Unranked Tree domain is a subset of \mathbb{N}^* such that:
1. D is prefix-closed: $s \in D, s' \leq s \Rightarrow s' \in D$
2. If $s \cdot (c+1) \in D \Rightarrow s \cdot c \in D$

Unranked Tree (D, λ) s.t. $D \subseteq \text{tree domain}$, $\lambda : D \rightarrow \Sigma$
Unranked tree automata

\[A = (Q,F,\delta) \]

\[\delta : Q \times \Sigma \rightarrow 2^Q^*, \quad \delta(q,a) \subseteq Q^* \]

Each \(\delta(q,a) \) is a regular language.
A run is a mapping $\delta : D \rightarrow Q$ such that for each node s with children $s_0, s_{(n-1)}$, $\delta(p(s), \lambda(s)) \ni \delta(p(s_0)) \cdot \delta(p(s_{(n-1)}))$

$\Delta \in \delta(p(s), \lambda(s))$ if s is a leaf

A run is accepting if $\delta(E) \in F$
Extended DTDs d over labelings alphabet Σ is a DTD d' over an alphabet $\Sigma' \geq \Sigma$ together with a mapping $\mu: \Sigma' \to \Sigma$

$\Sigma' = \{ \text{root, new, used, car}, \text{car}_{n}, \text{car}_{o}, \text{was}, \text{mil} \}$

$\mu: \{ \text{root} \to \text{new, old}, \text{car} \to \text{car}_{n}, \text{car} \to \text{car}_{o} \}$

$\text{car} \to \text{price, model, was? mil?}$
A tree $T = (\mathcal{D}, \lambda')$ conforms to an extended DTD Σ' if there is a tree $T' = (D, \lambda')$ that conforms to Σ' s.t.

for each node s, $\lambda(s) = \mu(\lambda'(s))$.

\[\mu(a) \]

\[\lambda'(s) \]
Extended DTD = unranked tree automata

Theorem A set of unranked trees is definable in MSO if and only if it is regular, i.e., given by an unranked tree automaton.
Unranked trees as structures

\(T = (D, \lambda) \)

\(\Omega_T = (D, \prec_{ch}, \prec_{ns}, (Pa_a)_{a \in \Sigma}) \)

Trees are ordered

\(M'_T = (D, \prec_{fc}, \prec_{ns}, (Pa_a)_{a \in \Sigma}) \)

first child