
SQL: Advanced concepts

• Incomplete information

◦ dealing with null values

◦ Outerjoins

• Recursion in SQL99

• Interaction between SQL and a programming language

◦ embedded SQL

◦ dynamic SQL

Database Systems 1 L. Libkin

Incomplete Information: Null Values

• How does one deal with incomplete information?

• Perhaps the most poorly designed and the most often criticized part of
SQL:

“... [this] topic cannot be described in a manner that is simulta-
neously both comprehensive and comprehensible.”

“... those SQL features are not fully consistent; indeed, in some
ways they are fundamentally at odds with the way the world be-
haves.”

“A recommendation: avoid nulls.”

“Use [nulls] properly and they work for you, but abuse them,
and they can ruin everything”

Database Systems 2 L. Libkin

Theory of incomplete information

• What is incomplete information?

• Which relational operations can be evaluated correctly in the presence
of incomplete information?

• What does “evaluated correctly” mean?

Incomplete information in SQL

• Simplifies things too much.

• Leads to inconsistent answers.

• But sometimes nulls are extremely helpful.

Database Systems 3 L. Libkin

Sometimes we don’t have all the information

Movies

Title Director Actor

Dr. Strangelove Kubrick Sellers
Dr. Strangelove Kubrick Scott

null Polanski Nicholson
null Polanski Huston

Star Wars Lucas Ford
Frantic null Ford

• What could null possibly mean? There are three possibilities:

• Value exists, but is unknown at the moment.

• Value does not exist.

• There is no information.

Database Systems 4 L. Libkin

Representing relations with nulls: Codd tables

• In Codd tables, we put distinct variables for null values:

T1

Title Director Actor

Dr. Strangelove Kubrick Sellers
Dr. Strangelove Kubrick Scott

x Polanski Nicholson
y Polanski Huston

Star Wars Lucas Ford
Frantic z Ford

• Semantics of a Codd table T is the set POSS(T) of all tables without
nulls it can represent.

• That is, we substitute values for all variables.

Database Systems 5 L. Libkin

Tables in POSS(T1)

The following tables are all in POSS(T1) is the set of all relations it can
represent. Examples:

Title Director Actor

Dr. Strangelove Kubrick Sellers

Dr. Strangelove Kubrick Scott

Star Wars Polanski Nicholson

Titanic Polanski Huston

Star Wars Lucas Ford

Frantic Cameron Ford

Title Director Actor

Dr. Strangelove Kubrick Sellers

Dr. Strangelove Kubrick Scott

Titanic Polanski Nicholson

Titanic Polanski Huston

Star Wars Lucas Ford

Frantic Lucas Ford

Title Director Actor

Dr. Strangelove Kubrick Sellers

Dr. Strangelove Kubrick Scott

Chinatown Polanski Nicholson

Chinatown Polanski Huston

Star Wars Lucas Ford

Frantic Polanski Ford

Database Systems 6 L. Libkin

Querying Codd tables

• Suppose Q is a relational algebra, or SQL query, and T is a Codd table.
What is Q(T)?

• We only know how to apply Q to usual relations, so we can find:

Q̂(T) = {Q(R) | R ∈ POSS(T)}

• If there were a Codd table T ′ such that POSS(T ′) = Q̂(T), then we
would say that T ′ is Q(T). That is,

POSS(Q(T)) = {Q(R) | R ∈ POSS(T)}

• Question: Can we always find such a table T ′?

Database Systems 7 L. Libkin

Representation systems

• Semantically correct way of answering queries over tables:
R1

R2

R3

Q Q(R1)

Q(R2)

Q(R3)

POSS POSS

T T’....
....

T’ = Q(T)

• Question: can we always find Q(T) for every T , and every Q in a query
language?

• Bad news: This is not possible even for very simple relational algebra
queries.

Database Systems 8 L. Libkin

Selection and Codd tables

Table: T =
A B
0 1
x 2

Query: Q = σA=3(T)

Suppose there is T ′ such that POSS(T ′) = {Q(R) | R ∈ POSS(T)}.
Consider:

R1 =
A B
0 1
2 2

and R2 =
A B
0 1
3 2

and

Q(R1) = ∅, Q(R2) = {(3, 2)}, and hence T ′ cannot exist, because

∅ ∈ POSS(T ′) if and only if T ′ = ∅

Database Systems 9 L. Libkin

What can one do?

• Idea #1: consider certain answers.

• A tuple t is in the certain answer to Q on T1, . . . , Tn if it is in

Q(R1, . . . , Rn) for all R1 ∈ POSS(T1), . . . , Rn ∈ POSS(Tn)

• Idea #2: extend Codd tables by adding constraints on null values (e.g.,
some must be equal, some cannot be equal, etc).

• Combining these ideas makes it possible to evaluate queries with in-
complete information.

• However, evaluation algorithms, and – more importantly – query results,
are often completely incomprehensible.

Database Systems 10 L. Libkin

Incomplete information in SQL

• SQL approach: there is a single general purpose NULL for all cases of
missing/inapplicable information

• Nulls occur as entries in tables; sometimes they are displayed as null,
sometimes as ’–’

• They immediately lead to comparison problems

• The union of
SELECT * FROM R WHERE R.A=1 and
SELECT * FROM R WHERE R.A<>1 should be the same as
SELECT * FROM R.

• But it is not.

• Because, if R.A is null, then neither R.A=1 nor R.A<>1 evaluates to
true.

Database Systems 11 L. Libkin

Nulls cont’d

• R.A has three values: 1, null, and 2.

• SELECT * FROM R WHERE R.A=1 returns
A
1

• SELECT * FROM R WHERE R.A<>1 returns
A
2

• How to check = null? New comparison: IS NULL.

• SELECT * FROM R WHERE R.A IS NULL returns
A

null

• SELECT * FROM R is the union of
SELECT * FROM R WHERE R.A=1,
SELECT * FROM R WHERE R.A<>1, and
SELECT * FROM R WHERE R.A IS NULL.

Database Systems 12 L. Libkin

Nulls and other operations

• What is 1+null? What is the truth value of ’3 = null’?

• Nulls cannot be used explicitly in operations and selections: WHERE R.A=NULL

or SELECT 5-NULL are illegal.

• For any arithmetic, string, etc. operation, if one argument is null, then
the result is null.

• For R.A={1,null}, S.B={2},

SELECT R.A + S.B

FROM R, S

returns {3, null}.

• What are the values of R.A=S.B? When R.A=1, S.B=2, it is false.
When R.A=null, S.B=2, it is unknown.

Database Systems 13 L. Libkin

The logic of nulls

• How does unknown interact with Boolean connectives? What is NOT
unknown? What is unknown OR true?

•

x NOT x

true false
false true
unknown unknown

•

AND true false unknown
true true false unknown
false false false false
unknown unknown false unknown

•

OR true false unknown
true true true true
false true false unknown
unknown true unknown unknown

• Problem with null values: people rarely think in three-valued logic!

Database Systems 14 L. Libkin

Nulls and aggregation

• Be ready for big surprises!

SELECT * FROM R

A

1

-

SELECT COUNT(*) FROM R

returns 2

SELECT COUNT(R.A) FROM R

returns 1

Database Systems 15 L. Libkin

Nulls and aggregation

• One would expect nulls to propagate through arithmetic expressions

• SELECT SUM(R.A) FROM R is the sum

a1 + a2 + . . . + an

of all values in column A; if one is null, the result is null.

• But SELECT SUM(R.A) FROM R returns 1 if R.A={1,null}.

• Most common rule for aggregate functions:

first, ignore all nulls,

and then compute the value.

• The only exception: COUNT(*).

Database Systems 16 L. Libkin

Nulls in subqueries: more surprises

• R1.A = {1,2} R2.A = {1,2,3,4}

• SELECT R2.A

FROM R2

WHERE R2.A NOT IN (SELECT R1.A

FROM R1)

• Result: {3,4}

• Now insert a null into R1: R1.A = {1,2, null}
and run the same query.

• The result is ∅!

Database Systems 17 L. Libkin

Nulls in subqueries cont’d

• Although this result is counterintuitive, it is correct.

• What is the value of 3 NOT IN (SELECT R1.A FROM R1)?

3 NOT IN {1,2,null}
= NOT (3 IN {1,2,null})
= NOT((3 = 1) OR (3=2) OR (3=null))

= NOT(false OR false OR unknown)

= NOT (unknown)

= unknown

• Similarly, 4 NOT IN {1,2,null} evaluates to unknown, and 1 NOT

IN {1,2,null}, 2 NOT IN {1,2,null} evaluate to false.

• Thus, the query returns ∅.

Database Systems 18 L. Libkin

Nulls in subqueries cont’d

• What is a correct result of “theoretical” evaluation of queries with
incomplete information?

• The result of

SELECT R2.A

FROM R2

WHERE R2.A NOT IN (SELECT R1.A

FROM R1)

would look like

A condition
3 x = 0
4 x 6= 0
3 y = 0
4 y = 0

Database Systems 19 L. Libkin

Nulls could be dangerous!

• Imagine US national missile defense system, with the database of missile
targeting major cities, and missiles launched to intercept those.

• Query: Is there a missile targeting US that is not being intercepted?

SELECT M.#, M.target

FROM Missiles M

WHERE M.target IN (SELECT Name

FROM USCities) AND

M.# NOT IN (SELECT I.Missile

FROM Intercept I

WHERE I.Status = ’active’)

• Assume that a missile was launched to intercept, but its target wasn’t
properly entered in the database.

Database Systems 20 L. Libkin

Nulls could be dangerous!

•
Missile Intercept

Target
M1 A
M2 B
M3 C

I# Missile Status
I1 M1 active
I2 null active

• {A, B, C} are in USCities

• The query returns the empty set:
M2 NOT IN {M1, null} and M3 NOT IN {M1, null}

evaluate to unknown.

• although either M2 or M3 is not being intercepted!

• Highly unlikely? Probably (and hopefully). But never forget what
caused the Mars Climate Orbiter to crash!

Database Systems 21 L. Libkin

SQL and nulls: a simple solution

• In CREATE TABLE, use not null:

create table <name> (...

<attr> <type> not null,

...)

Database Systems 22 L. Libkin

When nulls are helpful: outerjoins

• Example:
Studio Film

Name Title
’United’ ’Licence to kill’
’United’ ’Rain man’

’Dreamworks’ ’Gladiator’

Title Gross
’Licence to kill’ 156

’Rain man’ 412
’Fargo’ 25

• Query: for each studio, find the total gross of its movies:

SELECT Studio.Name, SUM(Film.Gross)

FROM Studio NATURAL JOIN Film

GROUP BY Studio.Name

• Answer: (’United’, 568)

• But often we want (’Dreamworks’, ...) as well!

• ’Dreamworks’ is lost because ’Gladiator’ doesn’t match anything in
Film.

Database Systems 23 L. Libkin

Outerjoins

• What if we don’t want to lose ’Dreamworks’?

• Use outerjoins:

SELECT Studio.Name, SUM(Film.Gross)

FROM Studio NATURAL LEFT OUTER JOIN Film

GROUP BY Studio.Name

• Result: (’United’, 568), (’Dreamworks’, null)

• Studio NATURAL LEFT OUTER JOIN Film is:
Name Title Gross

’United’ ’Licence to kill’ 156
’United’ ’Rain man’ 412

’Dreamworks’ ’Gladiator’ null

Database Systems 24 L. Libkin

Other outerjoins

• Studio NATURAL RIGHT OUTER JOIN Film is:
Name Title Gross

’United’ ’Licence to kill’ 156
’United’ ’Rain man’ 412

null ’Fargo 25

• Studio NATURAL FULL OUTER JOIN Film is:
Name Title Gross

’United’ ’Licence to kill’ 156
’United’ ’Rain man’ 412

’Dreamworks’ ’Gladiator’ null
null ’Fargo 25

• Idea: we perform a join, but keep tuples that do not match, padding
them with nulls.

Database Systems 25 L. Libkin

Outerjoins cont’d

• In R NATURAL LEFT OUTER JOIN S,
we keep non-matching tuples from R

(that is, the relation on the left).

• In R NATURAL RIGHT OUTER JOIN S,
we keep non-matching tuples from S

(that is, the relation on the right).

• In R NATURAL FULL OUTER JOIN S,
we keep non-matching tuples from both R and S

(that is, from both relations).

Database Systems 26 L. Libkin

Outerjoin and aggregation

• Warning: if you use outerjoins in aggregate queries, you get null values
as results of all aggregates except COUNT

CREATE VIEW V (B1, B2) AS

SELECT Studio.Name, Film.Gross

FROM Studio NATURAL LEFT OUTER JOIN Film

SELECT * FROM V

Returns

B1 B2
’Dreamworks’ null

’United’ 156
’United’ 412

• SELECT B1, SUM(B2) FROM V GROUP BY B1

returns (’Dreamworks, null), (’United’, 568).

• SELECT B1, COUNT(B2) FROM V GROUP BY B1

returns (’Dreamworks, 0), (’United’, 2).

Database Systems 27 L. Libkin

Outerjoins cont’d

• Some systems don’t like the keyword NATURAL and would only let you
do

R NATURAL LEFT/RIGHT/FULL OUTER JOIN S

ON condition

• Example:

SELECT *

FROM Studio LEFT OUTER JOIN Film ON

Studio.Title=Film.Title

• Result:
Name Title Title Gross

’United’ ’Licence to kill’ ’Licence to kill’ 156
’United’ ’Rain man’ ’Rain man’ 412

’Dreamworks’ ’Gladiator’ null null

Database Systems 28 L. Libkin

Limitations of SQL

• Reachability queries:

Flights Src Dest
’EDI’ ’LHR’
’EDI’ ’EWR’
’EWR’ ’LAX’
· · · · · ·

• Query: Find pairs of cities (A, B) such that one can fly from A to B

with at most one stop:

SELECT F1.Src, F2.Dest

FROM Flights F1, Flights F2

WHERE F1.Dest=F2.Src

UNION

SELECT * FROM Flights

Database Systems 29 L. Libkin

Reachability queries cont’d

• Query: Find pairs of cities (A, B) such that one can fly from A to B

with at most two stops:

SELECT F1.Src, F3.Dest

FROM Flights F1, Flights F2, Flights F3

WHERE F1.Dest=F2.Src AND F2.Dest=F3.Src

UNION

SELECT F1.Src, F2.Dest

FROM Flights F1, Flights F2

WHERE F1.Dest=F2.Src

UNION

SELECT * FROM Flights

Database Systems 30 L. Libkin

Reachability queries cont’d

• For any fixed number k, we can write the query

Find pairs of cities (A, B) such that one can fly from A to B

with at most k stops

in SQL.

• What about the general reachability query:

Find pairs of cities (A, B) such that one can fly from A to B.

• SQL cannot express this query.

• Solution: SQL3 adds a new construct that helps express reachability
queries. (May not yet exist in some products.)

Database Systems 31 L. Libkin

Reachability queries cont’d

• To understand the reachability query, we formulate it as a rule-based
query:

reach(x, y) :– flights(x, y)
reach(x, y) :– flights(x, z), reach(z, y)

• One of these rules is recursive: reach refers to itself.

• Evaluation:

- Step 0: reach0 is initialized as the empty set.

- Step i + 1: Compute

reach i+1(x, y) :– flights(x, y)
reach i+1(x, y) :– flights(x, z), reach i(z, y)

- Stop condition: If reach i+1 = reach i, then it is the answer to the
query.

Database Systems 32 L. Libkin

Evaluation of recursive queries

• Example: assume that flights contains (a, b), (b, c), (c, d).

• Step 0: reach = ∅

• Step 1: reach becomes {(a, b), (b, c), (c, d)}.

• Step 2: reach becomes {(a, b), (b, c), (c, d), (a, c), (b, d)}.

• Step 3: reach becomes {(a, b), (b, c), (c, d), (a, c), (b, d), (a, d)}.

• Step 4: one attempts to use the rules, but infers no new values for
reach. The final answer is thus:

{(a, b), (b, c), (c, d), (a, c), (b, d), (a, d)}

Database Systems 33 L. Libkin

Recursion in SQL3

• SQL3 syntax mimics that of recursive rules:

WITH RECURSIVE Reach(Src,Dest) AS

(

SELECT * FROM Flights

UNION

SELECT F.Src, R.Dest

FROM Flights F, Reach R

WHERE F.Dest=R.Src

)

SELECT * FROM Reach

Database Systems 34 L. Libkin

Recursion in SQL3: syntactic restrictions

• There is another way to do reachability as a recursive rule-based query:

reach(x, y) :– flights(x, y)
reach(x, y) :– reach(x, z), reach(z, y)

• This translates into an SQL3 query:

WITH RECURSIVE Reach(Src,Dest) AS

(SELECT * FROM Flights

UNION

SELECT R1.Src, R2.Dest

FROM Reach R1, Reach R2

WHERE R1.Dest=R2.Src)

SELECT * FROM Reach

• However, most implementations will disallow this, since they support
only linear recursion: recursively defined relation is only mentioned
once in the FROM line.

Database Systems 35 L. Libkin

Recursion in SQL3 cont’d

• A slight modification: suppose Flights has another attribute aircraft.

• Query: find cities reachable from Edinburgh.

WITH Cities AS SELECT Src,Dest FROM Flights

RECURSIVE Reach(Src,Dest) AS

(

SELECT * FROM Cities

UNION

SELECT C.Src, R.Dest

FROM Cities C, Reach R

WHERE C.Dest=R.Src

)

SELECT R.Dest

FROM Reach R

WHERE R.Src=’EDI’

Database Systems 36 L. Libkin

A note on negation

• Problematic recursion:

WITH RECURSIVE R(A) AS

(SELECT S.A

FROM S

WHERE S.A NOT IN

SELECT R.A FROM R)

SELECT * FROM R

• Formulated as a rule:

r(x) :– s(x),¬r(x)

Database Systems 37 L. Libkin

A note on negation cont’d

• Let s contain {1, 2}.

• Evaluation:

After step 0: r0 = ∅;

After step 1: r1 = {1, 2};

After step 2: r2 = ∅;

After step 3: r3 = {1, 2};

· · ·

After step 2n: r2n = ∅;

After step 2n + 1: r2n+1 = {1, 2}.

• Problem: it does not terminate!

• What causes this problem? Answer: Negation (that is, NOT IN).

Database Systems 38 L. Libkin

A note on negation cont’d

• Other instances of negation:

EXCEPT

NOT EXISTS

• SQL3 has a set of very complicated rules that specify when the above
operations can be used in WITH RECURSIVE definitions.

• A general rule: it is best to avoid negation in recursive queries.

Database Systems 39 L. Libkin

SQL in the Real World

• SQL is good for querying, but not so good for complex computational
tasks. It is not very good for displaying results nicely.

• Moreover, queries and updates typically occur inside complex compu-
tations, for which SQL is not a suitable language.

• Thus, one most often runs SQL queries from host programming lan-
guages, and then processes the results.

• One approach: extend SQL.
SQL3 can do many queries that SQL2 couldn’t do. But sometimes one
still needs to do some operations in a programming language.

• SQL offers two flavors of communicating with a PL:

embedded SQL,

dynamic SQL.

• Basic rule: if you know SQL, and you know the programming language,
then you know embedded/dynamic SQL.

Database Systems 40 L. Libkin

SQL and programming languages cont’d

• Most languages provide an interface for communicating with a DBMS
(Ada, C, Java, Cobol, etc).

• These interfaces differ in details, but conceptually they follow the same
model.

• We learn this model using C as the host language.

• Examples of difference: SQL statements start and end with

EXEC SQL and ; in C

EXEC SQL and END-EXEC in Cobol

• SQLSTATE variable: the state of the database after each operation.
It is

char, length 6 in C,

character, length 5 in Fortran,

array [1..5] of char in Pascal

Database Systems 41 L. Libkin

SQL/C interface

• DBMS tells the host language what the state of the database is via a
special variable called SQLSTATE

• In C, it is commonly declared as char SQLSTATE[6].

• Two most important values:

’00000’ means “no error”

’02000’ means: “requested tuple not found’.

The latter is used to break loops.

• Why 6 characters? Because in C we commonly use the function strcmp
to compare strings, which expects the last symbol to be ’\0’. Thus
we declare char SQLSTATE[6] and initially set the 6th character to
’\0’.

Database Systems 42 L. Libkin

SQL/C interface: declarations

• To declare variables shared between C and SQL, one puts them between

EXEC SQL BEGIN DECLARE SECTION

and

EXEC SQL END DECLARE SECTION

• Each variable var declared in this section will be referred to as :var
in SQL queries.

• Example:

EXEC SQL BEGIN DECLARE SECTION;

char title[20], theater[20];

int showtime;

char SQLSTATE[6];

EXEC SQL END DECLARE SECTION

Database Systems 43 L. Libkin

Simple insertions

• With these declarations, we can write a program that prompts the user
for title, theater, and showtime, and inserts a tuple into Schedule.

• void InsertIntoSchedule() {

/* declarations from the previous slide */

/* your favorite routine for asking the user for

3 values: two strings and one integer.

those are put in title, theater, showtime */

EXEC SQL INSERT INTO Schedule

VALUES (:theater, :title, :showtime);

}

• Note how we use variables in the SQL statement:
:theater instead of theater etc.

Database Systems 44 L. Libkin

Simple lookups

• Task: prompt the user for theater and showtime, and return the title
(if it can be found), but only if it is a movie directed by Spielberg.

• void FindTitle() {

EXEC SQL BEGIN DECLARE SECTION;

char th[20], tl[20];

int s;

char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

/* get the values of theater and showtime

and put them in variables th and s */

Database Systems 45 L. Libkin

Simple lookups cont’d

EXEC SQL SELECT title

INTO :tl

FROM Schedule S, Movies M

WHERE S.title = M.title AND

M.director = ’Spielberg’ AND

S.showtime = :s;

if (strcmp(SQLSTATE,"02000") != 0)

printf("title = %s\n", tl)

else printf("no title found\n");

}

• The comparison strcmp(SQLSTATE,"02000") checks if the DBMS
responded by saying ’no tuples found’. Otherwise there was a tuple,
containing the value of title, and we print it.

Database Systems 46 L. Libkin

Single-value queries

• Those often involve aggregation.

• How many movies were directed by a given director?

int count_movies (char director[20]) {

EXEC SQL BEGIN DECLARE SECTION;

char dir[20], SQLSTATE[6];

int m_count;

EXEC SQL END DECLARE SECTION;

for (i=0; i<20; ++i) dir[i]=director[i];

EXEC SQL SELECT COUNT(DISTINCT Title)

INTO :m_count

FROM Movies

WHERE Director = :dir;

if (strcmp(SQLSTATE, "00000") != 0)

{printf("error\n"); m_count = 0};

return m_count;

}

Database Systems 47 L. Libkin

Cursors

• Single-tuple insertions or selections are rare when one deals with DBMSs:
SQL is designed to operate with tables.

• However, programming languages operate with variables, not tables.

• Mechanism to connect them: cursors.

• Cursor allows a program to access a table, one row at a time.

• A cursor can be declared for a table in the database, or the result of a
query.

• Variables from a program can be used in queries for which cursors are
declared if they are preceded by a colon.

Database Systems 48 L. Libkin

Operators on cursors

• Cursors first must be declared.

• For a table:

EXEC SQL DECLARE C_movies CURSOR FOR Movies;

• For a query:

EXEC SQL DECLARE C_th CURSOR FOR

SELECT S.theater

FROM Schedule S, Movies M

WHERE S.title = M.title

• For a query that depends on a parameter:

EXEC SQL DECLARE C_th_dir CURSOR FOR

SELECT S.theater

FROM Schedule S, Movies M

WHERE S.title = M.title and M.director = :dir;

Database Systems 49 L. Libkin

Operations on cursors

• Open cursor:

EXEC SQL OPEN C_movies;

EXEC SQL OPEN C_th_dir;

• The effect of opening a cursor: it points at the first tuple in the table
(in this case, either the first tuple of Movies), or the first tuple of the
result of

EXEC SQL DECLARE C_th_dir CURSOR FOR

SELECT S.theater

FROM Schedule S, Movies M

WHERE S.title = M.title and M.director = :dir;

• Close cursor:

EXEC SQL CLOSE C_movies;

Database Systems 50 L. Libkin

Operations on cursors cont’d

• Fetch – retrieves the value of the current tuple and and assigns fields
to variables from the host language.

• Syntax:

EXEC SQL FETCH <cursor> INTO <variables>

• Examples:

EXEC SQL FETCH C_th_dir INTO :th;

fetches the current value of theater to which the cursor C_th_dir

points, puts the value in th, and moves the cursor to the next position.

• If there are multiple fields:

EXEC SQL FETCH C_Movies INTO :tl, :dir, :act, :length;

Fetches the current (tl, dir, act, length) tuple from Movies,
and moves to the next tuple.

Database Systems 51 L. Libkin

Operations on cursors cont’d

• Other flavors of FETCH:

◦ FETCH NEXT: move to the next tuple after fetching the values. This
is the default, NEXT can be omitted.

◦ FETCH PRIOR: move to the prior tuple after fetching the values.

◦ FETCH FIRST or FETCH LAST: get the first, or the last tuple.

◦ FETCH RELATIVE <number>: says by how many tuples to move
forward (if the number is positive) or backwards (if negative).
RELATIVE 1 is the same NEXT, and RELATIVE -1 is the same
PRIOR.

◦ FETCH ABSOLUTE <number>: says which tuple to fetch. ABSOLUTE
1 is the same FIRST, and ABSOLUTE -1 is the same LAST.

Database Systems 52 L. Libkin

Using cursors: Example

Prompt the user for a director, and show the first five theaters playing the
movies of that director.

void FindTheaters() {

int i;

EXEC SQL BEGIN DECLARE SECTION;

char dir[20], th[20], SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

/* somewhere here we got the value for dir *?

EXEC SQL DECLARE C_th_dir CURSOR FOR

SELECT S.theater

FROM Schedule S, Movies M

WHERE S.title = M.title and M.director = :dir;

Database Systems 53 L. Libkin

Using cursors: Example

EXEC SQL OPEN C_th_dir;

i=0;

while (i < 5) {

EXEC SQL FETCH C_th_dir into :th;

if (NO_MORE_TUPLES) break;

else printf("theater\t%s\n", th);

++i;

}

EXEC SQL CLOSE C_th_dir;

}

What is NO_MORE_TUPLES? A common way to define it is:

#define NO_MORE_TUPLES !(strcmp(SQLSTATE,"02000"))

Database Systems 54 L. Libkin

Using cursors for updates

• We consider the following problem. Suppose some lengths of Movies
are entered as hours (e.g, 1.5, 2.5), and some as minutes (e.g, 90, 150).
We want all to be uniform, say, minutes.

• We assume that no movie is shorter than 5 minutes or longer than 5
hours, so if the length is less than 5, that’s an indication that some
modification needs to be done.

• Furthermore, we want to delete all movies that run between 4 and 5
hours.

void ChangeTime() {

EXEC SQL BEGIN DECLARE SECTION;

char tl[20], dir[20], act[20], SQLSTATE[6];

float length;

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE C_Movies CURSOR FOR Movies;

Database Systems 55 L. Libkin

Using cursors for updates cont’d

EXEC SQL OPEN C_movies;

while(1) {

EXEC SQL FETCH C_Movies INTO

:tl, :dir, :act, :length;

if (NO_MORE_TUPLES) break;

if ((length > 4 && length < 5) ||

(length > 240 && length < 300))

EXEC SQL DELETE FROM Movies

WHERE CURRENT OF C_Movies;

if (length <= 4)

EXEC SQL UPDATE Movies

SET Length = 60.0 * Length

WHERE CURRENT OF C_Movies;

}

EXEC SQL CLOSE C_Movies;

}

Database Systems 56 L. Libkin

Other embedded SQL statements

• Connecting to a database:

strcpy(db_name, "my-database");

EXEC SQL CONNECT TO :db_name;

• If user names and passwords are required, use:
EXEC SQL CONNECT TO :db_name USER :userid USING :passwd;

• Disconnecting:
EXEC SQL CONNECT RESET;

• Save all changes made by the program:
EXEC SQL COMMIT;

• Rollback (for unsuccessful termination):
EXEC SQL ROLLBACK;

Database Systems 57 L. Libkin

Dynamic SQL

• Programs can construct and submit SQL queries at runtime

• Often used for updating databases

• General idea:

◦ First, an SQL statement is given as a string, with some placeholders
for values not yet known.

◦ When those values become known, a query is formed, and

◦ when it’s time, it gets executed.

• Example: a company that fires employees by departments.
First, start getting ready:

sqldelete = "delete from Empl where dept = ?";

EXEC SQL PREPARE dynamic_delete FROM :sqldelete;

Database Systems 58 L. Libkin

Dynamic SQL cont’d

• At some later point, the value of the unlucky department becomes
known and put in bad_dept. Then one can use:

EXEC SQL EXECUTE dynamic_delete USING :bad_dept;

• May be executed more than once:

EXEC SQL EXECUTE dynamic_delete USING :another_bad_dept;

• Immediate execution:

SQLstring = "delete from Empl where dept=’CEO’";

EXEC SQL EXECUTE IMMEDIATE :SQLstring;

Database Systems 59 L. Libkin

Dynamic and Embedded SQL together

• One can declare cursors for prepared queries:

my_sql_query = "SELECT COUNT(DISTINCT Title) \

FROM Movies \

WHERE Director = ?";

EXEC SQL PREPARE Q1 FROM :my_sql_query;

EXEC SQL DECLARE c1 CURSOR FOR Q1;

/* get value of dir */

EXEC SQL OPEN c1 USING :dir;

EXEC SQL FETCH c1 INTO :count_movies;

EXEC SQL CLOSE c1;

• The same operation can be repeated for different values of dir.

Database Systems 60 L. Libkin

More than one user

• So far we assumed that there is only one user. In reality this is not
true.

• While a cursor is open on a table, some other user could modify that
table. This could lead to problems.

• One way of addressing this: insensitive cursors.

EXEC SQL DECLARE C1

INSENSITIVE CURSOR FOR

SELECT Title, Director

FROM Movies

• This guarantees that if someone modifies Movies while C1 is open, it
won’t affect the set of fetched tuples.

• This is a very expensive solution and is not used very often.

Database Systems 61 L. Libkin

Problems with more than one user

• We have a bank database, with a table Account, one attribute being
balance.

• The following is a function that transfers money from one account to
another. It must enforce the rule that one cannot transfer more money
than the balance on the account.

EXEC SQL BEGIN DECLARE SECTION;

int acct_from, acct_to, balance1, amount;

char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

void Transfer() {

/* we ask the user to enter

acct_from, acct_to, amount */

Database Systems 62 L. Libkin

Problems with more than one user

EXEC SQL SELECT balance INTO :balance1

FROM Account

WHERE account_id = :acct_from;

if (balance1 < amount)

printf("Insufficient amount in account %d\n", acct_from)

else {

EXEC SQL UPDATE Account

SET balance = balance + :amount

WHERE account_id = :acct_to;

EXEC SQL UPDATE Account

SET balance = balance - :amount

WHERE account_id = :acct_from;

}

}

Database Systems 63 L. Libkin

Problems with more than one user

• Assume that acct_to and acct_from are joint accounts, with two
people being authorized to do transfers.

• Let acct_from have $1000. Suppose both users try to transfer $1000
from this account.

• Sequence of events:

◦ User 1 initiates a transfer. Condition is checked and the first UPDATE
statement is executed.

◦ User 2 initiates a transfer. Condition is checked, and met, since
the second UPDATE statement from the first transfer hasn’t been
executed yet. Now both UPDATE statements are executed.

◦ User 1’s transfer operation is finished.

• acct_from has balance −$1000, despite an apparent safeguard against
a situation like this.

Database Systems 64 L. Libkin

Transactions and atomicity

• Why did this happen?

• Because the operation wasn’t executed atomically.

• Transaction: a group of statements that are executed atomically on a
database.

• Declaration sections, and connecting to a database, do not start a
transaction.

• A transaction starts when the first statement accessing a row in a
database is executed (e.g., OPEN CURSOR).

• Normally, a transaction ends with the last statement of the program,
but one can end it explicitly by either
EXEC SQL COMMIT; or
EXEC SQL ROLLBACK;

Database Systems 65 L. Libkin

Transactions and atomicity cont’d

• We revisit the Transfer() function.

• Transaction starts with

EXEC SQL SELECT balance INTO :balance1

FROM Account

WHERE account_id = :acct_from;

• To ensure that the problems with concurrent execution do not occur,
one can state

EXEC SQL SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

• The meaning of this will become clear when we study transaction pro-
cessing.

• Fortunately, this is the default, and the statement is not necessary.

Database Systems 66 L. Libkin

Transactions and atomicity cont’d

• If the test (balance1 < amount) is true, we may prefer to abort the
transaction:

if (balance1 < amount) {

printf("Insufficient amount in account %d\n", acct_from);

EXEC SQL ROLLBACK;

}

• If there is sufficient amount of funds, we can put after UPDATE state-
ments

EXEC SQL COMMIT;

to indicate successful completion.

Database Systems 67 L. Libkin

Transactions and isolation

• Isolation means that to the user it must appear as if no other transac-
tions were running. The basic level of isolation is

EXEC SQL SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

• There are others, that have to do with dirty reads.

• Dirty read: read data modified by another transaction, but not yet
committed.

• One can explicitly specify

SET TRANSACTION [READ ONLY | READ WRITE]

ISOLATION LEVEL READ [COMMITTED | UNCOMMITTED]

• READ ONLY or READ WRITE specify whether transaction can write data
(READ WRITE is the default and can be omitted).

• COMMITTED indicates that dirty reads are not allowed (only committed
data can be read).

Database Systems 68 L. Libkin

Dealing with errors

• SQL92 standard specifies a structure SQLCA (SQL Communication Area)
that needs to be declared by
EXEC SQL INCLUDE SQLCA;

• The main parameter is sqlca.sqlcode, where 0 indicates success.

• SQL99 eliminates SQLCA, and many programs have the following struc-
ture:

...

EXEC SQL CONNECT TO...

EXEC SQL WHENEVER SQLERROR goto do_rollback;

while (1) {

/* loop over tuples */

/* operations that assume successful execution */

continue;

do_rollback:

EXEC SQL ROLLBACK; /* other operations, e.g. printing */

}

EXEC SQL DISCONNECT CURRENT;

Database Systems 69 L. Libkin

SQL injection

• One has to be very careful using embedded/dynamic SQL, especially
with user inputs, as users can, maliciously or inadvertently, enter data
that will change the meaning of the program.

• Problem with escape characters: program to be executed is defined as
a string

"SELECT * FROM Students WHERE id =’ " + st_id + "’;"

• User enters st_id to be the string ’ or ’1’=’1

• The program becomes

"SELECT * FROM Students WHERE id =’’ or ’1’=’1’;"

• With any student id, it gives the list of all student ids, clearly a security
breach.

Database Systems 70 L. Libkin

SQL injection cont’d

• Typing issues: not checking types correctly. Use a similar program:

"SELECT * FROM Students WHERE id =" + st_id + ";"

• User enters st_id as a string

1; DROP TABLE Students

• Result:

"SELECT * FROM Students WHERE id =1; DROP TABLE Students;"

• Very undesirable effect.

• If you fail a course, don’t legally change your name to

1; DROP TABLE Grades

Database Systems 71 L. Libkin

