Transactions and Concurrency Control

e Transaction: a unit of program execution that accesses and possibly
updates some data items.

e A transaction is a collection of operations that logically form a single
unit.

e Executing a transaction: either all operations are executed, or none are.

e Each transactions may consist of several steps, some involving 1/0O
activity, and some CPU activity.

e Moreover, typically several transactions are running on a system; some
are long, some are short.

e This creates an opportunity for concurrent execution. Problem: how
to ensure consistency?

Database Systems 1 L. Libkin

Transaction model

e Operation read(X) — transfers the data item X from the database to
a local buffer belonging to the transaction

e Operation write(X) — transfers the data item X from the local buffer
back to the database

e Example: transfer $100 from account A to account B
read(A);
A = A -100;
write(A);
read(B);
B:= B + 100;
write(B)

e |t executes as a single unit: at no point between read(A) and write(B)
can a user query the database, as it might be in an inconsistent state.

Database Systems 2 L. Libkin

ACID properties

e Atomicity: either all operations of a transaction are reflected properly
in the database, or none are.

e Consistency: execution of a transaction in isolation preserves the
consistency of the database.

e Isolation: even though many transactions may run concurrently, the
DBMS ensures that for any two transactions 71',7T", it appears to T’
that either 7" finished before T started, or T" started execution after
T" finished.

e Durability: after a transaction completes successfully, the changes
it has made persist.

Database Systems 3 L. Libkin

States of a transaction

e Active: it stays in this state while it is executing
o Partially committed: after the final statement has been executed.
e Fuiled: after the discovery that normal execution cannot proceed.

e Aborted: after it has been rolled back, and the database state restored
to the one prior to the start of the execution.

o C'ommatted: after successful completion.

PARTIALLY
COMMITTED
nEemTER

Database Systems 4 L. Libkin

Two transactions

e T takes $100 from account A to account B.
e T’ takes 10% of account A to account B.

e Property of T" and T": they don't change A+B.
Money isn't created, and doesn't disappear.

/. .

T: read(A); 1= read.(A),* _
A— A 100 tmp := A*0.1;
write(A); A o A ’Fmp,
read(B) write(A);

B = B+100; read(B)
. ' B = B+tmp;
write(B) write(B)

Database Systems 5 L. Libkin

Two serial executions: T: 7" and T": T

T T

read(A);

A = A-100;

write(A);

read(B);

B = B+100;

write(B);
read(A);
tmp := A*0.1;
A=A - tmp;
write(A);
read(B);
B = B+tmp;
write(B);

T T

read(A);

tmp := A*0.1;

A=A - tmp;

write(A);

read(B);

B = B+tmp;

write(B);
read(A);
A = A -100;
write(A);
read(B);
B = B+100;
write(B);

Database Systems

L. Libkin

Transaction invariant

e A+B doesn't change after T" and T" execute.
e Assume that both A and B have $1,000.
e Evaluating T"; T":

after T': A=900, B=1100.

after T7": A=810, B=1190.

A+B=2000.

e Evaluating 7", T
after 7": A=900, B=1100
after T': A=800, B=1200.
A-+B=2000.

Database Systems 7 L. Libkin

Concurrent execution |

T T

read(A);

A = A -100;

write(A);
read(A);
tmp := A*0.1;
A=A - tmp;
write(A);

read(B);

B = B+100;

write(B);
read(B);
B = B+tmp;
write(B);

Result:
A=810
B=1190
A+B=2000

Database Systems

L. Libkin

Concurrent execution |l

T T

read(A);

A = A -100;
read(A);
tmp := A*0.1;
A=A - tmp;
write(A);

write(A);

read(B);

B = B+100;

write(B);
read(B);
B = B+tmp;
write(B);

Result:

A=900

B=1200
A+B=2100

We created $100!

Database Systems

L. Libkin

Serializability

e Why is schedule | good and schedule |l bad?

e Because schedule | is equivalent to a serial execution of 7" and 7", and
schedule Il is not.

e We formalize this via conflict serializability.

e Transaction scheduling in DBMSs always ensures serializability.

Simplified representation of transactions

e For scheduling, the only important operations are read and write.
What operations are performed on each data item does not affect the
schedule.

e We thus represent transactions by a sequence of read-write opera-
tions, assuming that between each read(A) and write(A) some com-
putation is done on A.

Database Systems 10 L. Libkin

Simplified representation of transactions cont'd

e Examples of two concurrent executions in the new model:

Schedule |
T T
read(A);
write(A);
read(A);
write(A);
read(B);
write(B);
read(B);
write(B);

Schedule I

T

T/

read(A);

write(A);
read(B);
write(B);

read(A);
write(A);

read(B);
write(B);

Database Systems

11

L. Libkin

Analyzing conflicts

e Let Op; and Opy be two consecutive operations in a schedule.
e Conflict — the order matters:
Opy; Op, and Opy; Op;
may give us different results.
e If there is no conflict, Op; and Opy can be swapped.

e If Op; and Ops, refer to different data items, they do not cause a conflict,
and can be swapped.
e If they are both operations on the same data item X, then:
if both are read(X), the order does not matter;
if Op; =read(X), Op; =write(X), the order matters.
if Op; =write(X), Opy =read(X), the order matters.
if Op; =write(X), Opy =write(X), the order matters.

Database Systems 12 L. Libkin

Conflict serializability

e Swapping a pair of operations in a schedule is allowed when:
they refer to different data items, or,
they refer to the same data item and are both read operations.

e A schedule is called conflict serializable if it can be transformed
into a serial schedule by a sequence of such swap operations.

Database Systems 13 L. Libkin

Schedule | is conflict serializable

T T’ T T’ T T’
read(A); read(A); read(A);
write(A); write(A); write(A);
read(A); read(A); read(B);
write(A); read(B); read(A); —
read(B); write(A); write(A);
write(B); write(B); write(B);
read(B); read(B); read(B);
write(B); write(B); write(B);
T T’ T T’
read(A); read(A);
write(A); write(A);
read(B); read(B);
read(A); write(B);
write(B); read(A);
write(A); write(A);
read(B); read(B);
write(B); write(B);
Database Systems 14 L. Libkin

Schedule |l is not conflict serializable

T T
read(A);

read(A);
write(A);
write(A);
read(B);
write(B);
read(B);
write(B);

e In a serial schedule, either:
write(A) by T precedes read(A) by 77, or
write(A) by T" precedes read(A) by T
e But:
write(A) by T" cannot be swapped with write(A) by 77, and
write(A) by 7" cannot be swapped with read(A) by T

e Hence the schedule is not serializable.

Database Systems 15 L. Libkin

Testing conflict serializability

e Construct the precedence graph of a schedule S
e Nodes: transactions in the system

e Edges: there is an edge

O—@

if T" executes an operation Op; before T” executes an operation Opy
such that Op; and Opy cannot be swapped.

e That is, one of these conditions holds:
T executes write(X) before T" executes read(X)
T executes read(X) before T" executes write(X)

T executes write(X) before 7" executes write(X)

Database Systems 16 L. Libkin

Testing conflict serializability

e Given a schedule S, construct its precedence graph

e If there is an edge T — 1", then in any serial schedule S’ equivalent
to S, the transaction 7" must appear before T".

e A schedule S is conflict serializable if and only if its precedence graph
contains no cycles.
e Testing serializability:
Construct the conflict graph
Check if it has cycles

If it doesn’t have cycles, do topological sort
e The result of the topological sort gives an equivalent serial schedule.

e Reminder: a topological sort of an acyclic graph GG produces an order
< on its nodes consistent with GG — if there is an edge from x to y,
then z < v.

Database Systems 17 L. Libkin

Testing conflict serializability: examples

O
PRECEDENCE GRAPH FOR SCHEDULE |

2N

OO

~_ =7

PRECEDENCE GRAPH FOR SCHEDULE 2

e [hus, schedule | is conflict serializable, and schedule Il is not.

Database Systems 18 L. Libkin

Concurrency control: lock-based protocols

e Main goal of concurrency control: to ensure the isolation property for
concurrently running transactions

e Typically achieved via locks

e Each data item is locked by at most one transaction; while it is locked,
no other transaction has access to it.

e Two new primitives: lock(A) and unlock(A)

e A typical transaction:

lock(A)
read(A);

write(A);
unlock(A);

Database Systems

19

L. Libkin

Locking and serializability

e A new abstract view of transaction: only the order of lock and unlock
operations matters

e If data item A is locked by transaction T', and transaction 7" issues a
lock(A) command, it must wait until 7" executes unlock(A).

e New representation of schedules:

Schedule S Schedule S5

T5: lock(A) T1: lock(A)
T5: unlock(A) T5: lock(B)
T3: lock(A) T5: unlock(B)
T3: unlock(A) T:1: lock(B)
T1: lock(B) T1: unlock(A)
T1: unlock(B) Ts: lock(A)
T5: lock(B) T5: unlock(A)
T5: unlock(B) T1: unlock(B)

Database Systems

20

L. Libkin

Locking and serializability

e Precedence graph: for each operation T;: unlock(A), locate the fol-
lowing T;: lock(A) statement, and put an edge from T; to T

e Conflict-serializability with locking: a schedule is conflict-serializable if
the precedence graph does not have cycles.

e Precedence graphs:

ST

ﬂ
@U@ FOR S2

e Hence Sy is conflict-serializable, S5 is not.

Database Systems 21 L. Libkin

Locking and serializability cont'd

e A conflict-serializable schedule of lock-unlock operations ensures a
conflict-serializable schedule of read-write operations:

Ty 15 T 15
;2 {frfll({) (?12(A) read(A) read(B)
T2 lock(B) write(A) write(B)
Tl unlock(B) — read(B) — read(A)
Tl lock(B) write(B) write(A)
T2 unlock(B) read(B) read(B)
’ write(B) write(B)

Database Systems 22 L. Libkin

Two-phase locking

e A protocol which guarantees conflict-serializable schedule
e Used in most commercial DBMSs
e Each transaction has two phases:

e Growing phase: a transaction may request new locks, but may not
release any locks

e Shrinking phase: a transaction may release locks, but may not request
any locks

e That is, after transaction released a lock, it may not request any new
locks

e Main property of two-phase locking:

A schedule S in which every transaction satisfies the two-phase
locking protocol is conflict-serializable

Database Systems 23 L. Libkin

Two-phase locking and serializability: proof

Assume that every transaction conforms to the two-phase locking protocol
(or: is a 2PL transaction)

Assume S is not serializable, and the precedence graph contains a cycle:
T — 15— 15 — ... =T, — 1)
Trace the cycle:

17 locks and unlocks something
T5 locks and unlocks something

T} locks and unlocks something
17 locks and unlocks something

Then 77 locks some data item after it released a lock, and hence it is not
2PL.

Database Systems 24 L. Libkin

Two-phase locking and serializability cont'd

e The result is best possible

e For any non-2PL transaction 7', there is a 2PL transaction 7" and a
schedule S for T',T" that is not serializable.

o |dea:
T T
lock(A) lock(A)
unlock(A) lock(B)
lock(B) unlock(A)
unlock(B) unlock(B)
Schedule:

T lock(A), unlock(A)
T' all operations
T lock(B), unlock(B)

e [his schedule is not serializable.

Database Systems 25 L. Libkin

2PL in practice

e Majority of commercial DBMSs implement some form of 2PL
e Rigorous 2PL: all locks must be held until the transaction commits

e Two types of locks:
Exclusive: the transaction can both read and write the data item
Shared: the transaction can only read the data item

e At most one transaction can possess an exclusive lock for a data item
at any given time, but several transactions can possess a shared lock

e Strict 2PL: all exclusive locks taken by the transaction must be held
until it commits

e Strict and rigorous 2PL are the most common concurrency control
mechanisms

Database Systems 26 L. Libkin

Deadlocks

time 71} 15

1 lock(A)

2 lock(B)

3 lock(B) now T} waits for 75 to unlock B
4 lock(A) now T5 waits for T} to unlock A
5

e Deadlock: 77 waits for 15, T5 waits for T}

e In general, there is a set of transactions 17, ..., T} such that:
- T waits for 15
- T5 waits for 15

- T} waits for 17

Database Systems 27 L. Libkin

Dealing with deadlocks

e Two main mechanisms: prevention and detection

e Prevention: find a concurrency control mechanism which ensures that
there is no “waits-for" cycle

e Simple deadlock prevention: each transaction locks all data items be-
fore it starts execution. Such a locking constitutes one step.

e Disadvantage: data utilization is very low
e Another approach: use preemption. If 77 has a lock on A, and 715
requests it, then the system has three choices:
- let 15 wait, or
- roll back T} and grant the lock to 75, or
- roll back 75

Database Systems 28 L. Libkin

Deadlock prevention cont'd

e The decision is based on timestamps, that say how old transactions
are.

e Timestamp: the time when transaction started its execution. The larger
the timestamp, the younger the transaction.

e Example: the wound-wait scheme. |f T} requests a lock held by 75,
then 17 waits if 17 is younger than T5. Otherwise 75 is rolled back.

e The wait-die scheme. If T} requests a lock held by 75, then 17 waits
if T} is older than 75. Otherwise T} is rolled back.

e Issue: starvation may occur. Some transactions may never commit, as
they keep being rolled back.

Database Systems 29 L. Libkin

Deadlock detection and recovery

e The wait-for graph. Nodes are transactions. There is an edge from T’
to T" if T" waits for T to release a lock.

e There is a deadlock if there is a cycle in the wait-for graph.

e Deadlock recovery: identify a minimal set of transactions such that
rolling them back will make the wait-for graph cycle-free.

e

| |
S -

DEADLOCK AFTER DELETING T2

Database Systems 30 L. Libkin

Query Processing and Optimization

e QQuery optimization: finding a good way to evaluate a query

e Queries are declarative, and can be translated into procedural languages
in more than one way

e Hence one has to choose the best (or at least good) procedural query
e This happens in the context of query processing

e A query processor turns queries and updates into sequences of of oper-
ations on the database

Database Systems 31 L. Libkin

Query processing and optimization stages

e Which relational algebra expression, equivalent to a given declarative
query, will lead to the most efficient algorithm?

e For each algebraic operator, what algorithm do we use to compute that
operator?

e How do operations pass data (main memory buffer, disk buffer?)

e We first concentrate the first step: finding efficient relational algebra
expressions

e For the second step, we need to know how data is stored, and how it
Is accessed

Database Systems 32 L. Libkin

Overview of query processing

e Start with a declarative query:

SELECT R.A, S.B, T.E

FROM R,S,T
WHERE R.C=5.C AND S.D=T.D AND R.A>5 AND S.B<3 AND T.D=T.E

e Translate into an algebra expression:
TRASBT.EORA>57S.B<3rT.D=T.E(R X S X T))

e Optimization step: rewrite to an equivalent but more efficient expres-
sion:
TrASBT.E(0A>5(R) X ops(S)XNop_p(T)))
e Why is it more efficient?

Because selections are evaluated early, and joined relations are not
as large as R, S, T

Database Systems 33 L. Libkin

Overview of query processing cont'd

e Evaluating the optimized expression. Choices to make: order of joins.

e Two possible query plans:

o A.B
L
s
/\
\
R S T

first joins S, T', and then joins the result with R.

Database Systems 34 L. Libkin

Overview of query processing cont'd

e Another query plan:

’_‘
‘ ALB
[—]
/\
R S T

It first joins S, T, and then joins the result with R.

e Both query plans produce the same result.

e How to choose one?

Database Systems 35

L. Libkin

Optimization by algebraic manipulations

e Given a relational algebra expression e, find another expression €’ equiv-
alent to e that is easier (faster) to evaluate.

e Basic question: Given two relational algebra expressions ey, eo, are they
equivalent?

e This is the same as asking if an expression e always produces the empty
answer:
e1=¢€ & e —ey=0andey—e; =10

e Problem: testing ¢ = () is undecidable for relational algebra expressions.

e Good news:
We can still list some useful equalities, and

It is decidable for very important classes of queries (SPJ queries)

Database Systems 36 L. Libkin

Optimization by algebraic manipulations

e Join and Cartesian product are commutative and associative, hence
they can be applied in any order:

RxS =9%XR
Rx(SxT)=(RxS)xT
RXS = SXR
RX(SXT) = (RXS)XT
e Cascade of projections. Assume that attributes A, ..., A, are among
Bl; Ceey Bm Then
Ty (TBy, Ba(E)) = A, a,(E)

e Cascade of selections:

¢ <JC2 (E)> = JClACQ(E>

Database Systems 37 L. Libkin

Optimization by algebraic manipulations

e Commuting selections and projections. Assume that condition ¢ in-

volves attributes Ay,..., A,, Bi,...,B,,. Then
Tay. A0 E)) = 74,004, A, BB, (E)))
e A useful special case: if ¢ only involves attributes Ay, ..., A,, then

TAL A0 E)) = oudma,,.. a,(E))

e Commuting selection with join. If ¢ only involves attributes from Ej,
then
O'C(El X EQ) — O'C(E1> X EQ

Database Systems 38 L. Libkin

Optimization by algebraic manipulations cont'd

e Let c; only mention attributes of £ and ¢y only mention attributes of
EQ. Then
Ociney(En W En) = 0, (E71) W 0, (E>)

e Because:
O-Cl/\CQ(El X E2>

= JCl<JCZ(E1 X E2>)
— 061<E1 X 062<E2>)
= 0¢,(E1) X0, (Eb)

e Another useful rule: If ¢ only mentions attributes present in both E;
and F)», then

O'C(El X E2> — O'C<E1> X O'C<E2>

Database Systems 39 L. Libkin

Optimization by algebraic manipulations cont'd

e Rules combining o, ™ with U and —

e Commuting selection and union:
o(E1UFEy)) = odEy)Uo(Es)
e Commuting selection and difference:
o(E1 — FEy) = 0.(F)) — 0c(E»)
e Commuting projection and union:
A A (EVUEy) = ma, a,(E1)Uma, . a,(Es)

e Question: what about projection and difference?
Is mA(E1 — E») equal to ma(Ey) — ma(FEs)?

Database Systems 40 L. Libkin

Optimization by algebraic manipulations: example

e Recall
TR ASBT.EORA>57S B<3saT.D=T.E(LX X .S X T))

e Optimization: pushing selections

TR AS.BT.E(OR A>578.B<3AT.D=T.E(R X .S X T))
= TRASBT.E(ORA>5(05B<3(0T. D=1 R(R X S XT))))
= TRASBT.E(ORA>5(058<3(RX S X (o7 p_rp(T)))))
= TRASBT.E(ORA5(R X 0g5.3(S) X (or.p=1.5(T))))

= TRASBTE(0A=5(R) X op3(S) Wop_p(T)))

Database Systems 41 L. Libkin

Implementation of individual operations

e Depends on access method and file organization

e Suppose Emplld is a key; how long does it take to answer:
OEmplid=1234567(Employee)?

e [ime is linear in the worst case

e But one can perform the selection much faster if there is an index on
attribute Emplld

e Index: auxiliary structure that provides fast access to tuples in a table
based on a given key value

e Most common example: B-trees

e With B-trees, the above selection takes O(logn)

Database Systems 42 L. Libkin

Note on indices and SQL

e SQL allows one to create an index on a given attribute or a sequence
of attributes

e Once an index is created, the table can be accessed fast if the values
of index attributes are known

e SQL always creates an index for attributes declared as a primary key of
a table

e Syntax:

CREATE INDEX <Index_Name> ON
<Table_Name>(<attrl>,...,<attrN>)

e Example:

CREATE INDEX EmplIndex ON Employee(EmplId)

Database Systems 43 L. Libkin

Processing individual operators: join

e Join is the costliest operator of relational algebra
e Query: RX S =0pa-54(R xS)

e SELECT R.A, R.B, S.C
FROM R, S
WHERE R.A=5.A

e Naive implementation:

for every tuple t1 in R do
for every tuple t2 in S do
if t1.A=t2.A then output (t1.A,t1.B,t2.C)
end
end

e Time complexity: O(n?)

Database Systems 44

L. Libkin

Join processing

e Assumption: R.A is the primary key of R.
e New O(nlogn) algorithm:

Sort R and S on attribute A;
scanS := first tuple in .S;
for each tuple t1 in R do
scan .S starting from scan$S until a tuple
t2 with t2.A > t1.A is found:;
if t2.A=t1.A then
while t2.A=t1.A do
if t1.A=t2.A then output (t1.A,t1.B,t2.C);
move to the next tuple t2 of S
end
set scanS := current tuple t2
end

Database Systems 45 L. Libkin

Join processing cont'd

e Previous algorithm can be extended to the case when the common
attributes of R and S do not form a key in either relation

e One uses two pointers then to scan the relations
e Name: Sort-Merge join
e Both algorithms would be implemented differently in practice

e No need to do a new disk read to get each tuple; instead, read one
block at a time

e Complexity of sort-merge join: If the relations are sorted, it requires
Br 4+ Byg disk reads, where Bpr, Bg are the numbers of disk blocks in
R,S.

Database Systems 46 L. Libkin

Join processing: hash join

e Reminder: hashing.

e Bucket — a unit of storage that can store one or more tuples. Typically
several disk blocks

e /{ — a set of search-key values; B — a set of buckets
e Hash function h : K — B
e Good properties: uniform, random distribution

e Example of hashing: first two digits of the student # (assumes 100
buckets)

e Example of bad hashing: (account balance mod 100 000) div 10 000
e Overflows. Reason: bad distribution, insufficient buckets.

e Handling of overflows: a linked list of overflow buckets

Database Systems 47 L. Libkin

Join processing: hash join of R and S

e X - the set of common attributes
e Step 1: Select M, the number of buckets

e Step 2: Select a hash function h on attributes from X:
h : {tuples over X} — {1,... M}

e Step 3: Partition R and S:

for each t in R do for each t in S do

i = h(t.X) i = h(t.X)

HE .= HE U {t} H? = H? U {t}
end end

o If there are no overflows, this requires O(Bgr + Bg) 1/O operations
(read the relations, and write them back)

e With overflows, one uses recursive partitioning, and then complexity
becomes O(nlogn), where n = B + Bg.

Database Systems 48 L. Libkin

Join processing: hash join of R and S

e Assume that the relations are partitioned

e Algorithm:
fore =1 to M do
read H
read H?

add H' X H? to the output
end

e Why does it work? If two tuples t; € R, to € S match, t;.X =1,.X
and h(ty) = h(ty); hence they are in the same partition class

e Improvements: how does one compute H/* X H?? One possibility:
use another hash function. If it doesn't create overflows, the time for
the algorithm is O(Bg + Bg)

Database Systems 49 L. Libkin

Using hash functions for Boolean operations

e Observe:
RNS = (HfnH)U...UHENHY)

e Because: ift€¢ RN S and t € HZR, then t € HZ-S

e Advantage: each tuple ¢t € R must only be compared with H;?(t), and

not with the whole relation S

e Using hash functions for difference:

for each t in R do

i .= h(t)

if t ¢ H?, include ¢ in the output
end

Database Systems 50 L. Libkin

Other operations

e Set union RU S if no index is needed on the result, just append S to
R

e If index is needed, then do as above, and then build a new index

e Duplicate elimination: On a sorted relation, it takes linear time. Thus,
sort relation R first, based on any attribute(s), and then do one pass
and eliminate duplicate

e Complexity: O(nlogn).

e Aggregation with GROUP BY: similarly, sort on the group by attributes,
before computing aggregate functions.

Database Systems 51 L. Libkin

Query processing cont'd

e Find names of theaters that play movies featuring Nicholson

SELECT S.theater
FROM Movies M, Schedule S
WHERE M.title=S.title AND M.actor=’Nicholson’

e Translate into algebra:
7Ttheater(O-actor:’Nicholson’(‘7\4 X S))

e Next step: choose a query plan

e To do so, use algebraic rewritings to create several equivalent expres-
sions, and then choose algorithms for performing individual operators.

Database Systems 52 L. Libkin

Query processing cont'd

Step 1
JT \)\Z S.theater
S.theater :
\)\Z S.theater
6 M.act="Nicholson’ 6 M.title=S title
> X >
M S 6 M.act="Nicholson’ S 6 M.act="Nicholson’ S
M M

PLAN 1 PLAN 2 PLAN 3

Database Systems 53 L. Libkin

\m S.theater

6 M.act="Nicholson’

(hash join) N

Query processing cont'd

Step 2

\)\Z S.theater \)\Z
S.theater

6 M.title=S.title

M.title is key)

6 M.act="Nicholson’ S 6 M.act="Nicholson’ S

(sort-merge join,

PLAN 1

PLAN 2 PLAN 3

Database Systems

54

L. Libkin

Query processing cont'd

e Choosing the best plan: cost-based optimization
e Query optimizer estimates the cost of evaluating each plan

e Particularly important: selectivity estimation (how many tuples in o.(£)?)
and join size estimation

e Techniques used: statistics. Sometimes a sampling is done before a
query is processed.

e Problem with cost-based optimization: the set of all query plans is
extremely large; the optimizer cannot try them all

e Another problem: how long can the optimizer run? Hopefully not as
long as the savings it provides.

Database Systems 55 L. Libkin

Join order

e \We know that join is commutative and associative.

e How does one evaluate
Ry X Ry X Ry X Ry X Ry?
e Possibilities:
(((Ri X Ry) X Ry)X Ry)X Ry
(R1 X Ry) X (R3 X (Ry X Ry3))
(Rl X (Rg X R5)) X (R4 X Rg)

Database Systems 56 L. Libkin

Join order

> <

> >
] RS

> >

R4
R1 R2 R3
\
\ R3
R4 R5

R1 R2

e DB2 optimizer only considers deep join orders like the one on the left.

e In general, choosing an optimal join order is computationally hard (usu-
ally NP-complete for reasonable cost measures)

Database Systems 57 L. Libkin

SQL and query optimization

e Query optimizer helps turn your query into a more efficient one, but
you can help the query optimizer do its job better.

e The search space of all possible query plans is extremely large, and
optimizers only run for a short time, and thus may fail to find a good
plan.

e There are several rules that usually ensure a better query plan; however,
a lot depends on a particular system, version, and its optimizers, and
these rules may not be universally applicable. Still, if your query isn’t
running fast enough, it's worth giving them a try.

Database Systems 58 L. Libkin

Order does matter!

SELECT * SELECT *

FROM Students : FROM Students

WHERE grade=’A’ 's better than | epE sex=’female’
AND sex=’female’ AND grade=’A’

e Because usually there are fewer A students than female students.

e Using orders instead of <>

SELECT =*

FROM Movies

WHERE Length > 120
OR Length < 120

SELECT x
Is better than FROM Movies
WHERE Length <> 120

e Because the ordered version forces SQL to use an index on Length, if
there is one

e Without such an index, the version with OR runs longer

Database Systems 59 L. Libkin

e SELECT x*
FROM T1,
WHERE T1.

o SELECT x*
FROM T1,
WHERE T1.

e These may not be as good

SELECT x
FROM T1,
WHERE T1.
AND T2.
AND T3.

Provide more JOIN information

T2, T3
common

T2, T3
common

T2, T3
common
common
common

T3.

T3.

T2.
T3.
T1.

common AND T1.common=T2.common

common AND T3.common=T2.common

as

common
common
common

Database Systems

60

L. Libkin

Avoid unions if OR is sufficient

SELECT

FROM Personnel

WHERE location=‘Edinburgh’
UNION

SELECT

FROM Personnel

WHERE location=’Glasgow’

is not as good as

SELECT DISTINCT*

FROM Personnel

WHERE location=’Edinburgh’
OR location=’Glasgow’

The optimizer normally works within a single SELECT-FROM-WHERE.

Database Systems 61 L. Libkin

Joins are better than nested queries

SELECT S.Theater
FROM Schedule S
WHERE S.Title IN (SELECT M.Title
FROM Movies M
WHERE M.director=’Spielberg’)

is likely to run slower than

SELECT S.Theater
FROM Schedule S, Movies M
WHERE S.Title = M.Title

AND M.director=’Spielberg’

Database Systems 62 L. Libkin

