
Documents vs. Databases

 Documents are typically small, while databases can be large
 Documents are usually static, whereas databases are typically

dynamic
 A documents has an implicit structure, while a database has an

explicit structure
 Documents are usually semi-structured (without an explicit

type), while databases are structured, constrained by a schema
 Documents are human friendly, while databases are machine

friendly
 Concerns about documents include presentation, editing,

character encoding, language; while databases focus on
models, queries, concurrency control, performance

Why study XML?

 Huge demands for data exchange

• Across platforms

• Across enterprises

 Huge demands for data integration

• Heterogeneous data sources

• Data sources distributed across different locations

 XML (eXtensible Markup Language) has become the prime
standard for data exchange on the Web and a uniform data
model for data integration.

RDB OODB

What is wrong with HTML?

HTML (HyperText Markup Language)
<h3> Book </h3>

<il> <i> Database Systems</i> R. Ramarkishnan

 1999
<il> Complexity Theory C. Papadimitriou
 …

A minor format change to the HTML document may break the parser – and
yield wrong answer to the query

Why? HTML tags are
 predefined and fixed
 describing display format rather than structure of data
HTML is good for presentation (human friendly), but does not help

automatic data extraction by means of programs

An XML solution

XML (eXtensible Markup Language):

<book >

<title> Database Systems</title>

<author> R. Ramakrishnan</author>

<year> 1999 </year>

</book>

<book id = “B2” >

<title> Complexity Theory </title>

<author C. Papadimitriou </author>

</book>

. . .

XML vs. HTML

 XML tags:

• user-defined

• describing the structure of the data

XML is both human friendly and computer friendly.

 HTML is human friendly but not computer friendly;

HTML tags:

• predefined and fixed

• describing display format rather than structure of data
indented for human consumption

What we shall in this course

 XML basics: elements, attributes, tree model

 Document Type Definition

– “types”: element type definition

– “constraints”: ID/IDREF

 XML query Languages

– XPath

– XQuery, XSLT

 To learn XML properly, take QSX!

History: SGML, HTML, XML

SGML: Standard Generalized Markup Language

-- Charles Goldfarb, ISO 8879, 1986

 DTD (Document Type Definition)

 powerful and flexible tool for structuring information, but

– complete, generic implementation of SGML proven
extremely difficult

– tools for working with SGML documents proven expensive

 two sub-languages that have outpaced SGML:

– HTML: HyperText Markup Language (Tim Berners-Lee,
1991). Describing presentation.

– XML: eXtensible Markup Language, W3C, 1998. Describing
content.

From HTML to XML

HTML is good for presentation (human friendly), but does not help
automatic data extraction by means of programs (not computer
friendly).

Why? HTML tags:
 predefined and fixed
 describing display format, not the structure of the data.

 <h3> John Smith </h3>
 Taking CS 101

 GPA: 1.5

<h3> CS 101 </h3>
 Intro to CS

XML: a first glance

XML tags:
 user defined
 describing the structure of the data
<school>

<student id = “011”>
 <name>

 <firstName>John</firstName> <lastName>Smith</lastName>
 </name>
 <taking> CS 101 </taking>
 <GPA> 1.5 </GPA>

 </student>
 <course cno = “CS 101”>

<title> Intro to CS </title>
 </course>
</school>

XML vs. HTML

 user-defined new tags, describing structure instead of display

 structures can be arbitrarily nested (even recursively defined)

 optional description of its grammar (DTD) and thus validation is
possible

What is XML for?

 The prime standard for data exchange on the Web

 A uniform data model for data integration

XML presentation:

 XML standard does not define how data should be displayed

Tags and Text

 XML consists of tags and text
<course cno = “CS 101”>

<title> Intro to CS </title>
 </course>

 tags come in pairs: markups
– start tag, e.g., <course>
– end tag, e.g., </course>

 tags must be properly nested
– <course> <title> … </title> </course> -- good
– <course> <title> … </course> </title> -- bad

 XML has only one “basic” type: text, called PCDATA (Parsed
Character DATA)

XML Elements

 Element: the segment between an start and its corresponding
end tag

 subelement: the relation between an element and its
component elements.

<person>

<name> John Smith</name>

<email> john.smith@abc.com</email>

<oldemail> j.smith@abc.com </oldemail>

 <oldemail> john.smith@xyz.com</oldemail>

</person>

Special elements

 root element: an XML document consists of a single element
called the root element, e.g.,

<db>

<person> … </person>

<person> … </person> ...

</db>

 empty element: special element indicating non-textual content,

– <foo></foo> or simply <foo/>

– an element may carry attributes

<image img=“picture.gif” />

to be interpreted by applications

XML attributes

A start tag may contain attributes describing certain “properties” of
the element (e.g., dimension or type)
<picture>

<height dim=“cm”> 2400</height>
<width dim=“in”> 96 </width>
<data encoding=“gif”> M05-+C$ … </data>

</picture>

References (meaningful only when a DTD is present):
<person id = “011” pal=“012”>

<name> John Smith</name>
</person>
<person id = “012” pal=“011”>

<name> Mary Brown </name>
</person>

The “structure” of XML attributes

 XML attributes cannot be nested -- flat

 the names of XML attributes of an element must be unique.

one can’t write <person pal=“John” pal=“Mary”> ...

 XML attributes are not ordered
<person id = “011” pal=“012”>

<name> John Smith</name>
</person>

is the same as
 <person pal=“012” id = “011”>

<name> John Smith</name>
</person>

 Attributes vs. subelements: unordered vs. ordered, and
– attributes cannot be nested (flat structure)

– subelements cannot represent references

Well-formed XML documents

a document is well-formed if it satisfies two constraints (when only
elements and attributes are considered):

 tags have to nest properly

 attributes have to be unique

Very weak constraints: it does little more than ensure that XML
data will parse into a labeled tree

A complete XML document

<?xml version= ‘1.0’?>
<!DOCTYPE book PUBLIC “~/school.dtd”>
<?xml:stylesheet href=“school.xsl” type=“text/xsl”?>
<school> <!-- school database -->

<student id = “011”>
 <name>

 <firstName>John</firstName> <lastName>Smith</lastName>
 </name>
 <taking> CS 101 </taking>
 <GPA> 1.5 </GPA>

 </student>
 <course cno = “CS 101”>

 <title> Intro to CS </title>
 </course>
</school>

The XML tree model

An XML document is modeled as a node-labeled ordered tree.
 Element node: typically internal, with a name (tag) and children

(subelements and attributes), e.g., student, name.
 Attribute node: leaf with a name (tag) and text, e.g., @id.
 Text node: leaf with text (string) but without a name.

db

student coursestudent course

title @cno
“CS 101”

“Intro to CS”

...
@id name taking taking

title

“Intro to CS”

@cno
“CS 101”

“123”

firstName lastName

“John” “Smith
”

Query Languages for XML

 XPath

 XSLT

 XQuery

Common Querying Tasks

 Filter, select XML values

– Navigation, selection, extraction

 Merge, integrate values from multiple XML sources

– Joins, aggregation

 Transform XML values from one schema to another

– XML construction

Query Languages

 XPath
– Common language for navigation, selection, extraction
– Used in XSLT, XQuery, XML Schema, . . .

 XSLT: XML ⇒ XML, HTML, Text
– Loosely-typed scripting language
– Format XML in HTML for display in browser
– Highly tolerant of variability/errors in data

 XQuery 1.0: XML ⇒ XML
– Strongly-typed query language
– Large-scale database access
– Safety/correctness of operations on data

XML data

<book year=“1996”>

<title> HTML </title>

<author> <last> Lee </last> <first> T. </first></author>

<author> <last> Smith</last> <first>C.</first></author>

<publisher> Addison-Wesley </publisher>

<price> 59.99 </price>

</book>

<book year=“1999”>

<title>Database Systems </title>

<author> <last> Ramakrishnan</last>

 <first> Raghu</first>

 </author>

<publisher> white house </publisher>

</book>

 DTD

<!ELEMENT bib (book*) >

<!ELEMENT book (title, (author+ | editor+),

 publisher?, price?) >

<!ATTLIST book year CDATA #required >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT publisher (#PCDATA) >

….

Data model

Node-labeled, ordered tree

bib

title

book book

phone @yearpublisherauthor author title author publisher

last firstlast first firstlast

@year

XPath

W3C standard: www.w3.org/TR/xpath

 Navigating an XML tree and finding parts of the tree (node
selection and value extraction)

 Given an XML tree T and a context node n, an XPath query Q
returns

– the set of nodes reachable via Q from the node n in T – if Q
is a binary query

– truth value indicating whether Q is true at n in T – if Q is a
Boolean query.

 Implementations: XALAN, SAXON, Berkeley DB XML –
freeware, which you can play with

 A major element of XSLT, XQuery and XML Schema

 XPath 2.0 (Turing-Complete)

XPath constructs

XPath query Q:

– Tree traversal: downward, upward, sideways

– Relational/Boolean expressions: qualifiers (predicates)

– Functions: aggregation (e.g., count), string functions

//author[last=“Ramakrishnan”]

//book[author/last=“Kozen”]/title | //book[author/last=“Ullman”]/title
bib

title

book book

phone @yearpublisherauthor author title author publisher

last firstlast first firstlast

@year

Downward traversal

Syntax:
Q ::= . | l | @l | Q/Q | Q | Q | //Q | /Q | Q[q]
q ::= Q | Q op c | q and q | q or q | not(q)

 .: self, the current node
 l: either a tag (label) or *: wildcard that matches any label
 @l: attribute
 /, |: concatenation (child), union
 //: descendants or self, “recursion”
 [q]: qualifier (filter, predicate)

– op: =, !=, <=, <, >, >=, >
– c: constant
– and, or, not(): conjunction, disjunction, negation
Existential semantics: /bib/book[author/last=“Ramakrishnan”]

Examples:

 parent/child: /bib/book
 ancestor//descendant: bib//last, //last
 wild card: bib/book/*
 attributes: bib/book/@year
 attributes with wild cards: //book/@*
 union: book/(editor | author)

Are book/(editor | author) and //(editor | author) “equivalent” at
context nodes (1) root, (2) book, (3) author?

bib

title

book book

phone @yearpublisherauthor author title author publisher

last firstlast first firstlast

@year

Filters (qualifiers)

 //book[price]/title -- titles of books with a price

 //book[@year > 1991]/title -- titles of books published after
1991

 //book[title and author and not(price)]/title

titles of books with authors, title but no price

 //book[author/last = “Ramakrishnan”]/title

 titles of books with an author whose last name is
Ramakrishnan

 //book[editor | author]/title

 titles of books with with either an author or an editor

Upward traversal
Syntax:

Q ::= . . . | ../Q | ancestor ::Q | ancestor-or-self::Q

 ../: parent

 ancestor, ancestor-or-self: recursion

Example:

 //author[../title = “Databases”]/last

find last names of authors of books with the title “Databases”

 ancestor :: book[//last=“Ramakrishnan”]

find book ancestors with “Ramakrishnan” as its last
descendant

Sideways

Syntax:
Q ::= . . . | following-sibling ::Q | preceding-sibling::Q

 following-sibling: the next sibling
 preceding-sibling: the previous sibling
 position function: e.g., //author[position() < 2]
Example:
 following-sibling :: book [//last=“Ramakrishnan”]

find the next book written by Ramakrishnan
 preceding-sibling :: book[//last=“Ramakrishnan”]

find the last book written by Ramakrishnan

Query Languages for XML

 XPath

 XSLT

 XQuery

XSL (eXtensible Stylesheet Language)

W3C recommendation www.w3.org/Style/XSL

 Two separate languages:

– XSLT: transformation language, Turing complete

– a formatting language

 Purpose: stylesheet specification language

– displaying XML documents: XML -> HTML

– transforming/querying XML data: XML -> XML

 Implementations: SAXON, XALAN, …

XSL programs

XSL program: a collection of template rules
 template rule = pattern + template
 computation:

– starts from the root
– apply a pattern to each node. If it matches, execute the

corresponding template (to construct XML/HTML), and
apply templates recursively on its children.

 patterns:
– match pattern: determine content – whether or not to apply

the rule?
– select pattern: identify nodes to be processed, set of nodes

An example XSLT program

Q1: Find titles and authors of all books published by Addison-
Wesley after 1991.

<xsl:template match=“/bib/book[@year > 1991 and
publisher=‘Addison-Wesley’]” >

<result>
<title> <xsl:value-of select=“title” /> </title>
<xsl:for-each select=“author” />
 <author><xsl:value-of /> </author>
</xsl:for-each>

 </result>
</xsl:template>

Basic XSLT constructs

 a collection of templates: <xsl:template>

 match pattern: match=“bib/book[@year > 1991 and

publisher=‘Addison-Wesley’]”

 select pattern: select=“title”, xsl:for-each select=“author”

 value-of: string

 constructing XML data:

<result>

<title> <xsl:value-of select=“title” /> </title>

...

 </result>

Patterns

 match pattern: (downward) XPath

– parent/child: bib/book

– ancestor//descendant (_*): bib//last, //last, …

 select patterns: XPath

Example:
<xsl:template match=“/bib/book/title >

 <result>

 <title> <xsl:value-of /> </title>

<author> <xsl:value-of select=“../author” ></author>

 </result>

</xsl:template>

note: first author only (without xsl:for-each)

Apply templates
Recursive processing:

<xsl:template match=XPath >
. . .
<xsl:apply-templates select=XPath/>
. . .

 </xsl:template>
 Compare each selected child (descendant) of the matched

source element against the templates in your program

 If a match is found, output the template for the matched node

 One can use xsl:apply-templates instead of xsl:for-each

 If the select attribute is missing, all the children are selected

 When the match attribute is missing, the template matches
every node:

<xsl:template> <xsl:apply-templates /> </xsl:template>

XML to HTML: display

Q5: generate a HTML document consisting of the titles and authors
of all books.

<xsl:template match=“/”>
<html>

 <head> <title> Books </title> </head>
 <body> <xsl:apply-templates select=“bib/book “></body>

 </html>
</xsl:template>

<xsl:template match=“book”>
 <xsl:value-of select=“title” />,
 <xsl:for-each select=“author” /> <xsl:value-of />
 </xsl:for-each>

</xsl:template>

Query Languages for XML

 XPath

 XSLT

 XQuery

XQuery

W3C working draft www.w3.org/TR/xquery

Functional, strongly typed query language: Turing-complete

 XQuery = XPath + …
 for-let-where-return (FLWR) ~ SQL’s SELECT-FROM-WHERE

 Sort-by

XML construction (Transformation)
 Operators on types (Compile & run-time type tests)
+ User-defined functions

Modularize large queries
Process recursive data

+ Strong typing
Enforced statically or dynamically

FLWR Expressions

For, Let, Where, OrderBy, return

Q1: Find titles and authors of all books published by Addison-
Wesley after 1991.

<answer>{
for $book in /bib/book
where $book/@year > 1991 and $book/publisher=‘Addison-Wesley’
return <book>

 <title> {$book/title } </title>,
 for $author in $book/author return
 <author> {$author } </author>
 </book>

}</answer>

 for loop; $x: variable
 where: condition test; selection
 return: evaluate an expression and return its value

join

Find books that cost more at Amazon than at BN

<answer>{
let $amazon := doc(“http://www.amazon.com/books.xml”),

 $bn := doc(“http://www.BN.com/books.xml”)
for $a in $amozon/books/book,
 $b in $bn/books/book

 where $a/isbn = $b/isbn and $a/price > $b/price
return <book> {$a/title, $a/price, $b/price } <book>

}</answer>

 let clause
 join: of two documents

Conditional expression

Q2: Find all book titles, and prices where available
<answer>{

for $book in /bib/book
return <book>

 <title> {$book/title } </title>,
 { if $book[price]
 then <price> {$book/price } </price>
 else () }
 </book>

}</answer>

Indexing

Q3: for each book, find its title and its first two authors, and returns
<et-al/> if there are more than two authors

<answer>{
for $book in /bib/book
return <book>

 <title> {$book/title } </title>,
 { for $author in $book/author[position() <= 2]
 return <author> {$author } </author> }
 { if (count($book/author) > 2
 then <et-al/>

else ()
 </book>

}</answer>

Order by

Q4: find the titles of all books published by Addison-Wesley after
1991, and list them alphabetically.

<answer>{
for $book in /bib/book
where $book/@year > 1991 and $book/publisher=‘Addison-Wesley’

order by $book/title
return

 <book>
 <title> {$book/title } </title>,
 for $author in $book/author return
 <author> {$author } </author>
 </book>

}</answer>

Grouping

Q5: For each author, find titles of books he/she has written

<answer>{
for $author in distinct(/bib/book/author)
return <author name=“{$author}” >{

 for $book in /bib/book
 where $book/author = $author
 return <title> {$book/title } </title>
 </author>

}</answer>

 Constructing attributes: <author name=“{$author}” >
 Grouping: for $book in /bib/book …

Recursion

Consider a part DTD

<!ELEMENT part (part*)>

<!ATTLIST part name CDATA #required>

<!ATTLIST part cost CDATA #required>

part – subpart hierarchy

Given a part element, we want to find the total cost of the part –
recursive computation that descends the part hierarchy

function

define function total (element part $part)
returns element part {

let $subparts :=
for $s in $part/part return total($s)

return {
 <part name=“$part/@name”
 cost=“$part/@cost + sum($subparts/@cost)”>
 } </part>

}

 recursive function: it recursively descends the hierarchy of $part
 $subparts: a list
 $part: parameter

Document Type Definition (DTD)

An XML document may come with an optional DTD – “schema”
<!DOCTYPE db [

<!ELEMENT db (book*)>
<!ELEMENT book (title, chapter*, ref*)>
<!ATTLIST book isbn ID #required>
<!ELEMENT chapter (number, section*) >
<!ELEMENT section (number, (text | section)*)>
<!ELEMENT ref EMPTY>
<!ATTLIST ref to IDREFS #implied>
<!ELEMENT title #PCDATA>
<!ELEMENT text #PCDATA>

]>

What is a DTD?

 A DTD constraints the structure of an XML document, and may
help us formulate/optimize our queries.

 There is a relationship between a DTD and a databases
schema or a type/class declaration of a program, but it is not
close – hence the need for additional “typing” systems, such as
XML Schema.

 A DTD is a syntactic specification. Its connection with any
“conceptual” model may be quite remote.

 DTDs do not act like type systems for XQuery, XPath or XSLT.
You can “validate” your XML documents, but that does not
mean that your programs are checked for type errors.

Element Type Definition (1)

For each element type E, a declaration of the form:

<!ELEMENT E P>

where P is a regular expression, i.e.,

P ::= EMPTY | ANY | #PCDATA | E’ |

P1, P2 | P1 | P2 | P? | P+ | P*

– E’: element type

– P1 , P2: concatenation

– P1 | P2: disjunction

– P?: optional

– P+: one or more occurrences

– P*: the Kleene closure

Element Type Definition (2)

 Extended context free grammar: <!ELEMENT E P>

Why is it called extended?

E.g., <!ELEMENT book (title, authors*, section*, ref*)>

 single root: <!DOCTYPE db […] >

 subelements are ordered.

The following two definitions are different. Why?

<!ELEMENT section (text | section)*>

<!ELEMENT section (text* | section*)>

 recursive definition, e.g., section, binary tree:

<!ELEMENT node (leaf | (node, node))

<!ELEMENT leaf (#PCDATA)>

Element Type Definition (3)

 more on recursive DTDs

<!ELEMENT person (name, father, mother)>

<!ELEMENT father (person)>

<!ELEMENT mother (person)>

What is the problem with this? How to fix it?

– Attributes

– optional (e.g., father?, mother?)

Element Type Definition (4)

 EMPTY element:

<!ELEMENT ref EMPTY>

<!ATTLIST ref to IDREFS #implied>

observe that it has attributes

 ANY: may contain any content

<!ELEMENT generic ANY>

 mixed content

<!ELEMENT section (#PCDATA | section)*>

Element Type Definition (5)

 global definition:

<!ELEMENT person (name, ssn)>

<!ELEMENT course (name, credit, instructor)>

The type definition associated with an element is unique -- only
one declaration for name is allowed.

To avoid name clashes, one may use two distinct tags: e.g.,
personname, coursename.

Attribute declarations (1)

General syntax:
<!ATTLIST element_name

 attribute-name attribute-type default-declaration>
example: “keys” and “foreign keys”

<!ATTLIST book
isbn ID #required>

<!ATTLIST ref
to IDREFS #implied>

Note: it is OK for several element types to define an attribute of the
same name, e.g.,
<!ATTLIST person name ID #required>
<!ATTLIST pet name ID #required>

Attribute declarations (2)

<!ATTLIST element_name

 attribute-name attribute-type default-declaration>

 attribute types:

– CDATA

– ID, IDREF, IDREFS

– …

 default declarations:

– #required, #implied

– “default value”, #fixed “default value”

Specifying ID and IDREF attributes

<!ATTLIST person

id ID #required

father IDREF #implied

mother IDREF #implied

children IDREFS #implied>

e.g.,

<person id=“898” father=“332” mother=“336”

 children=“982 984 986”>

 ….

</person>

XML reference mechanism

 ID attribute: unique within the entire document.

– An element can have at most one ID attribute.

– No default (fixed default) value is allowed.

• #required: a value must be provided

• #implied: a value is optional

 IDREF attribute: its value must be some other element’s ID
value already in the document.

 IDREFS attribute: its value is a set, each element of the set is
the ID value of some other element in the document.

<person id=“898” father=“332” mother=“336”

 children=“982 984 986”>

Keys and Foreign Keys

Example: school document
<!ELEMENT db (student+, course+) >
<!ELEMENT student (id, name, gpa, taking*)>
<!ELEMENT course (cno, title, credit, taken_by*)>
<!ELEMENT taking (cno)>
<!ELEMENT taken_by (id)>

 keys: locating a specific object, an invariant connection from an
object in the real world to its representation
student.@id → student, course.@cno → course

 foreign keys: referencing an object from another object
 taking.@cno ⊆ course.@cno, course.@cno → course
taken_by.@id ⊆ student.@id, student.@id → student

The limitations of ID/IDREF

ID and IDREF attributes in DTD vs. keys and foreign keys in RDBs

 Scoping:

– ID unique within the entire document (like oids), while a key
needs only to uniquely identify a tuple within a relation

– IDREF untyped: one has no control over what it points to --
you point to something, but you don’t know what it is!

 <student id=“01” name=“John Smith” taking=“CS2”/>

<student id=“02” name=“Mary Brown” taking=“CS2 01”/>

<course id=“CS2”/>

The limitations of the XML standard (DTD)

 keys need to be multi-valued, while IDs must be single-valued
(unary)

 enroll (sid: string, cid: string, grade:string)

 a relation may have multiple keys, while an element can have at
most one ID (primary)

 ID/IDREF can only be defined in a DTD, while XML data may
not come with a DTD/schema

 ID/IDREF, even relational keys/foreign keys, fail to capture the
semantics of hierarchical data

