Note: marks do not reflect difficulty.

1. (7 marks) Consider MSO formulae over a vocabulary that has only one binary relation symbol $<$. We are interested in structures where $<$ is interpreted as a linear order, i.e. we are looking at structures $(A, <)$, where A is a set, and $<$ is a linear order on it.

Prove that there is no MSO sentence that checks whether the cardinality of A is a perfect square, i.e. of the form n^2 for some $n \in \mathbb{N}$.

Hint: Use Büchi’s theorem for strings.

2. (8 marks) Consider the following nondeterministic automaton model on strings: $(Q, q_0, F, \delta_-, \delta_-)$, where Q is a set of states, q_0 is a single initial state, states in $F \subseteq Q$ are final, and $\delta_-, \delta_- : Q \times \Sigma \rightarrow 2^Q$ are two transition functions.

The automaton starts in state q_0, reading the first symbol of a string. Every time the automaton is in a state q, reading symbol a_i of a string $a_0 \ldots a_{n-1}$, it nondeterministically chooses one of the two transition functions and does the following:

- For $\delta_- :$ it selects a state $q' \in \delta_-(q, a)$, and moves one position to the right, i.e. it now reads a_{i+1} in state q'. In the special case when $i = n - 1$ (i.e. there are no more symbols on the right), the automaton accepts if $q' \in F$ and rejects otherwise.
- For $\delta_- :$ it selects a state $q' \in \delta_-(q, a)$, and moves one position to the left, i.e. it now reads a_{i-1} in state q'. In the special case when $i = 0$ (i.e. there are no more symbols on the left), the automaton rejects.

Thus, these automata can go back-and-forth, like Turing machines. But we further impose a condition that such an automaton can visit a position at most twice (if it visits any position for a third time, it rejects).

These automata clearly generalise the usual NFAs (when one transition function is empty), so they accept all regular languages. Your goal is to prove the converse using Büchi’s theorem: every language they accept is regular.

3. (15 marks) The goal of this problem is to prove that MSO captures regular languages of unranked trees, using a translation of unranked trees into binary trees.

- (4 points) Show that every regular language of unranked trees is definable in MSO, by coding unranked tree automata. It suffices to give a high-level description of the coding (i.e., “a sentence $\exists X \exists Y \varphi$ where φ says that X and Y are sets such that ...”).

Next we define a translation from Σ-labeled unranked trees into $\Sigma \cup \{\bot\}$-labeled binary trees, where \bot is a new alphabet symbol. We first define a mapping $r : \mathbb{N}^* \rightarrow \{0, 1\}^*$ as follows:

(a) $r(\varepsilon) = \varepsilon$;
(b) if $r(s) = w$, then $r(s \cdot 0) = w \cdot 0$ (first child is mapped to the left successor), and if $s = s' \cdot i$, then $r(s' \cdot (i + 1)) = w \cdot 1$ (next sibling is mapped to the right successor).

If $T = (D, \lambda)$, let D' be the completion of $r(D)$: that is, if we have a string in $r(D)$ that has only left or only right successor, we add the missing successor to it. We define $\lambda' : D' \rightarrow \Sigma \cup \{\bot\}$ as follows: if $w = r(s)$, then $\lambda'(w) = \lambda(s)$; otherwise $\lambda'(w) = \bot$. Finally, $r(T)$ is (D', λ').

- (4 marks) Prove that every sentence over unranked trees can be expressed over translations: that is, for each sentence ψ over Σ-labeled unranked trees, there is a sentence ψ' over binary $\Sigma \cup \{\bot\}$-labeled trees such that $T \models \psi$ iff $r(T) \models \psi'$.

- (3 marks) Show that there is a tree automaton that recognizes trees of the form $r(T)$.
• (2 marks) What remains to be proved to conclude that MSO over unranked trees can be translated into unranked tree automata? How does one conclude the proof from that statement?
• (2 marks) Prove that statement.