
Data integration – general setting

• A source schema S:

◦ relational schema XML Schema (DTD), etc.

• A global schema G:

◦ could be of many different types too

• A mapping M between S and G:

◦ many ways to specify it, e.g. by queries that mention S and T

• A general condition: the source and our view of the global schema
should satisfy the conditions imposed by the mapping M .

L. Libkin 1 Data Integration and Exchange

Data integration – general setting cont’d

• Assume we have a source database D.

• We are interested in databases D′ over the global schema such that

(D,D′) satisfies the conditions of the mapping M

• There are many possible ways to specify the mapping.

• The set of such databases D′ is denoted by

[[D]]M

• If we have a query Q, we want certain answers that are true in all
possible databases D′:

certainM(Q,D) =
⋂

D′∈[[D]]
M

Q(D′).

L. Libkin 2 Data Integration and Exchange

Data integration – general setting cont’d

• Depending on a type of mapping M , the set [[D]]M could be very large
— or even infinite.

• That makes certainM(Q,D) prohibitively expensive or even impossible
to compute.

• Hence we need a rewriting Q′ so that

certainM(Q, D) = Q′(D)

or even
certainM(Q,D) = Q′(V)

if V is the set of views that the database D makes available.

L. Libkin 3 Data Integration and Exchange

Types of mappings: Two major parameters

• Source-central vs global schema-central:

◦ Source is defined in terms of the global schema

– Known as local-as-view (LAV)

◦ The global schema is defined in terms of the source

– Known as global-as-view (GAV)

◦ Combinations are possible (GLAV, P2P, to be seen later)

• Exact vs sound definitions

◦ Exact definition specify precise relationships that must hold between
the source and the global schema database

◦ Sound definitions leave that description potentially incomplete: we
know some relationships but not all of them.

– potentially many more instances in [[D]]M

L. Libkin 4 Data Integration and Exchange

Example

• Source schema:

◦ EM50(title,year,director)

– meaning: European movies made since 1950

◦ RV10(movie,review)

– reviews for the past 10 years

• Global schema:

◦ Movie(title,director,year)

◦ ED(name,country,dob) (European directors)

◦ RV(movie,review) (reviews)

L. Libkin 5 Data Integration and Exchange

Example – LAV setting

• We define the source (local) in terms of the global schema – hence
local is a view.

• Two possibilities for D′ ∈ [[D]]M :

◦ Exact: D = Q(D′), where Q is a query over the global schema.

◦ Sound: D ⊆ Q(D′).

◦ In other words, if a fact is present in D, it must be derivable from
the global schema by means of Q.

• More generally, for each n-ary relation R in the source schema, there
is a query QR over the global schema such that

– R = QR(D′) (exact)

– R ⊆ QR(D′) (sound)

L. Libkin 6 Data Integration and Exchange

Sound LAV setting

EM50(T,Y,D) ⊆

{

(t, y, d)

∣

∣

∣

∣

∃c, dob

Movie(t, y, d)
∧ ED(d, c, dob)
∧ y ≥ 1950

}

RV10(t, r) ⊆

{

(t, r)

∣

∣

∣

∣

∃y, d

Movie(t, y, d)
∧ RV(t, r)
∧ y ≥ 2000

}

Right-hand sides are simple SQL queries involving joins and simple selection
predicates:

SELECT M.title, RV.review

FROM Movie M, RV

WHERE M.title=RV.title AND M.year >= 2000

L. Libkin 7 Data Integration and Exchange

Exact LAV setting

EM50(T,Y,D) =

{

(t, y, d)

∣

∣

∣

∣

∃c, dob

Movie(t, y, d)
∧ ED(d, c, dob)
∧ y ≥ 1950

}

RV10(t, r) =

{

(t, r)

∣

∣

∣

∣

∃y, d

Movie(t, y, d)
∧ RV(t, r)
∧ y ≥ 2000

}

All the data from the global database must be reflected in the source.

L. Libkin 8 Data Integration and Exchange

LAV setting – queries

Consider a global schema query

SELECT M.title, R.review

FROM Movie M, RV R

WHERE M.title=R.title AND M.year = 2005

(Movies from 2005 and their reviews)

This is rewritten as a relational calculus query:

{t, r | ∃d, y Movie(t, d, y) ∧ RV(t, r) ∧ y = 2005}

L. Libkin 9 Data Integration and Exchange

LAV setting:

{t, r | ∃d, y Movie(t, d, y) ∧ RV(t, r) ∧ y = 2005}

Idea: re-express in terms of predicates of the source schema. The following
seems to be the best possible way:

{t, r | ∃d, yEM50(t, y, d) ∧ RV10(t, r) ∧ y = 2005}

and back to SQL:

SELECT EM50.title, RV10.review

FROM EM50, RV10

WHERE EM50.title=RV10.title AND EM50.year = 2005

• Is this always possible?

• In what sense is this the best way?

L. Libkin 10 Data Integration and Exchange

GAV settings

• Global schema is defined in terms of sources.

• Sound GAV:

◦ D′ ⊇ Q(D)

◦ the global database contains the result of a query over the source

• Exact GAV:

◦ D′ = Q(D)

◦ the global database is obtained as the result of a query over the
source

• Note: in exact GAV, [[D]]M contains a unique database!

L. Libkin 11 Data Integration and Exchange

GAV example

• Change the schema slightly: ED’(name) (i.e. we only keep names of
European directors)

• A sound GAV setting:

◦ Movie ⊇ EM50

◦ ED’ ⊇ {d | ∃t, y EM50(t, d, y)}

◦ RV ⊇ RV10

Look at a SQL query:

SELECT M.title, RV.review

FROM Movie M, RV

WHERE M.title=RV.title AND M.year = 2005

(Movies from 2005 and their reviews)

L. Libkin 12 Data Integration and Exchange

GAV example

• Query: {t, r |∃d, y M(t, d, y) ∧ RV(t, r) ∧ y = 2005}

• Substitute the definitions from the mapping and get:

• {t, r |∃d, y EM50(t, d, y) ∧ RV10(t, r) ∧ y = 2005}

• This is called unfolding.

• Does this always work? Can queries become too large?

L. Libkin 13 Data Integration and Exchange

Integration with views

• We have assumed that all source databases are available.

• But often we only get views that they publish.

• If only views are available, can queries be:

– answered?

– approximated?

• Assume that in EM50 directors are omitted. Then nothing is affected.

• But if titles are omitted in EM50, we cannot answer the query.

L. Libkin 14 Data Integration and Exchange

Towards view-based query answering

• Suppose only a view of the source is available. Can queries be answered?

• It depends on the query language.

• Start with relational algebra/calculus.

• Suppose we have either a LAV or a GAV setting, and we want to answer
queries over the global schema using the view over the source.

• Problem: given the setting, and a query, can it be answered?

• This is undecidable!

• Two undecidable relational algebra problems:

◦ If e is a relational algebra expression, does it always produce ∅ (i.e.,
on every database)?

◦ Closely related: if e1 and e2 are two relational algebra expressions,
is it true that e1(D) = e2(D) for every database?

L. Libkin 15 Data Integration and Exchange

Equivalence of relational algebra expressions

• A side note – this is the basis of query optimisation.

• But it can only be sound, never complete.

• Equivalence is undecidable for the full relational algebra

◦ π, σ, ⋊⋉,∪,−

• The good news: it is decidable for π, σ, ⋊⋉,∪

• And quite efficiently for π, σ, ⋊⋉

• And the latter form a very important class of queries, to be seen soon.

L. Libkin 16 Data Integration and Exchange

View-based query answering – relational algebra

• A very simple setting: exact LAV (and GAV)

◦ the source schema and the target schema are identical (say, for
each R(A, B,C, . . .) in the source there is R′(A′, B′, C ′, . . .) in the
target)

◦ The constraints in M state that they are the same.

◦ The source does not publish any views: i.e. V = ∅.

• If we can answer queries in this setting, it means they have to be
answered independently of the data in the source.

• The only way it happens: Q(D1) = Q(D2) for all databases D1, D2;
we output this answer without even looking at the view ∅.

• But this (Q(D1) = Q(D2) for all databases D1, D2) is undecidable.

L. Libkin 17 Data Integration and Exchange

A better class of queries

• Conjunctive queries

• They are the building blocks for SQL queries:

SELECT

FROM R1, ..., Rn

WHERE <conjunction of equalities>

• For example:

SELECT M.title, RV.review

FROM Movie M, RV

WHERE M.title=RV.title AND M.year = 2005

• In relational calculus:

{t, r | ∃d, y Movie(t, d, y) ∧ RV(t, r) ∧ y = 2005}

L. Libkin 18 Data Integration and Exchange

Conjunctive queries

• {t, r | ∃d, y Movie(t, d, y) ∧ RV(t, r) ∧ y = 2005}

• Written using only conjunction and existential quantification – hence
the name.

• In relational algebra:

πt,r

(

σy=2005

(

Movie ⋊⋉Movie.t=RV.t RV
)

)

• Also called SPJ-queries (Select-Project-Join)

• These are all equivalent (exercise – why?)

L. Libkin 19 Data Integration and Exchange

Conjunctive queries: good properties

• QUERY CONTAINMENT:

Input: two queries Q1 and Q2

Output: true if Q1(D) ⊆ Q2(D) for all databases D

• QUERY EQUIVALENCE:

Input: two queries Q1 and Q2

Output: true if Q1(D) = Q2(D) for all databases D

• For relational algebra queries, both are undecidable.

• For conjunctive queries, both are decidable.

• Complexity: NP. This gives an 2O(n) algorithm.

• Can often be reasonable in practice – queries are small.

L. Libkin 20 Data Integration and Exchange

Conjunctive queries: good properties

• For each conjunctive query, one can find an equivalent query with the
minimum number of joins.

• SELECT R2.A

FROM R R1, R R2

WHERE R1.A=R2.A AND R1.B=2 AND R1.C=1

• In relational algebra: π...(σ...(R × R))

• {x | ∃y, z R(x, 2, 1) ∧ R(x, y, z)}

• Looking at it carefully, this is equivalent to {x | R(x, 2, 1)}, or
πA(σB=2∧C=1(R))

• The join is saved:

SELECT R.A

FROM R WHERE R.B=2 AND R.C=1

L. Libkin 21 Data Integration and Exchange

Conjunctive queries: complexity

• Can one find a polynomial algorithm? Unlikely.

• Reminder: NP-completeness.

• Take a graph G = (V, E):

◦ V = {a1, . . . , an} the set of vertices;

◦ E is the set of edges (ai, aj)

• and define a conjunctive query

QG = ∃x1, . . . xn

∧

(ai,aj)∈E

E(xi, xj)

• Then G′ satisfies QG iff there is a homomorphism from G to G′.

• A homomorphism from G to {(r, b), (r, g), (g, b), (g, r), (b, r), (b, g)}
⇔ the graph is 3-colourable.

L. Libkin 22 Data Integration and Exchange

Conjunctive queries: summary

• A nicely-behaved class

• Basic building blocks of SQL queries

• Easy to reason about

◦ Another important property: monotonicity:

◦ if D1 ⊆ D2 then Q(D1) ⊆ Q(D2)

• Heavily used in data integration/exchange

L. Libkin 23 Data Integration and Exchange

GAV-exact with conjunctive queries

• Source: R1(A, B), R2(B,C)

• Global schema: T1(A, B,C), T2(B, C)

• Exact GAV mapping:

◦ T1 = {x, y, z | R1(x, y) ∧ R2(y, z)} (or R1 ⋊⋉B R2)

◦ T2 = {x, y | R2(x, y)}

• Query Q:

SELECT T1.A, T1.B. T2.C

FROM T1, T2

WHERE T1.B=T2.B AND T1.C=T2.C

• As conjunctive query: {x, y, z | T1(x, y, z) ∧ T2(y, z)}

L. Libkin 24 Data Integration and Exchange

GAV-exact with conjunctive queries cont’d

• Take {x, y, z | T1(x, y, z) ∧ T2(y, z)} and unfold:

• {x, y, z | R1(x, y) ∧ R2(y, z) ∧ R2(y, z)}

• or R1 ⋊⋉ R2 ⋊⋉ R2

• This is of course R1 ⋊⋉ R2.

• Bottom line: optimise after unfolding – save joins.

L. Libkin 25 Data Integration and Exchange

GAV-sound with conjunctive queries

• Source and global schema as before:

◦ source R1(A, B), R2(B,C)

◦ Global schema: T1(A, B, C), T2(B,C)

• GAV mappings become sound:

◦ T1 ⊇ {x, y, z|R1(x, y) ∧ R2(y, z)}

◦ T2 ⊇ R2

• Let Dexact be the unique database that arises from the exact setting
(with ⊇ replaced by =)

• Then every database Dsound that satisfies the sound setting also satisfies

Dexact ⊆ Dsound

L. Libkin 26 Data Integration and Exchange

GAV-sound with conjunctive queries cont’d

• Conjunctive queries are monotone:

D1 ⊆ D2 ⇒ Q(D1) ⊆ Q(D2)

• Exact solution is a sound solution too, and is contained in every sound
solution.

• Hence certain answers for each conjunctive query

certain(D,Q) =
⋂

Dsound

Q(Dsound) = Q(Dexact)

• The solution for GAV-exact gives us certain asnwers for GAV-sound, for
conjunctive (and more generally, monotone) queries.

L. Libkin 27 Data Integration and Exchange

