
Database Constraints and Design

• We know that databases are often required to satisfy some integrity

constraints.

• The most common ones are functional and inclusion dependencies.

• We’ll study properties of integrity constraints.

• We show how they influence database design, in particular, how they
tell us what type of information should be recorded in each particular
relation

Database Systems 1 L. Libkin

Review: functional dependencies and keys

• A functional dependency is X → Y where X,Y are sequences of
attributes. It holds in a relation R if for every two tuples t1, t2 in R:

πX(t1) = πX(t2) implies πY (t1) = πY (t2)

• A very important special case: keys

• Let K be a set of attributes of R, and U the set of all attributes of
R. Then K is a key if R satisfies functional dependency K → U .

• In other words, a set of attributes K is a key in R if for any two tuples
t1, t2 in R,

πK(t1) = πK(t2) implies t1 = t2

• That is, a key is a set of attributes that uniquely identify a tuple in a
relation.

Database Systems 2 L. Libkin

Problems

• Good constraints vs Bad constraints: some constraints may be unde-
sirable as they lead to problems.

• Implication problem: Suppose we are given some constraints. Do they
imply others?

This is important, as we never get the list of all constraints that hold
in a database (such a list could be very large, or just unknown to the
designer).

It is possible that all constraints given to us look OK, but they imply
some bad constraints.

• Axiomatization of constraints: a simple way to state when some con-
straints imply others.

Database Systems 3 L. Libkin

Bad constraints: example

DME Dept Manager Employee
D1 Smith Jones
D1 Smith Brown
D2 Turner White
D3 Smith Taylor
D4 Smith Clarke
...

ES Employee Salary
Jones 10
Brown 20
White 20

... ...

• Functional dependencies

• in DME: Dept → Manager, but none of the following:

Dept → Employee

Manager → Dept

Manager → Employee

• in ES: Employee → Salary (Employee is a key for ES)

but not Salary → Employee

Database Systems 4 L. Libkin

Update anomalies

• Insertion anomaly: A company hires a new employee, but doesn’t
immediately assign him/her to a department. We cannot record this
fact in relation DME.

• Deletion anomaly: Employee White leaves the company. We have
to delete a tuple from DME. But this results in deleting manager Turner
as well, even though he hasn’t left!

• Reason for anomalies: the association between managers and employees
is represented in the same relation as the association between managers
and departments. Furthermore, the same fact (a department D is man-
aged by M) could be represented more than once.

• Putting this into the language of functional dependencies: we have a
dependency Dept → Manager, but Dept is not a key.

• In general, one tries to avoid situations like this.

Database Systems 5 L. Libkin

dependencies and implication

• Suppose we have relation R with 3 attributes A, B, C

• Someone tells us that R satisfies A → B and B → {A, C}.

• This looks like the bad case before: we have A → B that does not
mention C.

• But A is a key: if πA(t1) = πA(t2), then πB(t1) = πB(t2), and since
B is a key, t1 = t2.

• Thus, even though we did not have information that A is a key, we
were able to derive it, as it is implied by other dependencies.

• Using implication, we can find all dependencies and figure out if there
is a problem with the design.

Database Systems 6 L. Libkin

Implication for functional dependencies

• Normally we try to find nontrivial dependencies

A trivial dependency is X → Y with Y ⊆ X

• Suppose we are given a set U of attributes of a relation, a set F of
functional dependencies (FDs), and a FD f over U .

• F implies f , written
F ⊢ f

if for every relation over attributes U , if R satisfies all FDs in F , then
it is the case that it also satisfies f .

• Problem: Given U and F , find all nontrivial FDs f such that F ⊢ f .

Database Systems 7 L. Libkin

Implication for functional dependencies cont’d

• Closed set with respect to F : a subset V of U such that, for every
X → Y in F ,

if X ⊆ V , then Y ⊆ V

• Property of FDs: For every set V , there exists a unique set CF (V),
called the closure of V with respect to F , such that

CF (V) is closed

V ⊆ CF (V)

For every closed set W , V ⊆ W implies CF (V) ⊆ W .

• Solution to the implication problem:

A FD X → Y is implied by F
if and only if
Y ⊆ CF (X)

Database Systems 8 L. Libkin

Implication and closure

• To solve the implication problem, it suffices to find closure of each set
of attributes.

• A naive approach to finding CF (X): check all subsets V ⊆ U , verify
is they are closed, and select the smallest closed set containing X .

• Problem: this is too expensive.

• If U has n elements and X has m < n elements, then there are 2n−m

subsets of U that contain V .

• But there is a very fast, O(n), algorithm to compute CF (X).

• We will see a very simple O(n2) algorithm instead.

Database Systems 9 L. Libkin

Implication and closure cont’d

Algorithm CLOSURE

Input: a set F of FDs, and a set X
Output: CF (X)

1. unused := F
2. closure := X
3. repeat until no change:

if Y → Z ∈ unused and Y ⊆ closure then
(i) unused := unused −{Y → Z}
(ii) closure := closure ∪Z

4. Output closure.

Homework: Prove that CLOSURE returns CF (X)
and that its running time is O(n2).

Database Systems 10 L. Libkin

Properties of the closure

• X ⊆ CF (X)

• X ⊆ Y implies CF (X) ⊆ CF (Y)

• CF (CF (X)) = CF (X)

Database Systems 11 L. Libkin

Closure: Example

• Common practice: write sets as AB for {A, B}, BC for {B, C} etc

• U = {A, B,C}, F = {A → B,B → AC}

• Closure:

CF (∅) = ∅

CF (C) = C

CF (B) = ABC

hence CF (X) = ABC for any X that contains B

CF (A) = ABC

hence CF (X) = ABC for any X that contains A

Database Systems 12 L. Libkin

Keys, candidate keys, and prime attributes

• A set X of attributes is a key with respect to F if X → U is implied
by F

• That is, X is a key if CF (X) = U

• In the previous example: any set containing A or B is a key.

• Candidate keys: smallest keys. That is, keys X such that for each
Y ⊂ X , Y is not a key.

• In the previous example: A and B.

• Suppose U has n attributes. What is the maximum number of candi-
date keys?

answer:

(

n
⌊n/2⌋

)

and that’s very large: 252 for n = 10, > 180, 000 for n = 20

• Prime attribute: an attribute of a candidate key.

Database Systems 13 L. Libkin

Inclusion dependencies

• Functional and inclusion dependencies are the most common ones en-
countered in applications

• Reminder: R[A1, . . . , An] ⊆ S[B1, . . . , Bn] says that for any tuple t in
R, there is a tuple t′ in S such that

πA1,...,An(t) = πB1,...,Bn(t
′)

• Suppose we have a set of relation names and inclusion dependencies
(IDs) between them. Can we derive all IDs that are valid?

• Formally, let G be a set of IDs and g and ID. We say that G implies
g, written

G ⊢ g

if any set of relations that satisfies all IDs in G, also satisfied g.

• The answer is positive, just as for FDs.

Database Systems 14 L. Libkin

Implication of inclusion dependencies

• There are simple rules:

• R[A] ⊆ R[A]

•
if R[A1, . . . , An] ⊆ S[B1, . . . , Bn]

then R[Ai1, . . . , Ain] ⊆ S[Bi1, . . . , Bin]

where {i1, . . . , in} is a permutation of {1, . . . , n}.

•

if R[A1, . . . , Am, Am+1, . . . , An] ⊆ S[B1, . . . , Bm, Bm+1, . . . , Bn]

then R[A1, . . . , Am] ⊆ S[B1, . . . , Bm]

• if R[X] ⊆ S[Y] and S[Y] ⊆ T [Z] then R[X] ⊆ T [Z]

Database Systems 15 L. Libkin

Implication of inclusion dependencies

• An ID g is implied by G iff it can be derived by repeated application of
the four rules shown above

• This immediately gives an expensive algorithm: apply all the rules until
none are applicable.

• It turns out that the problem is inherently hard; no reasonable algorithm
for solving it will ever be found

• But an important special case admits efficient solution

• Unary IDs: those of the form R[X] ⊆ S[Y]

• Implication G ⊢ g can be tested in polynomial time for unary IDs

Database Systems 16 L. Libkin

Functional and inclusion dependencies

• In majority of applications, one has to deal with only two kinds of
dependencies: FDs and IDs

• Implication problem can be solved for FDs and IDs.

• Can it be solved for FDs and IDs together?

• That is, given a set of FDs F and a set of IDs G, a FD f and an ID
g. Can we determine if

F ∪ G ⊢ f
F ∪ G ⊢ g

• That is, any database that satisfies F and G, must satisfy f (or g).

• It turns out that no algorithm can possibly solve this problem.

Database Systems 17 L. Libkin

Even more restrictions

• Relations are typically declared with just primary keys

• Inclusion dependencies typically occur in foreign key declarations

• Can implication be solved algorithmically for just primary keys and for-
eign keys?

• The answer is still NO.

• Thus, it is hard to reason about some of the most common classes of
constraints found in relational databases.

Database Systems 18 L. Libkin

When is implication solvable for FDs and IDs?

• Recall: an ID is unary if it is of the form R[X] ⊆ S[Y].

• Implication can be tested for unary IDs and arbitrary FDs

• Moreover, it can be done in polynomial time.

• However, the algorithm for doing this is quite complex.

Database Systems 19 L. Libkin

Dependencies: summary

• FDs: X → Y

• Keys: X → U , where U is the set of all attributes of a relation.

• Candidate key: a minimal key X ; no subset of X is a key.

• Inclusion dependency: R[A1, . . . , An] ⊆ S[B1, . . . , Bn] (unary if n = 1)

• Foreign key: R[A1, . . . , An] ⊆ S[B1, . . . , Bn] and {B1, . . . , Bn} is a
key

• Implication problem:

easy for FDs alone

hard but solvable for IDs alone

solvable by a complex algorithm for FDs and unary IDs

unsolvable for FDs and IDs, and even

unsolvable for primary keys and foreign keys

Database Systems 20 L. Libkin

Database Design

• Finding database schemas with good properties

• Good properties:

no update anomalies

no redundancies

no information loss

• Input: list of all attributes and constraints (usually functional depen-
dencies)

• Output: list of relations and constraints they satisfy

Database Systems 21 L. Libkin

Example: bad design

• Attributes: Title, Director, Theater, Address, Phone, Time, Price

• Constraints:

FD1 Theater → Address, Phone
FD2 Theater, Time, Title → Price
FD3 Title → Director

• Bad design: put everything in one relation

BAD[Title, Director, Theater, Address, Phone, Time, Price]

Database Systems 22 L. Libkin

Why is BAD bad?

• Redundancy: many facts are repeated

• Director is determined by Title

For every showing, we list both director and title

• Address is determined by Theater

For every movie playing, we repeat the address

• Update anomalies:

• If Address changes in one tuple, we have inconsistency, as it must be
changed in all tuples corresponding to all movies and showtimes.

• If a movie stops playing, we lose association between Title and Director

• Cannot add a movie before it starts playing

Database Systems 23 L. Libkin

Good design

• Split BAD into 3 relations:

Relational Schema GOOD:

Table attributes constraints

T1 Theater, Address, Phone FD1: Theater → Address, Phone
T2 Theater, Title, Time, Price FD2: Theater, Time, Title → Price
T3 Title, Director FD3: Title → Director

Database Systems 24 L. Libkin

Why is GOOD good?

• No update anomalies:

Every FD defines a key

• No information loss:

T1 = πTheater,Address,Phone(BAD)

T2 = πTheater,Title,Time,Price(BAD)

T3 = πTitle,Director(BAD)

BAD = T1 1 T2 1 T3

• No constraints are lost

FD1, FD2, FD3 all appear as constraints for T1, T2, T3

Database Systems 25 L. Libkin

Boyce-Codd Normal Form (BCNF)

• What causes updates anomalies?

• Functional dependencies X → Y where X is not a key.

• A relation is in Boyce-Codd Normal Form (BCNF) if for every nontrivial
FD X → Y , X is a key.

• A database is in BCNF if every relation in it is in BCNF.

Database Systems 26 L. Libkin

Decompositions: Criteria for good design

Given a set of attributes U and a set F of functional dependencies, a
decomposition of (U,F) is a set

(U1, F1), . . . , (Un, Fn)

where Ui ⊆ U and Fi is a set of FDs over attributes Ui.

A decomposition is called:

• BCNF decomposition if each (Ui, Fi) is in BCNF.

Database Systems 27 L. Libkin

Decompositions: Criteria for good design cont’d

• lossless if for every relation R over U that satisfies all FDs in F ,

each πUi
(R) satisfies Fi and

R = πU1(R) 1 πU2(R) 1 . . . 1 πUn(R)

• Dependency preserving if

F and F ∗ =
⋃

i

Fi

are equivalent.

That is, for every FD f ,

F ⊢ f ⇔ F ∗ ⊢ f

or
∀X ⊆ U CF (X) = CF ∗(X)

Database Systems 28 L. Libkin

Projecting FDs

• Let U be a set of attributes and F a set of FDs

• Let V ⊆ U

• Then

πV (F) = {X → Y | X, Y ⊆ V, Y ⊆ CF (X)}

• In other words, these are all FDs on V that are implied by F :

πV (F) = {X → Y | X,Y ⊆ V, F ⊢ X → Y }

• Even though as defined πV (F) could be very large, it can often be
compactly represented by a set F ′ of FDs on V such that:

∀X,Y ⊆ V : F ′ ⊢ X → Y ⇔ F ⊢ X → Y

Database Systems 29 L. Libkin

Decomposition algorithm

Input: A set U of attributes and F of FDs
Output: A database schema S = {(U1, F1), . . . , (Un, Fn)}

1. Set S:={(U,F)}
2. While S is not in BCNF do:

(a) Choose (V, F ′) ∈ S not in BCNF
(b) Choose nonempty disjoint X,Y, Z such that:

(i) X ∪ Y ∪ Z = V
(ii) Y = CF ′(X) − X
(that is, F ′ ⊢ X → Y and F ′ 6⊢ X → A for all A ∈ Z)

(c) Replace (V, F ′) by

(X ∪ Y, πX∪Y (F ′)) and (X ∪ Z, πX∪Z(F ′))

(d) If there are (V ′, F ′) and (V ′′, F ′′) in S with V ′ ⊆ V ′′

then remove (V ′, F ′)

Database Systems 30 L. Libkin

Decomposition algorithm: example

Consider BAD[Title, Director, Theater, Address, Phone, Time, Price]

and constraints FD1, FD2, FD3.

Initialization: S =(BAD, FD1, FD2, FD3)

While loop

• Step 1: Select BAD; it is not in BCNF because
Theater → Address, Phone
but Theater 6→ Title, Director, Time, Price

Our sets are:
X = {Theater}, Y = {Address, Phone},
Z = { Title, Director, Time, Price}

Database Systems 31 L. Libkin

Decomposition algorithm: example cont’d

• Step 1, cont’d

πX∪Y ({FD1,FD2,FD3}) = FD1
πX∪Z({FD1,FD2,FD3}) = {FD2, FD3}

Thus, after the first step we have two schemas:

S1 = ({Theater, Address, Phone}, FD1)
S ′

1 = ({Theater, Title, Director, Time, Price}, FD2, FD3)

• Step 2: S1 is in BCNF, there is nothing to do.

S ′
1 is not in BCNF: Title is not a key.

Let X = {Title}, Y = {Director}, Z = {Theater, Time, Price}

πX∪Y ({FD1,FD2,FD3}) = FD3
πX∪Z({FD1,FD2,FD3}) = FD2

Database Systems 32 L. Libkin

Decomposition algorithm: example cont’d

• After two steps, we have:

S1 = ({Theater, Address, Phone}, FD1)
S2 = ({Theater,Title, Time, Price}, FD2)
S3 = ({Title, Director}, FD3)

• S1, S2, S3 are all in BCNF, this completes the algorithm.

Database Systems 33 L. Libkin

Properties of the decomposition algorithm

• For any relational schema, the decomposition algorithm yields a new
relational schema that is:

in BCNF, and

lossless

• However, the output is not guaranteed to be dependency preserving.

Database Systems 34 L. Libkin

Surprises with BCNF

• Example: attributes Theater (th), Screen (sc), Title (tl), Snack (sn),
Price (pr)

• Two FDs

Theater, Screen → Title
Theater, Snack → Price

• Decomposition into BCNF: after one step

(th, sc, tl; th, sc → tl), (th, sc, sn, pr; th, sn → pr)

• After two steps:

(th, sc, tl; th, sc → tl), (th, sn, pr; th, sn → pr), (th, sc, sn; ∅)

• The last relation looks very unnatural!

Database Systems 35 L. Libkin

Surprises with BCNF cont’d

• The extra relation (th, sc, sn; ∅) is not needed

• Why? Because it does not add any information

• All FDs are accounted for, so are all attributes, as well as all tuples

• BCNF tells us that for any R satisfying the FDs:

R = πth,sc,tl(R) 1 πth,sn,pr(R) 1 πth,sc,sn(R)

• However, in out case we also have

R = πth,sc,tl(R) 1 πth,sn,pr(R)

• This follows from the intuitive semantics of the data.

• But what is there in the schema to tell us that such an equation holds?

Database Systems 36 L. Libkin

Multivalued dependencies

• Tell us when a relation is a join of two projections

• A multivalued dependency (MVD) is an expression of the form

X →→ Y

where X and Y are sets of attributes

• Given a relation R on the set of attributes U , MVD X →→ Y holds in
it if

R = πXY (R) 1 πX(U−Y)(R)

• Simple property: X → Y implies X →→ Y

• Another definition: R satisfies X →→ Y if for every two tuples t1, t2
in R with πX(t1) = πX(t2), there exists a tuple t with

πXY (t) = πXY (t1)
πX(U−Y)(t) = πX(U−Y)(t2)

Database Systems 37 L. Libkin

MVDs and decomposition

• If a relation satisfies a nontrivial MVD X →→ Y and X is not a key,
it should be decomposed into relations with attribute sets XY and
X(U − Y).

• Returning to the example, assume that we have a MVD

Theater →→ Screen

• Apply this to the “bad” schema (th, sc, sn; ∅) and obtain

(th, sc; ∅) (th, sn; ∅)

• Both are subsets of already produced schemas and can be eliminated.

• Thus, the FDs plus Theater →→ Screen give rise to decomposition

(th, sc, tl; th, sc → tl), (th, sn, pr; th, sn → pr)

Database Systems 38 L. Libkin

4th Normal Form (4NF)

• Decompositions like the one just produced are called 4th Normal Form

decompositions

• They can only be produced in the presence of MVDs

• Formally, a relation is in 4NF if for any nontrivial MVD X →→ Y ,
either X ∪ Y = U , or X is a key.

• Since X → Y implies X →→ Y , 4NF implies BCNF

• General rule: if BCNF decomposition has “unnatural relations”, try to
use MVDs to decompose further into 4NF

• A useful rule: any BCNF schema that has one key that consists of a
single attribute, is in 4NF

• Warning: the outcome of a decomposition algorithm may depend on
the order in which constraints are considered.

Database Systems 39 L. Libkin

BCNF and dependency preservation

• Schema Lecture[C(lass), P(rofessor), T(ime)]

• Set of FDs F = {C → P, PT → C}

• (Lectures, F) not in BCNF: C → P ∈ F , but C is not a key.

• Apply BCNF decomposition algorithm: X = {C}, Y = {P}, Z =
{T}

• Output: ({C,P}, C → P), ({C, T}, ∅)

• We lose PT → C!

• In fact, there is no relational schema in BCNF that is equivalent to
Lectures and is lossless and dependency preserving.

• Proof: there are just a few schemas on 3 attributes ... check them all
... exercise!

Database Systems 40 L. Libkin

Third Normal Form (3NF)

• If we want a decomposition that guarantees losslessness and dependency
preservation, we cannot always have BCNF

• Thus we need a slightly weaker condition

• Recall: a candidate key is a key that is not a subset of another key

• An attribute is prime if it belongs to a candidate key

• Recall (U,F) is in BCNF if for any FD X → A, where A 6∈ X is an
attribute, F ⊢ X → A implies that X is a key

• (U,F) is in the third normal form (3NF) if for any FD X → A, where
A 6∈ X is an attribute, F ⊢ X → A implies that one of the following
is true:

- either X is a key, or

- A is prime

Database Systems 41 L. Libkin

Third Normal Form (3NF) cont’d

• Main difference between BCNF and 3NF: in 3NF non-key FDs are OK,
as long as they imply only prime attributes

• Lectures[C, P, T], F = {C → P, PT → C} is in 3NF:

• PT is a candidate key, so P is a prime attribute.

• More redundancy than in BCNF: each time a class appears in a tuple,
professor’s name is repeated.

• We tolerate this redundancy because there is no BCNF decomposition.

Database Systems 42 L. Libkin

Decomposition into third normal form: covers

• Decomposition algorithm needs a small set that represents all FDs in a
set F

• Such a set is called minimal cover. Formally:

• F ′ is a cover of F iff CF = CF ′. That is, for every f ,

F ⊢ f ⇔ F ′ ⊢ f

• F ′ is a minimal cover if

F ′ is a cover,

no subset F ′′ ⊂ F ′ is a cover of F ,

each FD in F ′ is of the form X → A, where A is an attribute,

For X → A ∈ F ′ and X ′ ⊂ X , A 6∈ CF (X ′).

Database Systems 43 L. Libkin

Decomposition into third normal form: covers cont’d

• A minimal cover is a small set of FDs that give us all the same infor-
mation as F .

• Example: let

{A → AB, A → AC, A → B,A → C,B → BC}

• Closure:

CF (A) = ABC,

CF (B) = BC,

CF (C) = C, and hence:

• Minimal cover: A → B,B → C

Database Systems 44 L. Libkin

Decomposition into third normal form: algorithm

Input: A set U of attributes and F of FDs
Output: A database schema S = {(U1, F1), . . . , (Un, Fn)}

Step 1. Find a minimal cover F ′ of F .

Step 2. If there is X → A in F ′ with XA = U , then output (U,F ′).

Otherwise, select a key K, and output:

2a) (XA,X → A) for each X → A in F ′, and
2b) (K, ∅)

Database Systems 45 L. Libkin

Decomposition into third normal form: example

• F = {A → AB, A → AC, A → B,A → C, B → BC}

• F ′ = {A → B,B → C}

• A is a key, so output:

(A, ∅), (AB,A → B), (BC,B → C)

• Simplification: if one of attribute-sets produced in 2a) is a key, then
step 2b) is not needed

• Hence the result is:

(AB, A → B), (BC,B → C)

• Other potential simplifications: if we have (XA1, X → A1), . . . ,
(XAk, X → Ak) in the output, they can be replaced by
(XA1 . . . Ak, X → A1 . . . Ak)

Database Systems 46 L. Libkin

3NF cont’d

• Properties of the decomposition algorithm: it produces a schema which
is

in 3NF

lossless, and

dependency preserving

• Complexity of the algorithm?

• Given the a minimal cover F ′, it is linear time. (Why?)

• But how hard is it to find a minimal cover?

• Naive approach: try all sets F ′, check if they are minimal covers.

• This is too expensive (exponential); can one do better?

• There is a polynomial-time algorithm. How?

Database Systems 47 L. Libkin

Overview of schema design

• Choose the set of attributes U

• Choose the set of FDs F

• Find a lossless dependency preserving decomposition into:

BCNF, if it exists

3NF, if BCNF decomposition cannot be found

Database Systems 48 L. Libkin

Other constraints

• SQL lets you specify a variety of other constraints:

Local (refer to a tuple)

global (refer to tables)

• These constraints are enforced by a DBMS, that is, they are checked
when a database is modified.

• Local constraints occur in the CREATE TABLE statement and use the
keyword CHECK after attribute declaration:

CREATE TABLE T (...

....

A <type> CHECK <condition>,

B <type> CHECK <condition,

....

)

Database Systems 49 L. Libkin

Local constraints

• Example: the value of attribute Rank must be between 1 and 5:

Rank INT CHECK (1 <= Rank AND Rank <= 5)

• Example: the value of attribute A must be less than 10, and occur as
a value of attribute C of relation R:

A INT CHECK (A IN

SELECT R.C FROM R WHERE R.C < 10)

• Example: each value of attribute Name occurs precisely once as a value
of attribute LastName in relation S:

Name VARCHAR(20) CHECK (1 = SELECT COUNT(*)

FROM S

WHERE Name=S.LastName)

Database Systems 50 L. Libkin

Assertions

• These assert some conditions that must be satisfied by the whole
database.

• Typically assertions say that all elements in a database satisfy certain
condition.

• All salaries are at least 10K:

CREATE ASSERTION A1 CHECK

((SELECT MIN (Empl.Salary) FROM Empl >= 10000))

• Most assertions use NOT EXISTS in them:
SQL way of saying

“every x satisfies F”

is to say

“does not exist x that satisfies ¬F”

Database Systems 51 L. Libkin

Assertions cont’d

• Example: all employees of department ’sales’ have salary at least 20K:

CREATE ASSERTION A2 CHECK

(NOT EXISTS (SELECT * FROM Empl

WHERE Dept=’sales’ AND Salary < 20000))

• All theaters play movies that are at most 3hrs long:

CREATE ASSERTION A2 CHECK

(NOT EXISTS (SELECT * FROM Schedule S, Movies M

WHERE S.Title=M.Title AND M.Length > 180))

Database Systems 52 L. Libkin

Assertions cont’d

• Some assertions use counting. For example, to ensure that table T is
never empty, use:

CREATE ASSERTION T_notempty CHECK

(0 <> (SELECT COUNT(*) FROM T))

• Assertions are not forever: they can be created, and dropped later:

DROP ASSERTION T_nonempty.

Database Systems 53 L. Libkin

Triggers

• They specify a set of actions to be taken if certain event(s) took place.

• Follow the event-condition-action scheme.

• Less declarative and more procedural than assertions.

• Example: If an attempt is made to change the length of a movie, it
should not go through.

CREATE TRIGGER NoLengthUpdate

AFTER UPDATE OF Length ON Movies

REFERENCING

OLD ROW AS OldTuple

NEW ROW AS NewTuple

FOR EACH ROW

WHEN (OldTuple.Length <> NewTuple.Length)

SET Length = OldTuple.Length

WHERE title = NewTuple.title

Database Systems 54 L. Libkin

Analysis of the trigger

• AFTER UPDATE OF Length ON Movies specifies the event: Rela-
tion Movies was modified, and attribute Length changed its value.

• REFERENCING

OLD ROW AS OldTuple

NEW ROW AS NewTuple

says how we refer to tuples before and after the update.

• FOR EACH ROW – the tigger is executed once for each update row.

• WHEN (OldTuple.Length <> NewTuple.Length) – condition for
the trigger to be executed (Lenght changed its value).

• SET Length = OldTuple.Length

WHERE title = NewTuple.title

is the action: Lenght must be restored to its previous value.

Database Systems 55 L. Libkin

Another trigger example

• Table Empl(emp_id,rank,salary)

• Requirement: the average salary of managers should never go below
$100,000.

• Problem: suppose there is a complicated update operation that affects
many tuples. It may initially decrease the average, and then increase it
again. Thus, we want the trigger to run after all the statements of the
update operation have been executed.

• Hence, FOR EACH ROW trigger cannot work here.

Database Systems 56 L. Libkin

Another trigger example cont’d

Trigger for the previous example:

CREATE TRIGGER MaintainAvgSal

AFTER UPDATE OF Salary ON Empl

REFERENCING

OLD TABLE AS OldTuples

NEW TABLE AS NewTuples

FOR EACH STATEMENT

WHEN (100000 > (SELECT AVG(Salary)

FROM Empl WHERE Rank=’manager’))

BEGIN

DELETE FROM Empl

WHERE (emp_id, rank, salary) in NewTuples;

INSERT INTO Empl

(SELECT * FROM OldTuples)

END;

Database Systems 57 L. Libkin

Analysis of the trigger

• AFTER UPDATE OF Salary ON Empl specifies the event: Relation
Empl was modified, and attribute Salary changed its value.

• REFERENCING

OLD TABLE AS OldTuples

NEW TABLE AS NewTuples

says that we refer to the set of tuples that were inserted into Empl as
NewTuples and to the set of tuples that were deleted from Empl as
OldTuples.

• FOR EACH STATEMENT – the tigger is executed once for the entire
update operation, not once for each updated row.

• WHEN (100000 > (SELECT AVG(Salary)

FROM Empl WHERE Rank=’manager’))

is the condition for the trigger to be executed: after the entire update,
the average Salary of managers is less than $100K.

Database Systems 58 L. Libkin

Analysis of the trigger cont’d

• BEGIN

DELETE FROM Empl

WHERE (emp_id, rank, salary) in NewTuples;

INSERT INTO Empl

(SELECT * FROM OldTuples)

END;

is the action, that consists of two updates between BEGIN and END.

• DELETE FROM Empl

WHERE (emp_id, rank, salary) in NewTuples;

deletes all the tuples that were inserted in the illegal update, and

• INSERT INTO Empl

(SELECT * FROM OldTuples)

re-inserts all the tuples that were deleted in that update.

Database Systems 59 L. Libkin

