way for σ, π,⋊⋉,∪ queries of relational
algebra. Adding union is harmless.

• Adding difference (i.e. going to the full relational algebra) is not.

• Reason: same as before, can encode validity problem in logic.

• Single rule, saying “copy the source into the target”

T (x, y) :– S(x, y)

• If the source is empty, what can a target be? Anything!

• The meaning of T (x, y) :– S(x, y) is

∀x∀y
(

S(x, y) → T (x, y)
)
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Beyond conjunctive queries cont’d

• Look at ϕ = ∀x∀y
(

S(x, y) → T (x, y)
)

• S(x, y) is always false (S is empty), hence S(x, y) → T (x, y) is true
(p→ q is ¬p ∨ q)

• Hence ϕ is true.

• Even if T is empty, ϕ is true: universal quantification over the empty
set evaluates to true:

◦ Remember SQL’s ALL:

SELECT * FROM R

WHERE R.A > ALL (SELECT S.B FROM S)

◦ The condition is true if SELECT S.B FROM S is empty.
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Beyond conjunctive queries cont’d

• Thus if S is empty and we have a rule T (x, y) :– S(x, y), then all
T ’s are solutions.

• Let Q be a Boolean (yes/no) query. Then

certainM(Q,S) = true ⇔ Q is valid

• Valid = always true.

• Validity problem in logic: given a logical statement, is it:

◦ valid, or

◦ valid over finite databases

• Both are undecidable.
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Beyond conjunctive queries cont’d

• If we want to answer queries by rewritings, i.e. find a query Q′ so that

certainM(Q,S) = Q′(CanSolM(S))

then there is no algorithm that can construct Q′ from Q!

• Hence a different approach is needed.
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Key problem

• Our main problem:

Solutions are open to adding new facts

• How to close them?

• By applying the CWA (Closed World Assumption) instead of the OWA
(Open World Assumption)
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More flexible query answering: dealing with

incomplete information

• Key issue in dealing with incomplete information:

- Closed vs Open World Assumption (CWA vs OWA)

• CWA: database is closed to adding new facts except those consistent
with one of the incomplete tuples in it.

• OWA opens databases to such facts.

• In data exchange:

- we move data from source to target;

- query answering should be based on that data and not on tuples
that might be added later.

• Hence in data exchange CWA seems more reasonable.
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Solutions under CWA – informally

• Each null introduced in the target must be justified:

- there must be a constraint . . . T (. . . , z, . . .) . . . :– ϕ(. . .) with ϕ

satisfied in the source.

• The same justification shouldn’t generate multiple nulls:

- for T (. . . , z, . . .) :– ϕ(ā) only one new null ⊥ is generated in the
target.

• No unjustified facts about targets should be invented:

- assume we have T (x, z):– ϕ(x), T (z′, x):–ψ(x) and ϕ(a), ψ(b)
are true in the source.

- Then we put T (a,⊥) and T (⊥′, b) in the target but not
T (a,⊥), T (⊥, b) which would invent a new “fact”: a and b are
connected by a path of length 2.
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How to formalize this – idea

Source-to-target dependencies of the form:

ψi(ā, z1, . . . , zj, . . . , zk) :– ϕi(ā, b̄)

Justification for a null consists of:

• a dependency (i)

• a witness (ā, b̄) for ϕi(ā, b̄)

• a position (j) of a null in the head of the rule.
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Example

• Rule: Flight(c1, c2, z1, dept, z2) :– Route(c1, c2, dept)

• Witness: Route(Edinburgh, Amsterdam, 0600)

• This justifies up to two nulls:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
or

Flight(Edinburgh, Amsterdam, ⊥, 0600, ⊥)

• but not

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
. . .
Flight(Edinburgh, Amsterdam, ⊥2n−1, 0600, ⊥2n)
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Solutions under the CWA

• Each justification generates a null in CanSol(S)

• Hence for each solution T under CWA there is a homomorphism

h : CanSol(S) → T

so that T = h(CanSol(S))

• The third requirement rules out tuples like

Flight(Edinburgh, Amsterdam, ⊥, 0600, ⊥)

• It invents a new fact: the same null is used twice in a tuple.

◦ Not justified by the source and the rules
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Solutions under the CWA

• The third requirement implies two facts:

◦ There is a homomorphism h′ : T → CanSol(S)

◦ T contains the core of T

• What is the core?

• Suppose the Route relation has an extra attribute, in addition to source,
destination, and departure time: it is flight#

• The same actual flight can have many flight numbers due to “code-
sharing” so we might have

Route(Edinburgh, Amsterdam, 0600, KLM 123)
Route(Edinburgh, Amsterdam, 0600, AF 456)
Route(Edinburgh, Amsterdam, 0600, CSA 789)
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Solutions under the CWA and cores cont’d

• The canonical solution then is:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
Flight(Edinburgh, Amsterdam, ⊥5, 0600, ⊥6)

• The core collapses it by means of a homomorphism

h(⊥1) = h(⊥3) = h(⊥5) = ⊥1 h(⊥2) = h(⊥4) = h(⊥6) = ⊥2

to

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

• Core: A minimal subinstance T of CanSol(S) so that there is a
homomorphism h : CanSol(S) → T
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Cores and CWA

• Cores are universal solutions too.

◦ Advantage: space savings

◦ Disadvantage: harder to compute

- but still in polynomial time

• Basic fact: solutions under the CWA contain the core.

• Hence tuples such as

Flight(Edinburgh, Amsterdam, ⊥, 0600, ⊥)

are disallowed.
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Solutions under the CWA: summary

• There are homomorphisms

h : CanSol(S) → T h′ : T → CanSol(S)

◦ so that T = h(CanSol(S))

• T contains the core of CanSol(S)
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Query answering under the CWA

• Given

◦ a source S,

◦ a set of rules M ,

◦ a target query Q,

a tuple t is in
certainCWA

M (Q,S)

if it is in Q(R) for every

◦ solution T under the CWA, and

◦ R ∈ POSS(T )

• (i.e. no matter which solution we choose and how we interpret the
nulls)
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Query answering under the CWA – characterization

• Given a source S, a set of rules M , and a target query Q:

certainCWA
M (Q,S) = certain(Q,CanSol(S))

• That is, to compute the answer to query one needs to:

◦ Compute the canonical solution CanSol(S) – which has nulls in
it

◦ Find certain answers to Q over CanSol(S)

• If Q is a conjunctive query, this is exactly what we had before

• Under the CWA, the same evaluation strategy applies to all queries!
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Query answering under the CWA cont’d

• Finding certain answers is possible for many classes of queries, e.g. for
all relational algebra queries.

•

Complexity of finding certainCWA
M (Q,S)

=
complexity of finding certain answers to a query over a table with nulls

• polynomial time for conjunctive queries

• coNP-complete for relational algebra queries
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CWA vs OWA: a comparison

• Recall the problematic case we had before:

T (x, y) :– S(x, y)

• Possible targets are extensions of the source

• Hence finding certain answers to an arbitrary relational algebra query
Q was undecidable.

• Under the CWA:

◦ The only solution is a copy of S itself (and hence it is the canonical
solution)

◦ So certain answers toQ are justQ(S) – i.e. we copy S, and evaluate
queries over it, as suggested by the rule.
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Data exchange and integrity constraints

• Integrity constraints are often specified over target schemas

• In SQL’s data definition language one uses keys and foreign keys most
often, but other constraints can be specified too.

• Adding integrity constraints in data exchange is often problematic, as
some natural solutions – e.g., the canonical solution – may fail them.

• Plan:

◦ review most commonly used database constraints

◦ see how they may create problems in data exchange
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Functional dependencies and keys

• Functional dependency:
X → Y

where X, Y are sequences of attributes. It holds in a relation R if for
every two tuples t1, t2 in R:

πX(t1) = πX(t2) implies πY (t1) = πY (t2)

• The most important special case: keys

• K → U , where U is the set of all attributes:

πK(t1) = πK(t2) implies t1 = t2

• That is, a key is a set of attributes that uniquely identify a tuple in a
relation.
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Inclusion constraints

• Referential integrity constraints: they talk about attributes of one re-
lation but refer to values in another.

• An inclusion dependency

R[A1, . . . , An] ⊆ S[B1, . . . , Bn]

It holds when
πA1,...,An(R) ⊆ πB1,...,Bn(S)
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Foreign keys

• Most often inclusion constraints occur as a part of a foreign key

• Foreign key is a conjunction of a key and an ID:

R[A1, . . . , An] ⊆ S[B1, . . . , Bn] and

{B1, . . . , Bn} → all attributes of S

• Meaning: we find a key for relation S in relation R.

• Example: Suppose we have relations:
Employee(EmplId, Name, Dept, Salary)

ReportsTo(Empl1,Empl2).

• We expect both Empl1 and Empl2 to be found in Employee; hence:
ReportsTo[Empl1] ⊆ Employee[EmplId]

ReportsTo[Empl2] ⊆ Employee[EmplId].

• If EmplId is a key for Employee, then these are foreign keys.
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Target constraints cause problems

• The simplest example:

◦ Copy source to target

◦ Impose a constraint on target not satisfied in the source

• Data exchange setting:

◦ T (x, y) :– S(x, y) and

◦ Constraint: the first attribute is a key

• Instance S:
1 2
1 3

• Every target T must include these tuples and hence violates the key.
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Target constraints: more problems

• A common problem: an attempt to repair violations of constraints leads
to an sequence of adding tuples.

• Example:

◦ Source DeptEmpl(dept id,manager name,empl id)

◦ Target

- Dept(dept id,manager id,manager name),

- Empl(empl id,dept id)

◦ Rule Dept(d, z, n), Empl(e, d) :– DeptEmpl(d, n, e)

◦ Target constraints:

- Dept[manager id] ⊆ Empl[empl id]

- Empl[dept id] ⊆ Dept[dept id]
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Target constraints: more problems cont’d

• Start with (CS, John, 001) in DeptEmpl.

• Put Dept(CS, ⊥1, John) and Empl(001, CS) in the target

• Use the first constraint and add a tuple Empl(⊥1, ⊥2) in the target

• Use the second constraint and put Dept(⊥2, ⊥3, ⊥3’) into the target

• Use the first constraint and add a tuple Empl(⊥3, ⊥4) in the target

• Use the second constraint and put Dept(⊥4, ⊥5, ⊥5’) into the target

• this never stops....
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Target constraints: avoiding this problem

• Change the target constraints slightly:

◦ Target constraints:

- Dept[dept id,manager id] ⊆ Empl[empl id, dept id]

- Empl[dept id] ⊆ Dept[dept id]

• Again start with (CS, John, 001) in DeptEmpl.

• Put Dept(CS, ⊥1, John) and Empl(001, CS) in the target

• Use the first constraint and add a tuple Empl(⊥1, CS)

• Now constraints are satisfied – we have a target instance!

• What’s the difference? In our first example constraints are very cyclic
causing an infinite loop. There is less cyclicity in the second example.

• Bottom line: avoid cyclic constraints.
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