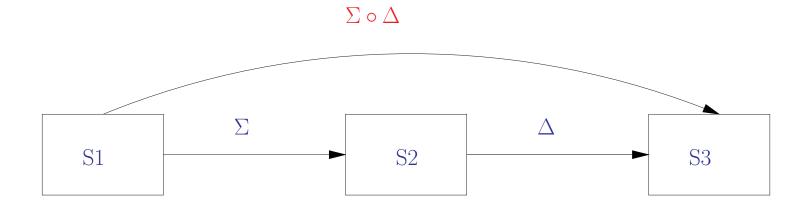
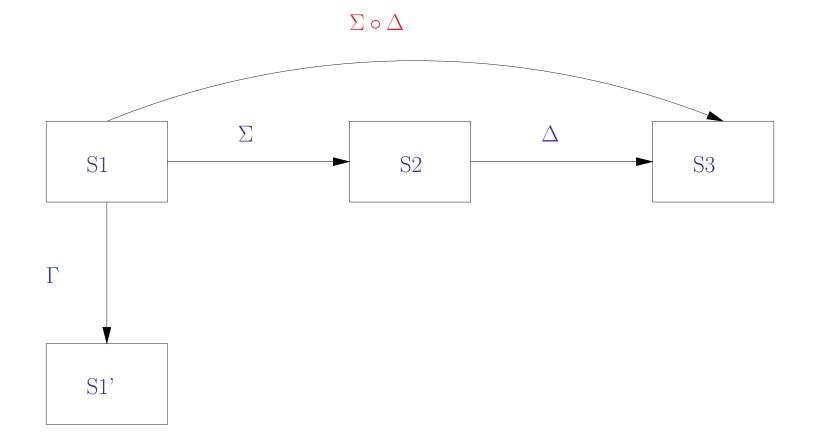
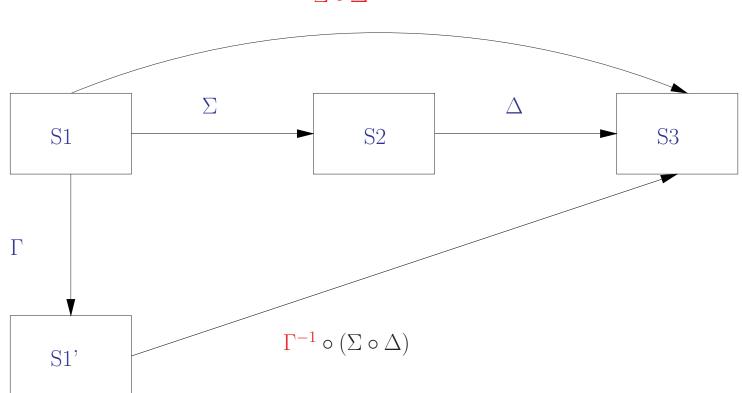
Schema mappings

- Rules used in data exchange specify mappings between schemas.
- To understand the evolution of data one needs to study operations on schema mappings.
- Most commonly we need to deal with two operations:
 - $\circ\ \text{composition}$
 - \circ inverse







Mappings

• Schema mappings are typically given by rules

 $\psi(\bar{x},\bar{z}) \ \coloneqq \ \exists \bar{u} \ \varphi(\bar{x},\bar{y},\bar{u})$

where

 $\circ~\psi$ is a conjunction of atoms over the target:

 $T_1(\bar{x}_1, \bar{z}_1) \wedge \ldots \wedge T_m(\bar{x}_m, \bar{z}_m)$

 $\circ \, \varphi$ is a conjunction of atoms over the source:

 $S_1(\bar{x}'_1, \bar{y}_1, \bar{u}_1) \wedge \ldots \wedge S_k(\bar{x}'_k, \bar{y}_k, \bar{u}_k)$

• Example: Served $(x_1, x_2, z_1, z_2) := \exists u_1, u_2 \text{ Route}(x_1, u_1, u_2) \land BG(x_1, x_2)$

The closure problem

- Are mappings closed under
 - composition?

 \circ inverse?

- If not, what needs to be added?
- It turns out that mappings are not closed under inverses and composition.
- We next see what might need to be added to them.

Skolem functions

- Source: EP(empl_name,dept,project); Target: EDPH(empl_id,dept,phone), DP(dept,project)
- A natural mapping is:

 $\mathsf{EDPH}(z_1, x_2, z_3) \land \mathsf{DP}(x_2, x_3) := \mathsf{EP}(x_1, x_2, x_3)$

• This is problematic: if we have tuples

 $(John, CS, P_1)$ $(John, CS, P_2)$

in EP, the canonical solution would have

EDPH

\perp_1	CS	\perp_1'
\perp_2	CS	\perp_2'

corresponding to two projects P_1 and P_2 .

• So empl_id is hardly an id!

8

Skolem functions cont'd

- Solution: make empl_id a function of empl_name.
- Such "invented" functions are called Skolem functions (see Logic 001 for a proper definition)
- Source: EP(empl_name,dept,project); Target: EDPH(empl_id,dept,phone), DP(dept,project)
- A new mapping is:

 $\mathsf{EDPH}(f(x_1), x_2, z_3) \land \mathsf{DP}(x_2, x_3) := \mathsf{EP}(x_1, x_2, x_3)$

• f assigns a unique id to every name.

Other possible additions

- One can look at more general queries used in mappings.
- Most generally, relational algebra queries, but to be more modest, one can start with just adding inequalities.
- One may also disjunctions: for example, if we want to invert

$$T(x) := S_1(x)$$

 $T(x) := S_2(x)$

it seems natural to introduce a rule

 $S_1(x) \lor S_2(x) := T(x)$

Composition: definition

• Recall the definition of composition of binary relations R and R':

$$(x,z)\in R\circ R' \ \ \Leftrightarrow \ \ \exists y: \ (x,y)\in R \text{ and } (y,z)\in R'$$

 \bullet A schema mapping Σ for two schemas σ and τ is viewed as a binary relation

$$\Sigma = \left\{ (S,T) \mid \begin{array}{c} S \text{ is a } \sigma \text{-instance} \\ T \text{ is a } \tau \text{-instance} \\ T \text{ is a solution for } S \end{array} \right\}$$

 \bullet The composition of mappings Σ from σ to τ and Δ from τ to ω is now

$$\Sigma \circ \Delta$$

• Question (closure): is there a mapping Γ between σ and ω so that

$$\Gamma ~=~ \Sigma ~\circ~ \Delta$$

Composition: when it works

• If Σ

 \circ does not generate any nulls, and \circ no variables \bar{u} for source formulas

• Example:

$$\begin{split} \Sigma : & T(x_1, x_2) \wedge T(x_2, x_3) &:= S(x_1, x_2, x_3) \\ \Delta : & W(x_1, x_2, z) &:= T(x_1, x_2) \end{split}$$

• First modify into:

Σ :	$T(x_1, x_2) := S(:$	(x_1, x_2, x_3)
Σ :	$T(x_2, x_3) := S(z)$	(x_1, x_2, x_3)
Δ :	$W(x_1, x_2, z) := T(z_1)$	(x_1, x_2)

 \bullet Then substitute in the definition of W:

Composition: when it cont'd

$$W(x_1, x_2, z) := S(x_1, x_2, y)$$
$$W(x_1, x_2, z) := S(y, x_1, x_2)$$

to get Σ \circ Δ .

Explaining the second rule:

$$\begin{array}{l} W(x_1, x_2, z) \\ \rightarrow T(x_1, x_2) \\ \rightarrow S(y, x_1, x_2) \end{array} \text{ using } T(var_1, var_2) \coloneqq S(var_3, var_1, var_2) \end{array}$$

Composition: when it doesn't work

- Schema σ : Takes(st_name, course)
- Schema τ : Takes'(st_name, course), Nameld(st_name, st_id)
- Schema ω : Enroll(st_id, course)
- Mapping Σ from σ to τ :

Takes'(s, c) := Takes(s, c)Nameld $(s, i) := \exists c \operatorname{Takes}(s, c)$

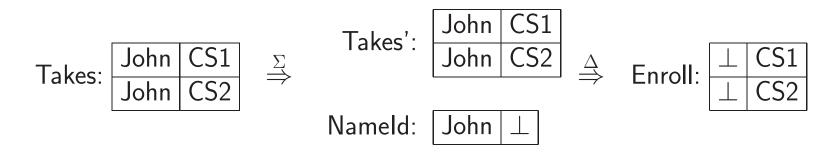
• Mapping Δ from τ to ω :

 $\mathsf{Enroll}(i, c) := \mathsf{Nameld}(s, i) \land \mathsf{Takes}'(s, c)$

• A first attempt at the composition: Enroll(i, c) := Takes(s, c)

Composition: when it doesn't work cont'd

- What's wrong with Γ : Enroll(i, c) :- Takes(s, c)?
- Student id i depends on both name and course!

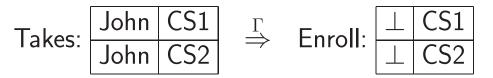


But:

JohnCS1
$$\Gamma$$
Enroll: \perp_1 CS1JohnCS2 \Rightarrow Enroll: \perp_2 CS2

Composition: when it doesn't work cont'd

- Solution: Skolem functions.
- Γ' : Enroll(f(s), c) :- Takes(s, c)
- Then:



• where
$$\bot = f(\mathsf{John})$$

Composition: another example

- Schema σ : Empl(eid)
- Schema τ : Mngr(eid,mngid)
- Schema ω : Mngr'(eid,mngid), SelfMng(id)
- Mapping Σ from σ to τ :

Mngr(e,m) :- Empl(e)

• Mapping Δ from τ to ω :

• Composition:

Composition and Skolem functions

- Schema mappings with Skolem functions compose!
- Algorithm:
 - \circ replace all nulls by Skolem functions
 - $\mathsf{Mngr}(e,f(e))$:- $\mathsf{Empl}(e)$
 - Δ stays as before
 - \circ Use substitution:
 - $\mathsf{Mngr'}(e,m) := \mathsf{Mngr}(e,m)$ becomes $\mathsf{Mngr'}(e,f(e)) := \mathsf{Empl}(e)$
 - $\mathsf{SelfMng}(e)$:- $\mathsf{Mngr}(e,e)$ becomes $\mathsf{SelfMng}(e) :- \mathsf{Empl}(e) \wedge e = f(e)$

Inverting mappings

- Harder than composition.
- Intuition: $\Sigma \circ \Sigma^{-1} = ID.$
- \bullet But even what ID should be is not entirely clear.
- Some intuitive examples will follow.

Examples of inversion

• The inverse of projection is null invention:

$$\circ T(x) \coloneqq S(x,y)$$

$$\circ S(x,y) \coloneqq T(x)$$

• Inverse of union requires disjunction:

$$\circ T(x) := S(x) \qquad T(x) := S'(x) \\ \circ S(x) \lor S'(x) := T(x)$$

• So reversing the rules doesn't always work.

Examples of inversion cont'd

• Inverse of decomposition is join:

• $T(x_1, x_2)$ ∧ $T'(x_2, x_3)$:- $S(x_1, x_2, x_3)$ • $S(x_1, x_2, x_3)$:- $T(x_1, x_2)$ ∧ $T'(x_2, x_3)$

• But this is also an inverse of $T(x_1, x_2) \wedge T'(x_2, x_3) := S(x_1, x_2, x_3)$: $\circ S(x_1, x_2, z) := T(x_1, x_2)$ $\circ S(z, x_2, x_3) := T'(x_2, x_3)$

Examples of inversion cont'd

- One may need to distinguish nulls from values in inverses.
- Σ given by

$$T_1(x) := S(x, x) T_2(x, z) := S(x, y) \land S(y, x) T_3(x_1, x_2, z) := S(x_1, x_2)$$

- Its inverse Σ^{-1} requires:
 - \circ a predicate NotNull and
 - inequalities:

 $S(x,x) := T_1(x) \wedge T_2(x,y_1) \wedge T_3(x,x,y_2) \wedge \mathsf{NotNull}(x)$

 $S(x_1, x_2) := T_3(x_1, x_2, y) \land (x_1 \neq x_2) \land \mathsf{NotNull}(x_1) \land \mathsf{NotNull}(x_2)$