1. *(10 marks)* Construct Büchi automata accepting \(\omega \)-words satisfying the following LTL formulae:

 (a) \(G F X a \) (that is, \(G (F (X a)) \));
 (b) \(G F (a U b) \).

2. *(10 marks)* Consider the *validity* problem for LTL: Given an LTL formula \(\phi \), is \(\phi \) true in all \(\omega \)-words.

 Give an exponential-time algorithm for solving this problem.

3. *(10 marks)* Consider two properties of infinite binary trees:

 (a) There is a path starting from the root on which infinitely many nodes are labeled \(a \);
 (b) On every path starting from the root, there is a node labeled \(a \).

 Construct tree automata (with Muller acceptance conditions) for these properties.

4. *(Bonus problem for extra 5 marks)* Consider the Vardi-Wolper translation from LTL into Büchi automata. Note that all the operators of LTL make perfect sense over the usual, finite, words.

 A slight extension of the Vardi-Wolper construction produces for each LTL formula \(\phi \) an NFA \(A_\phi \) accepting words \(w \in \Sigma^* \) that satisfy \(\phi \).

 Describe this extension of the Vardi-Wolper construction.

 You do *not* have to give all the details of Vardi-Wolper; you only need to say which components (set of states, initial states, final states, transition function) change compared to what we’ve seen in class, and how.