Schema mappings

- Rules used in data exchange specify mappings between schemas.
- To understand the evolution of data one needs to study operations on schema mappings.
- Most commonly we need to deal with two operations:
- composition
- inverse

Composition and inverse

Composition and inverse

Composition and inverse

Composition and inverse

Mappings

- Schema mappings are typically given by rules

$$
\psi(\bar{x}, \bar{z}):-\exists \bar{u} \varphi(\bar{x}, \bar{y}, \bar{u})
$$

where

- ψ is a conjunction of atoms over the target:

$$
T_{1}\left(\bar{x}_{1}, \bar{z}_{1}\right) \wedge \ldots \wedge T_{m}\left(\bar{x}_{m}, \bar{z}_{m}\right)
$$

- φ is a conjunction of atoms over the source:

$$
S_{1}\left(\bar{x}_{1}^{\prime}, \bar{y}_{1}, \bar{u}_{1}\right) \wedge \ldots \wedge S_{k}\left(\bar{x}_{k}^{\prime}, \bar{y}_{k}, \bar{u}_{k}\right)
$$

- Example: $\operatorname{Served}\left(x_{1}, x_{2}, z_{1}, z_{2}\right):-\exists u_{1}, u_{2} \operatorname{Route}\left(x_{1}, u_{1}, u_{2}\right) \wedge B G\left(x_{1}, x_{2}\right)$

The closure problem

- Are mappings closed under
- composition?
- inverse?
- If not, what needs to be added?
- It turns out that mappings are not closed under inverses and composition.
- We next see what might need to be added to them.

Skolem functions

- Source: EP(empl_name,dept,project);

Target: EDPH(empl_id,dept,phone), DP(dept,project)

- A natural mapping is:

$$
\operatorname{EDPH}\left(z_{1}, x_{2}, z_{3}\right) \wedge \mathrm{DP}\left(x_{2}, x_{3}\right):-\operatorname{EP}\left(x_{1}, x_{2}, x_{3}\right)
$$

- This is problematic: if we have tuples

$$
\left(J o h n, \mathrm{CS}, P_{1}\right) \quad\left(J o h n, \mathrm{CS}, P_{2}\right)
$$

in EP, the canonical solution would have

$$
\begin{array}{l|l|l|l|}
\hline & \perp_{1} & \mathrm{CS} & \perp_{1}^{1} \\
\hline \perp_{2} & \mathrm{CS} & \perp_{2}^{\prime} \\
\hline
\end{array}
$$

corresponding to two projects P_{1} and P_{2}.

- So empl_id is hardly an id!

Skolem functions cont'd

- Solution: make empl_id a function of empl_name.
- Such "invented" functions are called Skolem functions (see Logic 001 for a proper definition)
- Source: EP(empl_name,dept,project);

Target: EDPH(empl_id,dept,phone), DP(dept,project)

- A new mapping is:

$$
\operatorname{EDPH}\left(f\left(x_{1}\right), x_{2}, z_{3}\right) \wedge \mathrm{DP}\left(x_{2}, x_{3}\right):-\mathrm{EP}\left(x_{1}, x_{2}, x_{3}\right)
$$

- f assigns a unique id to every name.

Other possible additions

- One can look at more general queries used in mappings.
- Most generally, relational algebra queries, but to be more modest, one can start with just adding inequalities.
- One may also disjunctions: for example, if we want to invert

$$
\begin{aligned}
& T(x):-S_{1}(x) \\
& T(x):-S_{2}(x)
\end{aligned}
$$

it seems natural to introduce a rule

$$
S_{1}(x) \vee S_{2}(x):-T(x)
$$

Composition: definition

- Recall the definition of composition of binary relations R and R^{\prime} :

$$
(x, z) \in R \circ R^{\prime} \quad \Leftrightarrow \quad \exists y:(x, y) \in R \text { and }(y, z) \in R^{\prime}
$$

- A schema mapping Σ for two schemas σ and τ is viewed as a binary relation

$$
\boldsymbol{\Sigma}=\left\{\begin{array}{l|l}
(S, T) & \begin{array}{l}
S \text { is a } \sigma \text {-instance } \\
T \text { is a } \tau \text {-instance } \\
T \text { is a solution for } S
\end{array}
\end{array}\right\}
$$

- The composition of mappings Σ from σ to τ and Δ from τ to ω is now

$$
\Sigma \circ \Delta
$$

- Question (closure): is there a mapping Γ between σ and ω so that

$$
\Gamma=\Sigma \circ \Delta
$$

Composition: when it works

- If Σ
- does not generate any nulls, and
- no variables \bar{u} for source formulas
- Example:

$$
\begin{array}{rr}
\Sigma: & T\left(x_{1}, x_{2}\right) \wedge T\left(x_{2}, x_{3}\right):-S\left(x_{1}, x_{2}, x_{3}\right) \\
\Delta: & W\left(x_{1}, x_{2}, z\right):-T\left(x_{1}, x_{2}\right)
\end{array}
$$

- First modify into:

$$
\begin{aligned}
& \Sigma: \\
& \Sigma: \\
& \Delta:
\end{aligned}
$$

$$
\begin{aligned}
T\left(x_{1}, x_{2}\right) & :-S\left(x_{1}, x_{2}, x_{3}\right) \\
T\left(x_{2}, x_{3}\right) & :-S\left(x_{1}, x_{2}, x_{3}\right) \\
W\left(x_{1}, x_{2}, z\right) & :-T\left(x_{1}, x_{2}\right)
\end{aligned}
$$

- Then substitute in the definition of W :

Composition: when it cont'd

$$
\begin{aligned}
& W\left(x_{1}, x_{2}, z\right):-S\left(x_{1}, x_{2}, y\right) \\
& W\left(x_{1}, x_{2}, z\right):-S\left(y, x_{1}, x_{2}\right)
\end{aligned}
$$

to get $\boldsymbol{\Sigma} \circ \boldsymbol{\Delta}$.
Explaining the second rule:

$$
\begin{aligned}
& W\left(x_{1}, x_{2}, z\right) \\
\rightarrow & T\left(x_{1}, x_{2}\right) \text { using } T\left(\text { var }_{1}, \text { var }_{2}\right):-S\left(\text { var }_{3}, \text { var }_{1}, \text { var }_{2}\right) \\
\rightarrow & S\left(y, x_{1}, x_{2}\right)
\end{aligned}
$$

Composition: when it doesn't work

- Schema σ : Takes(st_name, course)
- Schema τ : Takes'(st_name, course), Nameld(st_name, st_id)
- Schema ω : Enroll(st_id, course)
- Mapping Σ from σ to τ :

$$
\begin{aligned}
\operatorname{Takes}^{\prime}(s, c) & :-\operatorname{Takes}(s, c) \\
\operatorname{Nameld}(s, i) & :-\exists c \operatorname{Takes}(s, c)
\end{aligned}
$$

- Mapping Δ from τ to ω :

$$
\operatorname{Enroll}(i, c):-\operatorname{Nameld}(s, i) \wedge \text { Takes }^{\prime}(s, c)
$$

- A first attempt at the composition: Enroll (i, c) :- Takes (s, c)

Composition: when it doesn't work cont'd

- What's wrong with Γ : Enroll (i, c) :- Takes (s, c) ?
- Student id i depends on both name and course!

But:

Takes: \begin{tabular}{|l|l|}
\hline John \& CS1

\hline John \& CS 2

\cline { 2 - 3 }

$\stackrel{\Gamma}{\Rightarrow}$ Enroll:

\hline\perp_{1} \& CS 1

\hline\perp_{2} \& CS 2

\hline
\end{tabular}

Composition: when it doesn't work cont'd

- Solution: Skolem functions.
- $\Gamma^{\prime}: \quad \operatorname{Enroll}(f(s), c)$:- Takes (s, c)
- Then:

$$
\text { Takes: } \begin{array}{|l|l|}
\hline \text { John } & \text { CS1 } \\
\hline \text { John } & \text { CS2 } \\
\hline
\end{array} \stackrel{\Gamma}{\Rightarrow} \quad \text { Enroll: }: \begin{array}{|l|l|}
\hline \perp & \text { CS1 } \\
\hline \perp & \text { CS2 } \\
\hline
\end{array}
$$

- where $\perp=f$ (John)

Composition: another example

- Schema σ : Empl(eid)
- Schema τ : $\operatorname{Mngr}($ eid,mngid)
- Schema ω : Mngr'(eid,mngid), SelfMng(id)
- Mapping Σ from σ to τ :

$$
\operatorname{Mngr}(e, m):-\operatorname{Empl}(e)
$$

- Mapping Δ from τ to ω :

$$
\begin{aligned}
\operatorname{Mngr}^{\prime}(e, m) & :-\operatorname{Mngr}(e, m) \\
\operatorname{Self} \operatorname{Mng}(e) & :-\operatorname{Mngr}(e, e)
\end{aligned}
$$

- Composition:

$$
\begin{aligned}
\operatorname{Mngr} & (e, f(e)) \\
\operatorname{SelfMng}(e) & :-\operatorname{Empl}(e) \\
& -\operatorname{Empl}(e) \wedge e=f(e)
\end{aligned}
$$

Composition and Skolem functions

- Schema mappings with Skolem functions compose!
- Algorithm:
- replace all nulls by Skolem functions
- $\operatorname{Mngr}(e, f(e)):-\operatorname{Empl}(e)$
- Δ stays as before
- Use substitution:
- Mngr' (e, m) :- $\operatorname{Mngr}(e, m)$ becomes
$\operatorname{Mngr}(e, f(e)):-\operatorname{Empl}(e)$
- SelfMng(e) :- $\operatorname{Mngr}(e, e)$ becomes

$$
\operatorname{SelfMng}(e):-\operatorname{Empl}(e) \wedge e=f(e)
$$

Inverting mappings

- Harder than composition.
- Intuition: $\boldsymbol{\Sigma} \circ \boldsymbol{\Sigma}^{-1}=$ ID.
- But even what ID should be is not entirely clear.
- Some intuitive examples will follow.

Examples of inversion

- The inverse of projection is null invention:
- $T(x)$:- $S(x, y)$
- $S(x, y):-T(x)$
- Inverse of union requires disjunction:
- $T(x)$:- $S(x) \quad T(x):-S^{\prime}(x)$
- $S(x) \vee S^{\prime}(x):-T(x)$
- So reversing the rules doesn't always work.

Examples of inversion cont'd

- Inverse of decomposition is join:
- $T\left(x_{1}, x_{2}\right) \wedge T^{\prime}\left(x_{2}, x_{3}\right):-S\left(x_{1}, x_{2}, x_{3}\right)$
- $S\left(x_{1}, x_{2}, x_{3}\right):-T\left(x_{1}, x_{2}\right) \wedge T^{\prime}\left(x_{2}, x_{3}\right)$
- But this is also an inverse of $T\left(x_{1}, x_{2}\right) \wedge T^{\prime}\left(x_{2}, x_{3}\right):-S\left(x_{1}, x_{2}, x_{3}\right)$:
- $S\left(x_{1}, x_{2}, z\right):-T\left(x_{1}, x_{2}\right)$
- $S\left(z, x_{2}, x_{3}\right):-T^{\prime}\left(x_{2}, x_{3}\right)$

Examples of inversion cont'd

- One may need to distinguish nulls from values in inverses.
- Σ given by

$$
\begin{aligned}
T_{1}(x) & :-S(x, x) \\
T_{2}(x, z) & :-S(x, y) \wedge S(y, x) \\
T_{3}\left(x_{1}, x_{2}, z\right) & :-S\left(x_{1}, x_{2}\right)
\end{aligned}
$$

- Its inverse Σ^{-1} requires:
- a predicate NotNull and
- inequalities:

$$
\begin{aligned}
S(x, x) & :-T_{1}(x) \wedge T_{2}\left(x, y_{1}\right) \wedge T_{3}\left(x, x, y_{2}\right) \wedge \operatorname{NotNull}(x) \\
S\left(x_{1}, x_{2}\right) & :-T_{3}\left(x_{1}, x_{2}, y\right) \wedge\left(x_{1} \neq x_{2}\right) \wedge \operatorname{NotNull}\left(x_{1}\right) \wedge \operatorname{NotNull}\left(x_{2}\right)
\end{aligned}
$$

