
Transactions and Concurrency Control

• Transaction: a unit of program execution that accesses and possibly
updates some data items.

• A transaction is a collection of operations that logically form a single
unit.

• Executing a transaction: either all operations are executed, or none are.

• Each transactions may consist of several steps, some involving I/O
activity, and some CPU activity.

• Moreover, typically several transactions are running on a system; some
are long, some are short.

• This creates an opportunity for concurrent execution. Problem: how
to ensure consistency?

Database Systems 1 L. Libkin

Transaction model

• Operation read(X) – transfers the data item X from the database to
a local buffer belonging to the transaction

• Operation write(X) — transfers the data item X from the local buffer
back to the database

• Example: transfer $100 from account A to account B

read(A);
A := A - 100;
write(A);
read(B);
B := B + 100;
write(B)

• It executes as a single unit: at no point between read(A) and write(B)
can a user query the database, as it might be in an inconsistent state.

Database Systems 2 L. Libkin

ACID properties

• Atomicity: either all operations of a transaction are reflected properly
in the database, or none are.

• Consistency: execution of a transaction in isolation preserves the
consistency of the database.

• Isolation: even though many transactions may run concurrently, the
DBMS ensures that for any two transactions T, T ′, it appears to T

that either T ′ finished before T started, or T ′ started execution after
T finished.

• Durability: after a transaction completes successfully, the changes
it has made persist.

Database Systems 3 L. Libkin

States of a transaction

• Active: it stays in this state while it is executing

• Partially committed: after the final statement has been executed.

• Failed: after the discovery that normal execution cannot proceed.

• Aborted: after it has been rolled back, and the database state restored
to the one prior to the start of the execution.

• Committed: after successful completion.

 ACTIVE

FAILED ABORTED

PARTIALLY

COMMITTED
COMMITTED

Database Systems 4 L. Libkin

Two transactions

• T takes $100 from account A to account B.

• T ′ takes 10% of account A to account B.

• Property of T and T ′: they don’t change A+B.
Money isn’t created, and doesn’t disappear.

T : read(A);
A := A - 100;
write(A);
read(B);
B = B+100;
write(B)

T ′: read(A);
tmp := A*0.1;
A := A - tmp;
write(A);
read(B);
B = B+tmp;
write(B)

Database Systems 5 L. Libkin

Two serial executions: T ; T ′ and T ′; T

T T ′

read(A);
A := A - 100;
write(A);
read(B);
B = B+100;
write(B);

read(A);
tmp := A*0.1;
A := A - tmp;
write(A);
read(B);
B = B+tmp;
write(B);

T ′ T

read(A);
tmp := A*0.1;
A := A - tmp;
write(A);
read(B);
B = B+tmp;
write(B);

read(A);
A := A - 100;
write(A);
read(B);
B = B+100;
write(B);

Database Systems 6 L. Libkin

Transaction invariant

• A+B doesn’t change after T and T ′ execute.

• Assume that both A and B have $1,000.

• Evaluating T ; T ′:

after T : A=900, B=1100.

after T ′: A=810, B=1190.

A+B=2000.

• Evaluating T ′; T :

after T ′: A=900, B=1100

after T : A=800, B=1200.

A+B=2000.

Database Systems 7 L. Libkin

Concurrent execution I

T T ′

read(A);
A := A - 100;
write(A);

read(A);
tmp := A*0.1;
A := A - tmp;
write(A);

read(B);
B = B+100;
write(B);

read(B);
B = B+tmp;
write(B);

Result:
A=810
B=1190
A+B=2000

Database Systems 8 L. Libkin

Concurrent execution II

T T ′

read(A);
A := A - 100;

read(A);
tmp := A*0.1;
A := A - tmp;
write(A);

write(A);
read(B);
B = B+100;
write(B);

read(B);
B = B+tmp;
write(B);

Result:
A=900
B=1200
A+B=2100
We created $100!

Database Systems 9 L. Libkin

Serializability

• Why is schedule I good and schedule II bad?

• Because schedule I is equivalent to a serial execution of T and T ′, and
schedule II is not.

• We formalize this via conflict serializability.

• Transaction scheduling in DBMSs always ensures serializability.

Simplified representation of transactions

• For scheduling, the only important operations are read and write.
What operations are performed on each data item does not affect the
schedule.

• We thus represent transactions by a sequence of read-write opera-
tions, assuming that between each read(A) and write(A) some com-
putation is done on A.

Database Systems 10 L. Libkin

Simplified representation of transactions cont’d

• Examples of two concurrent executions in the new model:

Schedule I Schedule II

T T ′

read(A);
write(A);

read(A);
write(A);

read(B);
write(B);

read(B);
write(B);

T T ′

read(A);
read(A);
write(A);

write(A);
read(B);
write(B);

read(B);
write(B);

Database Systems 11 L. Libkin

Analyzing conflicts

• Let Op1 and Op2 be two consecutive operations in a schedule.

• Conflict – the order matters:

Op1; Op2 and Op2; Op1

may give us different results.

• If there is no conflict, Op1 and Op2 can be swapped.

• If Op1 and Op2 refer to different data items, they do not cause a conflict,
and can be swapped.

• If they are both operations on the same data item X, then:

if both are read(X), the order does not matter;

if Op1 =read(X), Op2 =write(X), the order matters.

if Op1 =write(X), Op2 =read(X), the order matters.

if Op1 =write(X), Op2 =write(X), the order matters.

Database Systems 12 L. Libkin

Conflict serializability

• Swapping a pair of operations in a schedule is allowed when:

they refer to different data items, or,

they refer to the same data item and are both read operations.

• A schedule is called conflict serializable if it can be transformed
into a serial schedule by a sequence of such swap operations.

Database Systems 13 L. Libkin

Schedule I is conflict serializable

T T ′

read(A);

write(A);
read(A);

write(A);
read(B);
write(B);

read(B);
write(B);

→

T T ′

read(A);

write(A);
read(A);

read(B);
write(A);

write(B);

read(B);
write(B);

→

T T ′

read(A);

write(A);
read(B);

read(A);
write(A);

write(B);

read(B);
write(B);

→

T T ′

read(A);

write(A);
read(B);

read(A);
write(B);

write(A);

read(B);
write(B);

→

T T ′

read(A);

write(A);
read(B);

write(B);
read(A);
write(A);

read(B);
write(B);

Database Systems 14 L. Libkin

Schedule II is not conflict serializable

T T ′

read(A);

read(A);
write(A);

write(A);
read(B);

write(B);
read(B);

write(B);

• In a serial schedule, either:

write(A) by T precedes read(A) by T ′, or

write(A) by T ′ precedes read(A) by T

• But:

write(A) by T cannot be swapped with write(A) by T ′, and

write(A) by T ′ cannot be swapped with read(A) by T

• Hence the schedule is not serializable.

Database Systems 15 L. Libkin

Testing conflict serializability

• Construct the precedence graph of a schedule S

• Nodes: transactions in the system

• Edges: there is an edge

T T ′

✫✪
✬✩

✫✪
✬✩

✲

if T executes an operation Op1 before T ′ executes an operation Op2

such that Op1 and Op2 cannot be swapped.

• That is, one of these conditions holds:

T executes write(X) before T ′ executes read(X)

T executes read(X) before T ′ executes write(X)

T executes write(X) before T ′ executes write(X)

Database Systems 16 L. Libkin

Testing conflict serializability

• Given a schedule S, construct its precedence graph

• If there is an edge T → T ′, then in any serial schedule S ′ equivalent
to S, the transaction T must appear before T ′.

• A schedule S is conflict serializable if and only if its precedence graph
contains no cycles.

• Testing serializability:

Construct the conflict graph

Check if it has cycles

If it doesn’t have cycles, do topological sort

• The result of the topological sort gives an equivalent serial schedule.

• Reminder: a topological sort of an acyclic graph G produces an order
≺ on its nodes consistent with G – if there is an edge from x to y,
then x ≺ y.

Database Systems 17 L. Libkin

Testing conflict serializability: examples

T

T

T’

T’

PRECEDENCE GRAPH FOR SCHEDULE I

PRECEDENCE GRAPH FOR SCHEDULE 2

• Thus, schedule I is conflict serializable, and schedule II is not.

Database Systems 18 L. Libkin

Concurrency control: lock-based protocols

• Main goal of concurrency control: to ensure the isolation property for
concurrently running transactions

• Typically achieved via locks

• Each data item is locked by at most one transaction; while it is locked,
no other transaction has access to it.

• Two new primitives: lock(A) and unlock(A)

• A typical transaction:

. . .

lock(A);
read(A);
. . .

write(A);
unlock(A);
. . .

Database Systems 19 L. Libkin

Locking and serializability

• A new abstract view of transaction: only the order of lock and unlock

operations matters

• If data item A is locked by transaction T , and transaction T ′ issues a
lock(A) command, it must wait until T executes unlock(A).

• New representation of schedules:
Schedule S1 Schedule S2

T2: lock(A) T1: lock(A)
T2: unlock(A) T2: lock(B)
T3: lock(A) T2: unlock(B)
T3: unlock(A) T1: lock(B)
T1: lock(B) T1: unlock(A)
T1: unlock(B) T2: lock(A)
T2: lock(B) T2: unlock(A)
T2: unlock(B) T1: unlock(B)

Database Systems 20 L. Libkin

Locking and serializability

• Precedence graph: for each operation Ti: unlock(A), locate the fol-
lowing Tj: lock(A) statement, and put an edge from Ti to Tj

• Conflict-serializability with locking: a schedule is conflict-serializable if
the precedence graph does not have cycles.

• Precedence graphs:

T1 T2 T3

T1 T2

FOR S

FOR S2

1

• Hence S1 is conflict-serializable, S2 is not.

Database Systems 21 L. Libkin

Locking and serializability cont’d

• A conflict-serializable schedule of lock-unlock operations ensures a
conflict-serializable schedule of read-write operations:

T2 lock(A)
T2 unlock(A)
T1 lock(B)
T1 unlock(B)
T2 lock(B)
T2 unlock(B)

→

T1 T2

read(A)
write(A)

read(B)
write(B)

read(B)
write(B)

→

T1 T2

read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Database Systems 22 L. Libkin

Two-phase locking

• A protocol which guarantees conflict-serializable schedule

• Used in most commercial DBMSs

• Each transaction has two phases:

• Growing phase: a transaction may request new locks, but may not
release any locks

• Shrinking phase: a transaction may release locks, but may not request
any locks

• That is, after transaction released a lock, it may not request any new
locks

• Main property of two-phase locking:

A schedule S in which every transaction satisfies the two-phase
locking protocol is conflict-serializable

Database Systems 23 L. Libkin

Two-phase locking and serializability: proof

Assume that every transaction conforms to the two-phase locking protocol
(or: is a 2PL transaction)

Assume S is not serializable, and the precedence graph contains a cycle:

T1 → T2 → T3 → . . . → Tk → T1

Trace the cycle:

- T1 locks and unlocks something
- T2 locks and unlocks something
- ...
- Tk locks and unlocks something
- T1 locks and unlocks something

Then T1 locks some data item after it released a lock, and hence it is not
2PL.

Database Systems 24 L. Libkin

Two-phase locking and serializability cont’d

• The result is best possible

• For any non-2PL transaction T , there is a 2PL transaction T ′ and a
schedule S for T, T ′ that is not serializable.

• Idea:
T

lock(A)
unlock(A)
lock(B)
unlock(B)

T ′

lock(A)
lock(B)
unlock(A)
unlock(B)

Schedule:

T lock(A), unlock(A)
T ′ all operations
T lock(B), unlock(B)

• This schedule is not serializable.

Database Systems 25 L. Libkin

2PL in practice

• Majority of commercial DBMSs implement some form of 2PL

• Rigorous 2PL: all locks must be held until the transaction commits

• Two types of locks:

Exclusive: the transaction can both read and write the data item

Shared: the transaction can only read the data item

• At most one transaction can possess an exclusive lock for a data item
at any given time, but several transactions can possess a shared lock

• Strict 2PL: all exclusive locks taken by the transaction must be held
until it commits

• Strict and rigorous 2PL are the most common concurrency control
mechanisms

Database Systems 26 L. Libkin

Deadlocks

time T1 T2

1 lock(A)
2 lock(B)
3 lock(B) now T1 waits for T2 to unlock B
4 lock(A) now T2 waits for T1 to unlock A
5

• Deadlock: T1 waits for T2, T2 waits for T1

• In general, there is a set of transactions T1, . . . , Tk such that:

- T1 waits for T2

- T2 waits for T3

- ...

- Tk waits for T1

Database Systems 27 L. Libkin

Dealing with deadlocks

• Two main mechanisms: prevention and detection

• Prevention: find a concurrency control mechanism which ensures that
there is no “waits-for” cycle

• Simple deadlock prevention: each transaction locks all data items be-
fore it starts execution. Such a locking constitutes one step.

• Disadvantage: data utilization is very low

• Another approach: use preemption. If T1 has a lock on A, and T2

requests it, then the system has three choices:

- let T2 wait, or

- roll back T1 and grant the lock to T2, or

- roll back T2

Database Systems 28 L. Libkin

Deadlock prevention cont’d

• The decision is based on timestamps, that say how old transactions
are.

• Timestamp: the time when transaction started its execution. The larger
the timestamp, the younger the transaction.

• Example: the wound-wait scheme. If T1 requests a lock held by T2,
then T1 waits if T1 is younger than T2. Otherwise T2 is rolled back.

• The wait-die scheme. If T1 requests a lock held by T2, then T1 waits
if T1 is older than T2. Otherwise T1 is rolled back.

• Issue: starvation may occur. Some transactions may never commit, as
they keep being rolled back.

Database Systems 29 L. Libkin

Deadlock detection and recovery

• The wait-for graph. Nodes are transactions. There is an edge from T

to T ′ if T ′ waits for T to release a lock.

• There is a deadlock if there is a cycle in the wait-for graph.

• Deadlock recovery: identify a minimal set of transactions such that
rolling them back will make the wait-for graph cycle-free.

T1 T2

T3

T4 T1

T3

T4

DEADLOCK AFTER DELETING T2

Database Systems 30 L. Libkin

Query Processing and Optimization

• Query optimization: finding a good way to evaluate a query

• Queries are declarative, and can be translated into procedural languages
in more than one way

• Hence one has to choose the best (or at least good) procedural query

• This happens in the context of query processing

• A query processor turns queries and updates into sequences of of oper-
ations on the database

Database Systems 31 L. Libkin

Query processing and optimization stages

• Which relational algebra expression, equivalent to a given declarative
query, will lead to the most efficient algorithm?

• For each algebraic operator, what algorithm do we use to compute that
operator?

• How do operations pass data (main memory buffer, disk buffer?)

• We first concentrate the first step: finding efficient relational algebra
expressions

• For the second step, we need to know how data is stored, and how it
is accessed

Database Systems 32 L. Libkin

Overview of query processing

• Start with a declarative query:

SELECT R.A, S.B, T.E

FROM R,S,T

WHERE R.C=S.C AND S.D=T.D AND R.A>5 AND S.B<3 AND T.D=T.E

• Translate into an algebra expression:

πR.A,S.B,T.E(σR.A>5∧S.B<3∧T.D=T.E(R ✶ S ✶ T))

• Optimization step: rewrite to an equivalent but more efficient expres-
sion:

πR.A,S.B,T.E(σA>5(R) ✶ σB<3(S) ✶ σD=E(T)))

• Why is it more efficient?

Because selections are evaluated early, and joined relations are not
as large as R, S, T .

Database Systems 33 L. Libkin

Overview of query processing cont’d

• Evaluating the optimized expression. Choices to make: order of joins.

• Two possible query plans:

R S T

A>5 B<3 D=E

A,B

first joins S, T , and then joins the result with R.

Database Systems 34 L. Libkin

Overview of query processing cont’d

• Another query plan:

R S T

A>5 B<3 D=E

A,B

It first joins S, T , and then joins the result with R.

• Both query plans produce the same result.

• How to choose one?

Database Systems 35 L. Libkin

Optimization by algebraic manipulations

• Given a relational algebra expression e, find another expression e′ equiv-
alent to e that is easier (faster) to evaluate.

• Basic question: Given two relational algebra expressions e1, e2, are they
equivalent?

• This is the same as asking if an expression e always produces the empty
answer:

e1 = e2 ⇔ e1 − e2 = ∅ and e2 − e1 = ∅

• Problem: testing e = ∅ is undecidable for relational algebra expressions.

• Good news:

We can still list some useful equalities, and

It is decidable for very important classes of queries (SPJ queries)

Database Systems 36 L. Libkin

Optimization by algebraic manipulations

• Join and Cartesian product are commutative and associative, hence
they can be applied in any order:

R × S = S × R

R × (S × T) = (R × S) × T

R ✶ S = S ✶ R

R ✶ (S ✶ T) = (R ✶ S) ✶ T

• Cascade of projections. Assume that attributes A1, . . . , An are among
B1, . . . , Bm. Then

πA1,...,An(πB1,...,Bm(E)) = πA1,...,An(E)

• Cascade of selections:

σc1(σc2(E)) = σc1∧c2(E)

Database Systems 37 L. Libkin

Optimization by algebraic manipulations

• Commuting selections and projections. Assume that condition c in-
volves attributes A1, . . . , An, B1, . . . , Bm. Then

πA1,...,An(σc(E)) = πA1,...,An(σc(πA1,...,An, B1,...,Bm(E)))

• A useful special case: if c only involves attributes A1, . . . , An, then

πA1,...,An(σc(E)) = σc(πA1,...,An(E))

• Commuting selection with join. If c only involves attributes from E1,
then

σc(E1 ✶ E2) = σc(E1) ✶ E2

Database Systems 38 L. Libkin

Optimization by algebraic manipulations cont’d

• Let c1 only mention attributes of E1 and c2 only mention attributes of
E2. Then

σc1∧c2(E1 ✶ E2) = σc1(E1) ✶ σc2(E2)

• Because:
σc1∧c2(E1 ✶ E2)

= σc1(σc2(E1 ✶ E2))
= σc1(E1 ✶ σc2(E2))
= σc1(E1) ✶ σc2(E2)

• Another useful rule: If c only mentions attributes present in both E1

and E2, then

σc(E1 ✶ E2) = σc(E1) ✶ σc(E2)

Database Systems 39 L. Libkin

Optimization by algebraic manipulations cont’d

• Rules combining σ, π with ∪ and −

• Commuting selection and union:

σc(E1 ∪ E2) = σc(E1) ∪ σc(E2)

• Commuting selection and difference:

σc(E1 − E2) = σc(E1) − σc(E2)

• Commuting projection and union:

πA1,...,An(E1 ∪ E2) = πA1,...,An(E1) ∪ πA1,...,An(E2)

• Question: what about projection and difference?
Is πA(E1 − E2) equal to πA(E1) − πA(E2)?

Database Systems 40 L. Libkin

Optimization by algebraic manipulations: example

• Recall

πR.A,S.B,T.E(σR.A>5∧S.B<3∧T.D=T.E(R ✶ S ✶ T))

• Optimization: pushing selections

πR.A,S.B,T.E(σR.A>5∧S.B<3∧T.D=T.E(R ✶ S ✶ T))

= πR.A,S.B,T.E(σR.A>5(σS.B<3(σT.D=T.E(R ✶ S ✶ T))))

= πR.A,S.B,T.E(σR.A>5(σS.B<3(R ✶ S ✶ (σT.D=T.E(T)))))

= πR.A,S.B,T.E(σR.A>5(R ✶ σS.B<3(S) ✶ (σT.D=T.E(T))))

= πR.A,S.B,T.E(σA>5(R) ✶ σB<3(S) ✶ σD=E(T)))

Database Systems 41 L. Libkin

Implementation of individual operations

• Depends on access method and file organization

• Suppose EmplId is a key; how long does it take to answer:

σEmplId=1234567(Employee)?

• Time is linear in the worst case

• But one can perform the selection much faster if there is an index on
attribute EmplId

• Index: auxiliary structure that provides fast access to tuples in a table
based on a given key value

• Most common example: B-trees

• With B-trees, the above selection takes O(log n)

Database Systems 42 L. Libkin

Note on indices and SQL

• SQL allows one to create an index on a given attribute or a sequence
of attributes

• Once an index is created, the table can be accessed fast if the values
of index attributes are known

• SQL always creates an index for attributes declared as a primary key of
a table

• Syntax:

CREATE INDEX <Index_Name> ON

<Table_Name>(<attr1>,...,<attrN>)

• Example:

CREATE INDEX EmplIndex ON Employee(EmplId)

Database Systems 43 L. Libkin

Processing individual operators: join

• Join is the costliest operator of relational algebra

• Query: R ✶ S = σR.A=S.A(R × S)

• SELECT R.A, R.B, S.C

FROM R, S

WHERE R.A=S.A

• Naive implementation:

for every tuple t1 in R do
for every tuple t2 in S do

if t1.A=t2.A then output (t1.A,t1.B,t2.C)
end

end

• Time complexity: O(n2)

Database Systems 44 L. Libkin

Join processing

• Assumption: R.A is the primary key of R.

• New O(n log n) algorithm:

Sort R and S on attribute A;
scanS := first tuple in S;
for each tuple t1 in R do

scan S starting from scanS until a tuple
t2 with t2.A ≥ t1.A is found;
if t2.A=t1.A then

while t2.A=t1.A do
if t1.A=t2.A then output (t1.A,t1.B,t2.C);
move to the next tuple t2 of S

end
set scanS := current tuple t2

end

Database Systems 45 L. Libkin

Join processing cont’d

• Previous algorithm can be extended to the case when the common
attributes of R and S do not form a key in either relation

• One uses two pointers then to scan the relations

• Name: Sort-Merge join

• Both algorithms would be implemented differently in practice

• No need to do a new disk read to get each tuple; instead, read one
block at a time

• Complexity of sort-merge join: If the relations are sorted, it requires
BR + BS disk reads, where BR, BS are the numbers of disk blocks in
R, S.

Database Systems 46 L. Libkin

Join processing: hash join

• Reminder: hashing.

• Bucket – a unit of storage that can store one or more tuples. Typically
several disk blocks

• K – a set of search-key values; B – a set of buckets

• Hash function h : K → B

• Good properties: uniform, random distribution

• Example of hashing: first two digits of the student # (assumes 100
buckets)

• Example of bad hashing: (account balance mod 100 000) div 10 000

• Overflows. Reason: bad distribution, insufficient buckets.

• Handling of overflows: a linked list of overflow buckets

Database Systems 47 L. Libkin

Join processing: hash join of R and S

• X - the set of common attributes

• Step 1: Select M , the number of buckets

• Step 2: Select a hash function h on attributes from X :
h : {tuples over X} → {1, . . . ,M}

• Step 3: Partition R and S:

for each t in R do for each t in S do
i := h(t.X) i := h(t.X)
HR

i := HR
i ∪ {t} HS

i := HS
i ∪ {t}

end end

• If there are no overflows, this requires O(BR + BS) I/O operations
(read the relations, and write them back)

• With overflows, one uses recursive partitioning, and then complexity
becomes O(n log n), where n = BR + BS.

Database Systems 48 L. Libkin

Join processing: hash join of R and S

• Assume that the relations are partitioned

• Algorithm:

for i = 1 to M do
read HR

i

read HS
i

add HR
i ✶ HS

i to the output
end

• Why does it work? If two tuples t1 ∈ R, t2 ∈ S match, t1.X = t2.X

and h(t1) = h(t2); hence they are in the same partition class

• Improvements: how does one compute HR
i ✶ HS

i ? One possibility:
use another hash function. If it doesn’t create overflows, the time for
the algorithm is O(BR + BS)

Database Systems 49 L. Libkin

Using hash functions for Boolean operations

• Observe:

R ∩ S = (HR
1 ∩ HS

1) ∪ . . . ∪ (HR
M ∩ HS

M)

• Because: if t ∈ R ∩ S and t ∈ HR
i , then t ∈ HS

i

• Advantage: each tuple t ∈ R must only be compared with HS
h(t), and

not with the whole relation S

• Using hash functions for difference:

for each t in R do
i := h(t)
if t 6∈ HS

i , include t in the output
end

Database Systems 50 L. Libkin

Other operations

• Set union R ∪ S: if no index is needed on the result, just append S to
R

• If index is needed, then do as above, and then build a new index

• Duplicate elimination: On a sorted relation, it takes linear time. Thus,
sort relation R first, based on any attribute(s), and then do one pass
and eliminate duplicate

• Complexity: O(n log n).

• Aggregation with GROUP BY: similarly, sort on the group by attributes,
before computing aggregate functions.

Database Systems 51 L. Libkin

Query processing cont’d

• Find names of theaters that play movies featuring Nicholson

SELECT S.theater

FROM Movies M, Schedule S

WHERE M.title=S.title AND M.actor=’Nicholson’

• Translate into algebra:

πtheater(σactor=′Nicholson′(M ✶ S))

• Next step: choose a query plan

• To do so, use algebraic rewritings to create several equivalent expres-
sions, and then choose algorithms for performing individual operators.

Database Systems 52 L. Libkin

Query processing cont’d

Step 1

M

M M

M.act=’Nicholson’

S.theater

M.act=’Nicholson’

M.title=S.title

X

S.theater

S.theater

M.act=’Nicholson’SS S

PLAN 1 PLAN 2 PLAN 3

Database Systems 53 L. Libkin

Query processing cont’d

Step 2

M

M M

M.act=’Nicholson’

S.theater

M.act=’Nicholson’

M.title=S.title

X

S.theater

S.theater

M.act=’Nicholson’SS S

PLAN 1 PLAN 2 PLAN 3

(hash join) (sort−merge join,
M.title is key)

Database Systems 54 L. Libkin

Query processing cont’d

• Choosing the best plan: cost-based optimization

• Query optimizer estimates the cost of evaluating each plan

• Particularly important: selectivity estimation (how many tuples in σc(E)?)
and join size estimation

• Techniques used: statistics. Sometimes a sampling is done before a
query is processed.

• Problem with cost-based optimization: the set of all query plans is
extremely large; the optimizer cannot try them all

• Another problem: how long can the optimizer run? Hopefully not as
long as the savings it provides.

Database Systems 55 L. Libkin

Join order

• We know that join is commutative and associative.

• How does one evaluate

R1 ✶ R2 ✶ R3 ✶ R4 ✶ R5?

• Possibilities:
(((R1 ✶ R2) ✶ R3) ✶ R4) ✶ R5

(R1 ✶ R2) ✶ (R3 ✶ (R4 ✶ R5))

(R1 ✶ (R3 ✶ R5)) ✶ (R4 ✶ R2)

Database Systems 56 L. Libkin

Join order

R1 R2

R3

R4

R5

R1 R2 R3

R4 R5

• DB2 optimizer only considers deep join orders like the one on the left.

• In general, choosing an optimal join order is computationally hard (usu-
ally NP-complete for reasonable cost measures)

Database Systems 57 L. Libkin

SQL and query optimization

• Query optimizer helps turn your query into a more efficient one, but
you can help the query optimizer do its job better.

• The search space of all possible query plans is extremely large, and
optimizers only run for a short time, and thus may fail to find a good
plan.

• There are several rules that usually ensure a better query plan; however,
a lot depends on a particular system, version, and its optimizers, and
these rules may not be universally applicable. Still, if your query isn’t
running fast enough, it’s worth giving them a try.

Database Systems 58 L. Libkin

Order does matter!

SELECT *

FROM Students

WHERE grade=’A’

AND sex=’female’

is better than

SELECT *

FROM Students

WHERE sex=’female’

AND grade=’A’

• Because usually there are fewer A students than female students.

• Using orders instead of <>

SELECT *

FROM Movies

WHERE Length > 120

OR Length < 120

is better than
SELECT *

FROM Movies

WHERE Length <> 120

• Because the ordered version forces SQL to use an index on Length, if
there is one

• Without such an index, the version with OR runs longer

Database Systems 59 L. Libkin

Provide more JOIN information

• SELECT *

FROM T1, T2, T3

WHERE T1.common = T3.common AND T1.common=T2.common

• SELECT *

FROM T1, T2, T3

WHERE T1.common = T3.common AND T3.common=T2.common

• These may not be as good as

SELECT *

FROM T1, T2, T3

WHERE T1.common = T2.common

AND T2.common = T3.common

AND T3.common = T1.common

Database Systems 60 L. Libkin

Avoid unions if OR is sufficient

SELECT *

FROM Personnel

WHERE location=‘Edinburgh’

UNION

SELECT *

FROM Personnel

WHERE location=’Glasgow’

is not as good as

SELECT DISTINCT*

FROM Personnel

WHERE location=’Edinburgh’

OR location=’Glasgow’

The optimizer normally works within a single SELECT-FROM-WHERE.

Database Systems 61 L. Libkin

Joins are better than nested queries

SELECT S.Theater

FROM Schedule S

WHERE S.Title IN (SELECT M.Title

FROM Movies M

WHERE M.director=’Spielberg’)

is likely to run slower than

SELECT S.Theater

FROM Schedule S, Movies M

WHERE S.Title = M.Title

AND M.director=’Spielberg’

Database Systems 62 L. Libkin

