Query Processing and Optimization

• Query optimization: finding a good way to evaluate a query
• Queries are declarative, and can be translated into procedural languages in more than one way
• Hence one has to choose the best (or at least good) procedural query
• This happens in the context of query processing
• A query processor turns queries and updates into sequences of operations on the database
Query processing and optimization stages

• Which relational algebra expression, equivalent to a given declarative query, will lead to the most efficient algorithm?

• For each algebraic operator, what algorithm do we use to compute that operator?

• How do operations pass data (main memory buffer, disk buffer?)

• We first concentrate the first step: finding efficient relational algebra expressions

• For the second step, we need to know how data is stored, and how it is accessed
Overview of query processing

- Start with a declarative query:

\[
\begin{align*}
\text{SELECT } & R.A, S.B, T.E \\
\text{FROM } & R, S, T \\
\text{WHERE } & R.C = S.C \text{ AND } S.D = T.D \text{ AND } R.A > 5 \text{ AND } S.B < 3 \text{ AND } T.D = T.E
\end{align*}
\]

- Translate into an algebra expression:

\[
\pi_{R.A, S.B, T.E}(\sigma_{R.A > 5 \land S.B < 3 \land T.D = T.E}(R \Join S \Join T))
\]

- Optimization step: rewrite to an equivalent but more efficient expression:

\[
\pi_{R.A, S.B, T.E}(\sigma_{A > 5}(R) \Join \sigma_{B < 3}(S) \Join \sigma_{D = E}(T))
\]

- Why is it more efficient?

Because selections are evaluated early, and joined relations are not as large as \(R, S, T \).
Overview of query processing cont’d

- Evaluating the optimized expression. Choices to make: order of joins.
- Two possible query plans:

```
R S T
A>5 B<3 D=E
```

first joins S, T, and then joins the result with R.
Overview of query processing cont’d

• Another query plan:

\[
\begin{array}{c}
\text{A,B} \\
\text{S} \quad \text{T} \\
\text{R} \quad \text{A>5} \quad \text{B<3} \quad \text{D=E} \\
\end{array}
\]

It first joins \(S\), \(T\), and then joins the result with \(R\).

• Both query plans produce the same result.

• How to choose one?
Optimization by algebraic manipulations

• Given a relational algebra expression \(e \), find another expression \(e' \) equivalent to \(e \) that is easier (faster) to evaluate.

• Basic question: Given two relational algebra expressions \(e_1, e_2 \), are they equivalent?

• This is the same as asking if an expression \(e \) always produces the empty answer:

\[
e_1 = e_2 \iff e_1 - e_2 = \emptyset \text{ and } e_2 - e_1 = \emptyset
\]

• Problem: testing \(e = \emptyset \) is undecidable for relational algebra expressions.

• Good news:

 We can still list some useful equalities, and

 It is decidable for very important classes of queries (SPJ queries)
Optimization by algebraic manipulations

- Join and Cartesian product are commutative and associative, hence they can be applied in any order:

\[R \times S = S \times R \]
\[R \times (S \times T) = (R \times S) \times T \]
\[R \bowtie S = S \bowtie R \]
\[R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T \]

- Cascade of projections. Assume that attributes \(A_1, \ldots, A_n \) are among \(B_1, \ldots, B_m \). Then

\[\pi_{A_1, \ldots, A_n}(\pi_{B_1, \ldots, B_m}(E)) = \pi_{A_1, \ldots, A_n}(E) \]

- Cascade of selections:

\[\sigma_{c_1}(\sigma_{c_2}(E)) = \sigma_{c_1 \land c_2}(E) \]
Optimization by algebraic manipulations

- Commuting selections and projections. Assume that condition c involves attributes $A_1, \ldots, A_n, B_1, \ldots, B_m$. Then

$$
\pi_{A_1, \ldots, A_n}(\sigma_c(E)) = \pi_{A_1, \ldots, A_n}(\sigma_c(\pi_{A_1, \ldots, A_n, B_1, \ldots, B_m}(E)))
$$

- A useful special case: if c only involves attributes A_1, \ldots, A_n, then

$$
\pi_{A_1, \ldots, A_n}(\sigma_c(E)) = \sigma_c(\pi_{A_1, \ldots, A_n}(E))
$$

- Commuting selection with join. If c only involves attributes from E_1, then

$$
\sigma_c(E_1 \Join E_2) = \sigma_c(E_1) \Join E_2
$$
Optimization by algebraic manipulations cont’d

- Let c_1 only mention attributes of E_1 and c_2 only mention attributes of E_2. Then

$$\sigma_{c_1 \land c_2}(E_1 \Join E_2) = \sigma_{c_1}(E_1) \Join \sigma_{c_2}(E_2)$$

- Because:

$$\sigma_{c_1 \land c_2}(E_1 \Join E_2)$$
$$= \sigma_{c_1}(\sigma_{c_2}(E_1 \Join E_2))$$
$$= \sigma_{c_1}(E_1 \Join \sigma_{c_2}(E_2))$$
$$= \sigma_{c_1}(E_1) \Join \sigma_{c_2}(E_2)$$

- Another useful rule: If c only mentions attributes present in both E_1 and E_2, then

$$\sigma_c(E_1 \Join E_2) = \sigma_c(E_1) \Join \sigma_c(E_2)$$
Optimization by algebraic manipulations cont’d

• Rules combining σ, π with \cup and $-$

• Commuting selection and union:

$$\sigma_c(E_1 \cup E_2) = \sigma_c(E_1) \cup \sigma_c(E_2)$$

• Commuting selection and difference:

$$\sigma_c(E_1 - E_2) = \sigma_c(E_1) - \sigma_c(E_2)$$

• Commuting projection and union:

$$\pi_{A_1,\ldots,A_n}(E_1 \cup E_2) = \pi_{A_1,\ldots,A_n}(E_1) \cup \pi_{A_1,\ldots,A_n}(E_2)$$

• Question: what about projection and difference?
Is $\pi_A(E_1 - E_2)$ equal to $\pi_A(E_1) - \pi_A(E_2)$?
Optimization by algebraic manipulations: example

• Recall

\[\pi_{R.A,S.B,T.E}(\sigma_{R.A>5 \land S.B<3 \land T.D=T.E}(R \Join S \Join T)) \]

• Optimization: pushing selections

\[\pi_{R.A,S.B,T.E}(\sigma_{R.A>5 \land S.B<3 \land T.D=T.E}(R \Join S \Join T)) \]
\[= \pi_{R.A,S.B,T.E}(\sigma_{R.A>5}(\sigma_{S.B<3}(\sigma_{T.D=T.E}(R \Join S \Join T)))) \]
\[= \pi_{R.A,S.B,T.E}(\sigma_{R.A>5}(\sigma_{S.B<3}(R \Join (S \Join (\sigma_{T.D=T.E}(T)))))) \]
\[= \pi_{R.A,S.B,T.E}(\sigma_{R.A>5}(R \Join \sigma_{S.B<3}(S) \Join (\sigma_{T.D=T.E}(T)))) \]
\[= \pi_{R.A,S.B,T.E}(\sigma_{A>5}(R) \Join \sigma_{B<3}(S) \Join \sigma_{D=E}(T))) \]
Implementation of individual operations

• Depends on access method and file organization

• Suppose EmplId is a key; how long does it take to answer:

 \[\sigma_{\text{EmplId}=1234567}(\text{Employee})? \]

• Time is linear in the worst case

• But one can perform the selection much faster if there is an index on attribute EmplId

• **Index**: auxiliary structure that provides fast access to tuples in a table based on a given key value

• Most common example: B-trees

• With B-trees, the above selection takes \(O(\log n) \)
Note on indices and SQL

• SQL allows one to create an index on a given attribute or a sequence of attributes

• Once an index is created, the table can be accessed fast if the values of index attributes are known

• SQL always creates an index for attributes declared as a primary key of a table

• Syntax:

 CREATE INDEX <Index_Name> ON
 <Table_Name>(<attr1>,...,<attrN>)

• Example:

 CREATE INDEX EmplIndex ON Employee(EmplId)
Processing individual operators: join

- Join is the costliest operator of relational algebra
- Query: \(R \Join S = \sigma_{R.A=S.A}(R \times S) \)
- SELECT R.A, R.B, S.C
 FROM R, S
 WHERE R.A=S.A
- Naive implementation:

 for every tuple \(t_1 \) in \(R \) do
 for every tuple \(t_2 \) in \(S \) do
 if \(t_1.A=t_2.A \) then output \((t_1.A,t_1.B,t_2.C) \)
 end
 end

- Time complexity: \(O(n^2) \)
Join processing

- Assumption: $R.A$ is the primary key of R.

- New $O(n \log n)$ algorithm:

 Sort R and S on attribute A;
 scan S := first tuple in S;
 for each tuple t_1 in R do
 scan S starting from scan S until a tuple t_2 with $t_2.A \geq t_1.A$ is found;
 if $t_2.A = t_1.A$ then
 while $t_2.A = t_1.A$ do
 if $t_1.A = t_2.A$ then output $(t_1.A, t_1.B, t_2.C)$;
 move to the next tuple t_2 of S
 end
 set scan S := current tuple t_2
 end
Join processing cont’d

• Previous algorithm can be extended to the case when the common attributes of R and S do not form a key in either relation
• One uses two pointers then to scan the relations
• Name: Sort-Merge join
• Both algorithms would be implemented differently in practice
• No need to do a new disk read to get each tuple; instead, read one block at a time
• Complexity of sort-merge join: If the relations are sorted, it requires $B_R + B_S$ disk reads, where B_R, B_S are the numbers of disk blocks in R, S.
Join processing: hash join

- Reminder: hashing.
- Bucket – a unit of storage that can store one or more tuples. Typically several disk blocks
- K – a set of search-key values; B – a set of buckets
- Hash function $h: K \rightarrow B$
- Good properties: uniform, random distribution
- Example of hashing: first two digits of the student # (assumes 100 buckets)
- Example of bad hashing: (account balance mod 100 000) div 10 000
- Overflows. Reason: bad distribution, insufficient buckets.
- Handling of overflows: a linked list of overflow buckets
Join processing: hash join of R and S

- X - the set of common attributes

- Step 1: Select M, the number of buckets

- Step 2: Select a hash function h on attributes from X:
 $h : \{\text{tuples over } X\} \rightarrow \{1, \ldots, M\}$

- Step 3: Partition R and S:

 for each t in R do
 \[i := h(t.X) \]
 \[H_i^R := H_i^R \cup \{t\} \]
 end

 for each t in S do
 \[i := h(t.X) \]
 \[H_i^S := H_i^S \cup \{t\} \]
 end

- If there are no overflows, this requires $O(B_R + B_S)$ I/O operations (read the relations, and write them back)

- With overflows, one uses recursive partitioning, and then complexity becomes $O(n \log n)$, where $n = B_R + B_S$.
Join processing: hash join of R and S

- Assume that the relations are partitioned
- Algorithm:

 for $i = 1$ to M do

 read H^R_i

 read H^S_i

 add $H^R_i \otimes H^S_i$ to the output

end

- Why does it work? If two tuples $t_1 \in R$, $t_2 \in S$ match, $t_1.X = t_2.X$ and $h(t_1) = h(t_2)$; hence they are in the same partition class

- Improvements: how does one compute $H^R_i \otimes H^S_i$? One possibility: use another hash function. If it doesn’t create overflows, the time for the algorithm is $O(B_R + B_S)$
Using hash functions for Boolean operations

• Observe:

\[R \cap S = (H_1^R \cap H_1^S) \cup \ldots \cup (H_M^R \cap H_M^S) \]

• Because: if \(t \in R \cap S \) and \(t \in H_i^R \), then \(t \in H_i^S \)

• Advantage: each tuple \(t \in R \) must only be compared with \(H_{h(t)}^S \), and not with the whole relation \(S \)

• Using hash functions for difference:

for each \(t \) in \(R \) do
\[
i := h(t)
\]
if \(t \notin H_i^S \), include \(t \) in the output
end
Other operations

• Set union $R \cup S$: if no index is needed on the result, just append S to R

• If index is needed, then do as above, and then build a new index

• Duplicate elimination: On a sorted relation, it takes linear time. Thus, sort relation R first, based on any attribute(s), and then do one pass and eliminate duplicate

• Complexity: $O(n \log n)$.

• Aggregation with GROUP BY: similarly, sort on the group by attributes, before computing aggregate functions.
Query processing cont’d

• Find names of theaters that play movies featuring Nicholson

\[
\text{SELECT S.theater} \\
\text{FROM Movies M, Schedule S} \\
\text{WHERE M.title=S.title AND M.actor='Nicholson'}
\]

• Translate into algebra:

\[
\pi_{\text{theater}}(\sigma_{\text{actor}='\text{Nicholson'}'(M \bowtie S'))}
\]

• Next step: choose a query plan

• To do so, use algebraic rewritings to create several equivalent expressions, and then choose algorithms for performing individual operators.
Query processing cont’d

Step 1

PLA N 1 PLA N 2 PLA N 3
Query processing cont’d

Step 2

PLAN 1 PLAN 2 PLAN 3
Query processing cont’d

• Choosing the best plan: cost-based optimization
• Query optimizer estimates the cost of evaluating each plan
• Particularly important: selectivity estimation (how many tuples in $\sigma_c(E)$?) and join size estimation
• Techniques used: statistics. Sometimes a sampling is done before a query is processed.
• Problem with cost-based optimization: the set of all query plans is extremely large; the optimizer cannot try them all
• Another problem: how long can the optimizer run? Hopefully not as long as the savings it provides.
Join order

• We know that join is commutative and associative.

• How does one evaluate

\[R_1 \bowtie R_2 \bowtie R_3 \bowtie R_4 \bowtie R_5 ? \]

• Possibilities:

\[
\begin{align*}
& ((R_1 \bowtie R_2) \bowtie R_3) \bowtie R_4 \bowtie R_5 \\
& (R_1 \bowtie R_2) \bowtie (R_3 \bowtie (R_4 \bowtie R_5)) \\
& (R_1 \bowtie (R_3 \bowtie R_5)) \bowtie (R_4 \bowtie R_2)
\end{align*}
\]
- DB2 optimizer only considers deep join orders like the one on the left.
- In general, choosing an optimal join order is computationally hard (usually NP-complete for reasonable cost measures)
SQL and query optimization

• Query optimizer helps turn your query into a more efficient one, but you can help the query optimizer do its job better.

• The search space of all possible query plans is extremely large, and optimizers only run for a short time, and thus may fail to find a good plan.

• There are several rules that usually ensure a better query plan; however, a lot depends on a particular system, version, and its optimizers, and these rules may not be universally applicable. Still, if your query isn’t running fast enough, it’s worth giving them a try.
Order does matter!

SELECT * FROM Students WHERE grade='A' AND sex='female' is better than SELECT * FROM Students WHERE sex='female' AND grade='A'

• Because usually there are fewer A students than female students.

• Using orders instead of <>

SELECT * FROM Movies WHERE Length > 120 OR Length < 120

is better than SELECT * FROM Movies WHERE Length <> 120

• Because the ordered version forces SQL to use an index on Length, if there is one

• Without such an index, the version with OR runs longer
Provide more JOIN information

- SELECT *
 FROM T1, T2, T3
 WHERE T1.common = T3.common AND T1.common=T2.common
- SELECT *
 FROM T1, T2, T3
 WHERE T1.common = T3.common AND T3.common=T2.common
- These may not be as good as

 SELECT *
 FROM T1, T2, T3
 WHERE T1.common = T2.common
 AND T2.common = T3.common
 AND T3.common = T1.common
Avoid unions if OR is sufficient

```sql
SELECT * 
FROM Personnel 
WHERE location='Edinburgh'
UNION
SELECT * 
FROM Personnel 
WHERE location='Glasgow'
```

is not as good as

```sql
SELECT DISTINCT* 
FROM Personnel 
WHERE location='Edinburgh' 
    OR location='Glasgow'
```

The optimizer normally works within a single SELECT-FROM-WHERE.
Joins are better than nested queries

SELECT S.Theater
FROM Schedule S
WHERE S.Title IN (SELECT M.Title
 FROM Movies M
 WHERE M.director='Spielberg')

is likely to run slower than

SELECT S.Theater
FROM Schedule S, Movies M
WHERE S.Title = M.Title
 AND M.director='Spielberg'
Transactions and Concurrency Control

- **Transaction**: a unit of program execution that accesses and possibly updates some data items.
- A transaction is a collection of operations that logically form a single unit.
- Executing a transaction: either all operations are executed, or none are.
- Each transaction may consist of several steps, some involving I/O activity, and some CPU activity.
- Moreover, typically several transactions are running on a system; some are long, some are short.
- This creates an opportunity for concurrent execution. Problem: how to ensure consistency?
Transaction model

- Operation `read(X)` – transfers the data item `X` from the database to a local buffer belonging to the transaction

- Operation `write(X)` — transfers the data item `X` from the local buffer back to the database

- Example: transfer $100 from account A to account B
  ```
  read(A);
  A := A - 100;
  write(A);
  read(B);
  B := B + 100;
  write(B)
  ```

- It executes as a single unit: at no point between `read(A)` and `write(B)` can a user query the database, as it might be in an inconsistent state.
ACID properties

- **Atomicity**: either all operations of a transaction are reflected properly in the database, or none are.

- **Consistency**: execution of a transaction in isolation preserves the consistency of the database.

- **Isolation**: even though many transactions may run concurrently, the DBMS ensures that for any two transactions T, T', it appears to T that either T' finished before T started, or T' started execution after T finished.

- **Durability**: after a transaction completes successfully, the changes it has made persist.
States of a transaction

- **Active**: it stays in this state while it is executing
- **Partially committed**: after the final statement has been executed.
- **Failed**: after the discovery that normal execution cannot proceed.
- **Aborted**: after it has been rolled back, and the database state restored to the one prior to the start of the execution.
- **Committed**: after successful completion.
Two transactions

- T takes $100 from account A to account B.
- T' takes 10% of account A to account B.
- Property of T and T': they don’t change $A+B$. Money isn’t created, and doesn’t disappear.

T:
```
read(A);
A := A - 100;
write(A);
read(B);
B = B + 100;
write(B)
```

T':
```
read(A);
tmp := A*0.1;
A := A - tmp;
write(A);
read(B);
B = B + tmp;
write(B)
```
Two serial executions: $T; T'$ and $T'; T$

<table>
<thead>
<tr>
<th>T</th>
<th>T'</th>
<th>T'</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>read(A);</td>
<td>read(A);</td>
<td>read(A);</td>
<td>read(A);</td>
</tr>
<tr>
<td>A := A - 100;</td>
<td>tmp := A*0.1;</td>
<td>A := A - 100;</td>
<td>A := A - 100;</td>
</tr>
<tr>
<td>write(A);</td>
<td>A := A - tmp;</td>
<td>write(A);</td>
<td>write(A);</td>
</tr>
<tr>
<td>read(B);</td>
<td>write(A);</td>
<td>read(B);</td>
<td>read(B);</td>
</tr>
<tr>
<td>B = B+100;</td>
<td>read(B);</td>
<td>B = B+tmp;</td>
<td>read(B);</td>
</tr>
<tr>
<td>write(B);</td>
<td>B = B+100;</td>
<td>write(B);</td>
<td>write(B);</td>
</tr>
</tbody>
</table>
Transaction invariant

• A+B doesn't change after T and T' execute.

• Assume that both A and B have $1,000.

• Evaluating $T;T'$:
 after T: A=900, B=1100.
 after T': A=810, B=1190.
 A+B=2000.

• Evaluating $T';T$:
 after T': A=900, B=1100
 after T: A=800, B=1200.
 A+B=2000.
Concurrent execution I

<table>
<thead>
<tr>
<th>T</th>
<th>T'</th>
</tr>
</thead>
<tbody>
<tr>
<td>read(A); A := A - 100; write(A);</td>
<td>read(A); tmp := A*0.1; A := A - tmp; write(A);</td>
</tr>
<tr>
<td>read(B); B = B+100; write(B);</td>
<td>read(B); B = B+tmp; write(B);</td>
</tr>
</tbody>
</table>

Result:

$$A = 810$$
$$B = 1190$$
$$A + B = 2000$$
Concurrent execution II

<table>
<thead>
<tr>
<th>T</th>
<th>T'</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>read(A);</code></td>
<td><code>read(A);</code></td>
</tr>
<tr>
<td><code>A := A - 100;</code></td>
<td><code>tmp := A*0.1;</code></td>
</tr>
<tr>
<td></td>
<td><code>A := A - tmp;</code></td>
</tr>
<tr>
<td><code>write(A);</code></td>
<td><code>write(A);</code></td>
</tr>
<tr>
<td><code>read(B);</code></td>
<td><code>read(B);</code></td>
</tr>
<tr>
<td><code>B = B+100;</code></td>
<td><code>B = B+tmp;</code></td>
</tr>
<tr>
<td><code>write(B);</code></td>
<td><code>write(B);</code></td>
</tr>
</tbody>
</table>

Result:

- $A = 900$
- $B = 1200$
- $A + B = 2100$

We created $100!$
Serializability

• Why is schedule I good and schedule II bad?
• Because schedule I is equivalent to a serial execution of T and T', and schedule II is not.
• We formalize this via conflict serializability.
• Transaction scheduling in DBMSs always ensures serializability.

Simplified representation of transactions

• For scheduling, the only important operations are read and write. What operations are performed on each data item does not affect the schedule.
• We thus represent transactions by a sequence of read-write operations, assuming that between each read(A) and write(A) some computation is done on A.
Simplified representation of transactions cont’d

- Examples of two concurrent executions in the new model:

<table>
<thead>
<tr>
<th>Schedule I</th>
<th>Schedule II</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T'</td>
</tr>
<tr>
<td>read(A); write(A);</td>
<td>read(A); write(A);</td>
</tr>
<tr>
<td>read(B); write(B);</td>
<td>read(B); write(B);</td>
</tr>
<tr>
<td>read(B); write(B);</td>
<td>read(B); write(B);</td>
</tr>
</tbody>
</table>
Analyzing conflicts

• Let Op_1 and Op_2 be two consecutive operations in a schedule.

• Conflict – the order matters:

$$\text{Op}_1; \text{Op}_2 \quad \text{and} \quad \text{Op}_2; \text{Op}_1$$

may give us different results.

• If there is no conflict, Op_1 and Op_2 can be swapped.

• If Op_1 and Op_2 refer to different data items, they do not cause a conflict, and can be swapped.

• If they are both operations on the same data item X, then:

 if both are $\text{read}(X)$, the order does not matter;

 if $\text{Op}_1 = \text{read}(X)$, $\text{Op}_2 = \text{write}(X)$, the order matters.

 if $\text{Op}_1 = \text{write}(X)$, $\text{Op}_2 = \text{read}(X)$, the order matters.

 if $\text{Op}_1 = \text{write}(X)$, $\text{Op}_2 = \text{write}(X)$, the order matters.
Conflict serializability

- Swapping a pair of operations in a schedule is allowed when:
 - they refer to different data items, or,
 - they refer to the same data item and are both read operations.

- A schedule is called conflict serializable if it can be transformed into a serial schedule by a sequence of such swap operations.
Schedule I is conflict serializable

<table>
<thead>
<tr>
<th>T</th>
<th>T'</th>
<th>T</th>
<th>T'</th>
<th>T</th>
<th>T'</th>
</tr>
</thead>
<tbody>
<tr>
<td>read(A);</td>
<td></td>
<td>read(A);</td>
<td></td>
<td>read(A);</td>
<td></td>
</tr>
<tr>
<td>write(A);</td>
<td></td>
<td>write(A);</td>
<td></td>
<td>read(B);</td>
<td></td>
</tr>
<tr>
<td>read(B);</td>
<td></td>
<td>read(B);</td>
<td></td>
<td>write(A);</td>
<td></td>
</tr>
<tr>
<td>write(B);</td>
<td></td>
<td>write(B);</td>
<td></td>
<td>write(B);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\rightarrow</td>
<td></td>
<td>\rightarrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>read(A);</td>
<td></td>
<td>read(B);</td>
<td></td>
<td>read(A);</td>
<td></td>
</tr>
<tr>
<td>write(A);</td>
<td></td>
<td>write(A);</td>
<td></td>
<td>write(B);</td>
<td></td>
</tr>
<tr>
<td>read(B);</td>
<td></td>
<td>read(B);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>write(B);</td>
<td></td>
<td>write(B);</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Database Systems 46

L. Libkin
Schedule II is not conflict serializable

\[T \quad | \quad T' \]
\[\begin{array}{c}
\text{read}(A); \\
\text{write}(A); \\
\text{read}(B); \\
\text{write}(B);
\end{array} \quad | \quad \begin{array}{c}
\text{read}(A); \\
\text{write}(A); \\
\text{read}(B); \\
\text{write}(B);
\end{array} \]

- In a serial schedule, either:
 \text{write}(A) by } T \text{ precedes } \text{read}(A) \text{ by } T', \text{ or }
 \text{write}(A) \text{ by } T' \text{ precedes } \text{read}(A) \text{ by } T

- But:
 \text{write}(A) \text{ by } T \text{ cannot be swapped with } \text{write}(A) \text{ by } T', \text{ and }
 \text{write}(A) \text{ by } T' \text{ cannot be swapped with } \text{read}(A) \text{ by } T

- Hence the schedule is not serializable.
Testing conflict serializability

- Construct the **precedence graph** of a schedule S
- Nodes: transactions in the system
- Edges: there is an edge $T
ightarrow T'$

if T executes an operation Op_1 before T' executes an operation Op_2 such that Op_1 and Op_2 cannot be swapped.

That is, one of these conditions holds:

- T executes $\text{write}(X)$ before T' executes $\text{read}(X)$
- T executes $\text{read}(X)$ before T' executes $\text{write}(X)$
- T executes $\text{write}(X)$ before T' executes $\text{write}(X)$
Testing conflict serializability

• Given a schedule S, construct its precedence graph

• If there is an edge $T \rightarrow T'$, then in any serial schedule S' equivalent to S, the transaction T must appear before T'.

• A schedule S is conflict serializable if and only if its precedence graph contains no cycles.

• Testing serializability:

 Construct the conflict graph

 Check if it has cycles

 If it doesn’t have cycles, do topological sort

• The result of the topological sort gives an equivalent serial schedule.

• Reminder: a topological sort of an acyclic graph G produces an order \prec on its nodes consistent with G – if there is an edge from x to y, then $x \prec y$.
Testing conflict serializability: examples

• Thus, schedule I is conflict serializable, and schedule II is not.
Concurrency control: lock-based protocols

- Main goal of concurrency control: to ensure the isolation property for concurrently running transactions
- Typically achieved via locks
- Each data item is locked by at most one transaction; while it is locked, no other transaction has access to it.
- Two new primitives: lock(A) and unlock(A)
- A typical transaction:

...
lock(A);
read(A);
...
write(A);
unlock(A);
...
Locking and serializability

- A new abstract view of transaction: only the order of lock and unlock operations matters

- If data item A is locked by transaction T, and transaction T' issues a lock(A) command, it must wait until T executes unlock(A).

- New representation of schedules:

 Schedule S_1

 \[
 \begin{align*}
 T_2 &: \text{lock}(A) \\
 T_2 &: \text{unlock}(A) \\
 T_3 &: \text{lock}(A) \\
 T_3 &: \text{unlock}(A) \\
 T_1 &: \text{lock}(B) \\
 T_1 &: \text{unlock}(B) \\
 T_2 &: \text{lock}(B) \\
 T_2 &: \text{unlock}(B)
 \end{align*}
 \]

 Schedule S_2

 \[
 \begin{align*}
 T_1 &: \text{lock}(A) \\
 T_2 &: \text{lock}(A) \\
 T_2 &: \text{unlock}(B) \\
 T_2 &: \text{lock}(B) \\
 T_1 &: \text{lock}(B) \\
 T_1 &: \text{unlock}(A) \\
 T_2 &: \text{lock}(A) \\
 T_1 &: \text{unlock}(B) \\
 T_2 &: \text{unlock}(B)
 \end{align*}
 \]
Locking and serializability

- Precedence graph: for each operation T_i: unlock(A), locate the following T_j: lock(A) statement, and put an edge from T_i to T_j.
- Conflict-serializability with locking: a schedule is conflict-serializable if the precedence graph does not have cycles.

- Precedence graphs:

 ![Diagram for S1]

 - Hence S_1 is conflict-serializable, S_2 is not.
Locking and serializability cont’d

- A conflict-serializable schedule of lock-unlock operations ensures a conflict-serializable schedule of read-write operations:

\[
\begin{align*}
T_2 & \quad \text{lock}(A) \\
T_2 & \quad \text{unlock}(A) \\
T_1 & \quad \text{lock}(B) \\
T_1 & \quad \text{unlock}(B) \\
T_2 & \quad \text{lock}(B) \\
T_2 & \quad \text{unlock}(B)
\end{align*}
\rightarrow
\begin{align*}
T_1 & \quad \text{read}(B) \\
T_1 & \quad \text{write}(B)
\end{align*}
\rightarrow
\begin{align*}
T_2 & \quad \text{read}(A) \\
T_2 & \quad \text{write}(A)
\end{align*}
Two-phase locking

- A protocol which guarantees conflict-serializable schedule
- Used in most commercial DBMSs
- Each transaction has two phases:
 - **Growing phase**: a transaction may request new locks, but may not release any locks
 - **Shrinking phase**: a transaction may release locks, but may not request any locks
- That is, after transaction released a lock, it may not request any new locks
- Main property of two-phase locking:

 A schedule S in which every transaction satisfies the two-phase locking protocol is conflict-serializable
Two-phase locking and serializability: proof

Assume that every transaction conforms to the two-phase locking protocol (or: is a 2PL transaction)

Assume S is not serializable, and the precedence graph contains a cycle:

\[T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow \ldots \rightarrow T_k \rightarrow T_1 \]

Trace the cycle:

- T_1 locks and unlocks something
- T_2 locks and unlocks something
- ...
- T_k locks and unlocks something
- T_1 locks and unlocks something

Then T_1 locks some data item after it released a lock, and hence it is not 2PL.
Two-phase locking and serializability cont'd

- The result is best possible
- For any non-2PL transaction T, there is a 2PL transaction T' and a schedule S for T, T' that is not serializable.

- Idea:

<table>
<thead>
<tr>
<th>T</th>
<th>T'</th>
</tr>
</thead>
<tbody>
<tr>
<td>lock(A)</td>
<td>lock(A)</td>
</tr>
<tr>
<td>unlock(A)</td>
<td>lock(B)</td>
</tr>
<tr>
<td>lock(B)</td>
<td>unlock(A)</td>
</tr>
<tr>
<td>unlock(B)</td>
<td>unlock(B)</td>
</tr>
</tbody>
</table>

Schedule:

- T lock(A), unlock(A)
- T' all operations
- T lock(B), unlock(B)

- This schedule is not serializable.
2PL in practice

• Majority of commercial DBMSs implement some form of 2PL

• Rigorous 2PL: all locks must be held until the transaction commits

• Two types of locks:
 - Exclusive: the transaction can both read and write the data item
 - Shared: the transaction can only read the data item

• At most one transaction can possess an exclusive lock for a data item at any given time, but several transactions can possess a shared lock

• Strict 2PL: all exclusive locks taken by the transaction must be held until it commits

• Strict and rigorous 2PL are the most common concurrency control mechanisms
Deadlocks

<table>
<thead>
<tr>
<th>time</th>
<th>(T_1)</th>
<th>(T_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lock(A)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>lock(B)</td>
</tr>
<tr>
<td>3</td>
<td>lock(B)</td>
<td>now (T_1) waits for (T_2) to unlock B</td>
</tr>
<tr>
<td>4</td>
<td>lock(A)</td>
<td>now (T_2) waits for (T_1) to unlock A</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Deadlock:** \(T_1 \) waits for \(T_2 \), \(T_2 \) waits for \(T_1 \)
- **In general,** there is a set of transactions \(T_1, \ldots, T_k \) such that:
 - \(T_1 \) waits for \(T_2 \)
 - \(T_2 \) waits for \(T_3 \)
 - ...
 - \(T_k \) waits for \(T_1 \)
Dealing with deadlocks

- Two main mechanisms: prevention and detection
- Prevention: find a concurrency control mechanism which ensures that there is no “waits-for” cycle
- Simple deadlock prevention: each transaction locks all data items before it starts execution. Such a locking constitutes one step.
- Disadvantage: data utilization is very low
- Another approach: use preemption. If T_1 has a lock on A, and T_2 requests it, then the system has three choices:
 - let T_2 wait, or
 - roll back T_1 and grant the lock to T_2, or
 - roll back T_2
Deadlock prevention cont’d

• The decision is based on *timestamps*, that say how old transactions are.

• Timestamp: the time when transaction started its execution. The larger the timestamp, the younger the transaction.

• Example: the *wound-wait* scheme. If T_1 requests a lock held by T_2, then T_1 waits if T_1 is younger than T_2. Otherwise T_2 is rolled back.

• The *wait-die* scheme. If T_1 requests a lock held by T_2, then T_1 waits if T_1 is older than T_2. Otherwise T_1 is rolled back.

• Issue: starvation may occur. Some transactions may never commit, as they keep being rolled back.
Deadlock detection and recovery

- The *wait-for* graph. Nodes are transactions. There is an edge from T to T' if T' waits for T to release a lock.
- There is a deadlock if there is a cycle in the wait-for graph.
- Deadlock recovery: identify a minimal set of transactions such that rolling them back will make the wait-for graph cycle-free.

\[\text{DEADLOCK} \quad \text{AFTER DELETING T2}\]