Vocabulary (signature)
(+, *)
(+, *, <)

Structures Syntax Semantics (satisfaction)
(N, +, *) \exists x \exists y
(R, +, *) (x = y + y) y is some
(N, +, *, <) \exists x \forall y y > x \forall x \forall y y = x false
(R, +, *, <) \forall y (N, +, *, <)
Structures over a vocabulary σ
- a universe (set) U
- an interpretation of
 each function symbol f_i of arity n_i
 as a function $U^{n_i} \rightarrow U$
 each constant as an element of U
 each predicate symbol P_i as a subset of U^{n_i}
Finite strings as structures

Vocabulary
\(\left(\{ P_a, P_b \}, \prec \right) \)

alphabet \(\sum \)
\[\sum \in \{ a, b \} \]

so \(abaab \)
\[M_s = (\{0,1,2,3,4,3\}, P_a = \{0,2,3\}, P_b = \{1,4\}, \prec) \]
First Order Logic (FO)

Terms
- Each variable x is a term
 $FV = \{x\}$
- Each constant symbol c_i is a term, $FV = \emptyset$
- If f is a function symbol of any n and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term, and $FV = \bigcup FV(t_i)$

If no function symbols, atomic flair.
- If t_1, \ldots, t_n are terms and P a pred symbol of any n, then $P(t_1, \ldots, t_n)$ is a flair.
 $FV(P(t_1, \ldots, t_n)) = \bigcup FV(t_i)$
- If t_1 and t_2 are terms, then $t_1 = t_2$ is a flair.
 and $FV = FV(t_1) \cup FV(t_2)$
. If \(\varphi, \varphi_1, \varphi_2 \) are formulas then \(\varphi_1 \lor \varphi_2, \varphi_1 \land \varphi_2, \neg \varphi \)
are formulas. \(\text{FV}(\varphi_1 \lor \varphi_2) = \text{FV}(\varphi_1) \cup \text{FV}(\varphi_2) \)
\(\text{FV}(\neg \varphi) = \text{FV}(\varphi) \)

. If \(\varphi \) is a flc, then \(\exists x \varphi, \forall x \varphi \) are flc and \(\text{FV}(\exists x \varphi) = \text{FV}(\forall x \varphi) = \text{FV}(\varphi) - \{x\} \)

Bound = not free

\(p(x, x_2) \) if \(\text{FV}(\varphi) = \{x, x_2\} \)

\(\text{F} \) w/o free variable = sentence
\(a \in \{ (a, b), (c, d) \} \)

\[G = \{ (a, b), (c, d) \} \]

\[G \subseteq \bigcup \{ x \in E \} \]

\[\bigcup \{ x \in E \} \cap \bigcup \{ x \in A \} \]

\[(x) \phi \land E \subseteq (x) \phi \times A \]

\[E \subseteq \bigcup \{ x \in A \} \]

\[\text{for each } n \in \mathbb{N} \text{ s.t. } n > 0 \]

\[(\phi(0) \neq (\geq 'N)) \iff \phi(0) \iff (\geq 'N) \]

\[(x, y) \in (x \forall y) \land (y \leq x) \iff y = x \land y \geq x \]

\[(y = x \land y \geq x) \iff (y \leq x) \implies y = x \land \exists E \neq \emptyset \]